1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, unsigned int rw_flags) 163 { 164 if (blk_queue_io_stat(q)) 165 rw_flags |= REQ_IO_STAT; 166 167 INIT_LIST_HEAD(&rq->queuelist); 168 /* csd/requeue_work/fifo_time is initialized before use */ 169 rq->q = q; 170 rq->mq_ctx = ctx; 171 rq->cmd_flags |= rw_flags; 172 /* do not touch atomic flags, it needs atomic ops against the timer */ 173 rq->cpu = -1; 174 INIT_HLIST_NODE(&rq->hash); 175 RB_CLEAR_NODE(&rq->rb_node); 176 rq->rq_disk = NULL; 177 rq->part = NULL; 178 rq->start_time = jiffies; 179 #ifdef CONFIG_BLK_CGROUP 180 rq->rl = NULL; 181 set_start_time_ns(rq); 182 rq->io_start_time_ns = 0; 183 #endif 184 rq->nr_phys_segments = 0; 185 #if defined(CONFIG_BLK_DEV_INTEGRITY) 186 rq->nr_integrity_segments = 0; 187 #endif 188 rq->special = NULL; 189 /* tag was already set */ 190 rq->errors = 0; 191 192 rq->cmd = rq->__cmd; 193 194 rq->extra_len = 0; 195 rq->sense_len = 0; 196 rq->resid_len = 0; 197 rq->sense = NULL; 198 199 INIT_LIST_HEAD(&rq->timeout_list); 200 rq->timeout = 0; 201 202 rq->end_io = NULL; 203 rq->end_io_data = NULL; 204 rq->next_rq = NULL; 205 206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 207 } 208 209 static struct request * 210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 211 { 212 struct request *rq; 213 unsigned int tag; 214 215 tag = blk_mq_get_tag(data); 216 if (tag != BLK_MQ_TAG_FAIL) { 217 rq = data->hctx->tags->rqs[tag]; 218 219 if (blk_mq_tag_busy(data->hctx)) { 220 rq->cmd_flags = REQ_MQ_INFLIGHT; 221 atomic_inc(&data->hctx->nr_active); 222 } 223 224 rq->tag = tag; 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 226 return rq; 227 } 228 229 return NULL; 230 } 231 232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 233 unsigned int flags) 234 { 235 struct blk_mq_ctx *ctx; 236 struct blk_mq_hw_ctx *hctx; 237 struct request *rq; 238 struct blk_mq_alloc_data alloc_data; 239 int ret; 240 241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 242 if (ret) 243 return ERR_PTR(ret); 244 245 ctx = blk_mq_get_ctx(q); 246 hctx = q->mq_ops->map_queue(q, ctx->cpu); 247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 248 249 rq = __blk_mq_alloc_request(&alloc_data, rw); 250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) { 251 __blk_mq_run_hw_queue(hctx); 252 blk_mq_put_ctx(ctx); 253 254 ctx = blk_mq_get_ctx(q); 255 hctx = q->mq_ops->map_queue(q, ctx->cpu); 256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 ctx = alloc_data.ctx; 259 } 260 blk_mq_put_ctx(ctx); 261 if (!rq) { 262 blk_queue_exit(q); 263 return ERR_PTR(-EWOULDBLOCK); 264 } 265 return rq; 266 } 267 EXPORT_SYMBOL(blk_mq_alloc_request); 268 269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 270 struct blk_mq_ctx *ctx, struct request *rq) 271 { 272 const int tag = rq->tag; 273 struct request_queue *q = rq->q; 274 275 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 276 atomic_dec(&hctx->nr_active); 277 rq->cmd_flags = 0; 278 279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 280 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 281 blk_queue_exit(q); 282 } 283 284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 285 { 286 struct blk_mq_ctx *ctx = rq->mq_ctx; 287 288 ctx->rq_completed[rq_is_sync(rq)]++; 289 __blk_mq_free_request(hctx, ctx, rq); 290 291 } 292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 293 294 void blk_mq_free_request(struct request *rq) 295 { 296 struct blk_mq_hw_ctx *hctx; 297 struct request_queue *q = rq->q; 298 299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 300 blk_mq_free_hctx_request(hctx, rq); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_free_request); 303 304 inline void __blk_mq_end_request(struct request *rq, int error) 305 { 306 blk_account_io_done(rq); 307 308 if (rq->end_io) { 309 rq->end_io(rq, error); 310 } else { 311 if (unlikely(blk_bidi_rq(rq))) 312 blk_mq_free_request(rq->next_rq); 313 blk_mq_free_request(rq); 314 } 315 } 316 EXPORT_SYMBOL(__blk_mq_end_request); 317 318 void blk_mq_end_request(struct request *rq, int error) 319 { 320 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 321 BUG(); 322 __blk_mq_end_request(rq, error); 323 } 324 EXPORT_SYMBOL(blk_mq_end_request); 325 326 static void __blk_mq_complete_request_remote(void *data) 327 { 328 struct request *rq = data; 329 330 rq->q->softirq_done_fn(rq); 331 } 332 333 static void blk_mq_ipi_complete_request(struct request *rq) 334 { 335 struct blk_mq_ctx *ctx = rq->mq_ctx; 336 bool shared = false; 337 int cpu; 338 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 340 rq->q->softirq_done_fn(rq); 341 return; 342 } 343 344 cpu = get_cpu(); 345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 346 shared = cpus_share_cache(cpu, ctx->cpu); 347 348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 349 rq->csd.func = __blk_mq_complete_request_remote; 350 rq->csd.info = rq; 351 rq->csd.flags = 0; 352 smp_call_function_single_async(ctx->cpu, &rq->csd); 353 } else { 354 rq->q->softirq_done_fn(rq); 355 } 356 put_cpu(); 357 } 358 359 static void __blk_mq_complete_request(struct request *rq) 360 { 361 struct request_queue *q = rq->q; 362 363 if (!q->softirq_done_fn) 364 blk_mq_end_request(rq, rq->errors); 365 else 366 blk_mq_ipi_complete_request(rq); 367 } 368 369 /** 370 * blk_mq_complete_request - end I/O on a request 371 * @rq: the request being processed 372 * 373 * Description: 374 * Ends all I/O on a request. It does not handle partial completions. 375 * The actual completion happens out-of-order, through a IPI handler. 376 **/ 377 void blk_mq_complete_request(struct request *rq, int error) 378 { 379 struct request_queue *q = rq->q; 380 381 if (unlikely(blk_should_fake_timeout(q))) 382 return; 383 if (!blk_mark_rq_complete(rq)) { 384 rq->errors = error; 385 __blk_mq_complete_request(rq); 386 } 387 } 388 EXPORT_SYMBOL(blk_mq_complete_request); 389 390 int blk_mq_request_started(struct request *rq) 391 { 392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 393 } 394 EXPORT_SYMBOL_GPL(blk_mq_request_started); 395 396 void blk_mq_start_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 trace_block_rq_issue(q, rq); 401 402 rq->resid_len = blk_rq_bytes(rq); 403 if (unlikely(blk_bidi_rq(rq))) 404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 405 406 blk_add_timer(rq); 407 408 /* 409 * Ensure that ->deadline is visible before set the started 410 * flag and clear the completed flag. 411 */ 412 smp_mb__before_atomic(); 413 414 /* 415 * Mark us as started and clear complete. Complete might have been 416 * set if requeue raced with timeout, which then marked it as 417 * complete. So be sure to clear complete again when we start 418 * the request, otherwise we'll ignore the completion event. 419 */ 420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 424 425 if (q->dma_drain_size && blk_rq_bytes(rq)) { 426 /* 427 * Make sure space for the drain appears. We know we can do 428 * this because max_hw_segments has been adjusted to be one 429 * fewer than the device can handle. 430 */ 431 rq->nr_phys_segments++; 432 } 433 } 434 EXPORT_SYMBOL(blk_mq_start_request); 435 436 static void __blk_mq_requeue_request(struct request *rq) 437 { 438 struct request_queue *q = rq->q; 439 440 trace_block_rq_requeue(q, rq); 441 442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 443 if (q->dma_drain_size && blk_rq_bytes(rq)) 444 rq->nr_phys_segments--; 445 } 446 } 447 448 void blk_mq_requeue_request(struct request *rq) 449 { 450 __blk_mq_requeue_request(rq); 451 452 BUG_ON(blk_queued_rq(rq)); 453 blk_mq_add_to_requeue_list(rq, true); 454 } 455 EXPORT_SYMBOL(blk_mq_requeue_request); 456 457 static void blk_mq_requeue_work(struct work_struct *work) 458 { 459 struct request_queue *q = 460 container_of(work, struct request_queue, requeue_work); 461 LIST_HEAD(rq_list); 462 struct request *rq, *next; 463 unsigned long flags; 464 465 spin_lock_irqsave(&q->requeue_lock, flags); 466 list_splice_init(&q->requeue_list, &rq_list); 467 spin_unlock_irqrestore(&q->requeue_lock, flags); 468 469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 470 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 471 continue; 472 473 rq->cmd_flags &= ~REQ_SOFTBARRIER; 474 list_del_init(&rq->queuelist); 475 blk_mq_insert_request(rq, true, false, false); 476 } 477 478 while (!list_empty(&rq_list)) { 479 rq = list_entry(rq_list.next, struct request, queuelist); 480 list_del_init(&rq->queuelist); 481 blk_mq_insert_request(rq, false, false, false); 482 } 483 484 /* 485 * Use the start variant of queue running here, so that running 486 * the requeue work will kick stopped queues. 487 */ 488 blk_mq_start_hw_queues(q); 489 } 490 491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 492 { 493 struct request_queue *q = rq->q; 494 unsigned long flags; 495 496 /* 497 * We abuse this flag that is otherwise used by the I/O scheduler to 498 * request head insertation from the workqueue. 499 */ 500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 501 502 spin_lock_irqsave(&q->requeue_lock, flags); 503 if (at_head) { 504 rq->cmd_flags |= REQ_SOFTBARRIER; 505 list_add(&rq->queuelist, &q->requeue_list); 506 } else { 507 list_add_tail(&rq->queuelist, &q->requeue_list); 508 } 509 spin_unlock_irqrestore(&q->requeue_lock, flags); 510 } 511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 512 513 void blk_mq_cancel_requeue_work(struct request_queue *q) 514 { 515 cancel_work_sync(&q->requeue_work); 516 } 517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 518 519 void blk_mq_kick_requeue_list(struct request_queue *q) 520 { 521 kblockd_schedule_work(&q->requeue_work); 522 } 523 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 524 525 void blk_mq_abort_requeue_list(struct request_queue *q) 526 { 527 unsigned long flags; 528 LIST_HEAD(rq_list); 529 530 spin_lock_irqsave(&q->requeue_lock, flags); 531 list_splice_init(&q->requeue_list, &rq_list); 532 spin_unlock_irqrestore(&q->requeue_lock, flags); 533 534 while (!list_empty(&rq_list)) { 535 struct request *rq; 536 537 rq = list_first_entry(&rq_list, struct request, queuelist); 538 list_del_init(&rq->queuelist); 539 rq->errors = -EIO; 540 blk_mq_end_request(rq, rq->errors); 541 } 542 } 543 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 544 545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 546 { 547 return tags->rqs[tag]; 548 } 549 EXPORT_SYMBOL(blk_mq_tag_to_rq); 550 551 struct blk_mq_timeout_data { 552 unsigned long next; 553 unsigned int next_set; 554 }; 555 556 void blk_mq_rq_timed_out(struct request *req, bool reserved) 557 { 558 struct blk_mq_ops *ops = req->q->mq_ops; 559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 560 561 /* 562 * We know that complete is set at this point. If STARTED isn't set 563 * anymore, then the request isn't active and the "timeout" should 564 * just be ignored. This can happen due to the bitflag ordering. 565 * Timeout first checks if STARTED is set, and if it is, assumes 566 * the request is active. But if we race with completion, then 567 * we both flags will get cleared. So check here again, and ignore 568 * a timeout event with a request that isn't active. 569 */ 570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 571 return; 572 573 if (ops->timeout) 574 ret = ops->timeout(req, reserved); 575 576 switch (ret) { 577 case BLK_EH_HANDLED: 578 __blk_mq_complete_request(req); 579 break; 580 case BLK_EH_RESET_TIMER: 581 blk_add_timer(req); 582 blk_clear_rq_complete(req); 583 break; 584 case BLK_EH_NOT_HANDLED: 585 break; 586 default: 587 printk(KERN_ERR "block: bad eh return: %d\n", ret); 588 break; 589 } 590 } 591 592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 593 struct request *rq, void *priv, bool reserved) 594 { 595 struct blk_mq_timeout_data *data = priv; 596 597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 598 /* 599 * If a request wasn't started before the queue was 600 * marked dying, kill it here or it'll go unnoticed. 601 */ 602 if (unlikely(blk_queue_dying(rq->q))) { 603 rq->errors = -EIO; 604 blk_mq_end_request(rq, rq->errors); 605 } 606 return; 607 } 608 609 if (time_after_eq(jiffies, rq->deadline)) { 610 if (!blk_mark_rq_complete(rq)) 611 blk_mq_rq_timed_out(rq, reserved); 612 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 613 data->next = rq->deadline; 614 data->next_set = 1; 615 } 616 } 617 618 static void blk_mq_timeout_work(struct work_struct *work) 619 { 620 struct request_queue *q = 621 container_of(work, struct request_queue, timeout_work); 622 struct blk_mq_timeout_data data = { 623 .next = 0, 624 .next_set = 0, 625 }; 626 int i; 627 628 if (blk_queue_enter(q, true)) 629 return; 630 631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 632 633 if (data.next_set) { 634 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 635 mod_timer(&q->timeout, data.next); 636 } else { 637 struct blk_mq_hw_ctx *hctx; 638 639 queue_for_each_hw_ctx(q, hctx, i) { 640 /* the hctx may be unmapped, so check it here */ 641 if (blk_mq_hw_queue_mapped(hctx)) 642 blk_mq_tag_idle(hctx); 643 } 644 } 645 blk_queue_exit(q); 646 } 647 648 /* 649 * Reverse check our software queue for entries that we could potentially 650 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 651 * too much time checking for merges. 652 */ 653 static bool blk_mq_attempt_merge(struct request_queue *q, 654 struct blk_mq_ctx *ctx, struct bio *bio) 655 { 656 struct request *rq; 657 int checked = 8; 658 659 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 660 int el_ret; 661 662 if (!checked--) 663 break; 664 665 if (!blk_rq_merge_ok(rq, bio)) 666 continue; 667 668 el_ret = blk_try_merge(rq, bio); 669 if (el_ret == ELEVATOR_BACK_MERGE) { 670 if (bio_attempt_back_merge(q, rq, bio)) { 671 ctx->rq_merged++; 672 return true; 673 } 674 break; 675 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 676 if (bio_attempt_front_merge(q, rq, bio)) { 677 ctx->rq_merged++; 678 return true; 679 } 680 break; 681 } 682 } 683 684 return false; 685 } 686 687 /* 688 * Process software queues that have been marked busy, splicing them 689 * to the for-dispatch 690 */ 691 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 692 { 693 struct blk_mq_ctx *ctx; 694 int i; 695 696 for (i = 0; i < hctx->ctx_map.size; i++) { 697 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 698 unsigned int off, bit; 699 700 if (!bm->word) 701 continue; 702 703 bit = 0; 704 off = i * hctx->ctx_map.bits_per_word; 705 do { 706 bit = find_next_bit(&bm->word, bm->depth, bit); 707 if (bit >= bm->depth) 708 break; 709 710 ctx = hctx->ctxs[bit + off]; 711 clear_bit(bit, &bm->word); 712 spin_lock(&ctx->lock); 713 list_splice_tail_init(&ctx->rq_list, list); 714 spin_unlock(&ctx->lock); 715 716 bit++; 717 } while (1); 718 } 719 } 720 721 /* 722 * Run this hardware queue, pulling any software queues mapped to it in. 723 * Note that this function currently has various problems around ordering 724 * of IO. In particular, we'd like FIFO behaviour on handling existing 725 * items on the hctx->dispatch list. Ignore that for now. 726 */ 727 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 728 { 729 struct request_queue *q = hctx->queue; 730 struct request *rq; 731 LIST_HEAD(rq_list); 732 LIST_HEAD(driver_list); 733 struct list_head *dptr; 734 int queued; 735 736 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 737 738 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 739 return; 740 741 hctx->run++; 742 743 /* 744 * Touch any software queue that has pending entries. 745 */ 746 flush_busy_ctxs(hctx, &rq_list); 747 748 /* 749 * If we have previous entries on our dispatch list, grab them 750 * and stuff them at the front for more fair dispatch. 751 */ 752 if (!list_empty_careful(&hctx->dispatch)) { 753 spin_lock(&hctx->lock); 754 if (!list_empty(&hctx->dispatch)) 755 list_splice_init(&hctx->dispatch, &rq_list); 756 spin_unlock(&hctx->lock); 757 } 758 759 /* 760 * Start off with dptr being NULL, so we start the first request 761 * immediately, even if we have more pending. 762 */ 763 dptr = NULL; 764 765 /* 766 * Now process all the entries, sending them to the driver. 767 */ 768 queued = 0; 769 while (!list_empty(&rq_list)) { 770 struct blk_mq_queue_data bd; 771 int ret; 772 773 rq = list_first_entry(&rq_list, struct request, queuelist); 774 list_del_init(&rq->queuelist); 775 776 bd.rq = rq; 777 bd.list = dptr; 778 bd.last = list_empty(&rq_list); 779 780 ret = q->mq_ops->queue_rq(hctx, &bd); 781 switch (ret) { 782 case BLK_MQ_RQ_QUEUE_OK: 783 queued++; 784 continue; 785 case BLK_MQ_RQ_QUEUE_BUSY: 786 list_add(&rq->queuelist, &rq_list); 787 __blk_mq_requeue_request(rq); 788 break; 789 default: 790 pr_err("blk-mq: bad return on queue: %d\n", ret); 791 case BLK_MQ_RQ_QUEUE_ERROR: 792 rq->errors = -EIO; 793 blk_mq_end_request(rq, rq->errors); 794 break; 795 } 796 797 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 798 break; 799 800 /* 801 * We've done the first request. If we have more than 1 802 * left in the list, set dptr to defer issue. 803 */ 804 if (!dptr && rq_list.next != rq_list.prev) 805 dptr = &driver_list; 806 } 807 808 if (!queued) 809 hctx->dispatched[0]++; 810 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 811 hctx->dispatched[ilog2(queued) + 1]++; 812 813 /* 814 * Any items that need requeuing? Stuff them into hctx->dispatch, 815 * that is where we will continue on next queue run. 816 */ 817 if (!list_empty(&rq_list)) { 818 spin_lock(&hctx->lock); 819 list_splice(&rq_list, &hctx->dispatch); 820 spin_unlock(&hctx->lock); 821 /* 822 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 823 * it's possible the queue is stopped and restarted again 824 * before this. Queue restart will dispatch requests. And since 825 * requests in rq_list aren't added into hctx->dispatch yet, 826 * the requests in rq_list might get lost. 827 * 828 * blk_mq_run_hw_queue() already checks the STOPPED bit 829 **/ 830 blk_mq_run_hw_queue(hctx, true); 831 } 832 } 833 834 /* 835 * It'd be great if the workqueue API had a way to pass 836 * in a mask and had some smarts for more clever placement. 837 * For now we just round-robin here, switching for every 838 * BLK_MQ_CPU_WORK_BATCH queued items. 839 */ 840 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 841 { 842 if (hctx->queue->nr_hw_queues == 1) 843 return WORK_CPU_UNBOUND; 844 845 if (--hctx->next_cpu_batch <= 0) { 846 int cpu = hctx->next_cpu, next_cpu; 847 848 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 849 if (next_cpu >= nr_cpu_ids) 850 next_cpu = cpumask_first(hctx->cpumask); 851 852 hctx->next_cpu = next_cpu; 853 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 854 855 return cpu; 856 } 857 858 return hctx->next_cpu; 859 } 860 861 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 862 { 863 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 864 !blk_mq_hw_queue_mapped(hctx))) 865 return; 866 867 if (!async) { 868 int cpu = get_cpu(); 869 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 870 __blk_mq_run_hw_queue(hctx); 871 put_cpu(); 872 return; 873 } 874 875 put_cpu(); 876 } 877 878 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 879 &hctx->run_work, 0); 880 } 881 882 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 883 { 884 struct blk_mq_hw_ctx *hctx; 885 int i; 886 887 queue_for_each_hw_ctx(q, hctx, i) { 888 if ((!blk_mq_hctx_has_pending(hctx) && 889 list_empty_careful(&hctx->dispatch)) || 890 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 891 continue; 892 893 blk_mq_run_hw_queue(hctx, async); 894 } 895 } 896 EXPORT_SYMBOL(blk_mq_run_hw_queues); 897 898 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 899 { 900 cancel_delayed_work(&hctx->run_work); 901 cancel_delayed_work(&hctx->delay_work); 902 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 903 } 904 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 905 906 void blk_mq_stop_hw_queues(struct request_queue *q) 907 { 908 struct blk_mq_hw_ctx *hctx; 909 int i; 910 911 queue_for_each_hw_ctx(q, hctx, i) 912 blk_mq_stop_hw_queue(hctx); 913 } 914 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 915 916 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 917 { 918 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 919 920 blk_mq_run_hw_queue(hctx, false); 921 } 922 EXPORT_SYMBOL(blk_mq_start_hw_queue); 923 924 void blk_mq_start_hw_queues(struct request_queue *q) 925 { 926 struct blk_mq_hw_ctx *hctx; 927 int i; 928 929 queue_for_each_hw_ctx(q, hctx, i) 930 blk_mq_start_hw_queue(hctx); 931 } 932 EXPORT_SYMBOL(blk_mq_start_hw_queues); 933 934 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 935 { 936 struct blk_mq_hw_ctx *hctx; 937 int i; 938 939 queue_for_each_hw_ctx(q, hctx, i) { 940 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 941 continue; 942 943 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 944 blk_mq_run_hw_queue(hctx, async); 945 } 946 } 947 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 948 949 static void blk_mq_run_work_fn(struct work_struct *work) 950 { 951 struct blk_mq_hw_ctx *hctx; 952 953 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 954 955 __blk_mq_run_hw_queue(hctx); 956 } 957 958 static void blk_mq_delay_work_fn(struct work_struct *work) 959 { 960 struct blk_mq_hw_ctx *hctx; 961 962 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 963 964 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 965 __blk_mq_run_hw_queue(hctx); 966 } 967 968 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 969 { 970 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 971 return; 972 973 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 974 &hctx->delay_work, msecs_to_jiffies(msecs)); 975 } 976 EXPORT_SYMBOL(blk_mq_delay_queue); 977 978 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 979 struct blk_mq_ctx *ctx, 980 struct request *rq, 981 bool at_head) 982 { 983 trace_block_rq_insert(hctx->queue, rq); 984 985 if (at_head) 986 list_add(&rq->queuelist, &ctx->rq_list); 987 else 988 list_add_tail(&rq->queuelist, &ctx->rq_list); 989 } 990 991 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 992 struct request *rq, bool at_head) 993 { 994 struct blk_mq_ctx *ctx = rq->mq_ctx; 995 996 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 997 blk_mq_hctx_mark_pending(hctx, ctx); 998 } 999 1000 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1001 bool async) 1002 { 1003 struct request_queue *q = rq->q; 1004 struct blk_mq_hw_ctx *hctx; 1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1006 1007 current_ctx = blk_mq_get_ctx(q); 1008 if (!cpu_online(ctx->cpu)) 1009 rq->mq_ctx = ctx = current_ctx; 1010 1011 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1012 1013 spin_lock(&ctx->lock); 1014 __blk_mq_insert_request(hctx, rq, at_head); 1015 spin_unlock(&ctx->lock); 1016 1017 if (run_queue) 1018 blk_mq_run_hw_queue(hctx, async); 1019 1020 blk_mq_put_ctx(current_ctx); 1021 } 1022 1023 static void blk_mq_insert_requests(struct request_queue *q, 1024 struct blk_mq_ctx *ctx, 1025 struct list_head *list, 1026 int depth, 1027 bool from_schedule) 1028 1029 { 1030 struct blk_mq_hw_ctx *hctx; 1031 struct blk_mq_ctx *current_ctx; 1032 1033 trace_block_unplug(q, depth, !from_schedule); 1034 1035 current_ctx = blk_mq_get_ctx(q); 1036 1037 if (!cpu_online(ctx->cpu)) 1038 ctx = current_ctx; 1039 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1040 1041 /* 1042 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1043 * offline now 1044 */ 1045 spin_lock(&ctx->lock); 1046 while (!list_empty(list)) { 1047 struct request *rq; 1048 1049 rq = list_first_entry(list, struct request, queuelist); 1050 list_del_init(&rq->queuelist); 1051 rq->mq_ctx = ctx; 1052 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1053 } 1054 blk_mq_hctx_mark_pending(hctx, ctx); 1055 spin_unlock(&ctx->lock); 1056 1057 blk_mq_run_hw_queue(hctx, from_schedule); 1058 blk_mq_put_ctx(current_ctx); 1059 } 1060 1061 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1062 { 1063 struct request *rqa = container_of(a, struct request, queuelist); 1064 struct request *rqb = container_of(b, struct request, queuelist); 1065 1066 return !(rqa->mq_ctx < rqb->mq_ctx || 1067 (rqa->mq_ctx == rqb->mq_ctx && 1068 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1069 } 1070 1071 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1072 { 1073 struct blk_mq_ctx *this_ctx; 1074 struct request_queue *this_q; 1075 struct request *rq; 1076 LIST_HEAD(list); 1077 LIST_HEAD(ctx_list); 1078 unsigned int depth; 1079 1080 list_splice_init(&plug->mq_list, &list); 1081 1082 list_sort(NULL, &list, plug_ctx_cmp); 1083 1084 this_q = NULL; 1085 this_ctx = NULL; 1086 depth = 0; 1087 1088 while (!list_empty(&list)) { 1089 rq = list_entry_rq(list.next); 1090 list_del_init(&rq->queuelist); 1091 BUG_ON(!rq->q); 1092 if (rq->mq_ctx != this_ctx) { 1093 if (this_ctx) { 1094 blk_mq_insert_requests(this_q, this_ctx, 1095 &ctx_list, depth, 1096 from_schedule); 1097 } 1098 1099 this_ctx = rq->mq_ctx; 1100 this_q = rq->q; 1101 depth = 0; 1102 } 1103 1104 depth++; 1105 list_add_tail(&rq->queuelist, &ctx_list); 1106 } 1107 1108 /* 1109 * If 'this_ctx' is set, we know we have entries to complete 1110 * on 'ctx_list'. Do those. 1111 */ 1112 if (this_ctx) { 1113 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1114 from_schedule); 1115 } 1116 } 1117 1118 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1119 { 1120 init_request_from_bio(rq, bio); 1121 1122 if (blk_do_io_stat(rq)) 1123 blk_account_io_start(rq, 1); 1124 } 1125 1126 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1127 { 1128 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1129 !blk_queue_nomerges(hctx->queue); 1130 } 1131 1132 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1133 struct blk_mq_ctx *ctx, 1134 struct request *rq, struct bio *bio) 1135 { 1136 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1137 blk_mq_bio_to_request(rq, bio); 1138 spin_lock(&ctx->lock); 1139 insert_rq: 1140 __blk_mq_insert_request(hctx, rq, false); 1141 spin_unlock(&ctx->lock); 1142 return false; 1143 } else { 1144 struct request_queue *q = hctx->queue; 1145 1146 spin_lock(&ctx->lock); 1147 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1148 blk_mq_bio_to_request(rq, bio); 1149 goto insert_rq; 1150 } 1151 1152 spin_unlock(&ctx->lock); 1153 __blk_mq_free_request(hctx, ctx, rq); 1154 return true; 1155 } 1156 } 1157 1158 struct blk_map_ctx { 1159 struct blk_mq_hw_ctx *hctx; 1160 struct blk_mq_ctx *ctx; 1161 }; 1162 1163 static struct request *blk_mq_map_request(struct request_queue *q, 1164 struct bio *bio, 1165 struct blk_map_ctx *data) 1166 { 1167 struct blk_mq_hw_ctx *hctx; 1168 struct blk_mq_ctx *ctx; 1169 struct request *rq; 1170 int rw = bio_data_dir(bio); 1171 struct blk_mq_alloc_data alloc_data; 1172 1173 blk_queue_enter_live(q); 1174 ctx = blk_mq_get_ctx(q); 1175 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1176 1177 if (rw_is_sync(bio->bi_rw)) 1178 rw |= REQ_SYNC; 1179 1180 trace_block_getrq(q, bio, rw); 1181 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx); 1182 rq = __blk_mq_alloc_request(&alloc_data, rw); 1183 if (unlikely(!rq)) { 1184 __blk_mq_run_hw_queue(hctx); 1185 blk_mq_put_ctx(ctx); 1186 trace_block_sleeprq(q, bio, rw); 1187 1188 ctx = blk_mq_get_ctx(q); 1189 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1190 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx); 1191 rq = __blk_mq_alloc_request(&alloc_data, rw); 1192 ctx = alloc_data.ctx; 1193 hctx = alloc_data.hctx; 1194 } 1195 1196 hctx->queued++; 1197 data->hctx = hctx; 1198 data->ctx = ctx; 1199 return rq; 1200 } 1201 1202 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1203 { 1204 int ret; 1205 struct request_queue *q = rq->q; 1206 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1207 rq->mq_ctx->cpu); 1208 struct blk_mq_queue_data bd = { 1209 .rq = rq, 1210 .list = NULL, 1211 .last = 1 1212 }; 1213 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1214 1215 /* 1216 * For OK queue, we are done. For error, kill it. Any other 1217 * error (busy), just add it to our list as we previously 1218 * would have done 1219 */ 1220 ret = q->mq_ops->queue_rq(hctx, &bd); 1221 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1222 *cookie = new_cookie; 1223 return 0; 1224 } 1225 1226 __blk_mq_requeue_request(rq); 1227 1228 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1229 *cookie = BLK_QC_T_NONE; 1230 rq->errors = -EIO; 1231 blk_mq_end_request(rq, rq->errors); 1232 return 0; 1233 } 1234 1235 return -1; 1236 } 1237 1238 /* 1239 * Multiple hardware queue variant. This will not use per-process plugs, 1240 * but will attempt to bypass the hctx queueing if we can go straight to 1241 * hardware for SYNC IO. 1242 */ 1243 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1244 { 1245 const int is_sync = rw_is_sync(bio->bi_rw); 1246 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1247 struct blk_map_ctx data; 1248 struct request *rq; 1249 unsigned int request_count = 0; 1250 struct blk_plug *plug; 1251 struct request *same_queue_rq = NULL; 1252 blk_qc_t cookie; 1253 1254 blk_queue_bounce(q, &bio); 1255 1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1257 bio_io_error(bio); 1258 return BLK_QC_T_NONE; 1259 } 1260 1261 blk_queue_split(q, &bio, q->bio_split); 1262 1263 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1264 if (blk_attempt_plug_merge(q, bio, &request_count, 1265 &same_queue_rq)) 1266 return BLK_QC_T_NONE; 1267 } else 1268 request_count = blk_plug_queued_count(q); 1269 1270 rq = blk_mq_map_request(q, bio, &data); 1271 if (unlikely(!rq)) 1272 return BLK_QC_T_NONE; 1273 1274 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1275 1276 if (unlikely(is_flush_fua)) { 1277 blk_mq_bio_to_request(rq, bio); 1278 blk_insert_flush(rq); 1279 goto run_queue; 1280 } 1281 1282 plug = current->plug; 1283 /* 1284 * If the driver supports defer issued based on 'last', then 1285 * queue it up like normal since we can potentially save some 1286 * CPU this way. 1287 */ 1288 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1289 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1290 struct request *old_rq = NULL; 1291 1292 blk_mq_bio_to_request(rq, bio); 1293 1294 /* 1295 * We do limited pluging. If the bio can be merged, do that. 1296 * Otherwise the existing request in the plug list will be 1297 * issued. So the plug list will have one request at most 1298 */ 1299 if (plug) { 1300 /* 1301 * The plug list might get flushed before this. If that 1302 * happens, same_queue_rq is invalid and plug list is 1303 * empty 1304 */ 1305 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1306 old_rq = same_queue_rq; 1307 list_del_init(&old_rq->queuelist); 1308 } 1309 list_add_tail(&rq->queuelist, &plug->mq_list); 1310 } else /* is_sync */ 1311 old_rq = rq; 1312 blk_mq_put_ctx(data.ctx); 1313 if (!old_rq) 1314 goto done; 1315 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1316 goto done; 1317 blk_mq_insert_request(old_rq, false, true, true); 1318 goto done; 1319 } 1320 1321 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1322 /* 1323 * For a SYNC request, send it to the hardware immediately. For 1324 * an ASYNC request, just ensure that we run it later on. The 1325 * latter allows for merging opportunities and more efficient 1326 * dispatching. 1327 */ 1328 run_queue: 1329 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1330 } 1331 blk_mq_put_ctx(data.ctx); 1332 done: 1333 return cookie; 1334 } 1335 1336 /* 1337 * Single hardware queue variant. This will attempt to use any per-process 1338 * plug for merging and IO deferral. 1339 */ 1340 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1341 { 1342 const int is_sync = rw_is_sync(bio->bi_rw); 1343 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1344 struct blk_plug *plug; 1345 unsigned int request_count = 0; 1346 struct blk_map_ctx data; 1347 struct request *rq; 1348 blk_qc_t cookie; 1349 1350 blk_queue_bounce(q, &bio); 1351 1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1353 bio_io_error(bio); 1354 return BLK_QC_T_NONE; 1355 } 1356 1357 blk_queue_split(q, &bio, q->bio_split); 1358 1359 if (!is_flush_fua && !blk_queue_nomerges(q) && 1360 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1361 return BLK_QC_T_NONE; 1362 1363 rq = blk_mq_map_request(q, bio, &data); 1364 if (unlikely(!rq)) 1365 return BLK_QC_T_NONE; 1366 1367 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1368 1369 if (unlikely(is_flush_fua)) { 1370 blk_mq_bio_to_request(rq, bio); 1371 blk_insert_flush(rq); 1372 goto run_queue; 1373 } 1374 1375 /* 1376 * A task plug currently exists. Since this is completely lockless, 1377 * utilize that to temporarily store requests until the task is 1378 * either done or scheduled away. 1379 */ 1380 plug = current->plug; 1381 if (plug) { 1382 blk_mq_bio_to_request(rq, bio); 1383 if (!request_count) 1384 trace_block_plug(q); 1385 1386 blk_mq_put_ctx(data.ctx); 1387 1388 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1389 blk_flush_plug_list(plug, false); 1390 trace_block_plug(q); 1391 } 1392 1393 list_add_tail(&rq->queuelist, &plug->mq_list); 1394 return cookie; 1395 } 1396 1397 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1398 /* 1399 * For a SYNC request, send it to the hardware immediately. For 1400 * an ASYNC request, just ensure that we run it later on. The 1401 * latter allows for merging opportunities and more efficient 1402 * dispatching. 1403 */ 1404 run_queue: 1405 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1406 } 1407 1408 blk_mq_put_ctx(data.ctx); 1409 return cookie; 1410 } 1411 1412 /* 1413 * Default mapping to a software queue, since we use one per CPU. 1414 */ 1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1416 { 1417 return q->queue_hw_ctx[q->mq_map[cpu]]; 1418 } 1419 EXPORT_SYMBOL(blk_mq_map_queue); 1420 1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1422 struct blk_mq_tags *tags, unsigned int hctx_idx) 1423 { 1424 struct page *page; 1425 1426 if (tags->rqs && set->ops->exit_request) { 1427 int i; 1428 1429 for (i = 0; i < tags->nr_tags; i++) { 1430 if (!tags->rqs[i]) 1431 continue; 1432 set->ops->exit_request(set->driver_data, tags->rqs[i], 1433 hctx_idx, i); 1434 tags->rqs[i] = NULL; 1435 } 1436 } 1437 1438 while (!list_empty(&tags->page_list)) { 1439 page = list_first_entry(&tags->page_list, struct page, lru); 1440 list_del_init(&page->lru); 1441 /* 1442 * Remove kmemleak object previously allocated in 1443 * blk_mq_init_rq_map(). 1444 */ 1445 kmemleak_free(page_address(page)); 1446 __free_pages(page, page->private); 1447 } 1448 1449 kfree(tags->rqs); 1450 1451 blk_mq_free_tags(tags); 1452 } 1453 1454 static size_t order_to_size(unsigned int order) 1455 { 1456 return (size_t)PAGE_SIZE << order; 1457 } 1458 1459 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1460 unsigned int hctx_idx) 1461 { 1462 struct blk_mq_tags *tags; 1463 unsigned int i, j, entries_per_page, max_order = 4; 1464 size_t rq_size, left; 1465 1466 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1467 set->numa_node, 1468 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1469 if (!tags) 1470 return NULL; 1471 1472 INIT_LIST_HEAD(&tags->page_list); 1473 1474 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1475 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1476 set->numa_node); 1477 if (!tags->rqs) { 1478 blk_mq_free_tags(tags); 1479 return NULL; 1480 } 1481 1482 /* 1483 * rq_size is the size of the request plus driver payload, rounded 1484 * to the cacheline size 1485 */ 1486 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1487 cache_line_size()); 1488 left = rq_size * set->queue_depth; 1489 1490 for (i = 0; i < set->queue_depth; ) { 1491 int this_order = max_order; 1492 struct page *page; 1493 int to_do; 1494 void *p; 1495 1496 while (left < order_to_size(this_order - 1) && this_order) 1497 this_order--; 1498 1499 do { 1500 page = alloc_pages_node(set->numa_node, 1501 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1502 this_order); 1503 if (page) 1504 break; 1505 if (!this_order--) 1506 break; 1507 if (order_to_size(this_order) < rq_size) 1508 break; 1509 } while (1); 1510 1511 if (!page) 1512 goto fail; 1513 1514 page->private = this_order; 1515 list_add_tail(&page->lru, &tags->page_list); 1516 1517 p = page_address(page); 1518 /* 1519 * Allow kmemleak to scan these pages as they contain pointers 1520 * to additional allocations like via ops->init_request(). 1521 */ 1522 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1523 entries_per_page = order_to_size(this_order) / rq_size; 1524 to_do = min(entries_per_page, set->queue_depth - i); 1525 left -= to_do * rq_size; 1526 for (j = 0; j < to_do; j++) { 1527 tags->rqs[i] = p; 1528 if (set->ops->init_request) { 1529 if (set->ops->init_request(set->driver_data, 1530 tags->rqs[i], hctx_idx, i, 1531 set->numa_node)) { 1532 tags->rqs[i] = NULL; 1533 goto fail; 1534 } 1535 } 1536 1537 p += rq_size; 1538 i++; 1539 } 1540 } 1541 return tags; 1542 1543 fail: 1544 blk_mq_free_rq_map(set, tags, hctx_idx); 1545 return NULL; 1546 } 1547 1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1549 { 1550 kfree(bitmap->map); 1551 } 1552 1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1554 { 1555 unsigned int bpw = 8, total, num_maps, i; 1556 1557 bitmap->bits_per_word = bpw; 1558 1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1561 GFP_KERNEL, node); 1562 if (!bitmap->map) 1563 return -ENOMEM; 1564 1565 total = nr_cpu_ids; 1566 for (i = 0; i < num_maps; i++) { 1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1568 total -= bitmap->map[i].depth; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1575 { 1576 struct request_queue *q = hctx->queue; 1577 struct blk_mq_ctx *ctx; 1578 LIST_HEAD(tmp); 1579 1580 /* 1581 * Move ctx entries to new CPU, if this one is going away. 1582 */ 1583 ctx = __blk_mq_get_ctx(q, cpu); 1584 1585 spin_lock(&ctx->lock); 1586 if (!list_empty(&ctx->rq_list)) { 1587 list_splice_init(&ctx->rq_list, &tmp); 1588 blk_mq_hctx_clear_pending(hctx, ctx); 1589 } 1590 spin_unlock(&ctx->lock); 1591 1592 if (list_empty(&tmp)) 1593 return NOTIFY_OK; 1594 1595 ctx = blk_mq_get_ctx(q); 1596 spin_lock(&ctx->lock); 1597 1598 while (!list_empty(&tmp)) { 1599 struct request *rq; 1600 1601 rq = list_first_entry(&tmp, struct request, queuelist); 1602 rq->mq_ctx = ctx; 1603 list_move_tail(&rq->queuelist, &ctx->rq_list); 1604 } 1605 1606 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1607 blk_mq_hctx_mark_pending(hctx, ctx); 1608 1609 spin_unlock(&ctx->lock); 1610 1611 blk_mq_run_hw_queue(hctx, true); 1612 blk_mq_put_ctx(ctx); 1613 return NOTIFY_OK; 1614 } 1615 1616 static int blk_mq_hctx_notify(void *data, unsigned long action, 1617 unsigned int cpu) 1618 { 1619 struct blk_mq_hw_ctx *hctx = data; 1620 1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1622 return blk_mq_hctx_cpu_offline(hctx, cpu); 1623 1624 /* 1625 * In case of CPU online, tags may be reallocated 1626 * in blk_mq_map_swqueue() after mapping is updated. 1627 */ 1628 1629 return NOTIFY_OK; 1630 } 1631 1632 /* hctx->ctxs will be freed in queue's release handler */ 1633 static void blk_mq_exit_hctx(struct request_queue *q, 1634 struct blk_mq_tag_set *set, 1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1636 { 1637 unsigned flush_start_tag = set->queue_depth; 1638 1639 blk_mq_tag_idle(hctx); 1640 1641 if (set->ops->exit_request) 1642 set->ops->exit_request(set->driver_data, 1643 hctx->fq->flush_rq, hctx_idx, 1644 flush_start_tag + hctx_idx); 1645 1646 if (set->ops->exit_hctx) 1647 set->ops->exit_hctx(hctx, hctx_idx); 1648 1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1650 blk_free_flush_queue(hctx->fq); 1651 blk_mq_free_bitmap(&hctx->ctx_map); 1652 } 1653 1654 static void blk_mq_exit_hw_queues(struct request_queue *q, 1655 struct blk_mq_tag_set *set, int nr_queue) 1656 { 1657 struct blk_mq_hw_ctx *hctx; 1658 unsigned int i; 1659 1660 queue_for_each_hw_ctx(q, hctx, i) { 1661 if (i == nr_queue) 1662 break; 1663 blk_mq_exit_hctx(q, set, hctx, i); 1664 } 1665 } 1666 1667 static void blk_mq_free_hw_queues(struct request_queue *q, 1668 struct blk_mq_tag_set *set) 1669 { 1670 struct blk_mq_hw_ctx *hctx; 1671 unsigned int i; 1672 1673 queue_for_each_hw_ctx(q, hctx, i) 1674 free_cpumask_var(hctx->cpumask); 1675 } 1676 1677 static int blk_mq_init_hctx(struct request_queue *q, 1678 struct blk_mq_tag_set *set, 1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1680 { 1681 int node; 1682 unsigned flush_start_tag = set->queue_depth; 1683 1684 node = hctx->numa_node; 1685 if (node == NUMA_NO_NODE) 1686 node = hctx->numa_node = set->numa_node; 1687 1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1690 spin_lock_init(&hctx->lock); 1691 INIT_LIST_HEAD(&hctx->dispatch); 1692 hctx->queue = q; 1693 hctx->queue_num = hctx_idx; 1694 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1695 1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1697 blk_mq_hctx_notify, hctx); 1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1699 1700 hctx->tags = set->tags[hctx_idx]; 1701 1702 /* 1703 * Allocate space for all possible cpus to avoid allocation at 1704 * runtime 1705 */ 1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1707 GFP_KERNEL, node); 1708 if (!hctx->ctxs) 1709 goto unregister_cpu_notifier; 1710 1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1712 goto free_ctxs; 1713 1714 hctx->nr_ctx = 0; 1715 1716 if (set->ops->init_hctx && 1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1718 goto free_bitmap; 1719 1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1721 if (!hctx->fq) 1722 goto exit_hctx; 1723 1724 if (set->ops->init_request && 1725 set->ops->init_request(set->driver_data, 1726 hctx->fq->flush_rq, hctx_idx, 1727 flush_start_tag + hctx_idx, node)) 1728 goto free_fq; 1729 1730 return 0; 1731 1732 free_fq: 1733 kfree(hctx->fq); 1734 exit_hctx: 1735 if (set->ops->exit_hctx) 1736 set->ops->exit_hctx(hctx, hctx_idx); 1737 free_bitmap: 1738 blk_mq_free_bitmap(&hctx->ctx_map); 1739 free_ctxs: 1740 kfree(hctx->ctxs); 1741 unregister_cpu_notifier: 1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1743 1744 return -1; 1745 } 1746 1747 static int blk_mq_init_hw_queues(struct request_queue *q, 1748 struct blk_mq_tag_set *set) 1749 { 1750 struct blk_mq_hw_ctx *hctx; 1751 unsigned int i; 1752 1753 /* 1754 * Initialize hardware queues 1755 */ 1756 queue_for_each_hw_ctx(q, hctx, i) { 1757 if (blk_mq_init_hctx(q, set, hctx, i)) 1758 break; 1759 } 1760 1761 if (i == q->nr_hw_queues) 1762 return 0; 1763 1764 /* 1765 * Init failed 1766 */ 1767 blk_mq_exit_hw_queues(q, set, i); 1768 1769 return 1; 1770 } 1771 1772 static void blk_mq_init_cpu_queues(struct request_queue *q, 1773 unsigned int nr_hw_queues) 1774 { 1775 unsigned int i; 1776 1777 for_each_possible_cpu(i) { 1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1779 struct blk_mq_hw_ctx *hctx; 1780 1781 memset(__ctx, 0, sizeof(*__ctx)); 1782 __ctx->cpu = i; 1783 spin_lock_init(&__ctx->lock); 1784 INIT_LIST_HEAD(&__ctx->rq_list); 1785 __ctx->queue = q; 1786 1787 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1788 if (!cpu_online(i)) 1789 continue; 1790 1791 hctx = q->mq_ops->map_queue(q, i); 1792 1793 /* 1794 * Set local node, IFF we have more than one hw queue. If 1795 * not, we remain on the home node of the device 1796 */ 1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1798 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1799 } 1800 } 1801 1802 static void blk_mq_map_swqueue(struct request_queue *q, 1803 const struct cpumask *online_mask) 1804 { 1805 unsigned int i; 1806 struct blk_mq_hw_ctx *hctx; 1807 struct blk_mq_ctx *ctx; 1808 struct blk_mq_tag_set *set = q->tag_set; 1809 1810 /* 1811 * Avoid others reading imcomplete hctx->cpumask through sysfs 1812 */ 1813 mutex_lock(&q->sysfs_lock); 1814 1815 queue_for_each_hw_ctx(q, hctx, i) { 1816 cpumask_clear(hctx->cpumask); 1817 hctx->nr_ctx = 0; 1818 } 1819 1820 /* 1821 * Map software to hardware queues 1822 */ 1823 queue_for_each_ctx(q, ctx, i) { 1824 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1825 if (!cpumask_test_cpu(i, online_mask)) 1826 continue; 1827 1828 hctx = q->mq_ops->map_queue(q, i); 1829 cpumask_set_cpu(i, hctx->cpumask); 1830 ctx->index_hw = hctx->nr_ctx; 1831 hctx->ctxs[hctx->nr_ctx++] = ctx; 1832 } 1833 1834 mutex_unlock(&q->sysfs_lock); 1835 1836 queue_for_each_hw_ctx(q, hctx, i) { 1837 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1838 1839 /* 1840 * If no software queues are mapped to this hardware queue, 1841 * disable it and free the request entries. 1842 */ 1843 if (!hctx->nr_ctx) { 1844 if (set->tags[i]) { 1845 blk_mq_free_rq_map(set, set->tags[i], i); 1846 set->tags[i] = NULL; 1847 } 1848 hctx->tags = NULL; 1849 continue; 1850 } 1851 1852 /* unmapped hw queue can be remapped after CPU topo changed */ 1853 if (!set->tags[i]) 1854 set->tags[i] = blk_mq_init_rq_map(set, i); 1855 hctx->tags = set->tags[i]; 1856 WARN_ON(!hctx->tags); 1857 1858 cpumask_copy(hctx->tags->cpumask, hctx->cpumask); 1859 /* 1860 * Set the map size to the number of mapped software queues. 1861 * This is more accurate and more efficient than looping 1862 * over all possibly mapped software queues. 1863 */ 1864 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1865 1866 /* 1867 * Initialize batch roundrobin counts 1868 */ 1869 hctx->next_cpu = cpumask_first(hctx->cpumask); 1870 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1871 } 1872 } 1873 1874 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1875 { 1876 struct blk_mq_hw_ctx *hctx; 1877 int i; 1878 1879 queue_for_each_hw_ctx(q, hctx, i) { 1880 if (shared) 1881 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1882 else 1883 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1884 } 1885 } 1886 1887 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1888 { 1889 struct request_queue *q; 1890 1891 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1892 blk_mq_freeze_queue(q); 1893 queue_set_hctx_shared(q, shared); 1894 blk_mq_unfreeze_queue(q); 1895 } 1896 } 1897 1898 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1899 { 1900 struct blk_mq_tag_set *set = q->tag_set; 1901 1902 mutex_lock(&set->tag_list_lock); 1903 list_del_init(&q->tag_set_list); 1904 if (list_is_singular(&set->tag_list)) { 1905 /* just transitioned to unshared */ 1906 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1907 /* update existing queue */ 1908 blk_mq_update_tag_set_depth(set, false); 1909 } 1910 mutex_unlock(&set->tag_list_lock); 1911 } 1912 1913 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1914 struct request_queue *q) 1915 { 1916 q->tag_set = set; 1917 1918 mutex_lock(&set->tag_list_lock); 1919 1920 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1921 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1922 set->flags |= BLK_MQ_F_TAG_SHARED; 1923 /* update existing queue */ 1924 blk_mq_update_tag_set_depth(set, true); 1925 } 1926 if (set->flags & BLK_MQ_F_TAG_SHARED) 1927 queue_set_hctx_shared(q, true); 1928 list_add_tail(&q->tag_set_list, &set->tag_list); 1929 1930 mutex_unlock(&set->tag_list_lock); 1931 } 1932 1933 /* 1934 * It is the actual release handler for mq, but we do it from 1935 * request queue's release handler for avoiding use-after-free 1936 * and headache because q->mq_kobj shouldn't have been introduced, 1937 * but we can't group ctx/kctx kobj without it. 1938 */ 1939 void blk_mq_release(struct request_queue *q) 1940 { 1941 struct blk_mq_hw_ctx *hctx; 1942 unsigned int i; 1943 1944 /* hctx kobj stays in hctx */ 1945 queue_for_each_hw_ctx(q, hctx, i) { 1946 if (!hctx) 1947 continue; 1948 kfree(hctx->ctxs); 1949 kfree(hctx); 1950 } 1951 1952 kfree(q->mq_map); 1953 q->mq_map = NULL; 1954 1955 kfree(q->queue_hw_ctx); 1956 1957 /* ctx kobj stays in queue_ctx */ 1958 free_percpu(q->queue_ctx); 1959 } 1960 1961 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1962 { 1963 struct request_queue *uninit_q, *q; 1964 1965 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1966 if (!uninit_q) 1967 return ERR_PTR(-ENOMEM); 1968 1969 q = blk_mq_init_allocated_queue(set, uninit_q); 1970 if (IS_ERR(q)) 1971 blk_cleanup_queue(uninit_q); 1972 1973 return q; 1974 } 1975 EXPORT_SYMBOL(blk_mq_init_queue); 1976 1977 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1978 struct request_queue *q) 1979 { 1980 struct blk_mq_hw_ctx **hctxs; 1981 struct blk_mq_ctx __percpu *ctx; 1982 unsigned int *map; 1983 int i; 1984 1985 ctx = alloc_percpu(struct blk_mq_ctx); 1986 if (!ctx) 1987 return ERR_PTR(-ENOMEM); 1988 1989 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1990 set->numa_node); 1991 1992 if (!hctxs) 1993 goto err_percpu; 1994 1995 map = blk_mq_make_queue_map(set); 1996 if (!map) 1997 goto err_map; 1998 1999 for (i = 0; i < set->nr_hw_queues; i++) { 2000 int node = blk_mq_hw_queue_to_node(map, i); 2001 2002 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2003 GFP_KERNEL, node); 2004 if (!hctxs[i]) 2005 goto err_hctxs; 2006 2007 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2008 node)) 2009 goto err_hctxs; 2010 2011 atomic_set(&hctxs[i]->nr_active, 0); 2012 hctxs[i]->numa_node = node; 2013 hctxs[i]->queue_num = i; 2014 } 2015 2016 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2017 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2018 2019 q->nr_queues = nr_cpu_ids; 2020 q->nr_hw_queues = set->nr_hw_queues; 2021 q->mq_map = map; 2022 2023 q->queue_ctx = ctx; 2024 q->queue_hw_ctx = hctxs; 2025 2026 q->mq_ops = set->ops; 2027 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2028 2029 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2030 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2031 2032 q->sg_reserved_size = INT_MAX; 2033 2034 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2035 INIT_LIST_HEAD(&q->requeue_list); 2036 spin_lock_init(&q->requeue_lock); 2037 2038 if (q->nr_hw_queues > 1) 2039 blk_queue_make_request(q, blk_mq_make_request); 2040 else 2041 blk_queue_make_request(q, blk_sq_make_request); 2042 2043 /* 2044 * Do this after blk_queue_make_request() overrides it... 2045 */ 2046 q->nr_requests = set->queue_depth; 2047 2048 if (set->ops->complete) 2049 blk_queue_softirq_done(q, set->ops->complete); 2050 2051 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2052 2053 if (blk_mq_init_hw_queues(q, set)) 2054 goto err_hctxs; 2055 2056 get_online_cpus(); 2057 mutex_lock(&all_q_mutex); 2058 2059 list_add_tail(&q->all_q_node, &all_q_list); 2060 blk_mq_add_queue_tag_set(set, q); 2061 blk_mq_map_swqueue(q, cpu_online_mask); 2062 2063 mutex_unlock(&all_q_mutex); 2064 put_online_cpus(); 2065 2066 return q; 2067 2068 err_hctxs: 2069 kfree(map); 2070 for (i = 0; i < set->nr_hw_queues; i++) { 2071 if (!hctxs[i]) 2072 break; 2073 free_cpumask_var(hctxs[i]->cpumask); 2074 kfree(hctxs[i]); 2075 } 2076 err_map: 2077 kfree(hctxs); 2078 err_percpu: 2079 free_percpu(ctx); 2080 return ERR_PTR(-ENOMEM); 2081 } 2082 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2083 2084 void blk_mq_free_queue(struct request_queue *q) 2085 { 2086 struct blk_mq_tag_set *set = q->tag_set; 2087 2088 mutex_lock(&all_q_mutex); 2089 list_del_init(&q->all_q_node); 2090 mutex_unlock(&all_q_mutex); 2091 2092 blk_mq_del_queue_tag_set(q); 2093 2094 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2095 blk_mq_free_hw_queues(q, set); 2096 } 2097 2098 /* Basically redo blk_mq_init_queue with queue frozen */ 2099 static void blk_mq_queue_reinit(struct request_queue *q, 2100 const struct cpumask *online_mask) 2101 { 2102 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2103 2104 blk_mq_sysfs_unregister(q); 2105 2106 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2107 2108 /* 2109 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2110 * we should change hctx numa_node according to new topology (this 2111 * involves free and re-allocate memory, worthy doing?) 2112 */ 2113 2114 blk_mq_map_swqueue(q, online_mask); 2115 2116 blk_mq_sysfs_register(q); 2117 } 2118 2119 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2120 unsigned long action, void *hcpu) 2121 { 2122 struct request_queue *q; 2123 int cpu = (unsigned long)hcpu; 2124 /* 2125 * New online cpumask which is going to be set in this hotplug event. 2126 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2127 * one-by-one and dynamically allocating this could result in a failure. 2128 */ 2129 static struct cpumask online_new; 2130 2131 /* 2132 * Before hotadded cpu starts handling requests, new mappings must 2133 * be established. Otherwise, these requests in hw queue might 2134 * never be dispatched. 2135 * 2136 * For example, there is a single hw queue (hctx) and two CPU queues 2137 * (ctx0 for CPU0, and ctx1 for CPU1). 2138 * 2139 * Now CPU1 is just onlined and a request is inserted into 2140 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2141 * still zero. 2142 * 2143 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2144 * set in pending bitmap and tries to retrieve requests in 2145 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2146 * so the request in ctx1->rq_list is ignored. 2147 */ 2148 switch (action & ~CPU_TASKS_FROZEN) { 2149 case CPU_DEAD: 2150 case CPU_UP_CANCELED: 2151 cpumask_copy(&online_new, cpu_online_mask); 2152 break; 2153 case CPU_UP_PREPARE: 2154 cpumask_copy(&online_new, cpu_online_mask); 2155 cpumask_set_cpu(cpu, &online_new); 2156 break; 2157 default: 2158 return NOTIFY_OK; 2159 } 2160 2161 mutex_lock(&all_q_mutex); 2162 2163 /* 2164 * We need to freeze and reinit all existing queues. Freezing 2165 * involves synchronous wait for an RCU grace period and doing it 2166 * one by one may take a long time. Start freezing all queues in 2167 * one swoop and then wait for the completions so that freezing can 2168 * take place in parallel. 2169 */ 2170 list_for_each_entry(q, &all_q_list, all_q_node) 2171 blk_mq_freeze_queue_start(q); 2172 list_for_each_entry(q, &all_q_list, all_q_node) { 2173 blk_mq_freeze_queue_wait(q); 2174 2175 /* 2176 * timeout handler can't touch hw queue during the 2177 * reinitialization 2178 */ 2179 del_timer_sync(&q->timeout); 2180 } 2181 2182 list_for_each_entry(q, &all_q_list, all_q_node) 2183 blk_mq_queue_reinit(q, &online_new); 2184 2185 list_for_each_entry(q, &all_q_list, all_q_node) 2186 blk_mq_unfreeze_queue(q); 2187 2188 mutex_unlock(&all_q_mutex); 2189 return NOTIFY_OK; 2190 } 2191 2192 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2193 { 2194 int i; 2195 2196 for (i = 0; i < set->nr_hw_queues; i++) { 2197 set->tags[i] = blk_mq_init_rq_map(set, i); 2198 if (!set->tags[i]) 2199 goto out_unwind; 2200 } 2201 2202 return 0; 2203 2204 out_unwind: 2205 while (--i >= 0) 2206 blk_mq_free_rq_map(set, set->tags[i], i); 2207 2208 return -ENOMEM; 2209 } 2210 2211 /* 2212 * Allocate the request maps associated with this tag_set. Note that this 2213 * may reduce the depth asked for, if memory is tight. set->queue_depth 2214 * will be updated to reflect the allocated depth. 2215 */ 2216 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2217 { 2218 unsigned int depth; 2219 int err; 2220 2221 depth = set->queue_depth; 2222 do { 2223 err = __blk_mq_alloc_rq_maps(set); 2224 if (!err) 2225 break; 2226 2227 set->queue_depth >>= 1; 2228 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2229 err = -ENOMEM; 2230 break; 2231 } 2232 } while (set->queue_depth); 2233 2234 if (!set->queue_depth || err) { 2235 pr_err("blk-mq: failed to allocate request map\n"); 2236 return -ENOMEM; 2237 } 2238 2239 if (depth != set->queue_depth) 2240 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2241 depth, set->queue_depth); 2242 2243 return 0; 2244 } 2245 2246 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2247 { 2248 return tags->cpumask; 2249 } 2250 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2251 2252 /* 2253 * Alloc a tag set to be associated with one or more request queues. 2254 * May fail with EINVAL for various error conditions. May adjust the 2255 * requested depth down, if if it too large. In that case, the set 2256 * value will be stored in set->queue_depth. 2257 */ 2258 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2259 { 2260 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2261 2262 if (!set->nr_hw_queues) 2263 return -EINVAL; 2264 if (!set->queue_depth) 2265 return -EINVAL; 2266 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2267 return -EINVAL; 2268 2269 if (!set->ops->queue_rq || !set->ops->map_queue) 2270 return -EINVAL; 2271 2272 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2273 pr_info("blk-mq: reduced tag depth to %u\n", 2274 BLK_MQ_MAX_DEPTH); 2275 set->queue_depth = BLK_MQ_MAX_DEPTH; 2276 } 2277 2278 /* 2279 * If a crashdump is active, then we are potentially in a very 2280 * memory constrained environment. Limit us to 1 queue and 2281 * 64 tags to prevent using too much memory. 2282 */ 2283 if (is_kdump_kernel()) { 2284 set->nr_hw_queues = 1; 2285 set->queue_depth = min(64U, set->queue_depth); 2286 } 2287 2288 set->tags = kmalloc_node(set->nr_hw_queues * 2289 sizeof(struct blk_mq_tags *), 2290 GFP_KERNEL, set->numa_node); 2291 if (!set->tags) 2292 return -ENOMEM; 2293 2294 if (blk_mq_alloc_rq_maps(set)) 2295 goto enomem; 2296 2297 mutex_init(&set->tag_list_lock); 2298 INIT_LIST_HEAD(&set->tag_list); 2299 2300 return 0; 2301 enomem: 2302 kfree(set->tags); 2303 set->tags = NULL; 2304 return -ENOMEM; 2305 } 2306 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2307 2308 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2309 { 2310 int i; 2311 2312 for (i = 0; i < set->nr_hw_queues; i++) { 2313 if (set->tags[i]) 2314 blk_mq_free_rq_map(set, set->tags[i], i); 2315 } 2316 2317 kfree(set->tags); 2318 set->tags = NULL; 2319 } 2320 EXPORT_SYMBOL(blk_mq_free_tag_set); 2321 2322 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2323 { 2324 struct blk_mq_tag_set *set = q->tag_set; 2325 struct blk_mq_hw_ctx *hctx; 2326 int i, ret; 2327 2328 if (!set || nr > set->queue_depth) 2329 return -EINVAL; 2330 2331 ret = 0; 2332 queue_for_each_hw_ctx(q, hctx, i) { 2333 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2334 if (ret) 2335 break; 2336 } 2337 2338 if (!ret) 2339 q->nr_requests = nr; 2340 2341 return ret; 2342 } 2343 2344 void blk_mq_disable_hotplug(void) 2345 { 2346 mutex_lock(&all_q_mutex); 2347 } 2348 2349 void blk_mq_enable_hotplug(void) 2350 { 2351 mutex_unlock(&all_q_mutex); 2352 } 2353 2354 static int __init blk_mq_init(void) 2355 { 2356 blk_mq_cpu_init(); 2357 2358 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2359 2360 return 0; 2361 } 2362 subsys_initcall(blk_mq_init); 2363