xref: /openbmc/linux/block/blk-mq.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static void blk_mq_poll_stats_start(struct request_queue *q);
45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46 
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 	int ddir, sectors, bucket;
50 
51 	ddir = rq_data_dir(rq);
52 	sectors = blk_rq_stats_sectors(rq);
53 
54 	bucket = ddir + 2 * ilog2(sectors);
55 
56 	if (bucket < 0)
57 		return -1;
58 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 
61 	return bucket;
62 }
63 
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 	return !list_empty_careful(&hctx->dispatch) ||
71 		sbitmap_any_bit_set(&hctx->ctx_map) ||
72 			blk_mq_sched_has_work(hctx);
73 }
74 
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 				     struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 		sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86 
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 				      struct blk_mq_ctx *ctx)
89 {
90 	const int bit = ctx->index_hw[hctx->type];
91 
92 	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94 
95 struct mq_inflight {
96 	struct hd_struct *part;
97 	unsigned int inflight[2];
98 };
99 
100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 				  struct request *rq, void *priv,
102 				  bool reserved)
103 {
104 	struct mq_inflight *mi = priv;
105 
106 	if (rq->part == mi->part)
107 		mi->inflight[rq_data_dir(rq)]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 	struct mq_inflight mi = { .part = part };
115 
116 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 
118 	return mi.inflight[0] + mi.inflight[1];
119 }
120 
121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 			 unsigned int inflight[2])
123 {
124 	struct mq_inflight mi = { .part = part };
125 
126 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 	inflight[0] = mi.inflight[0];
128 	inflight[1] = mi.inflight[1];
129 }
130 
131 void blk_freeze_queue_start(struct request_queue *q)
132 {
133 	mutex_lock(&q->mq_freeze_lock);
134 	if (++q->mq_freeze_depth == 1) {
135 		percpu_ref_kill(&q->q_usage_counter);
136 		mutex_unlock(&q->mq_freeze_lock);
137 		if (queue_is_mq(q))
138 			blk_mq_run_hw_queues(q, false);
139 	} else {
140 		mutex_unlock(&q->mq_freeze_lock);
141 	}
142 }
143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144 
145 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 {
147 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150 
151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 				     unsigned long timeout)
153 {
154 	return wait_event_timeout(q->mq_freeze_wq,
155 					percpu_ref_is_zero(&q->q_usage_counter),
156 					timeout);
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159 
160 /*
161  * Guarantee no request is in use, so we can change any data structure of
162  * the queue afterward.
163  */
164 void blk_freeze_queue(struct request_queue *q)
165 {
166 	/*
167 	 * In the !blk_mq case we are only calling this to kill the
168 	 * q_usage_counter, otherwise this increases the freeze depth
169 	 * and waits for it to return to zero.  For this reason there is
170 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 	 * exported to drivers as the only user for unfreeze is blk_mq.
172 	 */
173 	blk_freeze_queue_start(q);
174 	blk_mq_freeze_queue_wait(q);
175 }
176 
177 void blk_mq_freeze_queue(struct request_queue *q)
178 {
179 	/*
180 	 * ...just an alias to keep freeze and unfreeze actions balanced
181 	 * in the blk_mq_* namespace
182 	 */
183 	blk_freeze_queue(q);
184 }
185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186 
187 void blk_mq_unfreeze_queue(struct request_queue *q)
188 {
189 	mutex_lock(&q->mq_freeze_lock);
190 	q->mq_freeze_depth--;
191 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 	if (!q->mq_freeze_depth) {
193 		percpu_ref_resurrect(&q->q_usage_counter);
194 		wake_up_all(&q->mq_freeze_wq);
195 	}
196 	mutex_unlock(&q->mq_freeze_lock);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209 
210 /**
211  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212  * @q: request queue.
213  *
214  * Note: this function does not prevent that the struct request end_io()
215  * callback function is invoked. Once this function is returned, we make
216  * sure no dispatch can happen until the queue is unquiesced via
217  * blk_mq_unquiesce_queue().
218  */
219 void blk_mq_quiesce_queue(struct request_queue *q)
220 {
221 	struct blk_mq_hw_ctx *hctx;
222 	unsigned int i;
223 	bool rcu = false;
224 
225 	blk_mq_quiesce_queue_nowait(q);
226 
227 	queue_for_each_hw_ctx(q, hctx, i) {
228 		if (hctx->flags & BLK_MQ_F_BLOCKING)
229 			synchronize_srcu(hctx->srcu);
230 		else
231 			rcu = true;
232 	}
233 	if (rcu)
234 		synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237 
238 /*
239  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240  * @q: request queue.
241  *
242  * This function recovers queue into the state before quiescing
243  * which is done by blk_mq_quiesce_queue.
244  */
245 void blk_mq_unquiesce_queue(struct request_queue *q)
246 {
247 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248 
249 	/* dispatch requests which are inserted during quiescing */
250 	blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 	struct blk_mq_hw_ctx *hctx;
257 	unsigned int i;
258 
259 	queue_for_each_hw_ctx(q, hctx, i)
260 		if (blk_mq_hw_queue_mapped(hctx))
261 			blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263 
264 /*
265  * Only need start/end time stamping if we have iostat or
266  * blk stats enabled, or using an IO scheduler.
267  */
268 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 {
270 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 }
272 
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 		unsigned int tag, u64 alloc_time_ns)
275 {
276 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 	struct request *rq = tags->static_rqs[tag];
278 	req_flags_t rq_flags = 0;
279 
280 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 		rq->tag = BLK_MQ_NO_TAG;
282 		rq->internal_tag = tag;
283 	} else {
284 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285 			rq_flags = RQF_MQ_INFLIGHT;
286 			atomic_inc(&data->hctx->nr_active);
287 		}
288 		rq->tag = tag;
289 		rq->internal_tag = BLK_MQ_NO_TAG;
290 		data->hctx->tags->rqs[rq->tag] = rq;
291 	}
292 
293 	/* csd/requeue_work/fifo_time is initialized before use */
294 	rq->q = data->q;
295 	rq->mq_ctx = data->ctx;
296 	rq->mq_hctx = data->hctx;
297 	rq->rq_flags = rq_flags;
298 	rq->cmd_flags = data->cmd_flags;
299 	if (data->flags & BLK_MQ_REQ_PREEMPT)
300 		rq->rq_flags |= RQF_PREEMPT;
301 	if (blk_queue_io_stat(data->q))
302 		rq->rq_flags |= RQF_IO_STAT;
303 	INIT_LIST_HEAD(&rq->queuelist);
304 	INIT_HLIST_NODE(&rq->hash);
305 	RB_CLEAR_NODE(&rq->rb_node);
306 	rq->rq_disk = NULL;
307 	rq->part = NULL;
308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 	rq->alloc_time_ns = alloc_time_ns;
310 #endif
311 	if (blk_mq_need_time_stamp(rq))
312 		rq->start_time_ns = ktime_get_ns();
313 	else
314 		rq->start_time_ns = 0;
315 	rq->io_start_time_ns = 0;
316 	rq->stats_sectors = 0;
317 	rq->nr_phys_segments = 0;
318 #if defined(CONFIG_BLK_DEV_INTEGRITY)
319 	rq->nr_integrity_segments = 0;
320 #endif
321 	blk_crypto_rq_set_defaults(rq);
322 	/* tag was already set */
323 	WRITE_ONCE(rq->deadline, 0);
324 
325 	rq->timeout = 0;
326 
327 	rq->end_io = NULL;
328 	rq->end_io_data = NULL;
329 
330 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
331 	refcount_set(&rq->ref, 1);
332 
333 	if (!op_is_flush(data->cmd_flags)) {
334 		struct elevator_queue *e = data->q->elevator;
335 
336 		rq->elv.icq = NULL;
337 		if (e && e->type->ops.prepare_request) {
338 			if (e->type->icq_cache)
339 				blk_mq_sched_assign_ioc(rq);
340 
341 			e->type->ops.prepare_request(rq);
342 			rq->rq_flags |= RQF_ELVPRIV;
343 		}
344 	}
345 
346 	data->hctx->queued++;
347 	return rq;
348 }
349 
350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351 {
352 	struct request_queue *q = data->q;
353 	struct elevator_queue *e = q->elevator;
354 	u64 alloc_time_ns = 0;
355 	unsigned int tag;
356 
357 	/* alloc_time includes depth and tag waits */
358 	if (blk_queue_rq_alloc_time(q))
359 		alloc_time_ns = ktime_get_ns();
360 
361 	if (data->cmd_flags & REQ_NOWAIT)
362 		data->flags |= BLK_MQ_REQ_NOWAIT;
363 
364 	if (e) {
365 		data->flags |= BLK_MQ_REQ_INTERNAL;
366 
367 		/*
368 		 * Flush requests are special and go directly to the
369 		 * dispatch list. Don't include reserved tags in the
370 		 * limiting, as it isn't useful.
371 		 */
372 		if (!op_is_flush(data->cmd_flags) &&
373 		    e->type->ops.limit_depth &&
374 		    !(data->flags & BLK_MQ_REQ_RESERVED))
375 			e->type->ops.limit_depth(data->cmd_flags, data);
376 	}
377 
378 retry:
379 	data->ctx = blk_mq_get_ctx(q);
380 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
381 	if (!(data->flags & BLK_MQ_REQ_INTERNAL))
382 		blk_mq_tag_busy(data->hctx);
383 
384 	/*
385 	 * Waiting allocations only fail because of an inactive hctx.  In that
386 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
387 	 * should have migrated us to an online CPU by now.
388 	 */
389 	tag = blk_mq_get_tag(data);
390 	if (tag == BLK_MQ_NO_TAG) {
391 		if (data->flags & BLK_MQ_REQ_NOWAIT)
392 			return NULL;
393 
394 		/*
395 		 * Give up the CPU and sleep for a random short time to ensure
396 		 * that thread using a realtime scheduling class are migrated
397 		 * off the the CPU, and thus off the hctx that is going away.
398 		 */
399 		msleep(3);
400 		goto retry;
401 	}
402 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
403 }
404 
405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
406 		blk_mq_req_flags_t flags)
407 {
408 	struct blk_mq_alloc_data data = {
409 		.q		= q,
410 		.flags		= flags,
411 		.cmd_flags	= op,
412 	};
413 	struct request *rq;
414 	int ret;
415 
416 	ret = blk_queue_enter(q, flags);
417 	if (ret)
418 		return ERR_PTR(ret);
419 
420 	rq = __blk_mq_alloc_request(&data);
421 	if (!rq)
422 		goto out_queue_exit;
423 	rq->__data_len = 0;
424 	rq->__sector = (sector_t) -1;
425 	rq->bio = rq->biotail = NULL;
426 	return rq;
427 out_queue_exit:
428 	blk_queue_exit(q);
429 	return ERR_PTR(-EWOULDBLOCK);
430 }
431 EXPORT_SYMBOL(blk_mq_alloc_request);
432 
433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
435 {
436 	struct blk_mq_alloc_data data = {
437 		.q		= q,
438 		.flags		= flags,
439 		.cmd_flags	= op,
440 	};
441 	u64 alloc_time_ns = 0;
442 	unsigned int cpu;
443 	unsigned int tag;
444 	int ret;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	/*
451 	 * If the tag allocator sleeps we could get an allocation for a
452 	 * different hardware context.  No need to complicate the low level
453 	 * allocator for this for the rare use case of a command tied to
454 	 * a specific queue.
455 	 */
456 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
457 		return ERR_PTR(-EINVAL);
458 
459 	if (hctx_idx >= q->nr_hw_queues)
460 		return ERR_PTR(-EIO);
461 
462 	ret = blk_queue_enter(q, flags);
463 	if (ret)
464 		return ERR_PTR(ret);
465 
466 	/*
467 	 * Check if the hardware context is actually mapped to anything.
468 	 * If not tell the caller that it should skip this queue.
469 	 */
470 	ret = -EXDEV;
471 	data.hctx = q->queue_hw_ctx[hctx_idx];
472 	if (!blk_mq_hw_queue_mapped(data.hctx))
473 		goto out_queue_exit;
474 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
475 	data.ctx = __blk_mq_get_ctx(q, cpu);
476 
477 	if (q->elevator)
478 		data.flags |= BLK_MQ_REQ_INTERNAL;
479 	else
480 		blk_mq_tag_busy(data.hctx);
481 
482 	ret = -EWOULDBLOCK;
483 	tag = blk_mq_get_tag(&data);
484 	if (tag == BLK_MQ_NO_TAG)
485 		goto out_queue_exit;
486 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
487 
488 out_queue_exit:
489 	blk_queue_exit(q);
490 	return ERR_PTR(ret);
491 }
492 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
493 
494 static void __blk_mq_free_request(struct request *rq)
495 {
496 	struct request_queue *q = rq->q;
497 	struct blk_mq_ctx *ctx = rq->mq_ctx;
498 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
499 	const int sched_tag = rq->internal_tag;
500 
501 	blk_crypto_free_request(rq);
502 	blk_pm_mark_last_busy(rq);
503 	rq->mq_hctx = NULL;
504 	if (rq->tag != BLK_MQ_NO_TAG)
505 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
506 	if (sched_tag != BLK_MQ_NO_TAG)
507 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
508 	blk_mq_sched_restart(hctx);
509 	blk_queue_exit(q);
510 }
511 
512 void blk_mq_free_request(struct request *rq)
513 {
514 	struct request_queue *q = rq->q;
515 	struct elevator_queue *e = q->elevator;
516 	struct blk_mq_ctx *ctx = rq->mq_ctx;
517 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
518 
519 	if (rq->rq_flags & RQF_ELVPRIV) {
520 		if (e && e->type->ops.finish_request)
521 			e->type->ops.finish_request(rq);
522 		if (rq->elv.icq) {
523 			put_io_context(rq->elv.icq->ioc);
524 			rq->elv.icq = NULL;
525 		}
526 	}
527 
528 	ctx->rq_completed[rq_is_sync(rq)]++;
529 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
530 		atomic_dec(&hctx->nr_active);
531 
532 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
533 		laptop_io_completion(q->backing_dev_info);
534 
535 	rq_qos_done(q, rq);
536 
537 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
538 	if (refcount_dec_and_test(&rq->ref))
539 		__blk_mq_free_request(rq);
540 }
541 EXPORT_SYMBOL_GPL(blk_mq_free_request);
542 
543 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
544 {
545 	u64 now = 0;
546 
547 	if (blk_mq_need_time_stamp(rq))
548 		now = ktime_get_ns();
549 
550 	if (rq->rq_flags & RQF_STATS) {
551 		blk_mq_poll_stats_start(rq->q);
552 		blk_stat_add(rq, now);
553 	}
554 
555 	if (rq->internal_tag != BLK_MQ_NO_TAG)
556 		blk_mq_sched_completed_request(rq, now);
557 
558 	blk_account_io_done(rq, now);
559 
560 	if (rq->end_io) {
561 		rq_qos_done(rq->q, rq);
562 		rq->end_io(rq, error);
563 	} else {
564 		blk_mq_free_request(rq);
565 	}
566 }
567 EXPORT_SYMBOL(__blk_mq_end_request);
568 
569 void blk_mq_end_request(struct request *rq, blk_status_t error)
570 {
571 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
572 		BUG();
573 	__blk_mq_end_request(rq, error);
574 }
575 EXPORT_SYMBOL(blk_mq_end_request);
576 
577 static void __blk_mq_complete_request_remote(void *data)
578 {
579 	struct request *rq = data;
580 	struct request_queue *q = rq->q;
581 
582 	q->mq_ops->complete(rq);
583 }
584 
585 /**
586  * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
587  * 				injection that could drop the completion.
588  * @rq: Request to be force completed
589  *
590  * Drivers should use blk_mq_complete_request() to complete requests in their
591  * normal IO path. For timeout error recovery, drivers may call this forced
592  * completion routine after they've reclaimed timed out requests to bypass
593  * potentially subsequent fake timeouts.
594  */
595 void blk_mq_force_complete_rq(struct request *rq)
596 {
597 	struct blk_mq_ctx *ctx = rq->mq_ctx;
598 	struct request_queue *q = rq->q;
599 	bool shared = false;
600 	int cpu;
601 
602 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
603 	/*
604 	 * Most of single queue controllers, there is only one irq vector
605 	 * for handling IO completion, and the only irq's affinity is set
606 	 * as all possible CPUs. On most of ARCHs, this affinity means the
607 	 * irq is handled on one specific CPU.
608 	 *
609 	 * So complete IO reqeust in softirq context in case of single queue
610 	 * for not degrading IO performance by irqsoff latency.
611 	 */
612 	if (q->nr_hw_queues == 1) {
613 		__blk_complete_request(rq);
614 		return;
615 	}
616 
617 	/*
618 	 * For a polled request, always complete locallly, it's pointless
619 	 * to redirect the completion.
620 	 */
621 	if ((rq->cmd_flags & REQ_HIPRI) ||
622 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
623 		q->mq_ops->complete(rq);
624 		return;
625 	}
626 
627 	cpu = get_cpu();
628 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
629 		shared = cpus_share_cache(cpu, ctx->cpu);
630 
631 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
632 		rq->csd.func = __blk_mq_complete_request_remote;
633 		rq->csd.info = rq;
634 		rq->csd.flags = 0;
635 		smp_call_function_single_async(ctx->cpu, &rq->csd);
636 	} else {
637 		q->mq_ops->complete(rq);
638 	}
639 	put_cpu();
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
642 
643 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
644 	__releases(hctx->srcu)
645 {
646 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
647 		rcu_read_unlock();
648 	else
649 		srcu_read_unlock(hctx->srcu, srcu_idx);
650 }
651 
652 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
653 	__acquires(hctx->srcu)
654 {
655 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
656 		/* shut up gcc false positive */
657 		*srcu_idx = 0;
658 		rcu_read_lock();
659 	} else
660 		*srcu_idx = srcu_read_lock(hctx->srcu);
661 }
662 
663 /**
664  * blk_mq_complete_request - end I/O on a request
665  * @rq:		the request being processed
666  *
667  * Description:
668  *	Ends all I/O on a request. It does not handle partial completions.
669  *	The actual completion happens out-of-order, through a IPI handler.
670  **/
671 bool blk_mq_complete_request(struct request *rq)
672 {
673 	if (unlikely(blk_should_fake_timeout(rq->q)))
674 		return false;
675 	blk_mq_force_complete_rq(rq);
676 	return true;
677 }
678 EXPORT_SYMBOL(blk_mq_complete_request);
679 
680 /**
681  * blk_mq_start_request - Start processing a request
682  * @rq: Pointer to request to be started
683  *
684  * Function used by device drivers to notify the block layer that a request
685  * is going to be processed now, so blk layer can do proper initializations
686  * such as starting the timeout timer.
687  */
688 void blk_mq_start_request(struct request *rq)
689 {
690 	struct request_queue *q = rq->q;
691 
692 	trace_block_rq_issue(q, rq);
693 
694 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
695 		rq->io_start_time_ns = ktime_get_ns();
696 		rq->stats_sectors = blk_rq_sectors(rq);
697 		rq->rq_flags |= RQF_STATS;
698 		rq_qos_issue(q, rq);
699 	}
700 
701 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
702 
703 	blk_add_timer(rq);
704 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
705 
706 #ifdef CONFIG_BLK_DEV_INTEGRITY
707 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
708 		q->integrity.profile->prepare_fn(rq);
709 #endif
710 }
711 EXPORT_SYMBOL(blk_mq_start_request);
712 
713 static void __blk_mq_requeue_request(struct request *rq)
714 {
715 	struct request_queue *q = rq->q;
716 
717 	blk_mq_put_driver_tag(rq);
718 
719 	trace_block_rq_requeue(q, rq);
720 	rq_qos_requeue(q, rq);
721 
722 	if (blk_mq_request_started(rq)) {
723 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
724 		rq->rq_flags &= ~RQF_TIMED_OUT;
725 	}
726 }
727 
728 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
729 {
730 	__blk_mq_requeue_request(rq);
731 
732 	/* this request will be re-inserted to io scheduler queue */
733 	blk_mq_sched_requeue_request(rq);
734 
735 	BUG_ON(!list_empty(&rq->queuelist));
736 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
737 }
738 EXPORT_SYMBOL(blk_mq_requeue_request);
739 
740 static void blk_mq_requeue_work(struct work_struct *work)
741 {
742 	struct request_queue *q =
743 		container_of(work, struct request_queue, requeue_work.work);
744 	LIST_HEAD(rq_list);
745 	struct request *rq, *next;
746 
747 	spin_lock_irq(&q->requeue_lock);
748 	list_splice_init(&q->requeue_list, &rq_list);
749 	spin_unlock_irq(&q->requeue_lock);
750 
751 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
752 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
753 			continue;
754 
755 		rq->rq_flags &= ~RQF_SOFTBARRIER;
756 		list_del_init(&rq->queuelist);
757 		/*
758 		 * If RQF_DONTPREP, rq has contained some driver specific
759 		 * data, so insert it to hctx dispatch list to avoid any
760 		 * merge.
761 		 */
762 		if (rq->rq_flags & RQF_DONTPREP)
763 			blk_mq_request_bypass_insert(rq, false, false);
764 		else
765 			blk_mq_sched_insert_request(rq, true, false, false);
766 	}
767 
768 	while (!list_empty(&rq_list)) {
769 		rq = list_entry(rq_list.next, struct request, queuelist);
770 		list_del_init(&rq->queuelist);
771 		blk_mq_sched_insert_request(rq, false, false, false);
772 	}
773 
774 	blk_mq_run_hw_queues(q, false);
775 }
776 
777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
778 				bool kick_requeue_list)
779 {
780 	struct request_queue *q = rq->q;
781 	unsigned long flags;
782 
783 	/*
784 	 * We abuse this flag that is otherwise used by the I/O scheduler to
785 	 * request head insertion from the workqueue.
786 	 */
787 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
788 
789 	spin_lock_irqsave(&q->requeue_lock, flags);
790 	if (at_head) {
791 		rq->rq_flags |= RQF_SOFTBARRIER;
792 		list_add(&rq->queuelist, &q->requeue_list);
793 	} else {
794 		list_add_tail(&rq->queuelist, &q->requeue_list);
795 	}
796 	spin_unlock_irqrestore(&q->requeue_lock, flags);
797 
798 	if (kick_requeue_list)
799 		blk_mq_kick_requeue_list(q);
800 }
801 
802 void blk_mq_kick_requeue_list(struct request_queue *q)
803 {
804 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
805 }
806 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
807 
808 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
809 				    unsigned long msecs)
810 {
811 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
812 				    msecs_to_jiffies(msecs));
813 }
814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
815 
816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
817 {
818 	if (tag < tags->nr_tags) {
819 		prefetch(tags->rqs[tag]);
820 		return tags->rqs[tag];
821 	}
822 
823 	return NULL;
824 }
825 EXPORT_SYMBOL(blk_mq_tag_to_rq);
826 
827 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
828 			       void *priv, bool reserved)
829 {
830 	/*
831 	 * If we find a request that is inflight and the queue matches,
832 	 * we know the queue is busy. Return false to stop the iteration.
833 	 */
834 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
835 		bool *busy = priv;
836 
837 		*busy = true;
838 		return false;
839 	}
840 
841 	return true;
842 }
843 
844 bool blk_mq_queue_inflight(struct request_queue *q)
845 {
846 	bool busy = false;
847 
848 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
849 	return busy;
850 }
851 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
852 
853 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
854 {
855 	req->rq_flags |= RQF_TIMED_OUT;
856 	if (req->q->mq_ops->timeout) {
857 		enum blk_eh_timer_return ret;
858 
859 		ret = req->q->mq_ops->timeout(req, reserved);
860 		if (ret == BLK_EH_DONE)
861 			return;
862 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
863 	}
864 
865 	blk_add_timer(req);
866 }
867 
868 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
869 {
870 	unsigned long deadline;
871 
872 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
873 		return false;
874 	if (rq->rq_flags & RQF_TIMED_OUT)
875 		return false;
876 
877 	deadline = READ_ONCE(rq->deadline);
878 	if (time_after_eq(jiffies, deadline))
879 		return true;
880 
881 	if (*next == 0)
882 		*next = deadline;
883 	else if (time_after(*next, deadline))
884 		*next = deadline;
885 	return false;
886 }
887 
888 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
889 		struct request *rq, void *priv, bool reserved)
890 {
891 	unsigned long *next = priv;
892 
893 	/*
894 	 * Just do a quick check if it is expired before locking the request in
895 	 * so we're not unnecessarilly synchronizing across CPUs.
896 	 */
897 	if (!blk_mq_req_expired(rq, next))
898 		return true;
899 
900 	/*
901 	 * We have reason to believe the request may be expired. Take a
902 	 * reference on the request to lock this request lifetime into its
903 	 * currently allocated context to prevent it from being reallocated in
904 	 * the event the completion by-passes this timeout handler.
905 	 *
906 	 * If the reference was already released, then the driver beat the
907 	 * timeout handler to posting a natural completion.
908 	 */
909 	if (!refcount_inc_not_zero(&rq->ref))
910 		return true;
911 
912 	/*
913 	 * The request is now locked and cannot be reallocated underneath the
914 	 * timeout handler's processing. Re-verify this exact request is truly
915 	 * expired; if it is not expired, then the request was completed and
916 	 * reallocated as a new request.
917 	 */
918 	if (blk_mq_req_expired(rq, next))
919 		blk_mq_rq_timed_out(rq, reserved);
920 
921 	if (is_flush_rq(rq, hctx))
922 		rq->end_io(rq, 0);
923 	else if (refcount_dec_and_test(&rq->ref))
924 		__blk_mq_free_request(rq);
925 
926 	return true;
927 }
928 
929 static void blk_mq_timeout_work(struct work_struct *work)
930 {
931 	struct request_queue *q =
932 		container_of(work, struct request_queue, timeout_work);
933 	unsigned long next = 0;
934 	struct blk_mq_hw_ctx *hctx;
935 	int i;
936 
937 	/* A deadlock might occur if a request is stuck requiring a
938 	 * timeout at the same time a queue freeze is waiting
939 	 * completion, since the timeout code would not be able to
940 	 * acquire the queue reference here.
941 	 *
942 	 * That's why we don't use blk_queue_enter here; instead, we use
943 	 * percpu_ref_tryget directly, because we need to be able to
944 	 * obtain a reference even in the short window between the queue
945 	 * starting to freeze, by dropping the first reference in
946 	 * blk_freeze_queue_start, and the moment the last request is
947 	 * consumed, marked by the instant q_usage_counter reaches
948 	 * zero.
949 	 */
950 	if (!percpu_ref_tryget(&q->q_usage_counter))
951 		return;
952 
953 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
954 
955 	if (next != 0) {
956 		mod_timer(&q->timeout, next);
957 	} else {
958 		/*
959 		 * Request timeouts are handled as a forward rolling timer. If
960 		 * we end up here it means that no requests are pending and
961 		 * also that no request has been pending for a while. Mark
962 		 * each hctx as idle.
963 		 */
964 		queue_for_each_hw_ctx(q, hctx, i) {
965 			/* the hctx may be unmapped, so check it here */
966 			if (blk_mq_hw_queue_mapped(hctx))
967 				blk_mq_tag_idle(hctx);
968 		}
969 	}
970 	blk_queue_exit(q);
971 }
972 
973 struct flush_busy_ctx_data {
974 	struct blk_mq_hw_ctx *hctx;
975 	struct list_head *list;
976 };
977 
978 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
979 {
980 	struct flush_busy_ctx_data *flush_data = data;
981 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
982 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983 	enum hctx_type type = hctx->type;
984 
985 	spin_lock(&ctx->lock);
986 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
987 	sbitmap_clear_bit(sb, bitnr);
988 	spin_unlock(&ctx->lock);
989 	return true;
990 }
991 
992 /*
993  * Process software queues that have been marked busy, splicing them
994  * to the for-dispatch
995  */
996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
997 {
998 	struct flush_busy_ctx_data data = {
999 		.hctx = hctx,
1000 		.list = list,
1001 	};
1002 
1003 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1006 
1007 struct dispatch_rq_data {
1008 	struct blk_mq_hw_ctx *hctx;
1009 	struct request *rq;
1010 };
1011 
1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1013 		void *data)
1014 {
1015 	struct dispatch_rq_data *dispatch_data = data;
1016 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1017 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1018 	enum hctx_type type = hctx->type;
1019 
1020 	spin_lock(&ctx->lock);
1021 	if (!list_empty(&ctx->rq_lists[type])) {
1022 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1023 		list_del_init(&dispatch_data->rq->queuelist);
1024 		if (list_empty(&ctx->rq_lists[type]))
1025 			sbitmap_clear_bit(sb, bitnr);
1026 	}
1027 	spin_unlock(&ctx->lock);
1028 
1029 	return !dispatch_data->rq;
1030 }
1031 
1032 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1033 					struct blk_mq_ctx *start)
1034 {
1035 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1036 	struct dispatch_rq_data data = {
1037 		.hctx = hctx,
1038 		.rq   = NULL,
1039 	};
1040 
1041 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1042 			       dispatch_rq_from_ctx, &data);
1043 
1044 	return data.rq;
1045 }
1046 
1047 static inline unsigned int queued_to_index(unsigned int queued)
1048 {
1049 	if (!queued)
1050 		return 0;
1051 
1052 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1053 }
1054 
1055 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1056 				int flags, void *key)
1057 {
1058 	struct blk_mq_hw_ctx *hctx;
1059 
1060 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1061 
1062 	spin_lock(&hctx->dispatch_wait_lock);
1063 	if (!list_empty(&wait->entry)) {
1064 		struct sbitmap_queue *sbq;
1065 
1066 		list_del_init(&wait->entry);
1067 		sbq = &hctx->tags->bitmap_tags;
1068 		atomic_dec(&sbq->ws_active);
1069 	}
1070 	spin_unlock(&hctx->dispatch_wait_lock);
1071 
1072 	blk_mq_run_hw_queue(hctx, true);
1073 	return 1;
1074 }
1075 
1076 /*
1077  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1078  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1079  * restart. For both cases, take care to check the condition again after
1080  * marking us as waiting.
1081  */
1082 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1083 				 struct request *rq)
1084 {
1085 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1086 	struct wait_queue_head *wq;
1087 	wait_queue_entry_t *wait;
1088 	bool ret;
1089 
1090 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1091 		blk_mq_sched_mark_restart_hctx(hctx);
1092 
1093 		/*
1094 		 * It's possible that a tag was freed in the window between the
1095 		 * allocation failure and adding the hardware queue to the wait
1096 		 * queue.
1097 		 *
1098 		 * Don't clear RESTART here, someone else could have set it.
1099 		 * At most this will cost an extra queue run.
1100 		 */
1101 		return blk_mq_get_driver_tag(rq);
1102 	}
1103 
1104 	wait = &hctx->dispatch_wait;
1105 	if (!list_empty_careful(&wait->entry))
1106 		return false;
1107 
1108 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1109 
1110 	spin_lock_irq(&wq->lock);
1111 	spin_lock(&hctx->dispatch_wait_lock);
1112 	if (!list_empty(&wait->entry)) {
1113 		spin_unlock(&hctx->dispatch_wait_lock);
1114 		spin_unlock_irq(&wq->lock);
1115 		return false;
1116 	}
1117 
1118 	atomic_inc(&sbq->ws_active);
1119 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1120 	__add_wait_queue(wq, wait);
1121 
1122 	/*
1123 	 * It's possible that a tag was freed in the window between the
1124 	 * allocation failure and adding the hardware queue to the wait
1125 	 * queue.
1126 	 */
1127 	ret = blk_mq_get_driver_tag(rq);
1128 	if (!ret) {
1129 		spin_unlock(&hctx->dispatch_wait_lock);
1130 		spin_unlock_irq(&wq->lock);
1131 		return false;
1132 	}
1133 
1134 	/*
1135 	 * We got a tag, remove ourselves from the wait queue to ensure
1136 	 * someone else gets the wakeup.
1137 	 */
1138 	list_del_init(&wait->entry);
1139 	atomic_dec(&sbq->ws_active);
1140 	spin_unlock(&hctx->dispatch_wait_lock);
1141 	spin_unlock_irq(&wq->lock);
1142 
1143 	return true;
1144 }
1145 
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1148 /*
1149  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150  * - EWMA is one simple way to compute running average value
1151  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152  * - take 4 as factor for avoiding to get too small(0) result, and this
1153  *   factor doesn't matter because EWMA decreases exponentially
1154  */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 	unsigned int ewma;
1158 
1159 	if (hctx->queue->elevator)
1160 		return;
1161 
1162 	ewma = hctx->dispatch_busy;
1163 
1164 	if (!ewma && !busy)
1165 		return;
1166 
1167 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 	if (busy)
1169 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171 
1172 	hctx->dispatch_busy = ewma;
1173 }
1174 
1175 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1176 
1177 static void blk_mq_handle_dev_resource(struct request *rq,
1178 				       struct list_head *list)
1179 {
1180 	struct request *next =
1181 		list_first_entry_or_null(list, struct request, queuelist);
1182 
1183 	/*
1184 	 * If an I/O scheduler has been configured and we got a driver tag for
1185 	 * the next request already, free it.
1186 	 */
1187 	if (next)
1188 		blk_mq_put_driver_tag(next);
1189 
1190 	list_add(&rq->queuelist, list);
1191 	__blk_mq_requeue_request(rq);
1192 }
1193 
1194 static void blk_mq_handle_zone_resource(struct request *rq,
1195 					struct list_head *zone_list)
1196 {
1197 	/*
1198 	 * If we end up here it is because we cannot dispatch a request to a
1199 	 * specific zone due to LLD level zone-write locking or other zone
1200 	 * related resource not being available. In this case, set the request
1201 	 * aside in zone_list for retrying it later.
1202 	 */
1203 	list_add(&rq->queuelist, zone_list);
1204 	__blk_mq_requeue_request(rq);
1205 }
1206 
1207 /*
1208  * Returns true if we did some work AND can potentially do more.
1209  */
1210 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1211 			     bool got_budget)
1212 {
1213 	struct blk_mq_hw_ctx *hctx;
1214 	struct request *rq, *nxt;
1215 	bool no_tag = false;
1216 	int errors, queued;
1217 	blk_status_t ret = BLK_STS_OK;
1218 	bool no_budget_avail = false;
1219 	LIST_HEAD(zone_list);
1220 
1221 	if (list_empty(list))
1222 		return false;
1223 
1224 	WARN_ON(!list_is_singular(list) && got_budget);
1225 
1226 	/*
1227 	 * Now process all the entries, sending them to the driver.
1228 	 */
1229 	errors = queued = 0;
1230 	do {
1231 		struct blk_mq_queue_data bd;
1232 
1233 		rq = list_first_entry(list, struct request, queuelist);
1234 
1235 		hctx = rq->mq_hctx;
1236 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1237 			blk_mq_put_driver_tag(rq);
1238 			no_budget_avail = true;
1239 			break;
1240 		}
1241 
1242 		if (!blk_mq_get_driver_tag(rq)) {
1243 			/*
1244 			 * The initial allocation attempt failed, so we need to
1245 			 * rerun the hardware queue when a tag is freed. The
1246 			 * waitqueue takes care of that. If the queue is run
1247 			 * before we add this entry back on the dispatch list,
1248 			 * we'll re-run it below.
1249 			 */
1250 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1251 				blk_mq_put_dispatch_budget(hctx);
1252 				/*
1253 				 * For non-shared tags, the RESTART check
1254 				 * will suffice.
1255 				 */
1256 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1257 					no_tag = true;
1258 				break;
1259 			}
1260 		}
1261 
1262 		list_del_init(&rq->queuelist);
1263 
1264 		bd.rq = rq;
1265 
1266 		/*
1267 		 * Flag last if we have no more requests, or if we have more
1268 		 * but can't assign a driver tag to it.
1269 		 */
1270 		if (list_empty(list))
1271 			bd.last = true;
1272 		else {
1273 			nxt = list_first_entry(list, struct request, queuelist);
1274 			bd.last = !blk_mq_get_driver_tag(nxt);
1275 		}
1276 
1277 		ret = q->mq_ops->queue_rq(hctx, &bd);
1278 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1279 			blk_mq_handle_dev_resource(rq, list);
1280 			break;
1281 		} else if (ret == BLK_STS_ZONE_RESOURCE) {
1282 			/*
1283 			 * Move the request to zone_list and keep going through
1284 			 * the dispatch list to find more requests the drive can
1285 			 * accept.
1286 			 */
1287 			blk_mq_handle_zone_resource(rq, &zone_list);
1288 			if (list_empty(list))
1289 				break;
1290 			continue;
1291 		}
1292 
1293 		if (unlikely(ret != BLK_STS_OK)) {
1294 			errors++;
1295 			blk_mq_end_request(rq, BLK_STS_IOERR);
1296 			continue;
1297 		}
1298 
1299 		queued++;
1300 	} while (!list_empty(list));
1301 
1302 	if (!list_empty(&zone_list))
1303 		list_splice_tail_init(&zone_list, list);
1304 
1305 	hctx->dispatched[queued_to_index(queued)]++;
1306 
1307 	/*
1308 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1309 	 * that is where we will continue on next queue run.
1310 	 */
1311 	if (!list_empty(list)) {
1312 		bool needs_restart;
1313 
1314 		/*
1315 		 * If we didn't flush the entire list, we could have told
1316 		 * the driver there was more coming, but that turned out to
1317 		 * be a lie.
1318 		 */
1319 		if (q->mq_ops->commit_rqs && queued)
1320 			q->mq_ops->commit_rqs(hctx);
1321 
1322 		spin_lock(&hctx->lock);
1323 		list_splice_tail_init(list, &hctx->dispatch);
1324 		spin_unlock(&hctx->lock);
1325 
1326 		/*
1327 		 * If SCHED_RESTART was set by the caller of this function and
1328 		 * it is no longer set that means that it was cleared by another
1329 		 * thread and hence that a queue rerun is needed.
1330 		 *
1331 		 * If 'no_tag' is set, that means that we failed getting
1332 		 * a driver tag with an I/O scheduler attached. If our dispatch
1333 		 * waitqueue is no longer active, ensure that we run the queue
1334 		 * AFTER adding our entries back to the list.
1335 		 *
1336 		 * If no I/O scheduler has been configured it is possible that
1337 		 * the hardware queue got stopped and restarted before requests
1338 		 * were pushed back onto the dispatch list. Rerun the queue to
1339 		 * avoid starvation. Notes:
1340 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1341 		 *   been stopped before rerunning a queue.
1342 		 * - Some but not all block drivers stop a queue before
1343 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1344 		 *   and dm-rq.
1345 		 *
1346 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1347 		 * bit is set, run queue after a delay to avoid IO stalls
1348 		 * that could otherwise occur if the queue is idle.  We'll do
1349 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1350 		 */
1351 		needs_restart = blk_mq_sched_needs_restart(hctx);
1352 		if (!needs_restart ||
1353 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1354 			blk_mq_run_hw_queue(hctx, true);
1355 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1356 					   no_budget_avail))
1357 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1358 
1359 		blk_mq_update_dispatch_busy(hctx, true);
1360 		return false;
1361 	} else
1362 		blk_mq_update_dispatch_busy(hctx, false);
1363 
1364 	/*
1365 	 * If the host/device is unable to accept more work, inform the
1366 	 * caller of that.
1367 	 */
1368 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1369 		return false;
1370 
1371 	return (queued + errors) != 0;
1372 }
1373 
1374 /**
1375  * __blk_mq_run_hw_queue - Run a hardware queue.
1376  * @hctx: Pointer to the hardware queue to run.
1377  *
1378  * Send pending requests to the hardware.
1379  */
1380 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1381 {
1382 	int srcu_idx;
1383 
1384 	/*
1385 	 * We should be running this queue from one of the CPUs that
1386 	 * are mapped to it.
1387 	 *
1388 	 * There are at least two related races now between setting
1389 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1390 	 * __blk_mq_run_hw_queue():
1391 	 *
1392 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1393 	 *   but later it becomes online, then this warning is harmless
1394 	 *   at all
1395 	 *
1396 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1397 	 *   but later it becomes offline, then the warning can't be
1398 	 *   triggered, and we depend on blk-mq timeout handler to
1399 	 *   handle dispatched requests to this hctx
1400 	 */
1401 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1402 		cpu_online(hctx->next_cpu)) {
1403 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1404 			raw_smp_processor_id(),
1405 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1406 		dump_stack();
1407 	}
1408 
1409 	/*
1410 	 * We can't run the queue inline with ints disabled. Ensure that
1411 	 * we catch bad users of this early.
1412 	 */
1413 	WARN_ON_ONCE(in_interrupt());
1414 
1415 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1416 
1417 	hctx_lock(hctx, &srcu_idx);
1418 	blk_mq_sched_dispatch_requests(hctx);
1419 	hctx_unlock(hctx, srcu_idx);
1420 }
1421 
1422 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1423 {
1424 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1425 
1426 	if (cpu >= nr_cpu_ids)
1427 		cpu = cpumask_first(hctx->cpumask);
1428 	return cpu;
1429 }
1430 
1431 /*
1432  * It'd be great if the workqueue API had a way to pass
1433  * in a mask and had some smarts for more clever placement.
1434  * For now we just round-robin here, switching for every
1435  * BLK_MQ_CPU_WORK_BATCH queued items.
1436  */
1437 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1438 {
1439 	bool tried = false;
1440 	int next_cpu = hctx->next_cpu;
1441 
1442 	if (hctx->queue->nr_hw_queues == 1)
1443 		return WORK_CPU_UNBOUND;
1444 
1445 	if (--hctx->next_cpu_batch <= 0) {
1446 select_cpu:
1447 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1448 				cpu_online_mask);
1449 		if (next_cpu >= nr_cpu_ids)
1450 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1451 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1452 	}
1453 
1454 	/*
1455 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1456 	 * and it should only happen in the path of handling CPU DEAD.
1457 	 */
1458 	if (!cpu_online(next_cpu)) {
1459 		if (!tried) {
1460 			tried = true;
1461 			goto select_cpu;
1462 		}
1463 
1464 		/*
1465 		 * Make sure to re-select CPU next time once after CPUs
1466 		 * in hctx->cpumask become online again.
1467 		 */
1468 		hctx->next_cpu = next_cpu;
1469 		hctx->next_cpu_batch = 1;
1470 		return WORK_CPU_UNBOUND;
1471 	}
1472 
1473 	hctx->next_cpu = next_cpu;
1474 	return next_cpu;
1475 }
1476 
1477 /**
1478  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1479  * @hctx: Pointer to the hardware queue to run.
1480  * @async: If we want to run the queue asynchronously.
1481  * @msecs: Microseconds of delay to wait before running the queue.
1482  *
1483  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1484  * with a delay of @msecs.
1485  */
1486 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1487 					unsigned long msecs)
1488 {
1489 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1490 		return;
1491 
1492 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1493 		int cpu = get_cpu();
1494 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1495 			__blk_mq_run_hw_queue(hctx);
1496 			put_cpu();
1497 			return;
1498 		}
1499 
1500 		put_cpu();
1501 	}
1502 
1503 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1504 				    msecs_to_jiffies(msecs));
1505 }
1506 
1507 /**
1508  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1509  * @hctx: Pointer to the hardware queue to run.
1510  * @msecs: Microseconds of delay to wait before running the queue.
1511  *
1512  * Run a hardware queue asynchronously with a delay of @msecs.
1513  */
1514 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1515 {
1516 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1517 }
1518 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1519 
1520 /**
1521  * blk_mq_run_hw_queue - Start to run a hardware queue.
1522  * @hctx: Pointer to the hardware queue to run.
1523  * @async: If we want to run the queue asynchronously.
1524  *
1525  * Check if the request queue is not in a quiesced state and if there are
1526  * pending requests to be sent. If this is true, run the queue to send requests
1527  * to hardware.
1528  */
1529 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1530 {
1531 	int srcu_idx;
1532 	bool need_run;
1533 
1534 	/*
1535 	 * When queue is quiesced, we may be switching io scheduler, or
1536 	 * updating nr_hw_queues, or other things, and we can't run queue
1537 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1538 	 *
1539 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1540 	 * quiesced.
1541 	 */
1542 	hctx_lock(hctx, &srcu_idx);
1543 	need_run = !blk_queue_quiesced(hctx->queue) &&
1544 		blk_mq_hctx_has_pending(hctx);
1545 	hctx_unlock(hctx, srcu_idx);
1546 
1547 	if (need_run)
1548 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1549 }
1550 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1551 
1552 /**
1553  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1554  * @q: Pointer to the request queue to run.
1555  * @async: If we want to run the queue asynchronously.
1556  */
1557 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1558 {
1559 	struct blk_mq_hw_ctx *hctx;
1560 	int i;
1561 
1562 	queue_for_each_hw_ctx(q, hctx, i) {
1563 		if (blk_mq_hctx_stopped(hctx))
1564 			continue;
1565 
1566 		blk_mq_run_hw_queue(hctx, async);
1567 	}
1568 }
1569 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1570 
1571 /**
1572  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1573  * @q: Pointer to the request queue to run.
1574  * @msecs: Microseconds of delay to wait before running the queues.
1575  */
1576 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1577 {
1578 	struct blk_mq_hw_ctx *hctx;
1579 	int i;
1580 
1581 	queue_for_each_hw_ctx(q, hctx, i) {
1582 		if (blk_mq_hctx_stopped(hctx))
1583 			continue;
1584 
1585 		blk_mq_delay_run_hw_queue(hctx, msecs);
1586 	}
1587 }
1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1589 
1590 /**
1591  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1592  * @q: request queue.
1593  *
1594  * The caller is responsible for serializing this function against
1595  * blk_mq_{start,stop}_hw_queue().
1596  */
1597 bool blk_mq_queue_stopped(struct request_queue *q)
1598 {
1599 	struct blk_mq_hw_ctx *hctx;
1600 	int i;
1601 
1602 	queue_for_each_hw_ctx(q, hctx, i)
1603 		if (blk_mq_hctx_stopped(hctx))
1604 			return true;
1605 
1606 	return false;
1607 }
1608 EXPORT_SYMBOL(blk_mq_queue_stopped);
1609 
1610 /*
1611  * This function is often used for pausing .queue_rq() by driver when
1612  * there isn't enough resource or some conditions aren't satisfied, and
1613  * BLK_STS_RESOURCE is usually returned.
1614  *
1615  * We do not guarantee that dispatch can be drained or blocked
1616  * after blk_mq_stop_hw_queue() returns. Please use
1617  * blk_mq_quiesce_queue() for that requirement.
1618  */
1619 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1620 {
1621 	cancel_delayed_work(&hctx->run_work);
1622 
1623 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1624 }
1625 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1626 
1627 /*
1628  * This function is often used for pausing .queue_rq() by driver when
1629  * there isn't enough resource or some conditions aren't satisfied, and
1630  * BLK_STS_RESOURCE is usually returned.
1631  *
1632  * We do not guarantee that dispatch can be drained or blocked
1633  * after blk_mq_stop_hw_queues() returns. Please use
1634  * blk_mq_quiesce_queue() for that requirement.
1635  */
1636 void blk_mq_stop_hw_queues(struct request_queue *q)
1637 {
1638 	struct blk_mq_hw_ctx *hctx;
1639 	int i;
1640 
1641 	queue_for_each_hw_ctx(q, hctx, i)
1642 		blk_mq_stop_hw_queue(hctx);
1643 }
1644 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1645 
1646 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1647 {
1648 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1649 
1650 	blk_mq_run_hw_queue(hctx, false);
1651 }
1652 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1653 
1654 void blk_mq_start_hw_queues(struct request_queue *q)
1655 {
1656 	struct blk_mq_hw_ctx *hctx;
1657 	int i;
1658 
1659 	queue_for_each_hw_ctx(q, hctx, i)
1660 		blk_mq_start_hw_queue(hctx);
1661 }
1662 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1663 
1664 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1665 {
1666 	if (!blk_mq_hctx_stopped(hctx))
1667 		return;
1668 
1669 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1670 	blk_mq_run_hw_queue(hctx, async);
1671 }
1672 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1673 
1674 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1675 {
1676 	struct blk_mq_hw_ctx *hctx;
1677 	int i;
1678 
1679 	queue_for_each_hw_ctx(q, hctx, i)
1680 		blk_mq_start_stopped_hw_queue(hctx, async);
1681 }
1682 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1683 
1684 static void blk_mq_run_work_fn(struct work_struct *work)
1685 {
1686 	struct blk_mq_hw_ctx *hctx;
1687 
1688 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1689 
1690 	/*
1691 	 * If we are stopped, don't run the queue.
1692 	 */
1693 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1694 		return;
1695 
1696 	__blk_mq_run_hw_queue(hctx);
1697 }
1698 
1699 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1700 					    struct request *rq,
1701 					    bool at_head)
1702 {
1703 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1704 	enum hctx_type type = hctx->type;
1705 
1706 	lockdep_assert_held(&ctx->lock);
1707 
1708 	trace_block_rq_insert(hctx->queue, rq);
1709 
1710 	if (at_head)
1711 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1712 	else
1713 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1714 }
1715 
1716 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1717 			     bool at_head)
1718 {
1719 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1720 
1721 	lockdep_assert_held(&ctx->lock);
1722 
1723 	__blk_mq_insert_req_list(hctx, rq, at_head);
1724 	blk_mq_hctx_mark_pending(hctx, ctx);
1725 }
1726 
1727 /**
1728  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1729  * @rq: Pointer to request to be inserted.
1730  * @run_queue: If we should run the hardware queue after inserting the request.
1731  *
1732  * Should only be used carefully, when the caller knows we want to
1733  * bypass a potential IO scheduler on the target device.
1734  */
1735 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1736 				  bool run_queue)
1737 {
1738 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1739 
1740 	spin_lock(&hctx->lock);
1741 	if (at_head)
1742 		list_add(&rq->queuelist, &hctx->dispatch);
1743 	else
1744 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1745 	spin_unlock(&hctx->lock);
1746 
1747 	if (run_queue)
1748 		blk_mq_run_hw_queue(hctx, false);
1749 }
1750 
1751 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1752 			    struct list_head *list)
1753 
1754 {
1755 	struct request *rq;
1756 	enum hctx_type type = hctx->type;
1757 
1758 	/*
1759 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1760 	 * offline now
1761 	 */
1762 	list_for_each_entry(rq, list, queuelist) {
1763 		BUG_ON(rq->mq_ctx != ctx);
1764 		trace_block_rq_insert(hctx->queue, rq);
1765 	}
1766 
1767 	spin_lock(&ctx->lock);
1768 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1769 	blk_mq_hctx_mark_pending(hctx, ctx);
1770 	spin_unlock(&ctx->lock);
1771 }
1772 
1773 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1774 {
1775 	struct request *rqa = container_of(a, struct request, queuelist);
1776 	struct request *rqb = container_of(b, struct request, queuelist);
1777 
1778 	if (rqa->mq_ctx != rqb->mq_ctx)
1779 		return rqa->mq_ctx > rqb->mq_ctx;
1780 	if (rqa->mq_hctx != rqb->mq_hctx)
1781 		return rqa->mq_hctx > rqb->mq_hctx;
1782 
1783 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1784 }
1785 
1786 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1787 {
1788 	LIST_HEAD(list);
1789 
1790 	if (list_empty(&plug->mq_list))
1791 		return;
1792 	list_splice_init(&plug->mq_list, &list);
1793 
1794 	if (plug->rq_count > 2 && plug->multiple_queues)
1795 		list_sort(NULL, &list, plug_rq_cmp);
1796 
1797 	plug->rq_count = 0;
1798 
1799 	do {
1800 		struct list_head rq_list;
1801 		struct request *rq, *head_rq = list_entry_rq(list.next);
1802 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1803 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1804 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1805 		unsigned int depth = 1;
1806 
1807 		list_for_each_continue(pos, &list) {
1808 			rq = list_entry_rq(pos);
1809 			BUG_ON(!rq->q);
1810 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1811 				break;
1812 			depth++;
1813 		}
1814 
1815 		list_cut_before(&rq_list, &list, pos);
1816 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1817 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1818 						from_schedule);
1819 	} while(!list_empty(&list));
1820 }
1821 
1822 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1823 		unsigned int nr_segs)
1824 {
1825 	if (bio->bi_opf & REQ_RAHEAD)
1826 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1827 
1828 	rq->__sector = bio->bi_iter.bi_sector;
1829 	rq->write_hint = bio->bi_write_hint;
1830 	blk_rq_bio_prep(rq, bio, nr_segs);
1831 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1832 
1833 	blk_account_io_start(rq);
1834 }
1835 
1836 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1837 					    struct request *rq,
1838 					    blk_qc_t *cookie, bool last)
1839 {
1840 	struct request_queue *q = rq->q;
1841 	struct blk_mq_queue_data bd = {
1842 		.rq = rq,
1843 		.last = last,
1844 	};
1845 	blk_qc_t new_cookie;
1846 	blk_status_t ret;
1847 
1848 	new_cookie = request_to_qc_t(hctx, rq);
1849 
1850 	/*
1851 	 * For OK queue, we are done. For error, caller may kill it.
1852 	 * Any other error (busy), just add it to our list as we
1853 	 * previously would have done.
1854 	 */
1855 	ret = q->mq_ops->queue_rq(hctx, &bd);
1856 	switch (ret) {
1857 	case BLK_STS_OK:
1858 		blk_mq_update_dispatch_busy(hctx, false);
1859 		*cookie = new_cookie;
1860 		break;
1861 	case BLK_STS_RESOURCE:
1862 	case BLK_STS_DEV_RESOURCE:
1863 		blk_mq_update_dispatch_busy(hctx, true);
1864 		__blk_mq_requeue_request(rq);
1865 		break;
1866 	default:
1867 		blk_mq_update_dispatch_busy(hctx, false);
1868 		*cookie = BLK_QC_T_NONE;
1869 		break;
1870 	}
1871 
1872 	return ret;
1873 }
1874 
1875 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1876 						struct request *rq,
1877 						blk_qc_t *cookie,
1878 						bool bypass_insert, bool last)
1879 {
1880 	struct request_queue *q = rq->q;
1881 	bool run_queue = true;
1882 
1883 	/*
1884 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1885 	 *
1886 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1887 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1888 	 * and avoid driver to try to dispatch again.
1889 	 */
1890 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1891 		run_queue = false;
1892 		bypass_insert = false;
1893 		goto insert;
1894 	}
1895 
1896 	if (q->elevator && !bypass_insert)
1897 		goto insert;
1898 
1899 	if (!blk_mq_get_dispatch_budget(hctx))
1900 		goto insert;
1901 
1902 	if (!blk_mq_get_driver_tag(rq)) {
1903 		blk_mq_put_dispatch_budget(hctx);
1904 		goto insert;
1905 	}
1906 
1907 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1908 insert:
1909 	if (bypass_insert)
1910 		return BLK_STS_RESOURCE;
1911 
1912 	blk_mq_request_bypass_insert(rq, false, run_queue);
1913 	return BLK_STS_OK;
1914 }
1915 
1916 /**
1917  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1918  * @hctx: Pointer of the associated hardware queue.
1919  * @rq: Pointer to request to be sent.
1920  * @cookie: Request queue cookie.
1921  *
1922  * If the device has enough resources to accept a new request now, send the
1923  * request directly to device driver. Else, insert at hctx->dispatch queue, so
1924  * we can try send it another time in the future. Requests inserted at this
1925  * queue have higher priority.
1926  */
1927 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1928 		struct request *rq, blk_qc_t *cookie)
1929 {
1930 	blk_status_t ret;
1931 	int srcu_idx;
1932 
1933 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1934 
1935 	hctx_lock(hctx, &srcu_idx);
1936 
1937 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1938 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1939 		blk_mq_request_bypass_insert(rq, false, true);
1940 	else if (ret != BLK_STS_OK)
1941 		blk_mq_end_request(rq, ret);
1942 
1943 	hctx_unlock(hctx, srcu_idx);
1944 }
1945 
1946 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1947 {
1948 	blk_status_t ret;
1949 	int srcu_idx;
1950 	blk_qc_t unused_cookie;
1951 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1952 
1953 	hctx_lock(hctx, &srcu_idx);
1954 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1955 	hctx_unlock(hctx, srcu_idx);
1956 
1957 	return ret;
1958 }
1959 
1960 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1961 		struct list_head *list)
1962 {
1963 	int queued = 0;
1964 
1965 	while (!list_empty(list)) {
1966 		blk_status_t ret;
1967 		struct request *rq = list_first_entry(list, struct request,
1968 				queuelist);
1969 
1970 		list_del_init(&rq->queuelist);
1971 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1972 		if (ret != BLK_STS_OK) {
1973 			if (ret == BLK_STS_RESOURCE ||
1974 					ret == BLK_STS_DEV_RESOURCE) {
1975 				blk_mq_request_bypass_insert(rq, false,
1976 							list_empty(list));
1977 				break;
1978 			}
1979 			blk_mq_end_request(rq, ret);
1980 		} else
1981 			queued++;
1982 	}
1983 
1984 	/*
1985 	 * If we didn't flush the entire list, we could have told
1986 	 * the driver there was more coming, but that turned out to
1987 	 * be a lie.
1988 	 */
1989 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1990 		hctx->queue->mq_ops->commit_rqs(hctx);
1991 }
1992 
1993 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1994 {
1995 	list_add_tail(&rq->queuelist, &plug->mq_list);
1996 	plug->rq_count++;
1997 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1998 		struct request *tmp;
1999 
2000 		tmp = list_first_entry(&plug->mq_list, struct request,
2001 						queuelist);
2002 		if (tmp->q != rq->q)
2003 			plug->multiple_queues = true;
2004 	}
2005 }
2006 
2007 /**
2008  * blk_mq_make_request - Create and send a request to block device.
2009  * @q: Request queue pointer.
2010  * @bio: Bio pointer.
2011  *
2012  * Builds up a request structure from @q and @bio and send to the device. The
2013  * request may not be queued directly to hardware if:
2014  * * This request can be merged with another one
2015  * * We want to place request at plug queue for possible future merging
2016  * * There is an IO scheduler active at this queue
2017  *
2018  * It will not queue the request if there is an error with the bio, or at the
2019  * request creation.
2020  *
2021  * Returns: Request queue cookie.
2022  */
2023 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2024 {
2025 	const int is_sync = op_is_sync(bio->bi_opf);
2026 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2027 	struct blk_mq_alloc_data data = {
2028 		.q		= q,
2029 	};
2030 	struct request *rq;
2031 	struct blk_plug *plug;
2032 	struct request *same_queue_rq = NULL;
2033 	unsigned int nr_segs;
2034 	blk_qc_t cookie;
2035 	blk_status_t ret;
2036 
2037 	blk_queue_bounce(q, &bio);
2038 	__blk_queue_split(q, &bio, &nr_segs);
2039 
2040 	if (!bio_integrity_prep(bio))
2041 		goto queue_exit;
2042 
2043 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2044 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2045 		goto queue_exit;
2046 
2047 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2048 		goto queue_exit;
2049 
2050 	rq_qos_throttle(q, bio);
2051 
2052 	data.cmd_flags = bio->bi_opf;
2053 	rq = __blk_mq_alloc_request(&data);
2054 	if (unlikely(!rq)) {
2055 		rq_qos_cleanup(q, bio);
2056 		if (bio->bi_opf & REQ_NOWAIT)
2057 			bio_wouldblock_error(bio);
2058 		goto queue_exit;
2059 	}
2060 
2061 	trace_block_getrq(q, bio, bio->bi_opf);
2062 
2063 	rq_qos_track(q, rq, bio);
2064 
2065 	cookie = request_to_qc_t(data.hctx, rq);
2066 
2067 	blk_mq_bio_to_request(rq, bio, nr_segs);
2068 
2069 	ret = blk_crypto_init_request(rq);
2070 	if (ret != BLK_STS_OK) {
2071 		bio->bi_status = ret;
2072 		bio_endio(bio);
2073 		blk_mq_free_request(rq);
2074 		return BLK_QC_T_NONE;
2075 	}
2076 
2077 	plug = blk_mq_plug(q, bio);
2078 	if (unlikely(is_flush_fua)) {
2079 		/* Bypass scheduler for flush requests */
2080 		blk_insert_flush(rq);
2081 		blk_mq_run_hw_queue(data.hctx, true);
2082 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2083 				!blk_queue_nonrot(q))) {
2084 		/*
2085 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2086 		 * we know the driver uses bd->last in a smart fashion.
2087 		 *
2088 		 * Use normal plugging if this disk is slow HDD, as sequential
2089 		 * IO may benefit a lot from plug merging.
2090 		 */
2091 		unsigned int request_count = plug->rq_count;
2092 		struct request *last = NULL;
2093 
2094 		if (!request_count)
2095 			trace_block_plug(q);
2096 		else
2097 			last = list_entry_rq(plug->mq_list.prev);
2098 
2099 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2100 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2101 			blk_flush_plug_list(plug, false);
2102 			trace_block_plug(q);
2103 		}
2104 
2105 		blk_add_rq_to_plug(plug, rq);
2106 	} else if (q->elevator) {
2107 		/* Insert the request at the IO scheduler queue */
2108 		blk_mq_sched_insert_request(rq, false, true, true);
2109 	} else if (plug && !blk_queue_nomerges(q)) {
2110 		/*
2111 		 * We do limited plugging. If the bio can be merged, do that.
2112 		 * Otherwise the existing request in the plug list will be
2113 		 * issued. So the plug list will have one request at most
2114 		 * The plug list might get flushed before this. If that happens,
2115 		 * the plug list is empty, and same_queue_rq is invalid.
2116 		 */
2117 		if (list_empty(&plug->mq_list))
2118 			same_queue_rq = NULL;
2119 		if (same_queue_rq) {
2120 			list_del_init(&same_queue_rq->queuelist);
2121 			plug->rq_count--;
2122 		}
2123 		blk_add_rq_to_plug(plug, rq);
2124 		trace_block_plug(q);
2125 
2126 		if (same_queue_rq) {
2127 			data.hctx = same_queue_rq->mq_hctx;
2128 			trace_block_unplug(q, 1, true);
2129 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2130 					&cookie);
2131 		}
2132 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2133 			!data.hctx->dispatch_busy) {
2134 		/*
2135 		 * There is no scheduler and we can try to send directly
2136 		 * to the hardware.
2137 		 */
2138 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2139 	} else {
2140 		/* Default case. */
2141 		blk_mq_sched_insert_request(rq, false, true, true);
2142 	}
2143 
2144 	return cookie;
2145 queue_exit:
2146 	blk_queue_exit(q);
2147 	return BLK_QC_T_NONE;
2148 }
2149 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2150 
2151 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152 		     unsigned int hctx_idx)
2153 {
2154 	struct page *page;
2155 
2156 	if (tags->rqs && set->ops->exit_request) {
2157 		int i;
2158 
2159 		for (i = 0; i < tags->nr_tags; i++) {
2160 			struct request *rq = tags->static_rqs[i];
2161 
2162 			if (!rq)
2163 				continue;
2164 			set->ops->exit_request(set, rq, hctx_idx);
2165 			tags->static_rqs[i] = NULL;
2166 		}
2167 	}
2168 
2169 	while (!list_empty(&tags->page_list)) {
2170 		page = list_first_entry(&tags->page_list, struct page, lru);
2171 		list_del_init(&page->lru);
2172 		/*
2173 		 * Remove kmemleak object previously allocated in
2174 		 * blk_mq_alloc_rqs().
2175 		 */
2176 		kmemleak_free(page_address(page));
2177 		__free_pages(page, page->private);
2178 	}
2179 }
2180 
2181 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2182 {
2183 	kfree(tags->rqs);
2184 	tags->rqs = NULL;
2185 	kfree(tags->static_rqs);
2186 	tags->static_rqs = NULL;
2187 
2188 	blk_mq_free_tags(tags);
2189 }
2190 
2191 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2192 					unsigned int hctx_idx,
2193 					unsigned int nr_tags,
2194 					unsigned int reserved_tags)
2195 {
2196 	struct blk_mq_tags *tags;
2197 	int node;
2198 
2199 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2200 	if (node == NUMA_NO_NODE)
2201 		node = set->numa_node;
2202 
2203 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2204 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2205 	if (!tags)
2206 		return NULL;
2207 
2208 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2209 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2210 				 node);
2211 	if (!tags->rqs) {
2212 		blk_mq_free_tags(tags);
2213 		return NULL;
2214 	}
2215 
2216 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2217 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2218 					node);
2219 	if (!tags->static_rqs) {
2220 		kfree(tags->rqs);
2221 		blk_mq_free_tags(tags);
2222 		return NULL;
2223 	}
2224 
2225 	return tags;
2226 }
2227 
2228 static size_t order_to_size(unsigned int order)
2229 {
2230 	return (size_t)PAGE_SIZE << order;
2231 }
2232 
2233 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2234 			       unsigned int hctx_idx, int node)
2235 {
2236 	int ret;
2237 
2238 	if (set->ops->init_request) {
2239 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2240 		if (ret)
2241 			return ret;
2242 	}
2243 
2244 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2245 	return 0;
2246 }
2247 
2248 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2249 		     unsigned int hctx_idx, unsigned int depth)
2250 {
2251 	unsigned int i, j, entries_per_page, max_order = 4;
2252 	size_t rq_size, left;
2253 	int node;
2254 
2255 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2256 	if (node == NUMA_NO_NODE)
2257 		node = set->numa_node;
2258 
2259 	INIT_LIST_HEAD(&tags->page_list);
2260 
2261 	/*
2262 	 * rq_size is the size of the request plus driver payload, rounded
2263 	 * to the cacheline size
2264 	 */
2265 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2266 				cache_line_size());
2267 	left = rq_size * depth;
2268 
2269 	for (i = 0; i < depth; ) {
2270 		int this_order = max_order;
2271 		struct page *page;
2272 		int to_do;
2273 		void *p;
2274 
2275 		while (this_order && left < order_to_size(this_order - 1))
2276 			this_order--;
2277 
2278 		do {
2279 			page = alloc_pages_node(node,
2280 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2281 				this_order);
2282 			if (page)
2283 				break;
2284 			if (!this_order--)
2285 				break;
2286 			if (order_to_size(this_order) < rq_size)
2287 				break;
2288 		} while (1);
2289 
2290 		if (!page)
2291 			goto fail;
2292 
2293 		page->private = this_order;
2294 		list_add_tail(&page->lru, &tags->page_list);
2295 
2296 		p = page_address(page);
2297 		/*
2298 		 * Allow kmemleak to scan these pages as they contain pointers
2299 		 * to additional allocations like via ops->init_request().
2300 		 */
2301 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2302 		entries_per_page = order_to_size(this_order) / rq_size;
2303 		to_do = min(entries_per_page, depth - i);
2304 		left -= to_do * rq_size;
2305 		for (j = 0; j < to_do; j++) {
2306 			struct request *rq = p;
2307 
2308 			tags->static_rqs[i] = rq;
2309 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2310 				tags->static_rqs[i] = NULL;
2311 				goto fail;
2312 			}
2313 
2314 			p += rq_size;
2315 			i++;
2316 		}
2317 	}
2318 	return 0;
2319 
2320 fail:
2321 	blk_mq_free_rqs(set, tags, hctx_idx);
2322 	return -ENOMEM;
2323 }
2324 
2325 struct rq_iter_data {
2326 	struct blk_mq_hw_ctx *hctx;
2327 	bool has_rq;
2328 };
2329 
2330 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2331 {
2332 	struct rq_iter_data *iter_data = data;
2333 
2334 	if (rq->mq_hctx != iter_data->hctx)
2335 		return true;
2336 	iter_data->has_rq = true;
2337 	return false;
2338 }
2339 
2340 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2341 {
2342 	struct blk_mq_tags *tags = hctx->sched_tags ?
2343 			hctx->sched_tags : hctx->tags;
2344 	struct rq_iter_data data = {
2345 		.hctx	= hctx,
2346 	};
2347 
2348 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2349 	return data.has_rq;
2350 }
2351 
2352 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2353 		struct blk_mq_hw_ctx *hctx)
2354 {
2355 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2356 		return false;
2357 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2358 		return false;
2359 	return true;
2360 }
2361 
2362 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2363 {
2364 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2365 			struct blk_mq_hw_ctx, cpuhp_online);
2366 
2367 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2368 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2369 		return 0;
2370 
2371 	/*
2372 	 * Prevent new request from being allocated on the current hctx.
2373 	 *
2374 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2375 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2376 	 * seen once we return from the tag allocator.
2377 	 */
2378 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2379 	smp_mb__after_atomic();
2380 
2381 	/*
2382 	 * Try to grab a reference to the queue and wait for any outstanding
2383 	 * requests.  If we could not grab a reference the queue has been
2384 	 * frozen and there are no requests.
2385 	 */
2386 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2387 		while (blk_mq_hctx_has_requests(hctx))
2388 			msleep(5);
2389 		percpu_ref_put(&hctx->queue->q_usage_counter);
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2396 {
2397 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2398 			struct blk_mq_hw_ctx, cpuhp_online);
2399 
2400 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2401 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2402 	return 0;
2403 }
2404 
2405 /*
2406  * 'cpu' is going away. splice any existing rq_list entries from this
2407  * software queue to the hw queue dispatch list, and ensure that it
2408  * gets run.
2409  */
2410 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2411 {
2412 	struct blk_mq_hw_ctx *hctx;
2413 	struct blk_mq_ctx *ctx;
2414 	LIST_HEAD(tmp);
2415 	enum hctx_type type;
2416 
2417 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2418 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2419 		return 0;
2420 
2421 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2422 	type = hctx->type;
2423 
2424 	spin_lock(&ctx->lock);
2425 	if (!list_empty(&ctx->rq_lists[type])) {
2426 		list_splice_init(&ctx->rq_lists[type], &tmp);
2427 		blk_mq_hctx_clear_pending(hctx, ctx);
2428 	}
2429 	spin_unlock(&ctx->lock);
2430 
2431 	if (list_empty(&tmp))
2432 		return 0;
2433 
2434 	spin_lock(&hctx->lock);
2435 	list_splice_tail_init(&tmp, &hctx->dispatch);
2436 	spin_unlock(&hctx->lock);
2437 
2438 	blk_mq_run_hw_queue(hctx, true);
2439 	return 0;
2440 }
2441 
2442 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2443 {
2444 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2445 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2446 						    &hctx->cpuhp_online);
2447 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2448 					    &hctx->cpuhp_dead);
2449 }
2450 
2451 /* hctx->ctxs will be freed in queue's release handler */
2452 static void blk_mq_exit_hctx(struct request_queue *q,
2453 		struct blk_mq_tag_set *set,
2454 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2455 {
2456 	if (blk_mq_hw_queue_mapped(hctx))
2457 		blk_mq_tag_idle(hctx);
2458 
2459 	if (set->ops->exit_request)
2460 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2461 
2462 	if (set->ops->exit_hctx)
2463 		set->ops->exit_hctx(hctx, hctx_idx);
2464 
2465 	blk_mq_remove_cpuhp(hctx);
2466 
2467 	spin_lock(&q->unused_hctx_lock);
2468 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2469 	spin_unlock(&q->unused_hctx_lock);
2470 }
2471 
2472 static void blk_mq_exit_hw_queues(struct request_queue *q,
2473 		struct blk_mq_tag_set *set, int nr_queue)
2474 {
2475 	struct blk_mq_hw_ctx *hctx;
2476 	unsigned int i;
2477 
2478 	queue_for_each_hw_ctx(q, hctx, i) {
2479 		if (i == nr_queue)
2480 			break;
2481 		blk_mq_debugfs_unregister_hctx(hctx);
2482 		blk_mq_exit_hctx(q, set, hctx, i);
2483 	}
2484 }
2485 
2486 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2487 {
2488 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2489 
2490 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2491 			   __alignof__(struct blk_mq_hw_ctx)) !=
2492 		     sizeof(struct blk_mq_hw_ctx));
2493 
2494 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2495 		hw_ctx_size += sizeof(struct srcu_struct);
2496 
2497 	return hw_ctx_size;
2498 }
2499 
2500 static int blk_mq_init_hctx(struct request_queue *q,
2501 		struct blk_mq_tag_set *set,
2502 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2503 {
2504 	hctx->queue_num = hctx_idx;
2505 
2506 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2507 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2508 				&hctx->cpuhp_online);
2509 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2510 
2511 	hctx->tags = set->tags[hctx_idx];
2512 
2513 	if (set->ops->init_hctx &&
2514 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2515 		goto unregister_cpu_notifier;
2516 
2517 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2518 				hctx->numa_node))
2519 		goto exit_hctx;
2520 	return 0;
2521 
2522  exit_hctx:
2523 	if (set->ops->exit_hctx)
2524 		set->ops->exit_hctx(hctx, hctx_idx);
2525  unregister_cpu_notifier:
2526 	blk_mq_remove_cpuhp(hctx);
2527 	return -1;
2528 }
2529 
2530 static struct blk_mq_hw_ctx *
2531 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2532 		int node)
2533 {
2534 	struct blk_mq_hw_ctx *hctx;
2535 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2536 
2537 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2538 	if (!hctx)
2539 		goto fail_alloc_hctx;
2540 
2541 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2542 		goto free_hctx;
2543 
2544 	atomic_set(&hctx->nr_active, 0);
2545 	if (node == NUMA_NO_NODE)
2546 		node = set->numa_node;
2547 	hctx->numa_node = node;
2548 
2549 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2550 	spin_lock_init(&hctx->lock);
2551 	INIT_LIST_HEAD(&hctx->dispatch);
2552 	hctx->queue = q;
2553 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2554 
2555 	INIT_LIST_HEAD(&hctx->hctx_list);
2556 
2557 	/*
2558 	 * Allocate space for all possible cpus to avoid allocation at
2559 	 * runtime
2560 	 */
2561 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2562 			gfp, node);
2563 	if (!hctx->ctxs)
2564 		goto free_cpumask;
2565 
2566 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2567 				gfp, node))
2568 		goto free_ctxs;
2569 	hctx->nr_ctx = 0;
2570 
2571 	spin_lock_init(&hctx->dispatch_wait_lock);
2572 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2573 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2574 
2575 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2576 	if (!hctx->fq)
2577 		goto free_bitmap;
2578 
2579 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2580 		init_srcu_struct(hctx->srcu);
2581 	blk_mq_hctx_kobj_init(hctx);
2582 
2583 	return hctx;
2584 
2585  free_bitmap:
2586 	sbitmap_free(&hctx->ctx_map);
2587  free_ctxs:
2588 	kfree(hctx->ctxs);
2589  free_cpumask:
2590 	free_cpumask_var(hctx->cpumask);
2591  free_hctx:
2592 	kfree(hctx);
2593  fail_alloc_hctx:
2594 	return NULL;
2595 }
2596 
2597 static void blk_mq_init_cpu_queues(struct request_queue *q,
2598 				   unsigned int nr_hw_queues)
2599 {
2600 	struct blk_mq_tag_set *set = q->tag_set;
2601 	unsigned int i, j;
2602 
2603 	for_each_possible_cpu(i) {
2604 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2605 		struct blk_mq_hw_ctx *hctx;
2606 		int k;
2607 
2608 		__ctx->cpu = i;
2609 		spin_lock_init(&__ctx->lock);
2610 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2611 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2612 
2613 		__ctx->queue = q;
2614 
2615 		/*
2616 		 * Set local node, IFF we have more than one hw queue. If
2617 		 * not, we remain on the home node of the device
2618 		 */
2619 		for (j = 0; j < set->nr_maps; j++) {
2620 			hctx = blk_mq_map_queue_type(q, j, i);
2621 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2622 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2623 		}
2624 	}
2625 }
2626 
2627 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2628 					int hctx_idx)
2629 {
2630 	int ret = 0;
2631 
2632 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2633 					set->queue_depth, set->reserved_tags);
2634 	if (!set->tags[hctx_idx])
2635 		return false;
2636 
2637 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2638 				set->queue_depth);
2639 	if (!ret)
2640 		return true;
2641 
2642 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2643 	set->tags[hctx_idx] = NULL;
2644 	return false;
2645 }
2646 
2647 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2648 					 unsigned int hctx_idx)
2649 {
2650 	if (set->tags && set->tags[hctx_idx]) {
2651 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2652 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2653 		set->tags[hctx_idx] = NULL;
2654 	}
2655 }
2656 
2657 static void blk_mq_map_swqueue(struct request_queue *q)
2658 {
2659 	unsigned int i, j, hctx_idx;
2660 	struct blk_mq_hw_ctx *hctx;
2661 	struct blk_mq_ctx *ctx;
2662 	struct blk_mq_tag_set *set = q->tag_set;
2663 
2664 	queue_for_each_hw_ctx(q, hctx, i) {
2665 		cpumask_clear(hctx->cpumask);
2666 		hctx->nr_ctx = 0;
2667 		hctx->dispatch_from = NULL;
2668 	}
2669 
2670 	/*
2671 	 * Map software to hardware queues.
2672 	 *
2673 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2674 	 */
2675 	for_each_possible_cpu(i) {
2676 
2677 		ctx = per_cpu_ptr(q->queue_ctx, i);
2678 		for (j = 0; j < set->nr_maps; j++) {
2679 			if (!set->map[j].nr_queues) {
2680 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2681 						HCTX_TYPE_DEFAULT, i);
2682 				continue;
2683 			}
2684 			hctx_idx = set->map[j].mq_map[i];
2685 			/* unmapped hw queue can be remapped after CPU topo changed */
2686 			if (!set->tags[hctx_idx] &&
2687 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2688 				/*
2689 				 * If tags initialization fail for some hctx,
2690 				 * that hctx won't be brought online.  In this
2691 				 * case, remap the current ctx to hctx[0] which
2692 				 * is guaranteed to always have tags allocated
2693 				 */
2694 				set->map[j].mq_map[i] = 0;
2695 			}
2696 
2697 			hctx = blk_mq_map_queue_type(q, j, i);
2698 			ctx->hctxs[j] = hctx;
2699 			/*
2700 			 * If the CPU is already set in the mask, then we've
2701 			 * mapped this one already. This can happen if
2702 			 * devices share queues across queue maps.
2703 			 */
2704 			if (cpumask_test_cpu(i, hctx->cpumask))
2705 				continue;
2706 
2707 			cpumask_set_cpu(i, hctx->cpumask);
2708 			hctx->type = j;
2709 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2710 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2711 
2712 			/*
2713 			 * If the nr_ctx type overflows, we have exceeded the
2714 			 * amount of sw queues we can support.
2715 			 */
2716 			BUG_ON(!hctx->nr_ctx);
2717 		}
2718 
2719 		for (; j < HCTX_MAX_TYPES; j++)
2720 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2721 					HCTX_TYPE_DEFAULT, i);
2722 	}
2723 
2724 	queue_for_each_hw_ctx(q, hctx, i) {
2725 		/*
2726 		 * If no software queues are mapped to this hardware queue,
2727 		 * disable it and free the request entries.
2728 		 */
2729 		if (!hctx->nr_ctx) {
2730 			/* Never unmap queue 0.  We need it as a
2731 			 * fallback in case of a new remap fails
2732 			 * allocation
2733 			 */
2734 			if (i && set->tags[i])
2735 				blk_mq_free_map_and_requests(set, i);
2736 
2737 			hctx->tags = NULL;
2738 			continue;
2739 		}
2740 
2741 		hctx->tags = set->tags[i];
2742 		WARN_ON(!hctx->tags);
2743 
2744 		/*
2745 		 * Set the map size to the number of mapped software queues.
2746 		 * This is more accurate and more efficient than looping
2747 		 * over all possibly mapped software queues.
2748 		 */
2749 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2750 
2751 		/*
2752 		 * Initialize batch roundrobin counts
2753 		 */
2754 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2755 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2756 	}
2757 }
2758 
2759 /*
2760  * Caller needs to ensure that we're either frozen/quiesced, or that
2761  * the queue isn't live yet.
2762  */
2763 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2764 {
2765 	struct blk_mq_hw_ctx *hctx;
2766 	int i;
2767 
2768 	queue_for_each_hw_ctx(q, hctx, i) {
2769 		if (shared)
2770 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2771 		else
2772 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2773 	}
2774 }
2775 
2776 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2777 					bool shared)
2778 {
2779 	struct request_queue *q;
2780 
2781 	lockdep_assert_held(&set->tag_list_lock);
2782 
2783 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2784 		blk_mq_freeze_queue(q);
2785 		queue_set_hctx_shared(q, shared);
2786 		blk_mq_unfreeze_queue(q);
2787 	}
2788 }
2789 
2790 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2791 {
2792 	struct blk_mq_tag_set *set = q->tag_set;
2793 
2794 	mutex_lock(&set->tag_list_lock);
2795 	list_del_rcu(&q->tag_set_list);
2796 	if (list_is_singular(&set->tag_list)) {
2797 		/* just transitioned to unshared */
2798 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2799 		/* update existing queue */
2800 		blk_mq_update_tag_set_depth(set, false);
2801 	}
2802 	mutex_unlock(&set->tag_list_lock);
2803 	INIT_LIST_HEAD(&q->tag_set_list);
2804 }
2805 
2806 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2807 				     struct request_queue *q)
2808 {
2809 	mutex_lock(&set->tag_list_lock);
2810 
2811 	/*
2812 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2813 	 */
2814 	if (!list_empty(&set->tag_list) &&
2815 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2816 		set->flags |= BLK_MQ_F_TAG_SHARED;
2817 		/* update existing queue */
2818 		blk_mq_update_tag_set_depth(set, true);
2819 	}
2820 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2821 		queue_set_hctx_shared(q, true);
2822 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2823 
2824 	mutex_unlock(&set->tag_list_lock);
2825 }
2826 
2827 /* All allocations will be freed in release handler of q->mq_kobj */
2828 static int blk_mq_alloc_ctxs(struct request_queue *q)
2829 {
2830 	struct blk_mq_ctxs *ctxs;
2831 	int cpu;
2832 
2833 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2834 	if (!ctxs)
2835 		return -ENOMEM;
2836 
2837 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2838 	if (!ctxs->queue_ctx)
2839 		goto fail;
2840 
2841 	for_each_possible_cpu(cpu) {
2842 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2843 		ctx->ctxs = ctxs;
2844 	}
2845 
2846 	q->mq_kobj = &ctxs->kobj;
2847 	q->queue_ctx = ctxs->queue_ctx;
2848 
2849 	return 0;
2850  fail:
2851 	kfree(ctxs);
2852 	return -ENOMEM;
2853 }
2854 
2855 /*
2856  * It is the actual release handler for mq, but we do it from
2857  * request queue's release handler for avoiding use-after-free
2858  * and headache because q->mq_kobj shouldn't have been introduced,
2859  * but we can't group ctx/kctx kobj without it.
2860  */
2861 void blk_mq_release(struct request_queue *q)
2862 {
2863 	struct blk_mq_hw_ctx *hctx, *next;
2864 	int i;
2865 
2866 	queue_for_each_hw_ctx(q, hctx, i)
2867 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2868 
2869 	/* all hctx are in .unused_hctx_list now */
2870 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2871 		list_del_init(&hctx->hctx_list);
2872 		kobject_put(&hctx->kobj);
2873 	}
2874 
2875 	kfree(q->queue_hw_ctx);
2876 
2877 	/*
2878 	 * release .mq_kobj and sw queue's kobject now because
2879 	 * both share lifetime with request queue.
2880 	 */
2881 	blk_mq_sysfs_deinit(q);
2882 }
2883 
2884 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2885 		void *queuedata)
2886 {
2887 	struct request_queue *uninit_q, *q;
2888 
2889 	uninit_q = __blk_alloc_queue(set->numa_node);
2890 	if (!uninit_q)
2891 		return ERR_PTR(-ENOMEM);
2892 	uninit_q->queuedata = queuedata;
2893 
2894 	/*
2895 	 * Initialize the queue without an elevator. device_add_disk() will do
2896 	 * the initialization.
2897 	 */
2898 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2899 	if (IS_ERR(q))
2900 		blk_cleanup_queue(uninit_q);
2901 
2902 	return q;
2903 }
2904 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2905 
2906 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2907 {
2908 	return blk_mq_init_queue_data(set, NULL);
2909 }
2910 EXPORT_SYMBOL(blk_mq_init_queue);
2911 
2912 /*
2913  * Helper for setting up a queue with mq ops, given queue depth, and
2914  * the passed in mq ops flags.
2915  */
2916 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2917 					   const struct blk_mq_ops *ops,
2918 					   unsigned int queue_depth,
2919 					   unsigned int set_flags)
2920 {
2921 	struct request_queue *q;
2922 	int ret;
2923 
2924 	memset(set, 0, sizeof(*set));
2925 	set->ops = ops;
2926 	set->nr_hw_queues = 1;
2927 	set->nr_maps = 1;
2928 	set->queue_depth = queue_depth;
2929 	set->numa_node = NUMA_NO_NODE;
2930 	set->flags = set_flags;
2931 
2932 	ret = blk_mq_alloc_tag_set(set);
2933 	if (ret)
2934 		return ERR_PTR(ret);
2935 
2936 	q = blk_mq_init_queue(set);
2937 	if (IS_ERR(q)) {
2938 		blk_mq_free_tag_set(set);
2939 		return q;
2940 	}
2941 
2942 	return q;
2943 }
2944 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2945 
2946 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2947 		struct blk_mq_tag_set *set, struct request_queue *q,
2948 		int hctx_idx, int node)
2949 {
2950 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2951 
2952 	/* reuse dead hctx first */
2953 	spin_lock(&q->unused_hctx_lock);
2954 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2955 		if (tmp->numa_node == node) {
2956 			hctx = tmp;
2957 			break;
2958 		}
2959 	}
2960 	if (hctx)
2961 		list_del_init(&hctx->hctx_list);
2962 	spin_unlock(&q->unused_hctx_lock);
2963 
2964 	if (!hctx)
2965 		hctx = blk_mq_alloc_hctx(q, set, node);
2966 	if (!hctx)
2967 		goto fail;
2968 
2969 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2970 		goto free_hctx;
2971 
2972 	return hctx;
2973 
2974  free_hctx:
2975 	kobject_put(&hctx->kobj);
2976  fail:
2977 	return NULL;
2978 }
2979 
2980 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2981 						struct request_queue *q)
2982 {
2983 	int i, j, end;
2984 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2985 
2986 	if (q->nr_hw_queues < set->nr_hw_queues) {
2987 		struct blk_mq_hw_ctx **new_hctxs;
2988 
2989 		new_hctxs = kcalloc_node(set->nr_hw_queues,
2990 				       sizeof(*new_hctxs), GFP_KERNEL,
2991 				       set->numa_node);
2992 		if (!new_hctxs)
2993 			return;
2994 		if (hctxs)
2995 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2996 			       sizeof(*hctxs));
2997 		q->queue_hw_ctx = new_hctxs;
2998 		kfree(hctxs);
2999 		hctxs = new_hctxs;
3000 	}
3001 
3002 	/* protect against switching io scheduler  */
3003 	mutex_lock(&q->sysfs_lock);
3004 	for (i = 0; i < set->nr_hw_queues; i++) {
3005 		int node;
3006 		struct blk_mq_hw_ctx *hctx;
3007 
3008 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3009 		/*
3010 		 * If the hw queue has been mapped to another numa node,
3011 		 * we need to realloc the hctx. If allocation fails, fallback
3012 		 * to use the previous one.
3013 		 */
3014 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3015 			continue;
3016 
3017 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3018 		if (hctx) {
3019 			if (hctxs[i])
3020 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3021 			hctxs[i] = hctx;
3022 		} else {
3023 			if (hctxs[i])
3024 				pr_warn("Allocate new hctx on node %d fails,\
3025 						fallback to previous one on node %d\n",
3026 						node, hctxs[i]->numa_node);
3027 			else
3028 				break;
3029 		}
3030 	}
3031 	/*
3032 	 * Increasing nr_hw_queues fails. Free the newly allocated
3033 	 * hctxs and keep the previous q->nr_hw_queues.
3034 	 */
3035 	if (i != set->nr_hw_queues) {
3036 		j = q->nr_hw_queues;
3037 		end = i;
3038 	} else {
3039 		j = i;
3040 		end = q->nr_hw_queues;
3041 		q->nr_hw_queues = set->nr_hw_queues;
3042 	}
3043 
3044 	for (; j < end; j++) {
3045 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3046 
3047 		if (hctx) {
3048 			if (hctx->tags)
3049 				blk_mq_free_map_and_requests(set, j);
3050 			blk_mq_exit_hctx(q, set, hctx, j);
3051 			hctxs[j] = NULL;
3052 		}
3053 	}
3054 	mutex_unlock(&q->sysfs_lock);
3055 }
3056 
3057 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3058 						  struct request_queue *q,
3059 						  bool elevator_init)
3060 {
3061 	/* mark the queue as mq asap */
3062 	q->mq_ops = set->ops;
3063 
3064 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3065 					     blk_mq_poll_stats_bkt,
3066 					     BLK_MQ_POLL_STATS_BKTS, q);
3067 	if (!q->poll_cb)
3068 		goto err_exit;
3069 
3070 	if (blk_mq_alloc_ctxs(q))
3071 		goto err_poll;
3072 
3073 	/* init q->mq_kobj and sw queues' kobjects */
3074 	blk_mq_sysfs_init(q);
3075 
3076 	INIT_LIST_HEAD(&q->unused_hctx_list);
3077 	spin_lock_init(&q->unused_hctx_lock);
3078 
3079 	blk_mq_realloc_hw_ctxs(set, q);
3080 	if (!q->nr_hw_queues)
3081 		goto err_hctxs;
3082 
3083 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3084 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3085 
3086 	q->tag_set = set;
3087 
3088 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3089 	if (set->nr_maps > HCTX_TYPE_POLL &&
3090 	    set->map[HCTX_TYPE_POLL].nr_queues)
3091 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3092 
3093 	q->sg_reserved_size = INT_MAX;
3094 
3095 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3096 	INIT_LIST_HEAD(&q->requeue_list);
3097 	spin_lock_init(&q->requeue_lock);
3098 
3099 	q->nr_requests = set->queue_depth;
3100 
3101 	/*
3102 	 * Default to classic polling
3103 	 */
3104 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3105 
3106 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3107 	blk_mq_add_queue_tag_set(set, q);
3108 	blk_mq_map_swqueue(q);
3109 
3110 	if (elevator_init)
3111 		elevator_init_mq(q);
3112 
3113 	return q;
3114 
3115 err_hctxs:
3116 	kfree(q->queue_hw_ctx);
3117 	q->nr_hw_queues = 0;
3118 	blk_mq_sysfs_deinit(q);
3119 err_poll:
3120 	blk_stat_free_callback(q->poll_cb);
3121 	q->poll_cb = NULL;
3122 err_exit:
3123 	q->mq_ops = NULL;
3124 	return ERR_PTR(-ENOMEM);
3125 }
3126 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3127 
3128 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3129 void blk_mq_exit_queue(struct request_queue *q)
3130 {
3131 	struct blk_mq_tag_set	*set = q->tag_set;
3132 
3133 	blk_mq_del_queue_tag_set(q);
3134 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3135 }
3136 
3137 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3138 {
3139 	int i;
3140 
3141 	for (i = 0; i < set->nr_hw_queues; i++)
3142 		if (!__blk_mq_alloc_map_and_request(set, i))
3143 			goto out_unwind;
3144 
3145 	return 0;
3146 
3147 out_unwind:
3148 	while (--i >= 0)
3149 		blk_mq_free_map_and_requests(set, i);
3150 
3151 	return -ENOMEM;
3152 }
3153 
3154 /*
3155  * Allocate the request maps associated with this tag_set. Note that this
3156  * may reduce the depth asked for, if memory is tight. set->queue_depth
3157  * will be updated to reflect the allocated depth.
3158  */
3159 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3160 {
3161 	unsigned int depth;
3162 	int err;
3163 
3164 	depth = set->queue_depth;
3165 	do {
3166 		err = __blk_mq_alloc_rq_maps(set);
3167 		if (!err)
3168 			break;
3169 
3170 		set->queue_depth >>= 1;
3171 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3172 			err = -ENOMEM;
3173 			break;
3174 		}
3175 	} while (set->queue_depth);
3176 
3177 	if (!set->queue_depth || err) {
3178 		pr_err("blk-mq: failed to allocate request map\n");
3179 		return -ENOMEM;
3180 	}
3181 
3182 	if (depth != set->queue_depth)
3183 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3184 						depth, set->queue_depth);
3185 
3186 	return 0;
3187 }
3188 
3189 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3190 {
3191 	/*
3192 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3193 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3194 	 * number of hardware queues.
3195 	 */
3196 	if (set->nr_maps == 1)
3197 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3198 
3199 	if (set->ops->map_queues && !is_kdump_kernel()) {
3200 		int i;
3201 
3202 		/*
3203 		 * transport .map_queues is usually done in the following
3204 		 * way:
3205 		 *
3206 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3207 		 * 	mask = get_cpu_mask(queue)
3208 		 * 	for_each_cpu(cpu, mask)
3209 		 * 		set->map[x].mq_map[cpu] = queue;
3210 		 * }
3211 		 *
3212 		 * When we need to remap, the table has to be cleared for
3213 		 * killing stale mapping since one CPU may not be mapped
3214 		 * to any hw queue.
3215 		 */
3216 		for (i = 0; i < set->nr_maps; i++)
3217 			blk_mq_clear_mq_map(&set->map[i]);
3218 
3219 		return set->ops->map_queues(set);
3220 	} else {
3221 		BUG_ON(set->nr_maps > 1);
3222 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3223 	}
3224 }
3225 
3226 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3227 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3228 {
3229 	struct blk_mq_tags **new_tags;
3230 
3231 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3232 		return 0;
3233 
3234 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3235 				GFP_KERNEL, set->numa_node);
3236 	if (!new_tags)
3237 		return -ENOMEM;
3238 
3239 	if (set->tags)
3240 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3241 		       sizeof(*set->tags));
3242 	kfree(set->tags);
3243 	set->tags = new_tags;
3244 	set->nr_hw_queues = new_nr_hw_queues;
3245 
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Alloc a tag set to be associated with one or more request queues.
3251  * May fail with EINVAL for various error conditions. May adjust the
3252  * requested depth down, if it's too large. In that case, the set
3253  * value will be stored in set->queue_depth.
3254  */
3255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3256 {
3257 	int i, ret;
3258 
3259 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3260 
3261 	if (!set->nr_hw_queues)
3262 		return -EINVAL;
3263 	if (!set->queue_depth)
3264 		return -EINVAL;
3265 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3266 		return -EINVAL;
3267 
3268 	if (!set->ops->queue_rq)
3269 		return -EINVAL;
3270 
3271 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3272 		return -EINVAL;
3273 
3274 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3275 		pr_info("blk-mq: reduced tag depth to %u\n",
3276 			BLK_MQ_MAX_DEPTH);
3277 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3278 	}
3279 
3280 	if (!set->nr_maps)
3281 		set->nr_maps = 1;
3282 	else if (set->nr_maps > HCTX_MAX_TYPES)
3283 		return -EINVAL;
3284 
3285 	/*
3286 	 * If a crashdump is active, then we are potentially in a very
3287 	 * memory constrained environment. Limit us to 1 queue and
3288 	 * 64 tags to prevent using too much memory.
3289 	 */
3290 	if (is_kdump_kernel()) {
3291 		set->nr_hw_queues = 1;
3292 		set->nr_maps = 1;
3293 		set->queue_depth = min(64U, set->queue_depth);
3294 	}
3295 	/*
3296 	 * There is no use for more h/w queues than cpus if we just have
3297 	 * a single map
3298 	 */
3299 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3300 		set->nr_hw_queues = nr_cpu_ids;
3301 
3302 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3303 		return -ENOMEM;
3304 
3305 	ret = -ENOMEM;
3306 	for (i = 0; i < set->nr_maps; i++) {
3307 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3308 						  sizeof(set->map[i].mq_map[0]),
3309 						  GFP_KERNEL, set->numa_node);
3310 		if (!set->map[i].mq_map)
3311 			goto out_free_mq_map;
3312 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3313 	}
3314 
3315 	ret = blk_mq_update_queue_map(set);
3316 	if (ret)
3317 		goto out_free_mq_map;
3318 
3319 	ret = blk_mq_alloc_map_and_requests(set);
3320 	if (ret)
3321 		goto out_free_mq_map;
3322 
3323 	mutex_init(&set->tag_list_lock);
3324 	INIT_LIST_HEAD(&set->tag_list);
3325 
3326 	return 0;
3327 
3328 out_free_mq_map:
3329 	for (i = 0; i < set->nr_maps; i++) {
3330 		kfree(set->map[i].mq_map);
3331 		set->map[i].mq_map = NULL;
3332 	}
3333 	kfree(set->tags);
3334 	set->tags = NULL;
3335 	return ret;
3336 }
3337 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3338 
3339 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3340 {
3341 	int i, j;
3342 
3343 	for (i = 0; i < set->nr_hw_queues; i++)
3344 		blk_mq_free_map_and_requests(set, i);
3345 
3346 	for (j = 0; j < set->nr_maps; j++) {
3347 		kfree(set->map[j].mq_map);
3348 		set->map[j].mq_map = NULL;
3349 	}
3350 
3351 	kfree(set->tags);
3352 	set->tags = NULL;
3353 }
3354 EXPORT_SYMBOL(blk_mq_free_tag_set);
3355 
3356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3357 {
3358 	struct blk_mq_tag_set *set = q->tag_set;
3359 	struct blk_mq_hw_ctx *hctx;
3360 	int i, ret;
3361 
3362 	if (!set)
3363 		return -EINVAL;
3364 
3365 	if (q->nr_requests == nr)
3366 		return 0;
3367 
3368 	blk_mq_freeze_queue(q);
3369 	blk_mq_quiesce_queue(q);
3370 
3371 	ret = 0;
3372 	queue_for_each_hw_ctx(q, hctx, i) {
3373 		if (!hctx->tags)
3374 			continue;
3375 		/*
3376 		 * If we're using an MQ scheduler, just update the scheduler
3377 		 * queue depth. This is similar to what the old code would do.
3378 		 */
3379 		if (!hctx->sched_tags) {
3380 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3381 							false);
3382 		} else {
3383 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3384 							nr, true);
3385 		}
3386 		if (ret)
3387 			break;
3388 		if (q->elevator && q->elevator->type->ops.depth_updated)
3389 			q->elevator->type->ops.depth_updated(hctx);
3390 	}
3391 
3392 	if (!ret)
3393 		q->nr_requests = nr;
3394 
3395 	blk_mq_unquiesce_queue(q);
3396 	blk_mq_unfreeze_queue(q);
3397 
3398 	return ret;
3399 }
3400 
3401 /*
3402  * request_queue and elevator_type pair.
3403  * It is just used by __blk_mq_update_nr_hw_queues to cache
3404  * the elevator_type associated with a request_queue.
3405  */
3406 struct blk_mq_qe_pair {
3407 	struct list_head node;
3408 	struct request_queue *q;
3409 	struct elevator_type *type;
3410 };
3411 
3412 /*
3413  * Cache the elevator_type in qe pair list and switch the
3414  * io scheduler to 'none'
3415  */
3416 static bool blk_mq_elv_switch_none(struct list_head *head,
3417 		struct request_queue *q)
3418 {
3419 	struct blk_mq_qe_pair *qe;
3420 
3421 	if (!q->elevator)
3422 		return true;
3423 
3424 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3425 	if (!qe)
3426 		return false;
3427 
3428 	INIT_LIST_HEAD(&qe->node);
3429 	qe->q = q;
3430 	qe->type = q->elevator->type;
3431 	list_add(&qe->node, head);
3432 
3433 	mutex_lock(&q->sysfs_lock);
3434 	/*
3435 	 * After elevator_switch_mq, the previous elevator_queue will be
3436 	 * released by elevator_release. The reference of the io scheduler
3437 	 * module get by elevator_get will also be put. So we need to get
3438 	 * a reference of the io scheduler module here to prevent it to be
3439 	 * removed.
3440 	 */
3441 	__module_get(qe->type->elevator_owner);
3442 	elevator_switch_mq(q, NULL);
3443 	mutex_unlock(&q->sysfs_lock);
3444 
3445 	return true;
3446 }
3447 
3448 static void blk_mq_elv_switch_back(struct list_head *head,
3449 		struct request_queue *q)
3450 {
3451 	struct blk_mq_qe_pair *qe;
3452 	struct elevator_type *t = NULL;
3453 
3454 	list_for_each_entry(qe, head, node)
3455 		if (qe->q == q) {
3456 			t = qe->type;
3457 			break;
3458 		}
3459 
3460 	if (!t)
3461 		return;
3462 
3463 	list_del(&qe->node);
3464 	kfree(qe);
3465 
3466 	mutex_lock(&q->sysfs_lock);
3467 	elevator_switch_mq(q, t);
3468 	mutex_unlock(&q->sysfs_lock);
3469 }
3470 
3471 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3472 							int nr_hw_queues)
3473 {
3474 	struct request_queue *q;
3475 	LIST_HEAD(head);
3476 	int prev_nr_hw_queues;
3477 
3478 	lockdep_assert_held(&set->tag_list_lock);
3479 
3480 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3481 		nr_hw_queues = nr_cpu_ids;
3482 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3483 		return;
3484 
3485 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3486 		blk_mq_freeze_queue(q);
3487 	/*
3488 	 * Switch IO scheduler to 'none', cleaning up the data associated
3489 	 * with the previous scheduler. We will switch back once we are done
3490 	 * updating the new sw to hw queue mappings.
3491 	 */
3492 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3493 		if (!blk_mq_elv_switch_none(&head, q))
3494 			goto switch_back;
3495 
3496 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3497 		blk_mq_debugfs_unregister_hctxs(q);
3498 		blk_mq_sysfs_unregister(q);
3499 	}
3500 
3501 	prev_nr_hw_queues = set->nr_hw_queues;
3502 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3503 	    0)
3504 		goto reregister;
3505 
3506 	set->nr_hw_queues = nr_hw_queues;
3507 fallback:
3508 	blk_mq_update_queue_map(set);
3509 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3510 		blk_mq_realloc_hw_ctxs(set, q);
3511 		if (q->nr_hw_queues != set->nr_hw_queues) {
3512 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3513 					nr_hw_queues, prev_nr_hw_queues);
3514 			set->nr_hw_queues = prev_nr_hw_queues;
3515 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3516 			goto fallback;
3517 		}
3518 		blk_mq_map_swqueue(q);
3519 	}
3520 
3521 reregister:
3522 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3523 		blk_mq_sysfs_register(q);
3524 		blk_mq_debugfs_register_hctxs(q);
3525 	}
3526 
3527 switch_back:
3528 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3529 		blk_mq_elv_switch_back(&head, q);
3530 
3531 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3532 		blk_mq_unfreeze_queue(q);
3533 }
3534 
3535 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3536 {
3537 	mutex_lock(&set->tag_list_lock);
3538 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3539 	mutex_unlock(&set->tag_list_lock);
3540 }
3541 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3542 
3543 /* Enable polling stats and return whether they were already enabled. */
3544 static bool blk_poll_stats_enable(struct request_queue *q)
3545 {
3546 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3547 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3548 		return true;
3549 	blk_stat_add_callback(q, q->poll_cb);
3550 	return false;
3551 }
3552 
3553 static void blk_mq_poll_stats_start(struct request_queue *q)
3554 {
3555 	/*
3556 	 * We don't arm the callback if polling stats are not enabled or the
3557 	 * callback is already active.
3558 	 */
3559 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3560 	    blk_stat_is_active(q->poll_cb))
3561 		return;
3562 
3563 	blk_stat_activate_msecs(q->poll_cb, 100);
3564 }
3565 
3566 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3567 {
3568 	struct request_queue *q = cb->data;
3569 	int bucket;
3570 
3571 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3572 		if (cb->stat[bucket].nr_samples)
3573 			q->poll_stat[bucket] = cb->stat[bucket];
3574 	}
3575 }
3576 
3577 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3578 				       struct request *rq)
3579 {
3580 	unsigned long ret = 0;
3581 	int bucket;
3582 
3583 	/*
3584 	 * If stats collection isn't on, don't sleep but turn it on for
3585 	 * future users
3586 	 */
3587 	if (!blk_poll_stats_enable(q))
3588 		return 0;
3589 
3590 	/*
3591 	 * As an optimistic guess, use half of the mean service time
3592 	 * for this type of request. We can (and should) make this smarter.
3593 	 * For instance, if the completion latencies are tight, we can
3594 	 * get closer than just half the mean. This is especially
3595 	 * important on devices where the completion latencies are longer
3596 	 * than ~10 usec. We do use the stats for the relevant IO size
3597 	 * if available which does lead to better estimates.
3598 	 */
3599 	bucket = blk_mq_poll_stats_bkt(rq);
3600 	if (bucket < 0)
3601 		return ret;
3602 
3603 	if (q->poll_stat[bucket].nr_samples)
3604 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3605 
3606 	return ret;
3607 }
3608 
3609 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3610 				     struct request *rq)
3611 {
3612 	struct hrtimer_sleeper hs;
3613 	enum hrtimer_mode mode;
3614 	unsigned int nsecs;
3615 	ktime_t kt;
3616 
3617 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3618 		return false;
3619 
3620 	/*
3621 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3622 	 *
3623 	 *  0:	use half of prev avg
3624 	 * >0:	use this specific value
3625 	 */
3626 	if (q->poll_nsec > 0)
3627 		nsecs = q->poll_nsec;
3628 	else
3629 		nsecs = blk_mq_poll_nsecs(q, rq);
3630 
3631 	if (!nsecs)
3632 		return false;
3633 
3634 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3635 
3636 	/*
3637 	 * This will be replaced with the stats tracking code, using
3638 	 * 'avg_completion_time / 2' as the pre-sleep target.
3639 	 */
3640 	kt = nsecs;
3641 
3642 	mode = HRTIMER_MODE_REL;
3643 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3644 	hrtimer_set_expires(&hs.timer, kt);
3645 
3646 	do {
3647 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3648 			break;
3649 		set_current_state(TASK_UNINTERRUPTIBLE);
3650 		hrtimer_sleeper_start_expires(&hs, mode);
3651 		if (hs.task)
3652 			io_schedule();
3653 		hrtimer_cancel(&hs.timer);
3654 		mode = HRTIMER_MODE_ABS;
3655 	} while (hs.task && !signal_pending(current));
3656 
3657 	__set_current_state(TASK_RUNNING);
3658 	destroy_hrtimer_on_stack(&hs.timer);
3659 	return true;
3660 }
3661 
3662 static bool blk_mq_poll_hybrid(struct request_queue *q,
3663 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3664 {
3665 	struct request *rq;
3666 
3667 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3668 		return false;
3669 
3670 	if (!blk_qc_t_is_internal(cookie))
3671 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3672 	else {
3673 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3674 		/*
3675 		 * With scheduling, if the request has completed, we'll
3676 		 * get a NULL return here, as we clear the sched tag when
3677 		 * that happens. The request still remains valid, like always,
3678 		 * so we should be safe with just the NULL check.
3679 		 */
3680 		if (!rq)
3681 			return false;
3682 	}
3683 
3684 	return blk_mq_poll_hybrid_sleep(q, rq);
3685 }
3686 
3687 /**
3688  * blk_poll - poll for IO completions
3689  * @q:  the queue
3690  * @cookie: cookie passed back at IO submission time
3691  * @spin: whether to spin for completions
3692  *
3693  * Description:
3694  *    Poll for completions on the passed in queue. Returns number of
3695  *    completed entries found. If @spin is true, then blk_poll will continue
3696  *    looping until at least one completion is found, unless the task is
3697  *    otherwise marked running (or we need to reschedule).
3698  */
3699 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3700 {
3701 	struct blk_mq_hw_ctx *hctx;
3702 	long state;
3703 
3704 	if (!blk_qc_t_valid(cookie) ||
3705 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3706 		return 0;
3707 
3708 	if (current->plug)
3709 		blk_flush_plug_list(current->plug, false);
3710 
3711 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3712 
3713 	/*
3714 	 * If we sleep, have the caller restart the poll loop to reset
3715 	 * the state. Like for the other success return cases, the
3716 	 * caller is responsible for checking if the IO completed. If
3717 	 * the IO isn't complete, we'll get called again and will go
3718 	 * straight to the busy poll loop.
3719 	 */
3720 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3721 		return 1;
3722 
3723 	hctx->poll_considered++;
3724 
3725 	state = current->state;
3726 	do {
3727 		int ret;
3728 
3729 		hctx->poll_invoked++;
3730 
3731 		ret = q->mq_ops->poll(hctx);
3732 		if (ret > 0) {
3733 			hctx->poll_success++;
3734 			__set_current_state(TASK_RUNNING);
3735 			return ret;
3736 		}
3737 
3738 		if (signal_pending_state(state, current))
3739 			__set_current_state(TASK_RUNNING);
3740 
3741 		if (current->state == TASK_RUNNING)
3742 			return 1;
3743 		if (ret < 0 || !spin)
3744 			break;
3745 		cpu_relax();
3746 	} while (!need_resched());
3747 
3748 	__set_current_state(TASK_RUNNING);
3749 	return 0;
3750 }
3751 EXPORT_SYMBOL_GPL(blk_poll);
3752 
3753 unsigned int blk_mq_rq_cpu(struct request *rq)
3754 {
3755 	return rq->mq_ctx->cpu;
3756 }
3757 EXPORT_SYMBOL(blk_mq_rq_cpu);
3758 
3759 static int __init blk_mq_init(void)
3760 {
3761 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3762 				blk_mq_hctx_notify_dead);
3763 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3764 				blk_mq_hctx_notify_online,
3765 				blk_mq_hctx_notify_offline);
3766 	return 0;
3767 }
3768 subsys_initcall(blk_mq_init);
3769