1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113 } 114 115 unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117 { 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123 } 124 125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127 { 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133 } 134 135 void blk_freeze_queue_start(struct request_queue *q) 136 { 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146 } 147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149 void blk_mq_freeze_queue_wait(struct request_queue *q) 150 { 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157 { 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164 /* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168 void blk_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179 } 180 181 void blk_mq_freeze_queue(struct request_queue *q) 182 { 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191 void blk_mq_unfreeze_queue(struct request_queue *q) 192 { 193 mutex_lock(&q->mq_freeze_lock); 194 q->mq_freeze_depth--; 195 WARN_ON_ONCE(q->mq_freeze_depth < 0); 196 if (!q->mq_freeze_depth) { 197 percpu_ref_resurrect(&q->q_usage_counter); 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 mutex_unlock(&q->mq_freeze_lock); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 203 204 /* 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 206 * mpt3sas driver such that this function can be removed. 207 */ 208 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 209 { 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 216 * @q: request queue. 217 * 218 * Note: this function does not prevent that the struct request end_io() 219 * callback function is invoked. Once this function is returned, we make 220 * sure no dispatch can happen until the queue is unquiesced via 221 * blk_mq_unquiesce_queue(). 222 */ 223 void blk_mq_quiesce_queue(struct request_queue *q) 224 { 225 struct blk_mq_hw_ctx *hctx; 226 unsigned int i; 227 bool rcu = false; 228 229 blk_mq_quiesce_queue_nowait(q); 230 231 queue_for_each_hw_ctx(q, hctx, i) { 232 if (hctx->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(hctx->srcu); 234 else 235 rcu = true; 236 } 237 if (rcu) 238 synchronize_rcu(); 239 } 240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 241 242 /* 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 244 * @q: request queue. 245 * 246 * This function recovers queue into the state before quiescing 247 * which is done by blk_mq_quiesce_queue. 248 */ 249 void blk_mq_unquiesce_queue(struct request_queue *q) 250 { 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 252 253 /* dispatch requests which are inserted during quiescing */ 254 blk_mq_run_hw_queues(q, true); 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 257 258 void blk_mq_wake_waiters(struct request_queue *q) 259 { 260 struct blk_mq_hw_ctx *hctx; 261 unsigned int i; 262 263 queue_for_each_hw_ctx(q, hctx, i) 264 if (blk_mq_hw_queue_mapped(hctx)) 265 blk_mq_tag_wakeup_all(hctx->tags, true); 266 } 267 268 /* 269 * Only need start/end time stamping if we have iostat or 270 * blk stats enabled, or using an IO scheduler. 271 */ 272 static inline bool blk_mq_need_time_stamp(struct request *rq) 273 { 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 275 } 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, u64 alloc_time_ns) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 283 if (data->q->elevator) { 284 rq->tag = BLK_MQ_NO_TAG; 285 rq->internal_tag = tag; 286 } else { 287 rq->tag = tag; 288 rq->internal_tag = BLK_MQ_NO_TAG; 289 } 290 291 /* csd/requeue_work/fifo_time is initialized before use */ 292 rq->q = data->q; 293 rq->mq_ctx = data->ctx; 294 rq->mq_hctx = data->hctx; 295 rq->rq_flags = 0; 296 rq->cmd_flags = data->cmd_flags; 297 if (data->flags & BLK_MQ_REQ_PM) 298 rq->rq_flags |= RQF_PM; 299 if (blk_queue_io_stat(data->q)) 300 rq->rq_flags |= RQF_IO_STAT; 301 INIT_LIST_HEAD(&rq->queuelist); 302 INIT_HLIST_NODE(&rq->hash); 303 RB_CLEAR_NODE(&rq->rb_node); 304 rq->rq_disk = NULL; 305 rq->part = NULL; 306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 307 rq->alloc_time_ns = alloc_time_ns; 308 #endif 309 if (blk_mq_need_time_stamp(rq)) 310 rq->start_time_ns = ktime_get_ns(); 311 else 312 rq->start_time_ns = 0; 313 rq->io_start_time_ns = 0; 314 rq->stats_sectors = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 blk_crypto_rq_set_defaults(rq); 320 /* tag was already set */ 321 WRITE_ONCE(rq->deadline, 0); 322 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 329 refcount_set(&rq->ref, 1); 330 331 if (!op_is_flush(data->cmd_flags)) { 332 struct elevator_queue *e = data->q->elevator; 333 334 rq->elv.icq = NULL; 335 if (e && e->type->ops.prepare_request) { 336 if (e->type->icq_cache) 337 blk_mq_sched_assign_ioc(rq); 338 339 e->type->ops.prepare_request(rq); 340 rq->rq_flags |= RQF_ELVPRIV; 341 } 342 } 343 344 data->hctx->queued++; 345 return rq; 346 } 347 348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 349 { 350 struct request_queue *q = data->q; 351 struct elevator_queue *e = q->elevator; 352 u64 alloc_time_ns = 0; 353 unsigned int tag; 354 355 /* alloc_time includes depth and tag waits */ 356 if (blk_queue_rq_alloc_time(q)) 357 alloc_time_ns = ktime_get_ns(); 358 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 /* 364 * Flush/passthrough requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(data->cmd_flags) && 369 !blk_op_is_passthrough(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } 374 375 retry: 376 data->ctx = blk_mq_get_ctx(q); 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 378 if (!e) 379 blk_mq_tag_busy(data->hctx); 380 381 /* 382 * Waiting allocations only fail because of an inactive hctx. In that 383 * case just retry the hctx assignment and tag allocation as CPU hotplug 384 * should have migrated us to an online CPU by now. 385 */ 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_NO_TAG) { 388 if (data->flags & BLK_MQ_REQ_NOWAIT) 389 return NULL; 390 391 /* 392 * Give up the CPU and sleep for a random short time to ensure 393 * that thread using a realtime scheduling class are migrated 394 * off the CPU, and thus off the hctx that is going away. 395 */ 396 msleep(3); 397 goto retry; 398 } 399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 400 } 401 402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 403 blk_mq_req_flags_t flags) 404 { 405 struct blk_mq_alloc_data data = { 406 .q = q, 407 .flags = flags, 408 .cmd_flags = op, 409 }; 410 struct request *rq; 411 int ret; 412 413 ret = blk_queue_enter(q, flags); 414 if (ret) 415 return ERR_PTR(ret); 416 417 rq = __blk_mq_alloc_request(&data); 418 if (!rq) 419 goto out_queue_exit; 420 rq->__data_len = 0; 421 rq->__sector = (sector_t) -1; 422 rq->bio = rq->biotail = NULL; 423 return rq; 424 out_queue_exit: 425 blk_queue_exit(q); 426 return ERR_PTR(-EWOULDBLOCK); 427 } 428 EXPORT_SYMBOL(blk_mq_alloc_request); 429 430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 432 { 433 struct blk_mq_alloc_data data = { 434 .q = q, 435 .flags = flags, 436 .cmd_flags = op, 437 }; 438 u64 alloc_time_ns = 0; 439 unsigned int cpu; 440 unsigned int tag; 441 int ret; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 /* 448 * If the tag allocator sleeps we could get an allocation for a 449 * different hardware context. No need to complicate the low level 450 * allocator for this for the rare use case of a command tied to 451 * a specific queue. 452 */ 453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 454 return ERR_PTR(-EINVAL); 455 456 if (hctx_idx >= q->nr_hw_queues) 457 return ERR_PTR(-EIO); 458 459 ret = blk_queue_enter(q, flags); 460 if (ret) 461 return ERR_PTR(ret); 462 463 /* 464 * Check if the hardware context is actually mapped to anything. 465 * If not tell the caller that it should skip this queue. 466 */ 467 ret = -EXDEV; 468 data.hctx = q->queue_hw_ctx[hctx_idx]; 469 if (!blk_mq_hw_queue_mapped(data.hctx)) 470 goto out_queue_exit; 471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 472 data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 if (!q->elevator) 475 blk_mq_tag_busy(data.hctx); 476 477 ret = -EWOULDBLOCK; 478 tag = blk_mq_get_tag(&data); 479 if (tag == BLK_MQ_NO_TAG) 480 goto out_queue_exit; 481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 482 483 out_queue_exit: 484 blk_queue_exit(q); 485 return ERR_PTR(ret); 486 } 487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 488 489 static void __blk_mq_free_request(struct request *rq) 490 { 491 struct request_queue *q = rq->q; 492 struct blk_mq_ctx *ctx = rq->mq_ctx; 493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 494 const int sched_tag = rq->internal_tag; 495 496 blk_crypto_free_request(rq); 497 blk_pm_mark_last_busy(rq); 498 rq->mq_hctx = NULL; 499 if (rq->tag != BLK_MQ_NO_TAG) 500 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 501 if (sched_tag != BLK_MQ_NO_TAG) 502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 503 blk_mq_sched_restart(hctx); 504 blk_queue_exit(q); 505 } 506 507 void blk_mq_free_request(struct request *rq) 508 { 509 struct request_queue *q = rq->q; 510 struct elevator_queue *e = q->elevator; 511 struct blk_mq_ctx *ctx = rq->mq_ctx; 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 513 514 if (rq->rq_flags & RQF_ELVPRIV) { 515 if (e && e->type->ops.finish_request) 516 e->type->ops.finish_request(rq); 517 if (rq->elv.icq) { 518 put_io_context(rq->elv.icq->ioc); 519 rq->elv.icq = NULL; 520 } 521 } 522 523 ctx->rq_completed[rq_is_sync(rq)]++; 524 if (rq->rq_flags & RQF_MQ_INFLIGHT) 525 __blk_mq_dec_active_requests(hctx); 526 527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 528 laptop_io_completion(q->disk->bdi); 529 530 rq_qos_done(q, rq); 531 532 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 533 if (refcount_dec_and_test(&rq->ref)) 534 __blk_mq_free_request(rq); 535 } 536 EXPORT_SYMBOL_GPL(blk_mq_free_request); 537 538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 539 { 540 u64 now = 0; 541 542 if (blk_mq_need_time_stamp(rq)) 543 now = ktime_get_ns(); 544 545 if (rq->rq_flags & RQF_STATS) { 546 blk_mq_poll_stats_start(rq->q); 547 blk_stat_add(rq, now); 548 } 549 550 blk_mq_sched_completed_request(rq, now); 551 552 blk_account_io_done(rq, now); 553 554 if (rq->end_io) { 555 rq_qos_done(rq->q, rq); 556 rq->end_io(rq, error); 557 } else { 558 blk_mq_free_request(rq); 559 } 560 } 561 EXPORT_SYMBOL(__blk_mq_end_request); 562 563 void blk_mq_end_request(struct request *rq, blk_status_t error) 564 { 565 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 566 BUG(); 567 __blk_mq_end_request(rq, error); 568 } 569 EXPORT_SYMBOL(blk_mq_end_request); 570 571 static void blk_complete_reqs(struct llist_head *list) 572 { 573 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 574 struct request *rq, *next; 575 576 llist_for_each_entry_safe(rq, next, entry, ipi_list) 577 rq->q->mq_ops->complete(rq); 578 } 579 580 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 581 { 582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 583 } 584 585 static int blk_softirq_cpu_dead(unsigned int cpu) 586 { 587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 588 return 0; 589 } 590 591 static void __blk_mq_complete_request_remote(void *data) 592 { 593 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 594 } 595 596 static inline bool blk_mq_complete_need_ipi(struct request *rq) 597 { 598 int cpu = raw_smp_processor_id(); 599 600 if (!IS_ENABLED(CONFIG_SMP) || 601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 602 return false; 603 /* 604 * With force threaded interrupts enabled, raising softirq from an SMP 605 * function call will always result in waking the ksoftirqd thread. 606 * This is probably worse than completing the request on a different 607 * cache domain. 608 */ 609 if (force_irqthreads()) 610 return false; 611 612 /* same CPU or cache domain? Complete locally */ 613 if (cpu == rq->mq_ctx->cpu || 614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 615 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 616 return false; 617 618 /* don't try to IPI to an offline CPU */ 619 return cpu_online(rq->mq_ctx->cpu); 620 } 621 622 static void blk_mq_complete_send_ipi(struct request *rq) 623 { 624 struct llist_head *list; 625 unsigned int cpu; 626 627 cpu = rq->mq_ctx->cpu; 628 list = &per_cpu(blk_cpu_done, cpu); 629 if (llist_add(&rq->ipi_list, list)) { 630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 631 smp_call_function_single_async(cpu, &rq->csd); 632 } 633 } 634 635 static void blk_mq_raise_softirq(struct request *rq) 636 { 637 struct llist_head *list; 638 639 preempt_disable(); 640 list = this_cpu_ptr(&blk_cpu_done); 641 if (llist_add(&rq->ipi_list, list)) 642 raise_softirq(BLOCK_SOFTIRQ); 643 preempt_enable(); 644 } 645 646 bool blk_mq_complete_request_remote(struct request *rq) 647 { 648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 649 650 /* 651 * For a polled request, always complete locallly, it's pointless 652 * to redirect the completion. 653 */ 654 if (rq->cmd_flags & REQ_HIPRI) 655 return false; 656 657 if (blk_mq_complete_need_ipi(rq)) { 658 blk_mq_complete_send_ipi(rq); 659 return true; 660 } 661 662 if (rq->q->nr_hw_queues == 1) { 663 blk_mq_raise_softirq(rq); 664 return true; 665 } 666 return false; 667 } 668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 669 670 /** 671 * blk_mq_complete_request - end I/O on a request 672 * @rq: the request being processed 673 * 674 * Description: 675 * Complete a request by scheduling the ->complete_rq operation. 676 **/ 677 void blk_mq_complete_request(struct request *rq) 678 { 679 if (!blk_mq_complete_request_remote(rq)) 680 rq->q->mq_ops->complete(rq); 681 } 682 EXPORT_SYMBOL(blk_mq_complete_request); 683 684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 685 __releases(hctx->srcu) 686 { 687 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 688 rcu_read_unlock(); 689 else 690 srcu_read_unlock(hctx->srcu, srcu_idx); 691 } 692 693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 694 __acquires(hctx->srcu) 695 { 696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 697 /* shut up gcc false positive */ 698 *srcu_idx = 0; 699 rcu_read_lock(); 700 } else 701 *srcu_idx = srcu_read_lock(hctx->srcu); 702 } 703 704 /** 705 * blk_mq_start_request - Start processing a request 706 * @rq: Pointer to request to be started 707 * 708 * Function used by device drivers to notify the block layer that a request 709 * is going to be processed now, so blk layer can do proper initializations 710 * such as starting the timeout timer. 711 */ 712 void blk_mq_start_request(struct request *rq) 713 { 714 struct request_queue *q = rq->q; 715 716 trace_block_rq_issue(rq); 717 718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 719 rq->io_start_time_ns = ktime_get_ns(); 720 rq->stats_sectors = blk_rq_sectors(rq); 721 rq->rq_flags |= RQF_STATS; 722 rq_qos_issue(q, rq); 723 } 724 725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 726 727 blk_add_timer(rq); 728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 729 730 #ifdef CONFIG_BLK_DEV_INTEGRITY 731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 732 q->integrity.profile->prepare_fn(rq); 733 #endif 734 } 735 EXPORT_SYMBOL(blk_mq_start_request); 736 737 static void __blk_mq_requeue_request(struct request *rq) 738 { 739 struct request_queue *q = rq->q; 740 741 blk_mq_put_driver_tag(rq); 742 743 trace_block_rq_requeue(rq); 744 rq_qos_requeue(q, rq); 745 746 if (blk_mq_request_started(rq)) { 747 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 748 rq->rq_flags &= ~RQF_TIMED_OUT; 749 } 750 } 751 752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 753 { 754 __blk_mq_requeue_request(rq); 755 756 /* this request will be re-inserted to io scheduler queue */ 757 blk_mq_sched_requeue_request(rq); 758 759 BUG_ON(!list_empty(&rq->queuelist)); 760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 761 } 762 EXPORT_SYMBOL(blk_mq_requeue_request); 763 764 static void blk_mq_requeue_work(struct work_struct *work) 765 { 766 struct request_queue *q = 767 container_of(work, struct request_queue, requeue_work.work); 768 LIST_HEAD(rq_list); 769 struct request *rq, *next; 770 771 spin_lock_irq(&q->requeue_lock); 772 list_splice_init(&q->requeue_list, &rq_list); 773 spin_unlock_irq(&q->requeue_lock); 774 775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 777 continue; 778 779 rq->rq_flags &= ~RQF_SOFTBARRIER; 780 list_del_init(&rq->queuelist); 781 /* 782 * If RQF_DONTPREP, rq has contained some driver specific 783 * data, so insert it to hctx dispatch list to avoid any 784 * merge. 785 */ 786 if (rq->rq_flags & RQF_DONTPREP) 787 blk_mq_request_bypass_insert(rq, false, false); 788 else 789 blk_mq_sched_insert_request(rq, true, false, false); 790 } 791 792 while (!list_empty(&rq_list)) { 793 rq = list_entry(rq_list.next, struct request, queuelist); 794 list_del_init(&rq->queuelist); 795 blk_mq_sched_insert_request(rq, false, false, false); 796 } 797 798 blk_mq_run_hw_queues(q, false); 799 } 800 801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 802 bool kick_requeue_list) 803 { 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 /* 808 * We abuse this flag that is otherwise used by the I/O scheduler to 809 * request head insertion from the workqueue. 810 */ 811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 812 813 spin_lock_irqsave(&q->requeue_lock, flags); 814 if (at_head) { 815 rq->rq_flags |= RQF_SOFTBARRIER; 816 list_add(&rq->queuelist, &q->requeue_list); 817 } else { 818 list_add_tail(&rq->queuelist, &q->requeue_list); 819 } 820 spin_unlock_irqrestore(&q->requeue_lock, flags); 821 822 if (kick_requeue_list) 823 blk_mq_kick_requeue_list(q); 824 } 825 826 void blk_mq_kick_requeue_list(struct request_queue *q) 827 { 828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 829 } 830 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 831 832 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 833 unsigned long msecs) 834 { 835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 836 msecs_to_jiffies(msecs)); 837 } 838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 839 840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 841 { 842 if (tag < tags->nr_tags) { 843 prefetch(tags->rqs[tag]); 844 return tags->rqs[tag]; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(blk_mq_tag_to_rq); 850 851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 852 void *priv, bool reserved) 853 { 854 /* 855 * If we find a request that isn't idle and the queue matches, 856 * we know the queue is busy. Return false to stop the iteration. 857 */ 858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 859 bool *busy = priv; 860 861 *busy = true; 862 return false; 863 } 864 865 return true; 866 } 867 868 bool blk_mq_queue_inflight(struct request_queue *q) 869 { 870 bool busy = false; 871 872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 873 return busy; 874 } 875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 876 877 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 878 { 879 req->rq_flags |= RQF_TIMED_OUT; 880 if (req->q->mq_ops->timeout) { 881 enum blk_eh_timer_return ret; 882 883 ret = req->q->mq_ops->timeout(req, reserved); 884 if (ret == BLK_EH_DONE) 885 return; 886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 887 } 888 889 blk_add_timer(req); 890 } 891 892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 893 { 894 unsigned long deadline; 895 896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 897 return false; 898 if (rq->rq_flags & RQF_TIMED_OUT) 899 return false; 900 901 deadline = READ_ONCE(rq->deadline); 902 if (time_after_eq(jiffies, deadline)) 903 return true; 904 905 if (*next == 0) 906 *next = deadline; 907 else if (time_after(*next, deadline)) 908 *next = deadline; 909 return false; 910 } 911 912 void blk_mq_put_rq_ref(struct request *rq) 913 { 914 if (is_flush_rq(rq)) 915 rq->end_io(rq, 0); 916 else if (refcount_dec_and_test(&rq->ref)) 917 __blk_mq_free_request(rq); 918 } 919 920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 921 struct request *rq, void *priv, bool reserved) 922 { 923 unsigned long *next = priv; 924 925 /* 926 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 927 * be reallocated underneath the timeout handler's processing, then 928 * the expire check is reliable. If the request is not expired, then 929 * it was completed and reallocated as a new request after returning 930 * from blk_mq_check_expired(). 931 */ 932 if (blk_mq_req_expired(rq, next)) 933 blk_mq_rq_timed_out(rq, reserved); 934 return true; 935 } 936 937 static void blk_mq_timeout_work(struct work_struct *work) 938 { 939 struct request_queue *q = 940 container_of(work, struct request_queue, timeout_work); 941 unsigned long next = 0; 942 struct blk_mq_hw_ctx *hctx; 943 int i; 944 945 /* A deadlock might occur if a request is stuck requiring a 946 * timeout at the same time a queue freeze is waiting 947 * completion, since the timeout code would not be able to 948 * acquire the queue reference here. 949 * 950 * That's why we don't use blk_queue_enter here; instead, we use 951 * percpu_ref_tryget directly, because we need to be able to 952 * obtain a reference even in the short window between the queue 953 * starting to freeze, by dropping the first reference in 954 * blk_freeze_queue_start, and the moment the last request is 955 * consumed, marked by the instant q_usage_counter reaches 956 * zero. 957 */ 958 if (!percpu_ref_tryget(&q->q_usage_counter)) 959 return; 960 961 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 962 963 if (next != 0) { 964 mod_timer(&q->timeout, next); 965 } else { 966 /* 967 * Request timeouts are handled as a forward rolling timer. If 968 * we end up here it means that no requests are pending and 969 * also that no request has been pending for a while. Mark 970 * each hctx as idle. 971 */ 972 queue_for_each_hw_ctx(q, hctx, i) { 973 /* the hctx may be unmapped, so check it here */ 974 if (blk_mq_hw_queue_mapped(hctx)) 975 blk_mq_tag_idle(hctx); 976 } 977 } 978 blk_queue_exit(q); 979 } 980 981 struct flush_busy_ctx_data { 982 struct blk_mq_hw_ctx *hctx; 983 struct list_head *list; 984 }; 985 986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 987 { 988 struct flush_busy_ctx_data *flush_data = data; 989 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 990 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 991 enum hctx_type type = hctx->type; 992 993 spin_lock(&ctx->lock); 994 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 995 sbitmap_clear_bit(sb, bitnr); 996 spin_unlock(&ctx->lock); 997 return true; 998 } 999 1000 /* 1001 * Process software queues that have been marked busy, splicing them 1002 * to the for-dispatch 1003 */ 1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1005 { 1006 struct flush_busy_ctx_data data = { 1007 .hctx = hctx, 1008 .list = list, 1009 }; 1010 1011 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1012 } 1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1014 1015 struct dispatch_rq_data { 1016 struct blk_mq_hw_ctx *hctx; 1017 struct request *rq; 1018 }; 1019 1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1021 void *data) 1022 { 1023 struct dispatch_rq_data *dispatch_data = data; 1024 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1025 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1026 enum hctx_type type = hctx->type; 1027 1028 spin_lock(&ctx->lock); 1029 if (!list_empty(&ctx->rq_lists[type])) { 1030 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1031 list_del_init(&dispatch_data->rq->queuelist); 1032 if (list_empty(&ctx->rq_lists[type])) 1033 sbitmap_clear_bit(sb, bitnr); 1034 } 1035 spin_unlock(&ctx->lock); 1036 1037 return !dispatch_data->rq; 1038 } 1039 1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1041 struct blk_mq_ctx *start) 1042 { 1043 unsigned off = start ? start->index_hw[hctx->type] : 0; 1044 struct dispatch_rq_data data = { 1045 .hctx = hctx, 1046 .rq = NULL, 1047 }; 1048 1049 __sbitmap_for_each_set(&hctx->ctx_map, off, 1050 dispatch_rq_from_ctx, &data); 1051 1052 return data.rq; 1053 } 1054 1055 static inline unsigned int queued_to_index(unsigned int queued) 1056 { 1057 if (!queued) 1058 return 0; 1059 1060 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1061 } 1062 1063 static bool __blk_mq_get_driver_tag(struct request *rq) 1064 { 1065 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1066 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1067 int tag; 1068 1069 blk_mq_tag_busy(rq->mq_hctx); 1070 1071 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1072 bt = rq->mq_hctx->tags->breserved_tags; 1073 tag_offset = 0; 1074 } else { 1075 if (!hctx_may_queue(rq->mq_hctx, bt)) 1076 return false; 1077 } 1078 1079 tag = __sbitmap_queue_get(bt); 1080 if (tag == BLK_MQ_NO_TAG) 1081 return false; 1082 1083 rq->tag = tag + tag_offset; 1084 return true; 1085 } 1086 1087 bool blk_mq_get_driver_tag(struct request *rq) 1088 { 1089 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1090 1091 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1092 return false; 1093 1094 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1095 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1096 rq->rq_flags |= RQF_MQ_INFLIGHT; 1097 __blk_mq_inc_active_requests(hctx); 1098 } 1099 hctx->tags->rqs[rq->tag] = rq; 1100 return true; 1101 } 1102 1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1104 int flags, void *key) 1105 { 1106 struct blk_mq_hw_ctx *hctx; 1107 1108 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1109 1110 spin_lock(&hctx->dispatch_wait_lock); 1111 if (!list_empty(&wait->entry)) { 1112 struct sbitmap_queue *sbq; 1113 1114 list_del_init(&wait->entry); 1115 sbq = hctx->tags->bitmap_tags; 1116 atomic_dec(&sbq->ws_active); 1117 } 1118 spin_unlock(&hctx->dispatch_wait_lock); 1119 1120 blk_mq_run_hw_queue(hctx, true); 1121 return 1; 1122 } 1123 1124 /* 1125 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1126 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1127 * restart. For both cases, take care to check the condition again after 1128 * marking us as waiting. 1129 */ 1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1131 struct request *rq) 1132 { 1133 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1134 struct wait_queue_head *wq; 1135 wait_queue_entry_t *wait; 1136 bool ret; 1137 1138 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1139 blk_mq_sched_mark_restart_hctx(hctx); 1140 1141 /* 1142 * It's possible that a tag was freed in the window between the 1143 * allocation failure and adding the hardware queue to the wait 1144 * queue. 1145 * 1146 * Don't clear RESTART here, someone else could have set it. 1147 * At most this will cost an extra queue run. 1148 */ 1149 return blk_mq_get_driver_tag(rq); 1150 } 1151 1152 wait = &hctx->dispatch_wait; 1153 if (!list_empty_careful(&wait->entry)) 1154 return false; 1155 1156 wq = &bt_wait_ptr(sbq, hctx)->wait; 1157 1158 spin_lock_irq(&wq->lock); 1159 spin_lock(&hctx->dispatch_wait_lock); 1160 if (!list_empty(&wait->entry)) { 1161 spin_unlock(&hctx->dispatch_wait_lock); 1162 spin_unlock_irq(&wq->lock); 1163 return false; 1164 } 1165 1166 atomic_inc(&sbq->ws_active); 1167 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1168 __add_wait_queue(wq, wait); 1169 1170 /* 1171 * It's possible that a tag was freed in the window between the 1172 * allocation failure and adding the hardware queue to the wait 1173 * queue. 1174 */ 1175 ret = blk_mq_get_driver_tag(rq); 1176 if (!ret) { 1177 spin_unlock(&hctx->dispatch_wait_lock); 1178 spin_unlock_irq(&wq->lock); 1179 return false; 1180 } 1181 1182 /* 1183 * We got a tag, remove ourselves from the wait queue to ensure 1184 * someone else gets the wakeup. 1185 */ 1186 list_del_init(&wait->entry); 1187 atomic_dec(&sbq->ws_active); 1188 spin_unlock(&hctx->dispatch_wait_lock); 1189 spin_unlock_irq(&wq->lock); 1190 1191 return true; 1192 } 1193 1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1196 /* 1197 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1198 * - EWMA is one simple way to compute running average value 1199 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1200 * - take 4 as factor for avoiding to get too small(0) result, and this 1201 * factor doesn't matter because EWMA decreases exponentially 1202 */ 1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1204 { 1205 unsigned int ewma; 1206 1207 ewma = hctx->dispatch_busy; 1208 1209 if (!ewma && !busy) 1210 return; 1211 1212 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1213 if (busy) 1214 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1215 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1216 1217 hctx->dispatch_busy = ewma; 1218 } 1219 1220 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1221 1222 static void blk_mq_handle_dev_resource(struct request *rq, 1223 struct list_head *list) 1224 { 1225 struct request *next = 1226 list_first_entry_or_null(list, struct request, queuelist); 1227 1228 /* 1229 * If an I/O scheduler has been configured and we got a driver tag for 1230 * the next request already, free it. 1231 */ 1232 if (next) 1233 blk_mq_put_driver_tag(next); 1234 1235 list_add(&rq->queuelist, list); 1236 __blk_mq_requeue_request(rq); 1237 } 1238 1239 static void blk_mq_handle_zone_resource(struct request *rq, 1240 struct list_head *zone_list) 1241 { 1242 /* 1243 * If we end up here it is because we cannot dispatch a request to a 1244 * specific zone due to LLD level zone-write locking or other zone 1245 * related resource not being available. In this case, set the request 1246 * aside in zone_list for retrying it later. 1247 */ 1248 list_add(&rq->queuelist, zone_list); 1249 __blk_mq_requeue_request(rq); 1250 } 1251 1252 enum prep_dispatch { 1253 PREP_DISPATCH_OK, 1254 PREP_DISPATCH_NO_TAG, 1255 PREP_DISPATCH_NO_BUDGET, 1256 }; 1257 1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1259 bool need_budget) 1260 { 1261 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1262 int budget_token = -1; 1263 1264 if (need_budget) { 1265 budget_token = blk_mq_get_dispatch_budget(rq->q); 1266 if (budget_token < 0) { 1267 blk_mq_put_driver_tag(rq); 1268 return PREP_DISPATCH_NO_BUDGET; 1269 } 1270 blk_mq_set_rq_budget_token(rq, budget_token); 1271 } 1272 1273 if (!blk_mq_get_driver_tag(rq)) { 1274 /* 1275 * The initial allocation attempt failed, so we need to 1276 * rerun the hardware queue when a tag is freed. The 1277 * waitqueue takes care of that. If the queue is run 1278 * before we add this entry back on the dispatch list, 1279 * we'll re-run it below. 1280 */ 1281 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1282 /* 1283 * All budgets not got from this function will be put 1284 * together during handling partial dispatch 1285 */ 1286 if (need_budget) 1287 blk_mq_put_dispatch_budget(rq->q, budget_token); 1288 return PREP_DISPATCH_NO_TAG; 1289 } 1290 } 1291 1292 return PREP_DISPATCH_OK; 1293 } 1294 1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1296 static void blk_mq_release_budgets(struct request_queue *q, 1297 struct list_head *list) 1298 { 1299 struct request *rq; 1300 1301 list_for_each_entry(rq, list, queuelist) { 1302 int budget_token = blk_mq_get_rq_budget_token(rq); 1303 1304 if (budget_token >= 0) 1305 blk_mq_put_dispatch_budget(q, budget_token); 1306 } 1307 } 1308 1309 /* 1310 * Returns true if we did some work AND can potentially do more. 1311 */ 1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1313 unsigned int nr_budgets) 1314 { 1315 enum prep_dispatch prep; 1316 struct request_queue *q = hctx->queue; 1317 struct request *rq, *nxt; 1318 int errors, queued; 1319 blk_status_t ret = BLK_STS_OK; 1320 LIST_HEAD(zone_list); 1321 1322 if (list_empty(list)) 1323 return false; 1324 1325 /* 1326 * Now process all the entries, sending them to the driver. 1327 */ 1328 errors = queued = 0; 1329 do { 1330 struct blk_mq_queue_data bd; 1331 1332 rq = list_first_entry(list, struct request, queuelist); 1333 1334 WARN_ON_ONCE(hctx != rq->mq_hctx); 1335 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1336 if (prep != PREP_DISPATCH_OK) 1337 break; 1338 1339 list_del_init(&rq->queuelist); 1340 1341 bd.rq = rq; 1342 1343 /* 1344 * Flag last if we have no more requests, or if we have more 1345 * but can't assign a driver tag to it. 1346 */ 1347 if (list_empty(list)) 1348 bd.last = true; 1349 else { 1350 nxt = list_first_entry(list, struct request, queuelist); 1351 bd.last = !blk_mq_get_driver_tag(nxt); 1352 } 1353 1354 /* 1355 * once the request is queued to lld, no need to cover the 1356 * budget any more 1357 */ 1358 if (nr_budgets) 1359 nr_budgets--; 1360 ret = q->mq_ops->queue_rq(hctx, &bd); 1361 switch (ret) { 1362 case BLK_STS_OK: 1363 queued++; 1364 break; 1365 case BLK_STS_RESOURCE: 1366 case BLK_STS_DEV_RESOURCE: 1367 blk_mq_handle_dev_resource(rq, list); 1368 goto out; 1369 case BLK_STS_ZONE_RESOURCE: 1370 /* 1371 * Move the request to zone_list and keep going through 1372 * the dispatch list to find more requests the drive can 1373 * accept. 1374 */ 1375 blk_mq_handle_zone_resource(rq, &zone_list); 1376 break; 1377 default: 1378 errors++; 1379 blk_mq_end_request(rq, ret); 1380 } 1381 } while (!list_empty(list)); 1382 out: 1383 if (!list_empty(&zone_list)) 1384 list_splice_tail_init(&zone_list, list); 1385 1386 hctx->dispatched[queued_to_index(queued)]++; 1387 1388 /* If we didn't flush the entire list, we could have told the driver 1389 * there was more coming, but that turned out to be a lie. 1390 */ 1391 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1392 q->mq_ops->commit_rqs(hctx); 1393 /* 1394 * Any items that need requeuing? Stuff them into hctx->dispatch, 1395 * that is where we will continue on next queue run. 1396 */ 1397 if (!list_empty(list)) { 1398 bool needs_restart; 1399 /* For non-shared tags, the RESTART check will suffice */ 1400 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1401 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1402 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1403 1404 if (nr_budgets) 1405 blk_mq_release_budgets(q, list); 1406 1407 spin_lock(&hctx->lock); 1408 list_splice_tail_init(list, &hctx->dispatch); 1409 spin_unlock(&hctx->lock); 1410 1411 /* 1412 * Order adding requests to hctx->dispatch and checking 1413 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1414 * in blk_mq_sched_restart(). Avoid restart code path to 1415 * miss the new added requests to hctx->dispatch, meantime 1416 * SCHED_RESTART is observed here. 1417 */ 1418 smp_mb(); 1419 1420 /* 1421 * If SCHED_RESTART was set by the caller of this function and 1422 * it is no longer set that means that it was cleared by another 1423 * thread and hence that a queue rerun is needed. 1424 * 1425 * If 'no_tag' is set, that means that we failed getting 1426 * a driver tag with an I/O scheduler attached. If our dispatch 1427 * waitqueue is no longer active, ensure that we run the queue 1428 * AFTER adding our entries back to the list. 1429 * 1430 * If no I/O scheduler has been configured it is possible that 1431 * the hardware queue got stopped and restarted before requests 1432 * were pushed back onto the dispatch list. Rerun the queue to 1433 * avoid starvation. Notes: 1434 * - blk_mq_run_hw_queue() checks whether or not a queue has 1435 * been stopped before rerunning a queue. 1436 * - Some but not all block drivers stop a queue before 1437 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1438 * and dm-rq. 1439 * 1440 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1441 * bit is set, run queue after a delay to avoid IO stalls 1442 * that could otherwise occur if the queue is idle. We'll do 1443 * similar if we couldn't get budget and SCHED_RESTART is set. 1444 */ 1445 needs_restart = blk_mq_sched_needs_restart(hctx); 1446 if (!needs_restart || 1447 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1448 blk_mq_run_hw_queue(hctx, true); 1449 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1450 no_budget_avail)) 1451 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1452 1453 blk_mq_update_dispatch_busy(hctx, true); 1454 return false; 1455 } else 1456 blk_mq_update_dispatch_busy(hctx, false); 1457 1458 return (queued + errors) != 0; 1459 } 1460 1461 /** 1462 * __blk_mq_run_hw_queue - Run a hardware queue. 1463 * @hctx: Pointer to the hardware queue to run. 1464 * 1465 * Send pending requests to the hardware. 1466 */ 1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1468 { 1469 int srcu_idx; 1470 1471 /* 1472 * We can't run the queue inline with ints disabled. Ensure that 1473 * we catch bad users of this early. 1474 */ 1475 WARN_ON_ONCE(in_interrupt()); 1476 1477 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1478 1479 hctx_lock(hctx, &srcu_idx); 1480 blk_mq_sched_dispatch_requests(hctx); 1481 hctx_unlock(hctx, srcu_idx); 1482 } 1483 1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1485 { 1486 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1487 1488 if (cpu >= nr_cpu_ids) 1489 cpu = cpumask_first(hctx->cpumask); 1490 return cpu; 1491 } 1492 1493 /* 1494 * It'd be great if the workqueue API had a way to pass 1495 * in a mask and had some smarts for more clever placement. 1496 * For now we just round-robin here, switching for every 1497 * BLK_MQ_CPU_WORK_BATCH queued items. 1498 */ 1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1500 { 1501 bool tried = false; 1502 int next_cpu = hctx->next_cpu; 1503 1504 if (hctx->queue->nr_hw_queues == 1) 1505 return WORK_CPU_UNBOUND; 1506 1507 if (--hctx->next_cpu_batch <= 0) { 1508 select_cpu: 1509 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1510 cpu_online_mask); 1511 if (next_cpu >= nr_cpu_ids) 1512 next_cpu = blk_mq_first_mapped_cpu(hctx); 1513 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1514 } 1515 1516 /* 1517 * Do unbound schedule if we can't find a online CPU for this hctx, 1518 * and it should only happen in the path of handling CPU DEAD. 1519 */ 1520 if (!cpu_online(next_cpu)) { 1521 if (!tried) { 1522 tried = true; 1523 goto select_cpu; 1524 } 1525 1526 /* 1527 * Make sure to re-select CPU next time once after CPUs 1528 * in hctx->cpumask become online again. 1529 */ 1530 hctx->next_cpu = next_cpu; 1531 hctx->next_cpu_batch = 1; 1532 return WORK_CPU_UNBOUND; 1533 } 1534 1535 hctx->next_cpu = next_cpu; 1536 return next_cpu; 1537 } 1538 1539 /** 1540 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1541 * @hctx: Pointer to the hardware queue to run. 1542 * @async: If we want to run the queue asynchronously. 1543 * @msecs: Milliseconds of delay to wait before running the queue. 1544 * 1545 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1546 * with a delay of @msecs. 1547 */ 1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1549 unsigned long msecs) 1550 { 1551 if (unlikely(blk_mq_hctx_stopped(hctx))) 1552 return; 1553 1554 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1555 int cpu = get_cpu(); 1556 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1557 __blk_mq_run_hw_queue(hctx); 1558 put_cpu(); 1559 return; 1560 } 1561 1562 put_cpu(); 1563 } 1564 1565 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1566 msecs_to_jiffies(msecs)); 1567 } 1568 1569 /** 1570 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1571 * @hctx: Pointer to the hardware queue to run. 1572 * @msecs: Milliseconds of delay to wait before running the queue. 1573 * 1574 * Run a hardware queue asynchronously with a delay of @msecs. 1575 */ 1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1577 { 1578 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1579 } 1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1581 1582 /** 1583 * blk_mq_run_hw_queue - Start to run a hardware queue. 1584 * @hctx: Pointer to the hardware queue to run. 1585 * @async: If we want to run the queue asynchronously. 1586 * 1587 * Check if the request queue is not in a quiesced state and if there are 1588 * pending requests to be sent. If this is true, run the queue to send requests 1589 * to hardware. 1590 */ 1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1592 { 1593 int srcu_idx; 1594 bool need_run; 1595 1596 /* 1597 * When queue is quiesced, we may be switching io scheduler, or 1598 * updating nr_hw_queues, or other things, and we can't run queue 1599 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1600 * 1601 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1602 * quiesced. 1603 */ 1604 hctx_lock(hctx, &srcu_idx); 1605 need_run = !blk_queue_quiesced(hctx->queue) && 1606 blk_mq_hctx_has_pending(hctx); 1607 hctx_unlock(hctx, srcu_idx); 1608 1609 if (need_run) 1610 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1611 } 1612 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1613 1614 /* 1615 * Is the request queue handled by an IO scheduler that does not respect 1616 * hardware queues when dispatching? 1617 */ 1618 static bool blk_mq_has_sqsched(struct request_queue *q) 1619 { 1620 struct elevator_queue *e = q->elevator; 1621 1622 if (e && e->type->ops.dispatch_request && 1623 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1624 return true; 1625 return false; 1626 } 1627 1628 /* 1629 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1630 * scheduler. 1631 */ 1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1633 { 1634 struct blk_mq_hw_ctx *hctx; 1635 1636 /* 1637 * If the IO scheduler does not respect hardware queues when 1638 * dispatching, we just don't bother with multiple HW queues and 1639 * dispatch from hctx for the current CPU since running multiple queues 1640 * just causes lock contention inside the scheduler and pointless cache 1641 * bouncing. 1642 */ 1643 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1644 raw_smp_processor_id()); 1645 if (!blk_mq_hctx_stopped(hctx)) 1646 return hctx; 1647 return NULL; 1648 } 1649 1650 /** 1651 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1652 * @q: Pointer to the request queue to run. 1653 * @async: If we want to run the queue asynchronously. 1654 */ 1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1656 { 1657 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1658 int i; 1659 1660 sq_hctx = NULL; 1661 if (blk_mq_has_sqsched(q)) 1662 sq_hctx = blk_mq_get_sq_hctx(q); 1663 queue_for_each_hw_ctx(q, hctx, i) { 1664 if (blk_mq_hctx_stopped(hctx)) 1665 continue; 1666 /* 1667 * Dispatch from this hctx either if there's no hctx preferred 1668 * by IO scheduler or if it has requests that bypass the 1669 * scheduler. 1670 */ 1671 if (!sq_hctx || sq_hctx == hctx || 1672 !list_empty_careful(&hctx->dispatch)) 1673 blk_mq_run_hw_queue(hctx, async); 1674 } 1675 } 1676 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1677 1678 /** 1679 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1680 * @q: Pointer to the request queue to run. 1681 * @msecs: Milliseconds of delay to wait before running the queues. 1682 */ 1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1684 { 1685 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1686 int i; 1687 1688 sq_hctx = NULL; 1689 if (blk_mq_has_sqsched(q)) 1690 sq_hctx = blk_mq_get_sq_hctx(q); 1691 queue_for_each_hw_ctx(q, hctx, i) { 1692 if (blk_mq_hctx_stopped(hctx)) 1693 continue; 1694 /* 1695 * Dispatch from this hctx either if there's no hctx preferred 1696 * by IO scheduler or if it has requests that bypass the 1697 * scheduler. 1698 */ 1699 if (!sq_hctx || sq_hctx == hctx || 1700 !list_empty_careful(&hctx->dispatch)) 1701 blk_mq_delay_run_hw_queue(hctx, msecs); 1702 } 1703 } 1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1705 1706 /** 1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1708 * @q: request queue. 1709 * 1710 * The caller is responsible for serializing this function against 1711 * blk_mq_{start,stop}_hw_queue(). 1712 */ 1713 bool blk_mq_queue_stopped(struct request_queue *q) 1714 { 1715 struct blk_mq_hw_ctx *hctx; 1716 int i; 1717 1718 queue_for_each_hw_ctx(q, hctx, i) 1719 if (blk_mq_hctx_stopped(hctx)) 1720 return true; 1721 1722 return false; 1723 } 1724 EXPORT_SYMBOL(blk_mq_queue_stopped); 1725 1726 /* 1727 * This function is often used for pausing .queue_rq() by driver when 1728 * there isn't enough resource or some conditions aren't satisfied, and 1729 * BLK_STS_RESOURCE is usually returned. 1730 * 1731 * We do not guarantee that dispatch can be drained or blocked 1732 * after blk_mq_stop_hw_queue() returns. Please use 1733 * blk_mq_quiesce_queue() for that requirement. 1734 */ 1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1736 { 1737 cancel_delayed_work(&hctx->run_work); 1738 1739 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1740 } 1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1742 1743 /* 1744 * This function is often used for pausing .queue_rq() by driver when 1745 * there isn't enough resource or some conditions aren't satisfied, and 1746 * BLK_STS_RESOURCE is usually returned. 1747 * 1748 * We do not guarantee that dispatch can be drained or blocked 1749 * after blk_mq_stop_hw_queues() returns. Please use 1750 * blk_mq_quiesce_queue() for that requirement. 1751 */ 1752 void blk_mq_stop_hw_queues(struct request_queue *q) 1753 { 1754 struct blk_mq_hw_ctx *hctx; 1755 int i; 1756 1757 queue_for_each_hw_ctx(q, hctx, i) 1758 blk_mq_stop_hw_queue(hctx); 1759 } 1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1761 1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1763 { 1764 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1765 1766 blk_mq_run_hw_queue(hctx, false); 1767 } 1768 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1769 1770 void blk_mq_start_hw_queues(struct request_queue *q) 1771 { 1772 struct blk_mq_hw_ctx *hctx; 1773 int i; 1774 1775 queue_for_each_hw_ctx(q, hctx, i) 1776 blk_mq_start_hw_queue(hctx); 1777 } 1778 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1779 1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1781 { 1782 if (!blk_mq_hctx_stopped(hctx)) 1783 return; 1784 1785 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1786 blk_mq_run_hw_queue(hctx, async); 1787 } 1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1789 1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1791 { 1792 struct blk_mq_hw_ctx *hctx; 1793 int i; 1794 1795 queue_for_each_hw_ctx(q, hctx, i) 1796 blk_mq_start_stopped_hw_queue(hctx, async); 1797 } 1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1799 1800 static void blk_mq_run_work_fn(struct work_struct *work) 1801 { 1802 struct blk_mq_hw_ctx *hctx; 1803 1804 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1805 1806 /* 1807 * If we are stopped, don't run the queue. 1808 */ 1809 if (blk_mq_hctx_stopped(hctx)) 1810 return; 1811 1812 __blk_mq_run_hw_queue(hctx); 1813 } 1814 1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1816 struct request *rq, 1817 bool at_head) 1818 { 1819 struct blk_mq_ctx *ctx = rq->mq_ctx; 1820 enum hctx_type type = hctx->type; 1821 1822 lockdep_assert_held(&ctx->lock); 1823 1824 trace_block_rq_insert(rq); 1825 1826 if (at_head) 1827 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1828 else 1829 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1830 } 1831 1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1833 bool at_head) 1834 { 1835 struct blk_mq_ctx *ctx = rq->mq_ctx; 1836 1837 lockdep_assert_held(&ctx->lock); 1838 1839 __blk_mq_insert_req_list(hctx, rq, at_head); 1840 blk_mq_hctx_mark_pending(hctx, ctx); 1841 } 1842 1843 /** 1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1845 * @rq: Pointer to request to be inserted. 1846 * @at_head: true if the request should be inserted at the head of the list. 1847 * @run_queue: If we should run the hardware queue after inserting the request. 1848 * 1849 * Should only be used carefully, when the caller knows we want to 1850 * bypass a potential IO scheduler on the target device. 1851 */ 1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1853 bool run_queue) 1854 { 1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1856 1857 spin_lock(&hctx->lock); 1858 if (at_head) 1859 list_add(&rq->queuelist, &hctx->dispatch); 1860 else 1861 list_add_tail(&rq->queuelist, &hctx->dispatch); 1862 spin_unlock(&hctx->lock); 1863 1864 if (run_queue) 1865 blk_mq_run_hw_queue(hctx, false); 1866 } 1867 1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1869 struct list_head *list) 1870 1871 { 1872 struct request *rq; 1873 enum hctx_type type = hctx->type; 1874 1875 /* 1876 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1877 * offline now 1878 */ 1879 list_for_each_entry(rq, list, queuelist) { 1880 BUG_ON(rq->mq_ctx != ctx); 1881 trace_block_rq_insert(rq); 1882 } 1883 1884 spin_lock(&ctx->lock); 1885 list_splice_tail_init(list, &ctx->rq_lists[type]); 1886 blk_mq_hctx_mark_pending(hctx, ctx); 1887 spin_unlock(&ctx->lock); 1888 } 1889 1890 static int plug_rq_cmp(void *priv, const struct list_head *a, 1891 const struct list_head *b) 1892 { 1893 struct request *rqa = container_of(a, struct request, queuelist); 1894 struct request *rqb = container_of(b, struct request, queuelist); 1895 1896 if (rqa->mq_ctx != rqb->mq_ctx) 1897 return rqa->mq_ctx > rqb->mq_ctx; 1898 if (rqa->mq_hctx != rqb->mq_hctx) 1899 return rqa->mq_hctx > rqb->mq_hctx; 1900 1901 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1902 } 1903 1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1905 { 1906 LIST_HEAD(list); 1907 1908 if (list_empty(&plug->mq_list)) 1909 return; 1910 list_splice_init(&plug->mq_list, &list); 1911 1912 if (plug->rq_count > 2 && plug->multiple_queues) 1913 list_sort(NULL, &list, plug_rq_cmp); 1914 1915 plug->rq_count = 0; 1916 1917 do { 1918 struct list_head rq_list; 1919 struct request *rq, *head_rq = list_entry_rq(list.next); 1920 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1921 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1922 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1923 unsigned int depth = 1; 1924 1925 list_for_each_continue(pos, &list) { 1926 rq = list_entry_rq(pos); 1927 BUG_ON(!rq->q); 1928 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1929 break; 1930 depth++; 1931 } 1932 1933 list_cut_before(&rq_list, &list, pos); 1934 trace_block_unplug(head_rq->q, depth, !from_schedule); 1935 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1936 from_schedule); 1937 } while(!list_empty(&list)); 1938 } 1939 1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1941 unsigned int nr_segs) 1942 { 1943 int err; 1944 1945 if (bio->bi_opf & REQ_RAHEAD) 1946 rq->cmd_flags |= REQ_FAILFAST_MASK; 1947 1948 rq->__sector = bio->bi_iter.bi_sector; 1949 rq->write_hint = bio->bi_write_hint; 1950 blk_rq_bio_prep(rq, bio, nr_segs); 1951 1952 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1953 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1954 WARN_ON_ONCE(err); 1955 1956 blk_account_io_start(rq); 1957 } 1958 1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1960 struct request *rq, 1961 blk_qc_t *cookie, bool last) 1962 { 1963 struct request_queue *q = rq->q; 1964 struct blk_mq_queue_data bd = { 1965 .rq = rq, 1966 .last = last, 1967 }; 1968 blk_qc_t new_cookie; 1969 blk_status_t ret; 1970 1971 new_cookie = request_to_qc_t(hctx, rq); 1972 1973 /* 1974 * For OK queue, we are done. For error, caller may kill it. 1975 * Any other error (busy), just add it to our list as we 1976 * previously would have done. 1977 */ 1978 ret = q->mq_ops->queue_rq(hctx, &bd); 1979 switch (ret) { 1980 case BLK_STS_OK: 1981 blk_mq_update_dispatch_busy(hctx, false); 1982 *cookie = new_cookie; 1983 break; 1984 case BLK_STS_RESOURCE: 1985 case BLK_STS_DEV_RESOURCE: 1986 blk_mq_update_dispatch_busy(hctx, true); 1987 __blk_mq_requeue_request(rq); 1988 break; 1989 default: 1990 blk_mq_update_dispatch_busy(hctx, false); 1991 *cookie = BLK_QC_T_NONE; 1992 break; 1993 } 1994 1995 return ret; 1996 } 1997 1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1999 struct request *rq, 2000 blk_qc_t *cookie, 2001 bool bypass_insert, bool last) 2002 { 2003 struct request_queue *q = rq->q; 2004 bool run_queue = true; 2005 int budget_token; 2006 2007 /* 2008 * RCU or SRCU read lock is needed before checking quiesced flag. 2009 * 2010 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2011 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2012 * and avoid driver to try to dispatch again. 2013 */ 2014 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2015 run_queue = false; 2016 bypass_insert = false; 2017 goto insert; 2018 } 2019 2020 if (q->elevator && !bypass_insert) 2021 goto insert; 2022 2023 budget_token = blk_mq_get_dispatch_budget(q); 2024 if (budget_token < 0) 2025 goto insert; 2026 2027 blk_mq_set_rq_budget_token(rq, budget_token); 2028 2029 if (!blk_mq_get_driver_tag(rq)) { 2030 blk_mq_put_dispatch_budget(q, budget_token); 2031 goto insert; 2032 } 2033 2034 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2035 insert: 2036 if (bypass_insert) 2037 return BLK_STS_RESOURCE; 2038 2039 blk_mq_sched_insert_request(rq, false, run_queue, false); 2040 2041 return BLK_STS_OK; 2042 } 2043 2044 /** 2045 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2046 * @hctx: Pointer of the associated hardware queue. 2047 * @rq: Pointer to request to be sent. 2048 * @cookie: Request queue cookie. 2049 * 2050 * If the device has enough resources to accept a new request now, send the 2051 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2052 * we can try send it another time in the future. Requests inserted at this 2053 * queue have higher priority. 2054 */ 2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2056 struct request *rq, blk_qc_t *cookie) 2057 { 2058 blk_status_t ret; 2059 int srcu_idx; 2060 2061 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2062 2063 hctx_lock(hctx, &srcu_idx); 2064 2065 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2066 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2067 blk_mq_request_bypass_insert(rq, false, true); 2068 else if (ret != BLK_STS_OK) 2069 blk_mq_end_request(rq, ret); 2070 2071 hctx_unlock(hctx, srcu_idx); 2072 } 2073 2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2075 { 2076 blk_status_t ret; 2077 int srcu_idx; 2078 blk_qc_t unused_cookie; 2079 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2080 2081 hctx_lock(hctx, &srcu_idx); 2082 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2083 hctx_unlock(hctx, srcu_idx); 2084 2085 return ret; 2086 } 2087 2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2089 struct list_head *list) 2090 { 2091 int queued = 0; 2092 int errors = 0; 2093 2094 while (!list_empty(list)) { 2095 blk_status_t ret; 2096 struct request *rq = list_first_entry(list, struct request, 2097 queuelist); 2098 2099 list_del_init(&rq->queuelist); 2100 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2101 if (ret != BLK_STS_OK) { 2102 if (ret == BLK_STS_RESOURCE || 2103 ret == BLK_STS_DEV_RESOURCE) { 2104 blk_mq_request_bypass_insert(rq, false, 2105 list_empty(list)); 2106 break; 2107 } 2108 blk_mq_end_request(rq, ret); 2109 errors++; 2110 } else 2111 queued++; 2112 } 2113 2114 /* 2115 * If we didn't flush the entire list, we could have told 2116 * the driver there was more coming, but that turned out to 2117 * be a lie. 2118 */ 2119 if ((!list_empty(list) || errors) && 2120 hctx->queue->mq_ops->commit_rqs && queued) 2121 hctx->queue->mq_ops->commit_rqs(hctx); 2122 } 2123 2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2125 { 2126 list_add_tail(&rq->queuelist, &plug->mq_list); 2127 plug->rq_count++; 2128 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2129 struct request *tmp; 2130 2131 tmp = list_first_entry(&plug->mq_list, struct request, 2132 queuelist); 2133 if (tmp->q != rq->q) 2134 plug->multiple_queues = true; 2135 } 2136 } 2137 2138 /* 2139 * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2140 * queues. This is important for md arrays to benefit from merging 2141 * requests. 2142 */ 2143 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2144 { 2145 if (plug->multiple_queues) 2146 return BLK_MAX_REQUEST_COUNT * 4; 2147 return BLK_MAX_REQUEST_COUNT; 2148 } 2149 2150 /** 2151 * blk_mq_submit_bio - Create and send a request to block device. 2152 * @bio: Bio pointer. 2153 * 2154 * Builds up a request structure from @q and @bio and send to the device. The 2155 * request may not be queued directly to hardware if: 2156 * * This request can be merged with another one 2157 * * We want to place request at plug queue for possible future merging 2158 * * There is an IO scheduler active at this queue 2159 * 2160 * It will not queue the request if there is an error with the bio, or at the 2161 * request creation. 2162 * 2163 * Returns: Request queue cookie. 2164 */ 2165 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2166 { 2167 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2168 const int is_sync = op_is_sync(bio->bi_opf); 2169 const int is_flush_fua = op_is_flush(bio->bi_opf); 2170 struct blk_mq_alloc_data data = { 2171 .q = q, 2172 }; 2173 struct request *rq; 2174 struct blk_plug *plug; 2175 struct request *same_queue_rq = NULL; 2176 unsigned int nr_segs; 2177 blk_qc_t cookie; 2178 blk_status_t ret; 2179 bool hipri; 2180 2181 blk_queue_bounce(q, &bio); 2182 __blk_queue_split(&bio, &nr_segs); 2183 2184 if (!bio_integrity_prep(bio)) 2185 goto queue_exit; 2186 2187 if (!is_flush_fua && !blk_queue_nomerges(q) && 2188 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2189 goto queue_exit; 2190 2191 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2192 goto queue_exit; 2193 2194 rq_qos_throttle(q, bio); 2195 2196 hipri = bio->bi_opf & REQ_HIPRI; 2197 2198 data.cmd_flags = bio->bi_opf; 2199 rq = __blk_mq_alloc_request(&data); 2200 if (unlikely(!rq)) { 2201 rq_qos_cleanup(q, bio); 2202 if (bio->bi_opf & REQ_NOWAIT) 2203 bio_wouldblock_error(bio); 2204 goto queue_exit; 2205 } 2206 2207 trace_block_getrq(bio); 2208 2209 rq_qos_track(q, rq, bio); 2210 2211 cookie = request_to_qc_t(data.hctx, rq); 2212 2213 blk_mq_bio_to_request(rq, bio, nr_segs); 2214 2215 ret = blk_crypto_init_request(rq); 2216 if (ret != BLK_STS_OK) { 2217 bio->bi_status = ret; 2218 bio_endio(bio); 2219 blk_mq_free_request(rq); 2220 return BLK_QC_T_NONE; 2221 } 2222 2223 plug = blk_mq_plug(q, bio); 2224 if (unlikely(is_flush_fua)) { 2225 /* Bypass scheduler for flush requests */ 2226 blk_insert_flush(rq); 2227 blk_mq_run_hw_queue(data.hctx, true); 2228 } else if (plug && (q->nr_hw_queues == 1 || 2229 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) || 2230 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2231 /* 2232 * Use plugging if we have a ->commit_rqs() hook as well, as 2233 * we know the driver uses bd->last in a smart fashion. 2234 * 2235 * Use normal plugging if this disk is slow HDD, as sequential 2236 * IO may benefit a lot from plug merging. 2237 */ 2238 unsigned int request_count = plug->rq_count; 2239 struct request *last = NULL; 2240 2241 if (!request_count) 2242 trace_block_plug(q); 2243 else 2244 last = list_entry_rq(plug->mq_list.prev); 2245 2246 if (request_count >= blk_plug_max_rq_count(plug) || (last && 2247 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2248 blk_flush_plug_list(plug, false); 2249 trace_block_plug(q); 2250 } 2251 2252 blk_add_rq_to_plug(plug, rq); 2253 } else if (q->elevator) { 2254 /* Insert the request at the IO scheduler queue */ 2255 blk_mq_sched_insert_request(rq, false, true, true); 2256 } else if (plug && !blk_queue_nomerges(q)) { 2257 /* 2258 * We do limited plugging. If the bio can be merged, do that. 2259 * Otherwise the existing request in the plug list will be 2260 * issued. So the plug list will have one request at most 2261 * The plug list might get flushed before this. If that happens, 2262 * the plug list is empty, and same_queue_rq is invalid. 2263 */ 2264 if (list_empty(&plug->mq_list)) 2265 same_queue_rq = NULL; 2266 if (same_queue_rq) { 2267 list_del_init(&same_queue_rq->queuelist); 2268 plug->rq_count--; 2269 } 2270 blk_add_rq_to_plug(plug, rq); 2271 trace_block_plug(q); 2272 2273 if (same_queue_rq) { 2274 data.hctx = same_queue_rq->mq_hctx; 2275 trace_block_unplug(q, 1, true); 2276 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2277 &cookie); 2278 } 2279 } else if ((q->nr_hw_queues > 1 && is_sync) || 2280 !data.hctx->dispatch_busy) { 2281 /* 2282 * There is no scheduler and we can try to send directly 2283 * to the hardware. 2284 */ 2285 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2286 } else { 2287 /* Default case. */ 2288 blk_mq_sched_insert_request(rq, false, true, true); 2289 } 2290 2291 if (!hipri) 2292 return BLK_QC_T_NONE; 2293 return cookie; 2294 queue_exit: 2295 blk_queue_exit(q); 2296 return BLK_QC_T_NONE; 2297 } 2298 2299 static size_t order_to_size(unsigned int order) 2300 { 2301 return (size_t)PAGE_SIZE << order; 2302 } 2303 2304 /* called before freeing request pool in @tags */ 2305 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set, 2306 struct blk_mq_tags *tags, unsigned int hctx_idx) 2307 { 2308 struct blk_mq_tags *drv_tags = set->tags[hctx_idx]; 2309 struct page *page; 2310 unsigned long flags; 2311 2312 list_for_each_entry(page, &tags->page_list, lru) { 2313 unsigned long start = (unsigned long)page_address(page); 2314 unsigned long end = start + order_to_size(page->private); 2315 int i; 2316 2317 for (i = 0; i < set->queue_depth; i++) { 2318 struct request *rq = drv_tags->rqs[i]; 2319 unsigned long rq_addr = (unsigned long)rq; 2320 2321 if (rq_addr >= start && rq_addr < end) { 2322 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2323 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2324 } 2325 } 2326 } 2327 2328 /* 2329 * Wait until all pending iteration is done. 2330 * 2331 * Request reference is cleared and it is guaranteed to be observed 2332 * after the ->lock is released. 2333 */ 2334 spin_lock_irqsave(&drv_tags->lock, flags); 2335 spin_unlock_irqrestore(&drv_tags->lock, flags); 2336 } 2337 2338 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2339 unsigned int hctx_idx) 2340 { 2341 struct page *page; 2342 2343 if (tags->rqs && set->ops->exit_request) { 2344 int i; 2345 2346 for (i = 0; i < tags->nr_tags; i++) { 2347 struct request *rq = tags->static_rqs[i]; 2348 2349 if (!rq) 2350 continue; 2351 set->ops->exit_request(set, rq, hctx_idx); 2352 tags->static_rqs[i] = NULL; 2353 } 2354 } 2355 2356 blk_mq_clear_rq_mapping(set, tags, hctx_idx); 2357 2358 while (!list_empty(&tags->page_list)) { 2359 page = list_first_entry(&tags->page_list, struct page, lru); 2360 list_del_init(&page->lru); 2361 /* 2362 * Remove kmemleak object previously allocated in 2363 * blk_mq_alloc_rqs(). 2364 */ 2365 kmemleak_free(page_address(page)); 2366 __free_pages(page, page->private); 2367 } 2368 } 2369 2370 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2371 { 2372 kfree(tags->rqs); 2373 tags->rqs = NULL; 2374 kfree(tags->static_rqs); 2375 tags->static_rqs = NULL; 2376 2377 blk_mq_free_tags(tags, flags); 2378 } 2379 2380 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2381 unsigned int hctx_idx, 2382 unsigned int nr_tags, 2383 unsigned int reserved_tags, 2384 unsigned int flags) 2385 { 2386 struct blk_mq_tags *tags; 2387 int node; 2388 2389 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2390 if (node == NUMA_NO_NODE) 2391 node = set->numa_node; 2392 2393 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2394 if (!tags) 2395 return NULL; 2396 2397 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2398 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2399 node); 2400 if (!tags->rqs) { 2401 blk_mq_free_tags(tags, flags); 2402 return NULL; 2403 } 2404 2405 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2406 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2407 node); 2408 if (!tags->static_rqs) { 2409 kfree(tags->rqs); 2410 blk_mq_free_tags(tags, flags); 2411 return NULL; 2412 } 2413 2414 return tags; 2415 } 2416 2417 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2418 unsigned int hctx_idx, int node) 2419 { 2420 int ret; 2421 2422 if (set->ops->init_request) { 2423 ret = set->ops->init_request(set, rq, hctx_idx, node); 2424 if (ret) 2425 return ret; 2426 } 2427 2428 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2429 return 0; 2430 } 2431 2432 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2433 unsigned int hctx_idx, unsigned int depth) 2434 { 2435 unsigned int i, j, entries_per_page, max_order = 4; 2436 size_t rq_size, left; 2437 int node; 2438 2439 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2440 if (node == NUMA_NO_NODE) 2441 node = set->numa_node; 2442 2443 INIT_LIST_HEAD(&tags->page_list); 2444 2445 /* 2446 * rq_size is the size of the request plus driver payload, rounded 2447 * to the cacheline size 2448 */ 2449 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2450 cache_line_size()); 2451 left = rq_size * depth; 2452 2453 for (i = 0; i < depth; ) { 2454 int this_order = max_order; 2455 struct page *page; 2456 int to_do; 2457 void *p; 2458 2459 while (this_order && left < order_to_size(this_order - 1)) 2460 this_order--; 2461 2462 do { 2463 page = alloc_pages_node(node, 2464 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2465 this_order); 2466 if (page) 2467 break; 2468 if (!this_order--) 2469 break; 2470 if (order_to_size(this_order) < rq_size) 2471 break; 2472 } while (1); 2473 2474 if (!page) 2475 goto fail; 2476 2477 page->private = this_order; 2478 list_add_tail(&page->lru, &tags->page_list); 2479 2480 p = page_address(page); 2481 /* 2482 * Allow kmemleak to scan these pages as they contain pointers 2483 * to additional allocations like via ops->init_request(). 2484 */ 2485 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2486 entries_per_page = order_to_size(this_order) / rq_size; 2487 to_do = min(entries_per_page, depth - i); 2488 left -= to_do * rq_size; 2489 for (j = 0; j < to_do; j++) { 2490 struct request *rq = p; 2491 2492 tags->static_rqs[i] = rq; 2493 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2494 tags->static_rqs[i] = NULL; 2495 goto fail; 2496 } 2497 2498 p += rq_size; 2499 i++; 2500 } 2501 } 2502 return 0; 2503 2504 fail: 2505 blk_mq_free_rqs(set, tags, hctx_idx); 2506 return -ENOMEM; 2507 } 2508 2509 struct rq_iter_data { 2510 struct blk_mq_hw_ctx *hctx; 2511 bool has_rq; 2512 }; 2513 2514 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2515 { 2516 struct rq_iter_data *iter_data = data; 2517 2518 if (rq->mq_hctx != iter_data->hctx) 2519 return true; 2520 iter_data->has_rq = true; 2521 return false; 2522 } 2523 2524 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2525 { 2526 struct blk_mq_tags *tags = hctx->sched_tags ? 2527 hctx->sched_tags : hctx->tags; 2528 struct rq_iter_data data = { 2529 .hctx = hctx, 2530 }; 2531 2532 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2533 return data.has_rq; 2534 } 2535 2536 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2537 struct blk_mq_hw_ctx *hctx) 2538 { 2539 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2540 return false; 2541 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2542 return false; 2543 return true; 2544 } 2545 2546 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2547 { 2548 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2549 struct blk_mq_hw_ctx, cpuhp_online); 2550 2551 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2552 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2553 return 0; 2554 2555 /* 2556 * Prevent new request from being allocated on the current hctx. 2557 * 2558 * The smp_mb__after_atomic() Pairs with the implied barrier in 2559 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2560 * seen once we return from the tag allocator. 2561 */ 2562 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2563 smp_mb__after_atomic(); 2564 2565 /* 2566 * Try to grab a reference to the queue and wait for any outstanding 2567 * requests. If we could not grab a reference the queue has been 2568 * frozen and there are no requests. 2569 */ 2570 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2571 while (blk_mq_hctx_has_requests(hctx)) 2572 msleep(5); 2573 percpu_ref_put(&hctx->queue->q_usage_counter); 2574 } 2575 2576 return 0; 2577 } 2578 2579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2580 { 2581 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2582 struct blk_mq_hw_ctx, cpuhp_online); 2583 2584 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2585 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2586 return 0; 2587 } 2588 2589 /* 2590 * 'cpu' is going away. splice any existing rq_list entries from this 2591 * software queue to the hw queue dispatch list, and ensure that it 2592 * gets run. 2593 */ 2594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2595 { 2596 struct blk_mq_hw_ctx *hctx; 2597 struct blk_mq_ctx *ctx; 2598 LIST_HEAD(tmp); 2599 enum hctx_type type; 2600 2601 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2602 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2603 return 0; 2604 2605 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2606 type = hctx->type; 2607 2608 spin_lock(&ctx->lock); 2609 if (!list_empty(&ctx->rq_lists[type])) { 2610 list_splice_init(&ctx->rq_lists[type], &tmp); 2611 blk_mq_hctx_clear_pending(hctx, ctx); 2612 } 2613 spin_unlock(&ctx->lock); 2614 2615 if (list_empty(&tmp)) 2616 return 0; 2617 2618 spin_lock(&hctx->lock); 2619 list_splice_tail_init(&tmp, &hctx->dispatch); 2620 spin_unlock(&hctx->lock); 2621 2622 blk_mq_run_hw_queue(hctx, true); 2623 return 0; 2624 } 2625 2626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2627 { 2628 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2629 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2630 &hctx->cpuhp_online); 2631 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2632 &hctx->cpuhp_dead); 2633 } 2634 2635 /* 2636 * Before freeing hw queue, clearing the flush request reference in 2637 * tags->rqs[] for avoiding potential UAF. 2638 */ 2639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2640 unsigned int queue_depth, struct request *flush_rq) 2641 { 2642 int i; 2643 unsigned long flags; 2644 2645 /* The hw queue may not be mapped yet */ 2646 if (!tags) 2647 return; 2648 2649 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2650 2651 for (i = 0; i < queue_depth; i++) 2652 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2653 2654 /* 2655 * Wait until all pending iteration is done. 2656 * 2657 * Request reference is cleared and it is guaranteed to be observed 2658 * after the ->lock is released. 2659 */ 2660 spin_lock_irqsave(&tags->lock, flags); 2661 spin_unlock_irqrestore(&tags->lock, flags); 2662 } 2663 2664 /* hctx->ctxs will be freed in queue's release handler */ 2665 static void blk_mq_exit_hctx(struct request_queue *q, 2666 struct blk_mq_tag_set *set, 2667 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2668 { 2669 struct request *flush_rq = hctx->fq->flush_rq; 2670 2671 if (blk_mq_hw_queue_mapped(hctx)) 2672 blk_mq_tag_idle(hctx); 2673 2674 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 2675 set->queue_depth, flush_rq); 2676 if (set->ops->exit_request) 2677 set->ops->exit_request(set, flush_rq, hctx_idx); 2678 2679 if (set->ops->exit_hctx) 2680 set->ops->exit_hctx(hctx, hctx_idx); 2681 2682 blk_mq_remove_cpuhp(hctx); 2683 2684 spin_lock(&q->unused_hctx_lock); 2685 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2686 spin_unlock(&q->unused_hctx_lock); 2687 } 2688 2689 static void blk_mq_exit_hw_queues(struct request_queue *q, 2690 struct blk_mq_tag_set *set, int nr_queue) 2691 { 2692 struct blk_mq_hw_ctx *hctx; 2693 unsigned int i; 2694 2695 queue_for_each_hw_ctx(q, hctx, i) { 2696 if (i == nr_queue) 2697 break; 2698 blk_mq_debugfs_unregister_hctx(hctx); 2699 blk_mq_exit_hctx(q, set, hctx, i); 2700 } 2701 } 2702 2703 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2704 { 2705 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2706 2707 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2708 __alignof__(struct blk_mq_hw_ctx)) != 2709 sizeof(struct blk_mq_hw_ctx)); 2710 2711 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2712 hw_ctx_size += sizeof(struct srcu_struct); 2713 2714 return hw_ctx_size; 2715 } 2716 2717 static int blk_mq_init_hctx(struct request_queue *q, 2718 struct blk_mq_tag_set *set, 2719 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2720 { 2721 hctx->queue_num = hctx_idx; 2722 2723 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2724 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2725 &hctx->cpuhp_online); 2726 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2727 2728 hctx->tags = set->tags[hctx_idx]; 2729 2730 if (set->ops->init_hctx && 2731 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2732 goto unregister_cpu_notifier; 2733 2734 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2735 hctx->numa_node)) 2736 goto exit_hctx; 2737 return 0; 2738 2739 exit_hctx: 2740 if (set->ops->exit_hctx) 2741 set->ops->exit_hctx(hctx, hctx_idx); 2742 unregister_cpu_notifier: 2743 blk_mq_remove_cpuhp(hctx); 2744 return -1; 2745 } 2746 2747 static struct blk_mq_hw_ctx * 2748 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2749 int node) 2750 { 2751 struct blk_mq_hw_ctx *hctx; 2752 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2753 2754 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2755 if (!hctx) 2756 goto fail_alloc_hctx; 2757 2758 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2759 goto free_hctx; 2760 2761 atomic_set(&hctx->nr_active, 0); 2762 if (node == NUMA_NO_NODE) 2763 node = set->numa_node; 2764 hctx->numa_node = node; 2765 2766 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2767 spin_lock_init(&hctx->lock); 2768 INIT_LIST_HEAD(&hctx->dispatch); 2769 hctx->queue = q; 2770 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2771 2772 INIT_LIST_HEAD(&hctx->hctx_list); 2773 2774 /* 2775 * Allocate space for all possible cpus to avoid allocation at 2776 * runtime 2777 */ 2778 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2779 gfp, node); 2780 if (!hctx->ctxs) 2781 goto free_cpumask; 2782 2783 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2784 gfp, node, false, false)) 2785 goto free_ctxs; 2786 hctx->nr_ctx = 0; 2787 2788 spin_lock_init(&hctx->dispatch_wait_lock); 2789 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2790 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2791 2792 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2793 if (!hctx->fq) 2794 goto free_bitmap; 2795 2796 if (hctx->flags & BLK_MQ_F_BLOCKING) 2797 init_srcu_struct(hctx->srcu); 2798 blk_mq_hctx_kobj_init(hctx); 2799 2800 return hctx; 2801 2802 free_bitmap: 2803 sbitmap_free(&hctx->ctx_map); 2804 free_ctxs: 2805 kfree(hctx->ctxs); 2806 free_cpumask: 2807 free_cpumask_var(hctx->cpumask); 2808 free_hctx: 2809 kfree(hctx); 2810 fail_alloc_hctx: 2811 return NULL; 2812 } 2813 2814 static void blk_mq_init_cpu_queues(struct request_queue *q, 2815 unsigned int nr_hw_queues) 2816 { 2817 struct blk_mq_tag_set *set = q->tag_set; 2818 unsigned int i, j; 2819 2820 for_each_possible_cpu(i) { 2821 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2822 struct blk_mq_hw_ctx *hctx; 2823 int k; 2824 2825 __ctx->cpu = i; 2826 spin_lock_init(&__ctx->lock); 2827 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2828 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2829 2830 __ctx->queue = q; 2831 2832 /* 2833 * Set local node, IFF we have more than one hw queue. If 2834 * not, we remain on the home node of the device 2835 */ 2836 for (j = 0; j < set->nr_maps; j++) { 2837 hctx = blk_mq_map_queue_type(q, j, i); 2838 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2839 hctx->numa_node = cpu_to_node(i); 2840 } 2841 } 2842 } 2843 2844 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2845 int hctx_idx) 2846 { 2847 unsigned int flags = set->flags; 2848 int ret = 0; 2849 2850 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2851 set->queue_depth, set->reserved_tags, flags); 2852 if (!set->tags[hctx_idx]) 2853 return false; 2854 2855 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2856 set->queue_depth); 2857 if (!ret) 2858 return true; 2859 2860 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2861 set->tags[hctx_idx] = NULL; 2862 return false; 2863 } 2864 2865 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2866 unsigned int hctx_idx) 2867 { 2868 unsigned int flags = set->flags; 2869 2870 if (set->tags && set->tags[hctx_idx]) { 2871 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2872 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2873 set->tags[hctx_idx] = NULL; 2874 } 2875 } 2876 2877 static void blk_mq_map_swqueue(struct request_queue *q) 2878 { 2879 unsigned int i, j, hctx_idx; 2880 struct blk_mq_hw_ctx *hctx; 2881 struct blk_mq_ctx *ctx; 2882 struct blk_mq_tag_set *set = q->tag_set; 2883 2884 queue_for_each_hw_ctx(q, hctx, i) { 2885 cpumask_clear(hctx->cpumask); 2886 hctx->nr_ctx = 0; 2887 hctx->dispatch_from = NULL; 2888 } 2889 2890 /* 2891 * Map software to hardware queues. 2892 * 2893 * If the cpu isn't present, the cpu is mapped to first hctx. 2894 */ 2895 for_each_possible_cpu(i) { 2896 2897 ctx = per_cpu_ptr(q->queue_ctx, i); 2898 for (j = 0; j < set->nr_maps; j++) { 2899 if (!set->map[j].nr_queues) { 2900 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2901 HCTX_TYPE_DEFAULT, i); 2902 continue; 2903 } 2904 hctx_idx = set->map[j].mq_map[i]; 2905 /* unmapped hw queue can be remapped after CPU topo changed */ 2906 if (!set->tags[hctx_idx] && 2907 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2908 /* 2909 * If tags initialization fail for some hctx, 2910 * that hctx won't be brought online. In this 2911 * case, remap the current ctx to hctx[0] which 2912 * is guaranteed to always have tags allocated 2913 */ 2914 set->map[j].mq_map[i] = 0; 2915 } 2916 2917 hctx = blk_mq_map_queue_type(q, j, i); 2918 ctx->hctxs[j] = hctx; 2919 /* 2920 * If the CPU is already set in the mask, then we've 2921 * mapped this one already. This can happen if 2922 * devices share queues across queue maps. 2923 */ 2924 if (cpumask_test_cpu(i, hctx->cpumask)) 2925 continue; 2926 2927 cpumask_set_cpu(i, hctx->cpumask); 2928 hctx->type = j; 2929 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2930 hctx->ctxs[hctx->nr_ctx++] = ctx; 2931 2932 /* 2933 * If the nr_ctx type overflows, we have exceeded the 2934 * amount of sw queues we can support. 2935 */ 2936 BUG_ON(!hctx->nr_ctx); 2937 } 2938 2939 for (; j < HCTX_MAX_TYPES; j++) 2940 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2941 HCTX_TYPE_DEFAULT, i); 2942 } 2943 2944 queue_for_each_hw_ctx(q, hctx, i) { 2945 /* 2946 * If no software queues are mapped to this hardware queue, 2947 * disable it and free the request entries. 2948 */ 2949 if (!hctx->nr_ctx) { 2950 /* Never unmap queue 0. We need it as a 2951 * fallback in case of a new remap fails 2952 * allocation 2953 */ 2954 if (i && set->tags[i]) 2955 blk_mq_free_map_and_requests(set, i); 2956 2957 hctx->tags = NULL; 2958 continue; 2959 } 2960 2961 hctx->tags = set->tags[i]; 2962 WARN_ON(!hctx->tags); 2963 2964 /* 2965 * Set the map size to the number of mapped software queues. 2966 * This is more accurate and more efficient than looping 2967 * over all possibly mapped software queues. 2968 */ 2969 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2970 2971 /* 2972 * Initialize batch roundrobin counts 2973 */ 2974 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2975 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2976 } 2977 } 2978 2979 /* 2980 * Caller needs to ensure that we're either frozen/quiesced, or that 2981 * the queue isn't live yet. 2982 */ 2983 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2984 { 2985 struct blk_mq_hw_ctx *hctx; 2986 int i; 2987 2988 queue_for_each_hw_ctx(q, hctx, i) { 2989 if (shared) { 2990 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2991 } else { 2992 blk_mq_tag_idle(hctx); 2993 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2994 } 2995 } 2996 } 2997 2998 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2999 bool shared) 3000 { 3001 struct request_queue *q; 3002 3003 lockdep_assert_held(&set->tag_list_lock); 3004 3005 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3006 blk_mq_freeze_queue(q); 3007 queue_set_hctx_shared(q, shared); 3008 blk_mq_unfreeze_queue(q); 3009 } 3010 } 3011 3012 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3013 { 3014 struct blk_mq_tag_set *set = q->tag_set; 3015 3016 mutex_lock(&set->tag_list_lock); 3017 list_del(&q->tag_set_list); 3018 if (list_is_singular(&set->tag_list)) { 3019 /* just transitioned to unshared */ 3020 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3021 /* update existing queue */ 3022 blk_mq_update_tag_set_shared(set, false); 3023 } 3024 mutex_unlock(&set->tag_list_lock); 3025 INIT_LIST_HEAD(&q->tag_set_list); 3026 } 3027 3028 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3029 struct request_queue *q) 3030 { 3031 mutex_lock(&set->tag_list_lock); 3032 3033 /* 3034 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3035 */ 3036 if (!list_empty(&set->tag_list) && 3037 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3038 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3039 /* update existing queue */ 3040 blk_mq_update_tag_set_shared(set, true); 3041 } 3042 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3043 queue_set_hctx_shared(q, true); 3044 list_add_tail(&q->tag_set_list, &set->tag_list); 3045 3046 mutex_unlock(&set->tag_list_lock); 3047 } 3048 3049 /* All allocations will be freed in release handler of q->mq_kobj */ 3050 static int blk_mq_alloc_ctxs(struct request_queue *q) 3051 { 3052 struct blk_mq_ctxs *ctxs; 3053 int cpu; 3054 3055 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3056 if (!ctxs) 3057 return -ENOMEM; 3058 3059 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3060 if (!ctxs->queue_ctx) 3061 goto fail; 3062 3063 for_each_possible_cpu(cpu) { 3064 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3065 ctx->ctxs = ctxs; 3066 } 3067 3068 q->mq_kobj = &ctxs->kobj; 3069 q->queue_ctx = ctxs->queue_ctx; 3070 3071 return 0; 3072 fail: 3073 kfree(ctxs); 3074 return -ENOMEM; 3075 } 3076 3077 /* 3078 * It is the actual release handler for mq, but we do it from 3079 * request queue's release handler for avoiding use-after-free 3080 * and headache because q->mq_kobj shouldn't have been introduced, 3081 * but we can't group ctx/kctx kobj without it. 3082 */ 3083 void blk_mq_release(struct request_queue *q) 3084 { 3085 struct blk_mq_hw_ctx *hctx, *next; 3086 int i; 3087 3088 queue_for_each_hw_ctx(q, hctx, i) 3089 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3090 3091 /* all hctx are in .unused_hctx_list now */ 3092 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3093 list_del_init(&hctx->hctx_list); 3094 kobject_put(&hctx->kobj); 3095 } 3096 3097 kfree(q->queue_hw_ctx); 3098 3099 /* 3100 * release .mq_kobj and sw queue's kobject now because 3101 * both share lifetime with request queue. 3102 */ 3103 blk_mq_sysfs_deinit(q); 3104 } 3105 3106 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3107 void *queuedata) 3108 { 3109 struct request_queue *q; 3110 int ret; 3111 3112 q = blk_alloc_queue(set->numa_node); 3113 if (!q) 3114 return ERR_PTR(-ENOMEM); 3115 q->queuedata = queuedata; 3116 ret = blk_mq_init_allocated_queue(set, q); 3117 if (ret) { 3118 blk_cleanup_queue(q); 3119 return ERR_PTR(ret); 3120 } 3121 return q; 3122 } 3123 3124 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3125 { 3126 return blk_mq_init_queue_data(set, NULL); 3127 } 3128 EXPORT_SYMBOL(blk_mq_init_queue); 3129 3130 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3131 struct lock_class_key *lkclass) 3132 { 3133 struct request_queue *q; 3134 struct gendisk *disk; 3135 3136 q = blk_mq_init_queue_data(set, queuedata); 3137 if (IS_ERR(q)) 3138 return ERR_CAST(q); 3139 3140 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3141 if (!disk) { 3142 blk_cleanup_queue(q); 3143 return ERR_PTR(-ENOMEM); 3144 } 3145 return disk; 3146 } 3147 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3148 3149 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3150 struct blk_mq_tag_set *set, struct request_queue *q, 3151 int hctx_idx, int node) 3152 { 3153 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3154 3155 /* reuse dead hctx first */ 3156 spin_lock(&q->unused_hctx_lock); 3157 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3158 if (tmp->numa_node == node) { 3159 hctx = tmp; 3160 break; 3161 } 3162 } 3163 if (hctx) 3164 list_del_init(&hctx->hctx_list); 3165 spin_unlock(&q->unused_hctx_lock); 3166 3167 if (!hctx) 3168 hctx = blk_mq_alloc_hctx(q, set, node); 3169 if (!hctx) 3170 goto fail; 3171 3172 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3173 goto free_hctx; 3174 3175 return hctx; 3176 3177 free_hctx: 3178 kobject_put(&hctx->kobj); 3179 fail: 3180 return NULL; 3181 } 3182 3183 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3184 struct request_queue *q) 3185 { 3186 int i, j, end; 3187 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3188 3189 if (q->nr_hw_queues < set->nr_hw_queues) { 3190 struct blk_mq_hw_ctx **new_hctxs; 3191 3192 new_hctxs = kcalloc_node(set->nr_hw_queues, 3193 sizeof(*new_hctxs), GFP_KERNEL, 3194 set->numa_node); 3195 if (!new_hctxs) 3196 return; 3197 if (hctxs) 3198 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3199 sizeof(*hctxs)); 3200 q->queue_hw_ctx = new_hctxs; 3201 kfree(hctxs); 3202 hctxs = new_hctxs; 3203 } 3204 3205 /* protect against switching io scheduler */ 3206 mutex_lock(&q->sysfs_lock); 3207 for (i = 0; i < set->nr_hw_queues; i++) { 3208 int node; 3209 struct blk_mq_hw_ctx *hctx; 3210 3211 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3212 /* 3213 * If the hw queue has been mapped to another numa node, 3214 * we need to realloc the hctx. If allocation fails, fallback 3215 * to use the previous one. 3216 */ 3217 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3218 continue; 3219 3220 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3221 if (hctx) { 3222 if (hctxs[i]) 3223 blk_mq_exit_hctx(q, set, hctxs[i], i); 3224 hctxs[i] = hctx; 3225 } else { 3226 if (hctxs[i]) 3227 pr_warn("Allocate new hctx on node %d fails,\ 3228 fallback to previous one on node %d\n", 3229 node, hctxs[i]->numa_node); 3230 else 3231 break; 3232 } 3233 } 3234 /* 3235 * Increasing nr_hw_queues fails. Free the newly allocated 3236 * hctxs and keep the previous q->nr_hw_queues. 3237 */ 3238 if (i != set->nr_hw_queues) { 3239 j = q->nr_hw_queues; 3240 end = i; 3241 } else { 3242 j = i; 3243 end = q->nr_hw_queues; 3244 q->nr_hw_queues = set->nr_hw_queues; 3245 } 3246 3247 for (; j < end; j++) { 3248 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3249 3250 if (hctx) { 3251 if (hctx->tags) 3252 blk_mq_free_map_and_requests(set, j); 3253 blk_mq_exit_hctx(q, set, hctx, j); 3254 hctxs[j] = NULL; 3255 } 3256 } 3257 mutex_unlock(&q->sysfs_lock); 3258 } 3259 3260 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3261 struct request_queue *q) 3262 { 3263 /* mark the queue as mq asap */ 3264 q->mq_ops = set->ops; 3265 3266 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3267 blk_mq_poll_stats_bkt, 3268 BLK_MQ_POLL_STATS_BKTS, q); 3269 if (!q->poll_cb) 3270 goto err_exit; 3271 3272 if (blk_mq_alloc_ctxs(q)) 3273 goto err_poll; 3274 3275 /* init q->mq_kobj and sw queues' kobjects */ 3276 blk_mq_sysfs_init(q); 3277 3278 INIT_LIST_HEAD(&q->unused_hctx_list); 3279 spin_lock_init(&q->unused_hctx_lock); 3280 3281 blk_mq_realloc_hw_ctxs(set, q); 3282 if (!q->nr_hw_queues) 3283 goto err_hctxs; 3284 3285 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3286 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3287 3288 q->tag_set = set; 3289 3290 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3291 if (set->nr_maps > HCTX_TYPE_POLL && 3292 set->map[HCTX_TYPE_POLL].nr_queues) 3293 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3294 3295 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3296 INIT_LIST_HEAD(&q->requeue_list); 3297 spin_lock_init(&q->requeue_lock); 3298 3299 q->nr_requests = set->queue_depth; 3300 3301 /* 3302 * Default to classic polling 3303 */ 3304 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3305 3306 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3307 blk_mq_add_queue_tag_set(set, q); 3308 blk_mq_map_swqueue(q); 3309 return 0; 3310 3311 err_hctxs: 3312 kfree(q->queue_hw_ctx); 3313 q->nr_hw_queues = 0; 3314 blk_mq_sysfs_deinit(q); 3315 err_poll: 3316 blk_stat_free_callback(q->poll_cb); 3317 q->poll_cb = NULL; 3318 err_exit: 3319 q->mq_ops = NULL; 3320 return -ENOMEM; 3321 } 3322 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3323 3324 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3325 void blk_mq_exit_queue(struct request_queue *q) 3326 { 3327 struct blk_mq_tag_set *set = q->tag_set; 3328 3329 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3330 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3331 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3332 blk_mq_del_queue_tag_set(q); 3333 } 3334 3335 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3336 { 3337 int i; 3338 3339 for (i = 0; i < set->nr_hw_queues; i++) { 3340 if (!__blk_mq_alloc_map_and_request(set, i)) 3341 goto out_unwind; 3342 cond_resched(); 3343 } 3344 3345 return 0; 3346 3347 out_unwind: 3348 while (--i >= 0) 3349 blk_mq_free_map_and_requests(set, i); 3350 3351 return -ENOMEM; 3352 } 3353 3354 /* 3355 * Allocate the request maps associated with this tag_set. Note that this 3356 * may reduce the depth asked for, if memory is tight. set->queue_depth 3357 * will be updated to reflect the allocated depth. 3358 */ 3359 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3360 { 3361 unsigned int depth; 3362 int err; 3363 3364 depth = set->queue_depth; 3365 do { 3366 err = __blk_mq_alloc_rq_maps(set); 3367 if (!err) 3368 break; 3369 3370 set->queue_depth >>= 1; 3371 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3372 err = -ENOMEM; 3373 break; 3374 } 3375 } while (set->queue_depth); 3376 3377 if (!set->queue_depth || err) { 3378 pr_err("blk-mq: failed to allocate request map\n"); 3379 return -ENOMEM; 3380 } 3381 3382 if (depth != set->queue_depth) 3383 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3384 depth, set->queue_depth); 3385 3386 return 0; 3387 } 3388 3389 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3390 { 3391 /* 3392 * blk_mq_map_queues() and multiple .map_queues() implementations 3393 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3394 * number of hardware queues. 3395 */ 3396 if (set->nr_maps == 1) 3397 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3398 3399 if (set->ops->map_queues && !is_kdump_kernel()) { 3400 int i; 3401 3402 /* 3403 * transport .map_queues is usually done in the following 3404 * way: 3405 * 3406 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3407 * mask = get_cpu_mask(queue) 3408 * for_each_cpu(cpu, mask) 3409 * set->map[x].mq_map[cpu] = queue; 3410 * } 3411 * 3412 * When we need to remap, the table has to be cleared for 3413 * killing stale mapping since one CPU may not be mapped 3414 * to any hw queue. 3415 */ 3416 for (i = 0; i < set->nr_maps; i++) 3417 blk_mq_clear_mq_map(&set->map[i]); 3418 3419 return set->ops->map_queues(set); 3420 } else { 3421 BUG_ON(set->nr_maps > 1); 3422 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3423 } 3424 } 3425 3426 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3427 int cur_nr_hw_queues, int new_nr_hw_queues) 3428 { 3429 struct blk_mq_tags **new_tags; 3430 3431 if (cur_nr_hw_queues >= new_nr_hw_queues) 3432 return 0; 3433 3434 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3435 GFP_KERNEL, set->numa_node); 3436 if (!new_tags) 3437 return -ENOMEM; 3438 3439 if (set->tags) 3440 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3441 sizeof(*set->tags)); 3442 kfree(set->tags); 3443 set->tags = new_tags; 3444 set->nr_hw_queues = new_nr_hw_queues; 3445 3446 return 0; 3447 } 3448 3449 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3450 int new_nr_hw_queues) 3451 { 3452 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3453 } 3454 3455 /* 3456 * Alloc a tag set to be associated with one or more request queues. 3457 * May fail with EINVAL for various error conditions. May adjust the 3458 * requested depth down, if it's too large. In that case, the set 3459 * value will be stored in set->queue_depth. 3460 */ 3461 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3462 { 3463 int i, ret; 3464 3465 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3466 3467 if (!set->nr_hw_queues) 3468 return -EINVAL; 3469 if (!set->queue_depth) 3470 return -EINVAL; 3471 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3472 return -EINVAL; 3473 3474 if (!set->ops->queue_rq) 3475 return -EINVAL; 3476 3477 if (!set->ops->get_budget ^ !set->ops->put_budget) 3478 return -EINVAL; 3479 3480 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3481 pr_info("blk-mq: reduced tag depth to %u\n", 3482 BLK_MQ_MAX_DEPTH); 3483 set->queue_depth = BLK_MQ_MAX_DEPTH; 3484 } 3485 3486 if (!set->nr_maps) 3487 set->nr_maps = 1; 3488 else if (set->nr_maps > HCTX_MAX_TYPES) 3489 return -EINVAL; 3490 3491 /* 3492 * If a crashdump is active, then we are potentially in a very 3493 * memory constrained environment. Limit us to 1 queue and 3494 * 64 tags to prevent using too much memory. 3495 */ 3496 if (is_kdump_kernel()) { 3497 set->nr_hw_queues = 1; 3498 set->nr_maps = 1; 3499 set->queue_depth = min(64U, set->queue_depth); 3500 } 3501 /* 3502 * There is no use for more h/w queues than cpus if we just have 3503 * a single map 3504 */ 3505 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3506 set->nr_hw_queues = nr_cpu_ids; 3507 3508 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3509 return -ENOMEM; 3510 3511 ret = -ENOMEM; 3512 for (i = 0; i < set->nr_maps; i++) { 3513 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3514 sizeof(set->map[i].mq_map[0]), 3515 GFP_KERNEL, set->numa_node); 3516 if (!set->map[i].mq_map) 3517 goto out_free_mq_map; 3518 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3519 } 3520 3521 ret = blk_mq_update_queue_map(set); 3522 if (ret) 3523 goto out_free_mq_map; 3524 3525 ret = blk_mq_alloc_map_and_requests(set); 3526 if (ret) 3527 goto out_free_mq_map; 3528 3529 if (blk_mq_is_sbitmap_shared(set->flags)) { 3530 atomic_set(&set->active_queues_shared_sbitmap, 0); 3531 3532 if (blk_mq_init_shared_sbitmap(set)) { 3533 ret = -ENOMEM; 3534 goto out_free_mq_rq_maps; 3535 } 3536 } 3537 3538 mutex_init(&set->tag_list_lock); 3539 INIT_LIST_HEAD(&set->tag_list); 3540 3541 return 0; 3542 3543 out_free_mq_rq_maps: 3544 for (i = 0; i < set->nr_hw_queues; i++) 3545 blk_mq_free_map_and_requests(set, i); 3546 out_free_mq_map: 3547 for (i = 0; i < set->nr_maps; i++) { 3548 kfree(set->map[i].mq_map); 3549 set->map[i].mq_map = NULL; 3550 } 3551 kfree(set->tags); 3552 set->tags = NULL; 3553 return ret; 3554 } 3555 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3556 3557 /* allocate and initialize a tagset for a simple single-queue device */ 3558 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 3559 const struct blk_mq_ops *ops, unsigned int queue_depth, 3560 unsigned int set_flags) 3561 { 3562 memset(set, 0, sizeof(*set)); 3563 set->ops = ops; 3564 set->nr_hw_queues = 1; 3565 set->nr_maps = 1; 3566 set->queue_depth = queue_depth; 3567 set->numa_node = NUMA_NO_NODE; 3568 set->flags = set_flags; 3569 return blk_mq_alloc_tag_set(set); 3570 } 3571 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 3572 3573 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3574 { 3575 int i, j; 3576 3577 for (i = 0; i < set->nr_hw_queues; i++) 3578 blk_mq_free_map_and_requests(set, i); 3579 3580 if (blk_mq_is_sbitmap_shared(set->flags)) 3581 blk_mq_exit_shared_sbitmap(set); 3582 3583 for (j = 0; j < set->nr_maps; j++) { 3584 kfree(set->map[j].mq_map); 3585 set->map[j].mq_map = NULL; 3586 } 3587 3588 kfree(set->tags); 3589 set->tags = NULL; 3590 } 3591 EXPORT_SYMBOL(blk_mq_free_tag_set); 3592 3593 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3594 { 3595 struct blk_mq_tag_set *set = q->tag_set; 3596 struct blk_mq_hw_ctx *hctx; 3597 int i, ret; 3598 3599 if (!set) 3600 return -EINVAL; 3601 3602 if (q->nr_requests == nr) 3603 return 0; 3604 3605 blk_mq_freeze_queue(q); 3606 blk_mq_quiesce_queue(q); 3607 3608 ret = 0; 3609 queue_for_each_hw_ctx(q, hctx, i) { 3610 if (!hctx->tags) 3611 continue; 3612 /* 3613 * If we're using an MQ scheduler, just update the scheduler 3614 * queue depth. This is similar to what the old code would do. 3615 */ 3616 if (!hctx->sched_tags) { 3617 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3618 false); 3619 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3620 blk_mq_tag_resize_shared_sbitmap(set, nr); 3621 } else { 3622 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3623 nr, true); 3624 if (blk_mq_is_sbitmap_shared(set->flags)) { 3625 hctx->sched_tags->bitmap_tags = 3626 &q->sched_bitmap_tags; 3627 hctx->sched_tags->breserved_tags = 3628 &q->sched_breserved_tags; 3629 } 3630 } 3631 if (ret) 3632 break; 3633 if (q->elevator && q->elevator->type->ops.depth_updated) 3634 q->elevator->type->ops.depth_updated(hctx); 3635 } 3636 if (!ret) { 3637 q->nr_requests = nr; 3638 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags)) 3639 sbitmap_queue_resize(&q->sched_bitmap_tags, 3640 nr - set->reserved_tags); 3641 } 3642 3643 blk_mq_unquiesce_queue(q); 3644 blk_mq_unfreeze_queue(q); 3645 3646 return ret; 3647 } 3648 3649 /* 3650 * request_queue and elevator_type pair. 3651 * It is just used by __blk_mq_update_nr_hw_queues to cache 3652 * the elevator_type associated with a request_queue. 3653 */ 3654 struct blk_mq_qe_pair { 3655 struct list_head node; 3656 struct request_queue *q; 3657 struct elevator_type *type; 3658 }; 3659 3660 /* 3661 * Cache the elevator_type in qe pair list and switch the 3662 * io scheduler to 'none' 3663 */ 3664 static bool blk_mq_elv_switch_none(struct list_head *head, 3665 struct request_queue *q) 3666 { 3667 struct blk_mq_qe_pair *qe; 3668 3669 if (!q->elevator) 3670 return true; 3671 3672 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3673 if (!qe) 3674 return false; 3675 3676 INIT_LIST_HEAD(&qe->node); 3677 qe->q = q; 3678 qe->type = q->elevator->type; 3679 list_add(&qe->node, head); 3680 3681 mutex_lock(&q->sysfs_lock); 3682 /* 3683 * After elevator_switch_mq, the previous elevator_queue will be 3684 * released by elevator_release. The reference of the io scheduler 3685 * module get by elevator_get will also be put. So we need to get 3686 * a reference of the io scheduler module here to prevent it to be 3687 * removed. 3688 */ 3689 __module_get(qe->type->elevator_owner); 3690 elevator_switch_mq(q, NULL); 3691 mutex_unlock(&q->sysfs_lock); 3692 3693 return true; 3694 } 3695 3696 static void blk_mq_elv_switch_back(struct list_head *head, 3697 struct request_queue *q) 3698 { 3699 struct blk_mq_qe_pair *qe; 3700 struct elevator_type *t = NULL; 3701 3702 list_for_each_entry(qe, head, node) 3703 if (qe->q == q) { 3704 t = qe->type; 3705 break; 3706 } 3707 3708 if (!t) 3709 return; 3710 3711 list_del(&qe->node); 3712 kfree(qe); 3713 3714 mutex_lock(&q->sysfs_lock); 3715 elevator_switch_mq(q, t); 3716 mutex_unlock(&q->sysfs_lock); 3717 } 3718 3719 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3720 int nr_hw_queues) 3721 { 3722 struct request_queue *q; 3723 LIST_HEAD(head); 3724 int prev_nr_hw_queues; 3725 3726 lockdep_assert_held(&set->tag_list_lock); 3727 3728 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3729 nr_hw_queues = nr_cpu_ids; 3730 if (nr_hw_queues < 1) 3731 return; 3732 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3733 return; 3734 3735 list_for_each_entry(q, &set->tag_list, tag_set_list) 3736 blk_mq_freeze_queue(q); 3737 /* 3738 * Switch IO scheduler to 'none', cleaning up the data associated 3739 * with the previous scheduler. We will switch back once we are done 3740 * updating the new sw to hw queue mappings. 3741 */ 3742 list_for_each_entry(q, &set->tag_list, tag_set_list) 3743 if (!blk_mq_elv_switch_none(&head, q)) 3744 goto switch_back; 3745 3746 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3747 blk_mq_debugfs_unregister_hctxs(q); 3748 blk_mq_sysfs_unregister(q); 3749 } 3750 3751 prev_nr_hw_queues = set->nr_hw_queues; 3752 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3753 0) 3754 goto reregister; 3755 3756 set->nr_hw_queues = nr_hw_queues; 3757 fallback: 3758 blk_mq_update_queue_map(set); 3759 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3760 blk_mq_realloc_hw_ctxs(set, q); 3761 if (q->nr_hw_queues != set->nr_hw_queues) { 3762 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3763 nr_hw_queues, prev_nr_hw_queues); 3764 set->nr_hw_queues = prev_nr_hw_queues; 3765 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3766 goto fallback; 3767 } 3768 blk_mq_map_swqueue(q); 3769 } 3770 3771 reregister: 3772 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3773 blk_mq_sysfs_register(q); 3774 blk_mq_debugfs_register_hctxs(q); 3775 } 3776 3777 switch_back: 3778 list_for_each_entry(q, &set->tag_list, tag_set_list) 3779 blk_mq_elv_switch_back(&head, q); 3780 3781 list_for_each_entry(q, &set->tag_list, tag_set_list) 3782 blk_mq_unfreeze_queue(q); 3783 } 3784 3785 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3786 { 3787 mutex_lock(&set->tag_list_lock); 3788 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3789 mutex_unlock(&set->tag_list_lock); 3790 } 3791 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3792 3793 /* Enable polling stats and return whether they were already enabled. */ 3794 static bool blk_poll_stats_enable(struct request_queue *q) 3795 { 3796 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3797 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3798 return true; 3799 blk_stat_add_callback(q, q->poll_cb); 3800 return false; 3801 } 3802 3803 static void blk_mq_poll_stats_start(struct request_queue *q) 3804 { 3805 /* 3806 * We don't arm the callback if polling stats are not enabled or the 3807 * callback is already active. 3808 */ 3809 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3810 blk_stat_is_active(q->poll_cb)) 3811 return; 3812 3813 blk_stat_activate_msecs(q->poll_cb, 100); 3814 } 3815 3816 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3817 { 3818 struct request_queue *q = cb->data; 3819 int bucket; 3820 3821 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3822 if (cb->stat[bucket].nr_samples) 3823 q->poll_stat[bucket] = cb->stat[bucket]; 3824 } 3825 } 3826 3827 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3828 struct request *rq) 3829 { 3830 unsigned long ret = 0; 3831 int bucket; 3832 3833 /* 3834 * If stats collection isn't on, don't sleep but turn it on for 3835 * future users 3836 */ 3837 if (!blk_poll_stats_enable(q)) 3838 return 0; 3839 3840 /* 3841 * As an optimistic guess, use half of the mean service time 3842 * for this type of request. We can (and should) make this smarter. 3843 * For instance, if the completion latencies are tight, we can 3844 * get closer than just half the mean. This is especially 3845 * important on devices where the completion latencies are longer 3846 * than ~10 usec. We do use the stats for the relevant IO size 3847 * if available which does lead to better estimates. 3848 */ 3849 bucket = blk_mq_poll_stats_bkt(rq); 3850 if (bucket < 0) 3851 return ret; 3852 3853 if (q->poll_stat[bucket].nr_samples) 3854 ret = (q->poll_stat[bucket].mean + 1) / 2; 3855 3856 return ret; 3857 } 3858 3859 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3860 struct request *rq) 3861 { 3862 struct hrtimer_sleeper hs; 3863 enum hrtimer_mode mode; 3864 unsigned int nsecs; 3865 ktime_t kt; 3866 3867 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3868 return false; 3869 3870 /* 3871 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3872 * 3873 * 0: use half of prev avg 3874 * >0: use this specific value 3875 */ 3876 if (q->poll_nsec > 0) 3877 nsecs = q->poll_nsec; 3878 else 3879 nsecs = blk_mq_poll_nsecs(q, rq); 3880 3881 if (!nsecs) 3882 return false; 3883 3884 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3885 3886 /* 3887 * This will be replaced with the stats tracking code, using 3888 * 'avg_completion_time / 2' as the pre-sleep target. 3889 */ 3890 kt = nsecs; 3891 3892 mode = HRTIMER_MODE_REL; 3893 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3894 hrtimer_set_expires(&hs.timer, kt); 3895 3896 do { 3897 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3898 break; 3899 set_current_state(TASK_UNINTERRUPTIBLE); 3900 hrtimer_sleeper_start_expires(&hs, mode); 3901 if (hs.task) 3902 io_schedule(); 3903 hrtimer_cancel(&hs.timer); 3904 mode = HRTIMER_MODE_ABS; 3905 } while (hs.task && !signal_pending(current)); 3906 3907 __set_current_state(TASK_RUNNING); 3908 destroy_hrtimer_on_stack(&hs.timer); 3909 return true; 3910 } 3911 3912 static bool blk_mq_poll_hybrid(struct request_queue *q, 3913 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3914 { 3915 struct request *rq; 3916 3917 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3918 return false; 3919 3920 if (!blk_qc_t_is_internal(cookie)) 3921 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3922 else { 3923 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3924 /* 3925 * With scheduling, if the request has completed, we'll 3926 * get a NULL return here, as we clear the sched tag when 3927 * that happens. The request still remains valid, like always, 3928 * so we should be safe with just the NULL check. 3929 */ 3930 if (!rq) 3931 return false; 3932 } 3933 3934 return blk_mq_poll_hybrid_sleep(q, rq); 3935 } 3936 3937 /** 3938 * blk_poll - poll for IO completions 3939 * @q: the queue 3940 * @cookie: cookie passed back at IO submission time 3941 * @spin: whether to spin for completions 3942 * 3943 * Description: 3944 * Poll for completions on the passed in queue. Returns number of 3945 * completed entries found. If @spin is true, then blk_poll will continue 3946 * looping until at least one completion is found, unless the task is 3947 * otherwise marked running (or we need to reschedule). 3948 */ 3949 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3950 { 3951 struct blk_mq_hw_ctx *hctx; 3952 unsigned int state; 3953 3954 if (!blk_qc_t_valid(cookie) || 3955 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3956 return 0; 3957 3958 if (current->plug) 3959 blk_flush_plug_list(current->plug, false); 3960 3961 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3962 3963 /* 3964 * If we sleep, have the caller restart the poll loop to reset 3965 * the state. Like for the other success return cases, the 3966 * caller is responsible for checking if the IO completed. If 3967 * the IO isn't complete, we'll get called again and will go 3968 * straight to the busy poll loop. If specified not to spin, 3969 * we also should not sleep. 3970 */ 3971 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3972 return 1; 3973 3974 hctx->poll_considered++; 3975 3976 state = get_current_state(); 3977 do { 3978 int ret; 3979 3980 hctx->poll_invoked++; 3981 3982 ret = q->mq_ops->poll(hctx); 3983 if (ret > 0) { 3984 hctx->poll_success++; 3985 __set_current_state(TASK_RUNNING); 3986 return ret; 3987 } 3988 3989 if (signal_pending_state(state, current)) 3990 __set_current_state(TASK_RUNNING); 3991 3992 if (task_is_running(current)) 3993 return 1; 3994 if (ret < 0 || !spin) 3995 break; 3996 cpu_relax(); 3997 } while (!need_resched()); 3998 3999 __set_current_state(TASK_RUNNING); 4000 return 0; 4001 } 4002 EXPORT_SYMBOL_GPL(blk_poll); 4003 4004 unsigned int blk_mq_rq_cpu(struct request *rq) 4005 { 4006 return rq->mq_ctx->cpu; 4007 } 4008 EXPORT_SYMBOL(blk_mq_rq_cpu); 4009 4010 static int __init blk_mq_init(void) 4011 { 4012 int i; 4013 4014 for_each_possible_cpu(i) 4015 init_llist_head(&per_cpu(blk_cpu_done, i)); 4016 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4017 4018 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4019 "block/softirq:dead", NULL, 4020 blk_softirq_cpu_dead); 4021 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4022 blk_mq_hctx_notify_dead); 4023 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4024 blk_mq_hctx_notify_online, 4025 blk_mq_hctx_notify_offline); 4026 return 0; 4027 } 4028 subsys_initcall(blk_mq_init); 4029