1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 /* 99 * index[0] counts the specific partition that was asked for. index[1] 100 * counts the ones that are active on the whole device, so increment 101 * that if mi->part is indeed a partition, and not a whole device. 102 */ 103 if (rq->part == mi->part) 104 mi->inflight[0]++; 105 if (mi->part->partno) 106 mi->inflight[1]++; 107 } 108 109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 110 unsigned int inflight[2]) 111 { 112 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 113 114 inflight[0] = inflight[1] = 0; 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 } 117 118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 119 struct request *rq, void *priv, 120 bool reserved) 121 { 122 struct mq_inflight *mi = priv; 123 124 if (rq->part == mi->part) 125 mi->inflight[rq_data_dir(rq)]++; 126 } 127 128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 129 unsigned int inflight[2]) 130 { 131 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 132 133 inflight[0] = inflight[1] = 0; 134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 135 } 136 137 void blk_freeze_queue_start(struct request_queue *q) 138 { 139 int freeze_depth; 140 141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 142 if (freeze_depth == 1) { 143 percpu_ref_kill(&q->q_usage_counter); 144 if (q->mq_ops) 145 blk_mq_run_hw_queues(q, false); 146 } 147 } 148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 149 150 void blk_mq_freeze_queue_wait(struct request_queue *q) 151 { 152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 153 } 154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 155 156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 157 unsigned long timeout) 158 { 159 return wait_event_timeout(q->mq_freeze_wq, 160 percpu_ref_is_zero(&q->q_usage_counter), 161 timeout); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 164 165 /* 166 * Guarantee no request is in use, so we can change any data structure of 167 * the queue afterward. 168 */ 169 void blk_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * In the !blk_mq case we are only calling this to kill the 173 * q_usage_counter, otherwise this increases the freeze depth 174 * and waits for it to return to zero. For this reason there is 175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 176 * exported to drivers as the only user for unfreeze is blk_mq. 177 */ 178 blk_freeze_queue_start(q); 179 if (!q->mq_ops) 180 blk_drain_queue(q); 181 blk_mq_freeze_queue_wait(q); 182 } 183 184 void blk_mq_freeze_queue(struct request_queue *q) 185 { 186 /* 187 * ...just an alias to keep freeze and unfreeze actions balanced 188 * in the blk_mq_* namespace 189 */ 190 blk_freeze_queue(q); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 int freeze_depth; 197 198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 199 WARN_ON_ONCE(freeze_depth < 0); 200 if (!freeze_depth) { 201 percpu_ref_reinit(&q->q_usage_counter); 202 wake_up_all(&q->mq_freeze_wq); 203 } 204 } 205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 206 207 /* 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 209 * mpt3sas driver such that this function can be removed. 210 */ 211 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 212 { 213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 216 217 /** 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 219 * @q: request queue. 220 * 221 * Note: this function does not prevent that the struct request end_io() 222 * callback function is invoked. Once this function is returned, we make 223 * sure no dispatch can happen until the queue is unquiesced via 224 * blk_mq_unquiesce_queue(). 225 */ 226 void blk_mq_quiesce_queue(struct request_queue *q) 227 { 228 struct blk_mq_hw_ctx *hctx; 229 unsigned int i; 230 bool rcu = false; 231 232 blk_mq_quiesce_queue_nowait(q); 233 234 queue_for_each_hw_ctx(q, hctx, i) { 235 if (hctx->flags & BLK_MQ_F_BLOCKING) 236 synchronize_srcu(hctx->srcu); 237 else 238 rcu = true; 239 } 240 if (rcu) 241 synchronize_rcu(); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 244 245 /* 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 247 * @q: request queue. 248 * 249 * This function recovers queue into the state before quiescing 250 * which is done by blk_mq_quiesce_queue. 251 */ 252 void blk_mq_unquiesce_queue(struct request_queue *q) 253 { 254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 255 256 /* dispatch requests which are inserted during quiescing */ 257 blk_mq_run_hw_queues(q, true); 258 } 259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 260 261 void blk_mq_wake_waiters(struct request_queue *q) 262 { 263 struct blk_mq_hw_ctx *hctx; 264 unsigned int i; 265 266 queue_for_each_hw_ctx(q, hctx, i) 267 if (blk_mq_hw_queue_mapped(hctx)) 268 blk_mq_tag_wakeup_all(hctx->tags, true); 269 } 270 271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 272 { 273 return blk_mq_has_free_tags(hctx->tags); 274 } 275 EXPORT_SYMBOL(blk_mq_can_queue); 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, unsigned int op) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 req_flags_t rq_flags = 0; 283 284 if (data->flags & BLK_MQ_REQ_INTERNAL) { 285 rq->tag = -1; 286 rq->internal_tag = tag; 287 } else { 288 if (blk_mq_tag_busy(data->hctx)) { 289 rq_flags = RQF_MQ_INFLIGHT; 290 atomic_inc(&data->hctx->nr_active); 291 } 292 rq->tag = tag; 293 rq->internal_tag = -1; 294 data->hctx->tags->rqs[rq->tag] = rq; 295 } 296 297 /* csd/requeue_work/fifo_time is initialized before use */ 298 rq->q = data->q; 299 rq->mq_ctx = data->ctx; 300 rq->rq_flags = rq_flags; 301 rq->cpu = -1; 302 rq->cmd_flags = op; 303 if (data->flags & BLK_MQ_REQ_PREEMPT) 304 rq->rq_flags |= RQF_PREEMPT; 305 if (blk_queue_io_stat(data->q)) 306 rq->rq_flags |= RQF_IO_STAT; 307 INIT_LIST_HEAD(&rq->queuelist); 308 INIT_HLIST_NODE(&rq->hash); 309 RB_CLEAR_NODE(&rq->rb_node); 310 rq->rq_disk = NULL; 311 rq->part = NULL; 312 rq->start_time_ns = ktime_get_ns(); 313 rq->io_start_time_ns = 0; 314 rq->nr_phys_segments = 0; 315 #if defined(CONFIG_BLK_DEV_INTEGRITY) 316 rq->nr_integrity_segments = 0; 317 #endif 318 rq->special = NULL; 319 /* tag was already set */ 320 rq->extra_len = 0; 321 rq->__deadline = 0; 322 323 INIT_LIST_HEAD(&rq->timeout_list); 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 rq->next_rq = NULL; 329 330 #ifdef CONFIG_BLK_CGROUP 331 rq->rl = NULL; 332 #endif 333 334 data->ctx->rq_dispatched[op_is_sync(op)]++; 335 refcount_set(&rq->ref, 1); 336 return rq; 337 } 338 339 static struct request *blk_mq_get_request(struct request_queue *q, 340 struct bio *bio, unsigned int op, 341 struct blk_mq_alloc_data *data) 342 { 343 struct elevator_queue *e = q->elevator; 344 struct request *rq; 345 unsigned int tag; 346 bool put_ctx_on_error = false; 347 348 blk_queue_enter_live(q); 349 data->q = q; 350 if (likely(!data->ctx)) { 351 data->ctx = blk_mq_get_ctx(q); 352 put_ctx_on_error = true; 353 } 354 if (likely(!data->hctx)) 355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 356 if (op & REQ_NOWAIT) 357 data->flags |= BLK_MQ_REQ_NOWAIT; 358 359 if (e) { 360 data->flags |= BLK_MQ_REQ_INTERNAL; 361 362 /* 363 * Flush requests are special and go directly to the 364 * dispatch list. Don't include reserved tags in the 365 * limiting, as it isn't useful. 366 */ 367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.mq.limit_depth(op, data); 370 } 371 372 tag = blk_mq_get_tag(data); 373 if (tag == BLK_MQ_TAG_FAIL) { 374 if (put_ctx_on_error) { 375 blk_mq_put_ctx(data->ctx); 376 data->ctx = NULL; 377 } 378 blk_queue_exit(q); 379 return NULL; 380 } 381 382 rq = blk_mq_rq_ctx_init(data, tag, op); 383 if (!op_is_flush(op)) { 384 rq->elv.icq = NULL; 385 if (e && e->type->ops.mq.prepare_request) { 386 if (e->type->icq_cache && rq_ioc(bio)) 387 blk_mq_sched_assign_ioc(rq, bio); 388 389 e->type->ops.mq.prepare_request(rq, bio); 390 rq->rq_flags |= RQF_ELVPRIV; 391 } 392 } 393 data->hctx->queued++; 394 return rq; 395 } 396 397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 398 blk_mq_req_flags_t flags) 399 { 400 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 401 struct request *rq; 402 int ret; 403 404 ret = blk_queue_enter(q, flags); 405 if (ret) 406 return ERR_PTR(ret); 407 408 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 409 blk_queue_exit(q); 410 411 if (!rq) 412 return ERR_PTR(-EWOULDBLOCK); 413 414 blk_mq_put_ctx(alloc_data.ctx); 415 416 rq->__data_len = 0; 417 rq->__sector = (sector_t) -1; 418 rq->bio = rq->biotail = NULL; 419 return rq; 420 } 421 EXPORT_SYMBOL(blk_mq_alloc_request); 422 423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 424 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 425 { 426 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 427 struct request *rq; 428 unsigned int cpu; 429 int ret; 430 431 /* 432 * If the tag allocator sleeps we could get an allocation for a 433 * different hardware context. No need to complicate the low level 434 * allocator for this for the rare use case of a command tied to 435 * a specific queue. 436 */ 437 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 438 return ERR_PTR(-EINVAL); 439 440 if (hctx_idx >= q->nr_hw_queues) 441 return ERR_PTR(-EIO); 442 443 ret = blk_queue_enter(q, flags); 444 if (ret) 445 return ERR_PTR(ret); 446 447 /* 448 * Check if the hardware context is actually mapped to anything. 449 * If not tell the caller that it should skip this queue. 450 */ 451 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 452 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 453 blk_queue_exit(q); 454 return ERR_PTR(-EXDEV); 455 } 456 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 457 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 458 459 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 460 blk_queue_exit(q); 461 462 if (!rq) 463 return ERR_PTR(-EWOULDBLOCK); 464 465 return rq; 466 } 467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 468 469 static void __blk_mq_free_request(struct request *rq) 470 { 471 struct request_queue *q = rq->q; 472 struct blk_mq_ctx *ctx = rq->mq_ctx; 473 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 474 const int sched_tag = rq->internal_tag; 475 476 if (rq->tag != -1) 477 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 478 if (sched_tag != -1) 479 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 480 blk_mq_sched_restart(hctx); 481 blk_queue_exit(q); 482 } 483 484 void blk_mq_free_request(struct request *rq) 485 { 486 struct request_queue *q = rq->q; 487 struct elevator_queue *e = q->elevator; 488 struct blk_mq_ctx *ctx = rq->mq_ctx; 489 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 490 491 if (rq->rq_flags & RQF_ELVPRIV) { 492 if (e && e->type->ops.mq.finish_request) 493 e->type->ops.mq.finish_request(rq); 494 if (rq->elv.icq) { 495 put_io_context(rq->elv.icq->ioc); 496 rq->elv.icq = NULL; 497 } 498 } 499 500 ctx->rq_completed[rq_is_sync(rq)]++; 501 if (rq->rq_flags & RQF_MQ_INFLIGHT) 502 atomic_dec(&hctx->nr_active); 503 504 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 505 laptop_io_completion(q->backing_dev_info); 506 507 wbt_done(q->rq_wb, rq); 508 509 if (blk_rq_rl(rq)) 510 blk_put_rl(blk_rq_rl(rq)); 511 512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 513 if (refcount_dec_and_test(&rq->ref)) 514 __blk_mq_free_request(rq); 515 } 516 EXPORT_SYMBOL_GPL(blk_mq_free_request); 517 518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 519 { 520 u64 now = ktime_get_ns(); 521 522 if (rq->rq_flags & RQF_STATS) { 523 blk_mq_poll_stats_start(rq->q); 524 blk_stat_add(rq, now); 525 } 526 527 blk_account_io_done(rq, now); 528 529 if (rq->end_io) { 530 wbt_done(rq->q->rq_wb, rq); 531 rq->end_io(rq, error); 532 } else { 533 if (unlikely(blk_bidi_rq(rq))) 534 blk_mq_free_request(rq->next_rq); 535 blk_mq_free_request(rq); 536 } 537 } 538 EXPORT_SYMBOL(__blk_mq_end_request); 539 540 void blk_mq_end_request(struct request *rq, blk_status_t error) 541 { 542 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 543 BUG(); 544 __blk_mq_end_request(rq, error); 545 } 546 EXPORT_SYMBOL(blk_mq_end_request); 547 548 static void __blk_mq_complete_request_remote(void *data) 549 { 550 struct request *rq = data; 551 552 rq->q->softirq_done_fn(rq); 553 } 554 555 static void __blk_mq_complete_request(struct request *rq) 556 { 557 struct blk_mq_ctx *ctx = rq->mq_ctx; 558 bool shared = false; 559 int cpu; 560 561 if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) != 562 MQ_RQ_IN_FLIGHT) 563 return; 564 565 if (rq->internal_tag != -1) 566 blk_mq_sched_completed_request(rq); 567 568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 569 rq->q->softirq_done_fn(rq); 570 return; 571 } 572 573 cpu = get_cpu(); 574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 575 shared = cpus_share_cache(cpu, ctx->cpu); 576 577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 578 rq->csd.func = __blk_mq_complete_request_remote; 579 rq->csd.info = rq; 580 rq->csd.flags = 0; 581 smp_call_function_single_async(ctx->cpu, &rq->csd); 582 } else { 583 rq->q->softirq_done_fn(rq); 584 } 585 put_cpu(); 586 } 587 588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 589 __releases(hctx->srcu) 590 { 591 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 592 rcu_read_unlock(); 593 else 594 srcu_read_unlock(hctx->srcu, srcu_idx); 595 } 596 597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 598 __acquires(hctx->srcu) 599 { 600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 601 /* shut up gcc false positive */ 602 *srcu_idx = 0; 603 rcu_read_lock(); 604 } else 605 *srcu_idx = srcu_read_lock(hctx->srcu); 606 } 607 608 /** 609 * blk_mq_complete_request - end I/O on a request 610 * @rq: the request being processed 611 * 612 * Description: 613 * Ends all I/O on a request. It does not handle partial completions. 614 * The actual completion happens out-of-order, through a IPI handler. 615 **/ 616 void blk_mq_complete_request(struct request *rq) 617 { 618 if (unlikely(blk_should_fake_timeout(rq->q))) 619 return; 620 __blk_mq_complete_request(rq); 621 } 622 EXPORT_SYMBOL(blk_mq_complete_request); 623 624 int blk_mq_request_started(struct request *rq) 625 { 626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 627 } 628 EXPORT_SYMBOL_GPL(blk_mq_request_started); 629 630 void blk_mq_start_request(struct request *rq) 631 { 632 struct request_queue *q = rq->q; 633 634 blk_mq_sched_started_request(rq); 635 636 trace_block_rq_issue(q, rq); 637 638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 639 rq->io_start_time_ns = ktime_get_ns(); 640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 641 rq->throtl_size = blk_rq_sectors(rq); 642 #endif 643 rq->rq_flags |= RQF_STATS; 644 wbt_issue(q->rq_wb, rq); 645 } 646 647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 648 649 blk_add_timer(rq); 650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 651 652 if (q->dma_drain_size && blk_rq_bytes(rq)) { 653 /* 654 * Make sure space for the drain appears. We know we can do 655 * this because max_hw_segments has been adjusted to be one 656 * fewer than the device can handle. 657 */ 658 rq->nr_phys_segments++; 659 } 660 } 661 EXPORT_SYMBOL(blk_mq_start_request); 662 663 static void __blk_mq_requeue_request(struct request *rq) 664 { 665 struct request_queue *q = rq->q; 666 667 blk_mq_put_driver_tag(rq); 668 669 trace_block_rq_requeue(q, rq); 670 wbt_requeue(q->rq_wb, rq); 671 672 if (blk_mq_request_started(rq)) { 673 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 674 rq->rq_flags &= ~RQF_TIMED_OUT; 675 if (q->dma_drain_size && blk_rq_bytes(rq)) 676 rq->nr_phys_segments--; 677 } 678 } 679 680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 681 { 682 __blk_mq_requeue_request(rq); 683 684 /* this request will be re-inserted to io scheduler queue */ 685 blk_mq_sched_requeue_request(rq); 686 687 BUG_ON(blk_queued_rq(rq)); 688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 689 } 690 EXPORT_SYMBOL(blk_mq_requeue_request); 691 692 static void blk_mq_requeue_work(struct work_struct *work) 693 { 694 struct request_queue *q = 695 container_of(work, struct request_queue, requeue_work.work); 696 LIST_HEAD(rq_list); 697 struct request *rq, *next; 698 699 spin_lock_irq(&q->requeue_lock); 700 list_splice_init(&q->requeue_list, &rq_list); 701 spin_unlock_irq(&q->requeue_lock); 702 703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 704 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 705 continue; 706 707 rq->rq_flags &= ~RQF_SOFTBARRIER; 708 list_del_init(&rq->queuelist); 709 blk_mq_sched_insert_request(rq, true, false, false); 710 } 711 712 while (!list_empty(&rq_list)) { 713 rq = list_entry(rq_list.next, struct request, queuelist); 714 list_del_init(&rq->queuelist); 715 blk_mq_sched_insert_request(rq, false, false, false); 716 } 717 718 blk_mq_run_hw_queues(q, false); 719 } 720 721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 722 bool kick_requeue_list) 723 { 724 struct request_queue *q = rq->q; 725 unsigned long flags; 726 727 /* 728 * We abuse this flag that is otherwise used by the I/O scheduler to 729 * request head insertion from the workqueue. 730 */ 731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 732 733 spin_lock_irqsave(&q->requeue_lock, flags); 734 if (at_head) { 735 rq->rq_flags |= RQF_SOFTBARRIER; 736 list_add(&rq->queuelist, &q->requeue_list); 737 } else { 738 list_add_tail(&rq->queuelist, &q->requeue_list); 739 } 740 spin_unlock_irqrestore(&q->requeue_lock, flags); 741 742 if (kick_requeue_list) 743 blk_mq_kick_requeue_list(q); 744 } 745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 746 747 void blk_mq_kick_requeue_list(struct request_queue *q) 748 { 749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 750 } 751 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 752 753 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 754 unsigned long msecs) 755 { 756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 757 msecs_to_jiffies(msecs)); 758 } 759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 760 761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 762 { 763 if (tag < tags->nr_tags) { 764 prefetch(tags->rqs[tag]); 765 return tags->rqs[tag]; 766 } 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(blk_mq_tag_to_rq); 771 772 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 773 { 774 req->rq_flags |= RQF_TIMED_OUT; 775 if (req->q->mq_ops->timeout) { 776 enum blk_eh_timer_return ret; 777 778 ret = req->q->mq_ops->timeout(req, reserved); 779 if (ret == BLK_EH_DONE) 780 return; 781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 782 } 783 784 blk_add_timer(req); 785 } 786 787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 788 { 789 unsigned long deadline; 790 791 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 792 return false; 793 if (rq->rq_flags & RQF_TIMED_OUT) 794 return false; 795 796 deadline = blk_rq_deadline(rq); 797 if (time_after_eq(jiffies, deadline)) 798 return true; 799 800 if (*next == 0) 801 *next = deadline; 802 else if (time_after(*next, deadline)) 803 *next = deadline; 804 return false; 805 } 806 807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 808 struct request *rq, void *priv, bool reserved) 809 { 810 unsigned long *next = priv; 811 812 /* 813 * Just do a quick check if it is expired before locking the request in 814 * so we're not unnecessarilly synchronizing across CPUs. 815 */ 816 if (!blk_mq_req_expired(rq, next)) 817 return; 818 819 /* 820 * We have reason to believe the request may be expired. Take a 821 * reference on the request to lock this request lifetime into its 822 * currently allocated context to prevent it from being reallocated in 823 * the event the completion by-passes this timeout handler. 824 * 825 * If the reference was already released, then the driver beat the 826 * timeout handler to posting a natural completion. 827 */ 828 if (!refcount_inc_not_zero(&rq->ref)) 829 return; 830 831 /* 832 * The request is now locked and cannot be reallocated underneath the 833 * timeout handler's processing. Re-verify this exact request is truly 834 * expired; if it is not expired, then the request was completed and 835 * reallocated as a new request. 836 */ 837 if (blk_mq_req_expired(rq, next)) 838 blk_mq_rq_timed_out(rq, reserved); 839 if (refcount_dec_and_test(&rq->ref)) 840 __blk_mq_free_request(rq); 841 } 842 843 static void blk_mq_timeout_work(struct work_struct *work) 844 { 845 struct request_queue *q = 846 container_of(work, struct request_queue, timeout_work); 847 unsigned long next = 0; 848 struct blk_mq_hw_ctx *hctx; 849 int i; 850 851 /* A deadlock might occur if a request is stuck requiring a 852 * timeout at the same time a queue freeze is waiting 853 * completion, since the timeout code would not be able to 854 * acquire the queue reference here. 855 * 856 * That's why we don't use blk_queue_enter here; instead, we use 857 * percpu_ref_tryget directly, because we need to be able to 858 * obtain a reference even in the short window between the queue 859 * starting to freeze, by dropping the first reference in 860 * blk_freeze_queue_start, and the moment the last request is 861 * consumed, marked by the instant q_usage_counter reaches 862 * zero. 863 */ 864 if (!percpu_ref_tryget(&q->q_usage_counter)) 865 return; 866 867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 868 869 if (next != 0) { 870 mod_timer(&q->timeout, next); 871 } else { 872 /* 873 * Request timeouts are handled as a forward rolling timer. If 874 * we end up here it means that no requests are pending and 875 * also that no request has been pending for a while. Mark 876 * each hctx as idle. 877 */ 878 queue_for_each_hw_ctx(q, hctx, i) { 879 /* the hctx may be unmapped, so check it here */ 880 if (blk_mq_hw_queue_mapped(hctx)) 881 blk_mq_tag_idle(hctx); 882 } 883 } 884 blk_queue_exit(q); 885 } 886 887 struct flush_busy_ctx_data { 888 struct blk_mq_hw_ctx *hctx; 889 struct list_head *list; 890 }; 891 892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 893 { 894 struct flush_busy_ctx_data *flush_data = data; 895 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 897 898 spin_lock(&ctx->lock); 899 list_splice_tail_init(&ctx->rq_list, flush_data->list); 900 sbitmap_clear_bit(sb, bitnr); 901 spin_unlock(&ctx->lock); 902 return true; 903 } 904 905 /* 906 * Process software queues that have been marked busy, splicing them 907 * to the for-dispatch 908 */ 909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 910 { 911 struct flush_busy_ctx_data data = { 912 .hctx = hctx, 913 .list = list, 914 }; 915 916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 917 } 918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 919 920 struct dispatch_rq_data { 921 struct blk_mq_hw_ctx *hctx; 922 struct request *rq; 923 }; 924 925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 926 void *data) 927 { 928 struct dispatch_rq_data *dispatch_data = data; 929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 931 932 spin_lock(&ctx->lock); 933 if (!list_empty(&ctx->rq_list)) { 934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 935 list_del_init(&dispatch_data->rq->queuelist); 936 if (list_empty(&ctx->rq_list)) 937 sbitmap_clear_bit(sb, bitnr); 938 } 939 spin_unlock(&ctx->lock); 940 941 return !dispatch_data->rq; 942 } 943 944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 945 struct blk_mq_ctx *start) 946 { 947 unsigned off = start ? start->index_hw : 0; 948 struct dispatch_rq_data data = { 949 .hctx = hctx, 950 .rq = NULL, 951 }; 952 953 __sbitmap_for_each_set(&hctx->ctx_map, off, 954 dispatch_rq_from_ctx, &data); 955 956 return data.rq; 957 } 958 959 static inline unsigned int queued_to_index(unsigned int queued) 960 { 961 if (!queued) 962 return 0; 963 964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 965 } 966 967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 968 bool wait) 969 { 970 struct blk_mq_alloc_data data = { 971 .q = rq->q, 972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 974 }; 975 976 might_sleep_if(wait); 977 978 if (rq->tag != -1) 979 goto done; 980 981 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 982 data.flags |= BLK_MQ_REQ_RESERVED; 983 984 rq->tag = blk_mq_get_tag(&data); 985 if (rq->tag >= 0) { 986 if (blk_mq_tag_busy(data.hctx)) { 987 rq->rq_flags |= RQF_MQ_INFLIGHT; 988 atomic_inc(&data.hctx->nr_active); 989 } 990 data.hctx->tags->rqs[rq->tag] = rq; 991 } 992 993 done: 994 if (hctx) 995 *hctx = data.hctx; 996 return rq->tag != -1; 997 } 998 999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1000 int flags, void *key) 1001 { 1002 struct blk_mq_hw_ctx *hctx; 1003 1004 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1005 1006 list_del_init(&wait->entry); 1007 blk_mq_run_hw_queue(hctx, true); 1008 return 1; 1009 } 1010 1011 /* 1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1014 * restart. For both cases, take care to check the condition again after 1015 * marking us as waiting. 1016 */ 1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1018 struct request *rq) 1019 { 1020 struct blk_mq_hw_ctx *this_hctx = *hctx; 1021 struct sbq_wait_state *ws; 1022 wait_queue_entry_t *wait; 1023 bool ret; 1024 1025 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1026 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1027 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1028 1029 /* 1030 * It's possible that a tag was freed in the window between the 1031 * allocation failure and adding the hardware queue to the wait 1032 * queue. 1033 * 1034 * Don't clear RESTART here, someone else could have set it. 1035 * At most this will cost an extra queue run. 1036 */ 1037 return blk_mq_get_driver_tag(rq, hctx, false); 1038 } 1039 1040 wait = &this_hctx->dispatch_wait; 1041 if (!list_empty_careful(&wait->entry)) 1042 return false; 1043 1044 spin_lock(&this_hctx->lock); 1045 if (!list_empty(&wait->entry)) { 1046 spin_unlock(&this_hctx->lock); 1047 return false; 1048 } 1049 1050 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1051 add_wait_queue(&ws->wait, wait); 1052 1053 /* 1054 * It's possible that a tag was freed in the window between the 1055 * allocation failure and adding the hardware queue to the wait 1056 * queue. 1057 */ 1058 ret = blk_mq_get_driver_tag(rq, hctx, false); 1059 if (!ret) { 1060 spin_unlock(&this_hctx->lock); 1061 return false; 1062 } 1063 1064 /* 1065 * We got a tag, remove ourselves from the wait queue to ensure 1066 * someone else gets the wakeup. 1067 */ 1068 spin_lock_irq(&ws->wait.lock); 1069 list_del_init(&wait->entry); 1070 spin_unlock_irq(&ws->wait.lock); 1071 spin_unlock(&this_hctx->lock); 1072 1073 return true; 1074 } 1075 1076 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1077 1078 /* 1079 * Returns true if we did some work AND can potentially do more. 1080 */ 1081 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1082 bool got_budget) 1083 { 1084 struct blk_mq_hw_ctx *hctx; 1085 struct request *rq, *nxt; 1086 bool no_tag = false; 1087 int errors, queued; 1088 blk_status_t ret = BLK_STS_OK; 1089 1090 if (list_empty(list)) 1091 return false; 1092 1093 WARN_ON(!list_is_singular(list) && got_budget); 1094 1095 /* 1096 * Now process all the entries, sending them to the driver. 1097 */ 1098 errors = queued = 0; 1099 do { 1100 struct blk_mq_queue_data bd; 1101 1102 rq = list_first_entry(list, struct request, queuelist); 1103 1104 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 1105 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1106 break; 1107 1108 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1109 /* 1110 * The initial allocation attempt failed, so we need to 1111 * rerun the hardware queue when a tag is freed. The 1112 * waitqueue takes care of that. If the queue is run 1113 * before we add this entry back on the dispatch list, 1114 * we'll re-run it below. 1115 */ 1116 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1117 blk_mq_put_dispatch_budget(hctx); 1118 /* 1119 * For non-shared tags, the RESTART check 1120 * will suffice. 1121 */ 1122 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1123 no_tag = true; 1124 break; 1125 } 1126 } 1127 1128 list_del_init(&rq->queuelist); 1129 1130 bd.rq = rq; 1131 1132 /* 1133 * Flag last if we have no more requests, or if we have more 1134 * but can't assign a driver tag to it. 1135 */ 1136 if (list_empty(list)) 1137 bd.last = true; 1138 else { 1139 nxt = list_first_entry(list, struct request, queuelist); 1140 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1141 } 1142 1143 ret = q->mq_ops->queue_rq(hctx, &bd); 1144 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1145 /* 1146 * If an I/O scheduler has been configured and we got a 1147 * driver tag for the next request already, free it 1148 * again. 1149 */ 1150 if (!list_empty(list)) { 1151 nxt = list_first_entry(list, struct request, queuelist); 1152 blk_mq_put_driver_tag(nxt); 1153 } 1154 list_add(&rq->queuelist, list); 1155 __blk_mq_requeue_request(rq); 1156 break; 1157 } 1158 1159 if (unlikely(ret != BLK_STS_OK)) { 1160 errors++; 1161 blk_mq_end_request(rq, BLK_STS_IOERR); 1162 continue; 1163 } 1164 1165 queued++; 1166 } while (!list_empty(list)); 1167 1168 hctx->dispatched[queued_to_index(queued)]++; 1169 1170 /* 1171 * Any items that need requeuing? Stuff them into hctx->dispatch, 1172 * that is where we will continue on next queue run. 1173 */ 1174 if (!list_empty(list)) { 1175 bool needs_restart; 1176 1177 spin_lock(&hctx->lock); 1178 list_splice_init(list, &hctx->dispatch); 1179 spin_unlock(&hctx->lock); 1180 1181 /* 1182 * If SCHED_RESTART was set by the caller of this function and 1183 * it is no longer set that means that it was cleared by another 1184 * thread and hence that a queue rerun is needed. 1185 * 1186 * If 'no_tag' is set, that means that we failed getting 1187 * a driver tag with an I/O scheduler attached. If our dispatch 1188 * waitqueue is no longer active, ensure that we run the queue 1189 * AFTER adding our entries back to the list. 1190 * 1191 * If no I/O scheduler has been configured it is possible that 1192 * the hardware queue got stopped and restarted before requests 1193 * were pushed back onto the dispatch list. Rerun the queue to 1194 * avoid starvation. Notes: 1195 * - blk_mq_run_hw_queue() checks whether or not a queue has 1196 * been stopped before rerunning a queue. 1197 * - Some but not all block drivers stop a queue before 1198 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1199 * and dm-rq. 1200 * 1201 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1202 * bit is set, run queue after a delay to avoid IO stalls 1203 * that could otherwise occur if the queue is idle. 1204 */ 1205 needs_restart = blk_mq_sched_needs_restart(hctx); 1206 if (!needs_restart || 1207 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1208 blk_mq_run_hw_queue(hctx, true); 1209 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1210 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1211 1212 return false; 1213 } 1214 1215 /* 1216 * If the host/device is unable to accept more work, inform the 1217 * caller of that. 1218 */ 1219 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1220 return false; 1221 1222 return (queued + errors) != 0; 1223 } 1224 1225 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1226 { 1227 int srcu_idx; 1228 1229 /* 1230 * We should be running this queue from one of the CPUs that 1231 * are mapped to it. 1232 * 1233 * There are at least two related races now between setting 1234 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1235 * __blk_mq_run_hw_queue(): 1236 * 1237 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1238 * but later it becomes online, then this warning is harmless 1239 * at all 1240 * 1241 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1242 * but later it becomes offline, then the warning can't be 1243 * triggered, and we depend on blk-mq timeout handler to 1244 * handle dispatched requests to this hctx 1245 */ 1246 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1247 cpu_online(hctx->next_cpu)) { 1248 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1249 raw_smp_processor_id(), 1250 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1251 dump_stack(); 1252 } 1253 1254 /* 1255 * We can't run the queue inline with ints disabled. Ensure that 1256 * we catch bad users of this early. 1257 */ 1258 WARN_ON_ONCE(in_interrupt()); 1259 1260 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1261 1262 hctx_lock(hctx, &srcu_idx); 1263 blk_mq_sched_dispatch_requests(hctx); 1264 hctx_unlock(hctx, srcu_idx); 1265 } 1266 1267 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1268 { 1269 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1270 1271 if (cpu >= nr_cpu_ids) 1272 cpu = cpumask_first(hctx->cpumask); 1273 return cpu; 1274 } 1275 1276 /* 1277 * It'd be great if the workqueue API had a way to pass 1278 * in a mask and had some smarts for more clever placement. 1279 * For now we just round-robin here, switching for every 1280 * BLK_MQ_CPU_WORK_BATCH queued items. 1281 */ 1282 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1283 { 1284 bool tried = false; 1285 int next_cpu = hctx->next_cpu; 1286 1287 if (hctx->queue->nr_hw_queues == 1) 1288 return WORK_CPU_UNBOUND; 1289 1290 if (--hctx->next_cpu_batch <= 0) { 1291 select_cpu: 1292 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1293 cpu_online_mask); 1294 if (next_cpu >= nr_cpu_ids) 1295 next_cpu = blk_mq_first_mapped_cpu(hctx); 1296 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1297 } 1298 1299 /* 1300 * Do unbound schedule if we can't find a online CPU for this hctx, 1301 * and it should only happen in the path of handling CPU DEAD. 1302 */ 1303 if (!cpu_online(next_cpu)) { 1304 if (!tried) { 1305 tried = true; 1306 goto select_cpu; 1307 } 1308 1309 /* 1310 * Make sure to re-select CPU next time once after CPUs 1311 * in hctx->cpumask become online again. 1312 */ 1313 hctx->next_cpu = next_cpu; 1314 hctx->next_cpu_batch = 1; 1315 return WORK_CPU_UNBOUND; 1316 } 1317 1318 hctx->next_cpu = next_cpu; 1319 return next_cpu; 1320 } 1321 1322 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1323 unsigned long msecs) 1324 { 1325 if (unlikely(blk_mq_hctx_stopped(hctx))) 1326 return; 1327 1328 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1329 int cpu = get_cpu(); 1330 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1331 __blk_mq_run_hw_queue(hctx); 1332 put_cpu(); 1333 return; 1334 } 1335 1336 put_cpu(); 1337 } 1338 1339 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1340 msecs_to_jiffies(msecs)); 1341 } 1342 1343 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1344 { 1345 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1346 } 1347 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1348 1349 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1350 { 1351 int srcu_idx; 1352 bool need_run; 1353 1354 /* 1355 * When queue is quiesced, we may be switching io scheduler, or 1356 * updating nr_hw_queues, or other things, and we can't run queue 1357 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1358 * 1359 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1360 * quiesced. 1361 */ 1362 hctx_lock(hctx, &srcu_idx); 1363 need_run = !blk_queue_quiesced(hctx->queue) && 1364 blk_mq_hctx_has_pending(hctx); 1365 hctx_unlock(hctx, srcu_idx); 1366 1367 if (need_run) { 1368 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1369 return true; 1370 } 1371 1372 return false; 1373 } 1374 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1375 1376 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1377 { 1378 struct blk_mq_hw_ctx *hctx; 1379 int i; 1380 1381 queue_for_each_hw_ctx(q, hctx, i) { 1382 if (blk_mq_hctx_stopped(hctx)) 1383 continue; 1384 1385 blk_mq_run_hw_queue(hctx, async); 1386 } 1387 } 1388 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1389 1390 /** 1391 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1392 * @q: request queue. 1393 * 1394 * The caller is responsible for serializing this function against 1395 * blk_mq_{start,stop}_hw_queue(). 1396 */ 1397 bool blk_mq_queue_stopped(struct request_queue *q) 1398 { 1399 struct blk_mq_hw_ctx *hctx; 1400 int i; 1401 1402 queue_for_each_hw_ctx(q, hctx, i) 1403 if (blk_mq_hctx_stopped(hctx)) 1404 return true; 1405 1406 return false; 1407 } 1408 EXPORT_SYMBOL(blk_mq_queue_stopped); 1409 1410 /* 1411 * This function is often used for pausing .queue_rq() by driver when 1412 * there isn't enough resource or some conditions aren't satisfied, and 1413 * BLK_STS_RESOURCE is usually returned. 1414 * 1415 * We do not guarantee that dispatch can be drained or blocked 1416 * after blk_mq_stop_hw_queue() returns. Please use 1417 * blk_mq_quiesce_queue() for that requirement. 1418 */ 1419 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1420 { 1421 cancel_delayed_work(&hctx->run_work); 1422 1423 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1424 } 1425 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1426 1427 /* 1428 * This function is often used for pausing .queue_rq() by driver when 1429 * there isn't enough resource or some conditions aren't satisfied, and 1430 * BLK_STS_RESOURCE is usually returned. 1431 * 1432 * We do not guarantee that dispatch can be drained or blocked 1433 * after blk_mq_stop_hw_queues() returns. Please use 1434 * blk_mq_quiesce_queue() for that requirement. 1435 */ 1436 void blk_mq_stop_hw_queues(struct request_queue *q) 1437 { 1438 struct blk_mq_hw_ctx *hctx; 1439 int i; 1440 1441 queue_for_each_hw_ctx(q, hctx, i) 1442 blk_mq_stop_hw_queue(hctx); 1443 } 1444 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1445 1446 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1447 { 1448 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1449 1450 blk_mq_run_hw_queue(hctx, false); 1451 } 1452 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1453 1454 void blk_mq_start_hw_queues(struct request_queue *q) 1455 { 1456 struct blk_mq_hw_ctx *hctx; 1457 int i; 1458 1459 queue_for_each_hw_ctx(q, hctx, i) 1460 blk_mq_start_hw_queue(hctx); 1461 } 1462 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1463 1464 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1465 { 1466 if (!blk_mq_hctx_stopped(hctx)) 1467 return; 1468 1469 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1470 blk_mq_run_hw_queue(hctx, async); 1471 } 1472 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1473 1474 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1475 { 1476 struct blk_mq_hw_ctx *hctx; 1477 int i; 1478 1479 queue_for_each_hw_ctx(q, hctx, i) 1480 blk_mq_start_stopped_hw_queue(hctx, async); 1481 } 1482 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1483 1484 static void blk_mq_run_work_fn(struct work_struct *work) 1485 { 1486 struct blk_mq_hw_ctx *hctx; 1487 1488 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1489 1490 /* 1491 * If we are stopped, don't run the queue. 1492 */ 1493 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1494 return; 1495 1496 __blk_mq_run_hw_queue(hctx); 1497 } 1498 1499 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1500 struct request *rq, 1501 bool at_head) 1502 { 1503 struct blk_mq_ctx *ctx = rq->mq_ctx; 1504 1505 lockdep_assert_held(&ctx->lock); 1506 1507 trace_block_rq_insert(hctx->queue, rq); 1508 1509 if (at_head) 1510 list_add(&rq->queuelist, &ctx->rq_list); 1511 else 1512 list_add_tail(&rq->queuelist, &ctx->rq_list); 1513 } 1514 1515 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1516 bool at_head) 1517 { 1518 struct blk_mq_ctx *ctx = rq->mq_ctx; 1519 1520 lockdep_assert_held(&ctx->lock); 1521 1522 __blk_mq_insert_req_list(hctx, rq, at_head); 1523 blk_mq_hctx_mark_pending(hctx, ctx); 1524 } 1525 1526 /* 1527 * Should only be used carefully, when the caller knows we want to 1528 * bypass a potential IO scheduler on the target device. 1529 */ 1530 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1531 { 1532 struct blk_mq_ctx *ctx = rq->mq_ctx; 1533 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1534 1535 spin_lock(&hctx->lock); 1536 list_add_tail(&rq->queuelist, &hctx->dispatch); 1537 spin_unlock(&hctx->lock); 1538 1539 if (run_queue) 1540 blk_mq_run_hw_queue(hctx, false); 1541 } 1542 1543 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1544 struct list_head *list) 1545 1546 { 1547 /* 1548 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1549 * offline now 1550 */ 1551 spin_lock(&ctx->lock); 1552 while (!list_empty(list)) { 1553 struct request *rq; 1554 1555 rq = list_first_entry(list, struct request, queuelist); 1556 BUG_ON(rq->mq_ctx != ctx); 1557 list_del_init(&rq->queuelist); 1558 __blk_mq_insert_req_list(hctx, rq, false); 1559 } 1560 blk_mq_hctx_mark_pending(hctx, ctx); 1561 spin_unlock(&ctx->lock); 1562 } 1563 1564 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1565 { 1566 struct request *rqa = container_of(a, struct request, queuelist); 1567 struct request *rqb = container_of(b, struct request, queuelist); 1568 1569 return !(rqa->mq_ctx < rqb->mq_ctx || 1570 (rqa->mq_ctx == rqb->mq_ctx && 1571 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1572 } 1573 1574 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1575 { 1576 struct blk_mq_ctx *this_ctx; 1577 struct request_queue *this_q; 1578 struct request *rq; 1579 LIST_HEAD(list); 1580 LIST_HEAD(ctx_list); 1581 unsigned int depth; 1582 1583 list_splice_init(&plug->mq_list, &list); 1584 1585 list_sort(NULL, &list, plug_ctx_cmp); 1586 1587 this_q = NULL; 1588 this_ctx = NULL; 1589 depth = 0; 1590 1591 while (!list_empty(&list)) { 1592 rq = list_entry_rq(list.next); 1593 list_del_init(&rq->queuelist); 1594 BUG_ON(!rq->q); 1595 if (rq->mq_ctx != this_ctx) { 1596 if (this_ctx) { 1597 trace_block_unplug(this_q, depth, from_schedule); 1598 blk_mq_sched_insert_requests(this_q, this_ctx, 1599 &ctx_list, 1600 from_schedule); 1601 } 1602 1603 this_ctx = rq->mq_ctx; 1604 this_q = rq->q; 1605 depth = 0; 1606 } 1607 1608 depth++; 1609 list_add_tail(&rq->queuelist, &ctx_list); 1610 } 1611 1612 /* 1613 * If 'this_ctx' is set, we know we have entries to complete 1614 * on 'ctx_list'. Do those. 1615 */ 1616 if (this_ctx) { 1617 trace_block_unplug(this_q, depth, from_schedule); 1618 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1619 from_schedule); 1620 } 1621 } 1622 1623 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1624 { 1625 blk_init_request_from_bio(rq, bio); 1626 1627 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1628 1629 blk_account_io_start(rq, true); 1630 } 1631 1632 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1633 { 1634 if (rq->tag != -1) 1635 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1636 1637 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1638 } 1639 1640 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1641 struct request *rq, 1642 blk_qc_t *cookie) 1643 { 1644 struct request_queue *q = rq->q; 1645 struct blk_mq_queue_data bd = { 1646 .rq = rq, 1647 .last = true, 1648 }; 1649 blk_qc_t new_cookie; 1650 blk_status_t ret; 1651 1652 new_cookie = request_to_qc_t(hctx, rq); 1653 1654 /* 1655 * For OK queue, we are done. For error, caller may kill it. 1656 * Any other error (busy), just add it to our list as we 1657 * previously would have done. 1658 */ 1659 ret = q->mq_ops->queue_rq(hctx, &bd); 1660 switch (ret) { 1661 case BLK_STS_OK: 1662 *cookie = new_cookie; 1663 break; 1664 case BLK_STS_RESOURCE: 1665 case BLK_STS_DEV_RESOURCE: 1666 __blk_mq_requeue_request(rq); 1667 break; 1668 default: 1669 *cookie = BLK_QC_T_NONE; 1670 break; 1671 } 1672 1673 return ret; 1674 } 1675 1676 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1677 struct request *rq, 1678 blk_qc_t *cookie, 1679 bool bypass_insert) 1680 { 1681 struct request_queue *q = rq->q; 1682 bool run_queue = true; 1683 1684 /* 1685 * RCU or SRCU read lock is needed before checking quiesced flag. 1686 * 1687 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1688 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1689 * and avoid driver to try to dispatch again. 1690 */ 1691 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1692 run_queue = false; 1693 bypass_insert = false; 1694 goto insert; 1695 } 1696 1697 if (q->elevator && !bypass_insert) 1698 goto insert; 1699 1700 if (!blk_mq_get_dispatch_budget(hctx)) 1701 goto insert; 1702 1703 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1704 blk_mq_put_dispatch_budget(hctx); 1705 goto insert; 1706 } 1707 1708 return __blk_mq_issue_directly(hctx, rq, cookie); 1709 insert: 1710 if (bypass_insert) 1711 return BLK_STS_RESOURCE; 1712 1713 blk_mq_sched_insert_request(rq, false, run_queue, false); 1714 return BLK_STS_OK; 1715 } 1716 1717 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1718 struct request *rq, blk_qc_t *cookie) 1719 { 1720 blk_status_t ret; 1721 int srcu_idx; 1722 1723 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1724 1725 hctx_lock(hctx, &srcu_idx); 1726 1727 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1728 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1729 blk_mq_sched_insert_request(rq, false, true, false); 1730 else if (ret != BLK_STS_OK) 1731 blk_mq_end_request(rq, ret); 1732 1733 hctx_unlock(hctx, srcu_idx); 1734 } 1735 1736 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1737 { 1738 blk_status_t ret; 1739 int srcu_idx; 1740 blk_qc_t unused_cookie; 1741 struct blk_mq_ctx *ctx = rq->mq_ctx; 1742 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1743 1744 hctx_lock(hctx, &srcu_idx); 1745 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1746 hctx_unlock(hctx, srcu_idx); 1747 1748 return ret; 1749 } 1750 1751 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1752 { 1753 const int is_sync = op_is_sync(bio->bi_opf); 1754 const int is_flush_fua = op_is_flush(bio->bi_opf); 1755 struct blk_mq_alloc_data data = { .flags = 0 }; 1756 struct request *rq; 1757 unsigned int request_count = 0; 1758 struct blk_plug *plug; 1759 struct request *same_queue_rq = NULL; 1760 blk_qc_t cookie; 1761 unsigned int wb_acct; 1762 1763 blk_queue_bounce(q, &bio); 1764 1765 blk_queue_split(q, &bio); 1766 1767 if (!bio_integrity_prep(bio)) 1768 return BLK_QC_T_NONE; 1769 1770 if (!is_flush_fua && !blk_queue_nomerges(q) && 1771 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1772 return BLK_QC_T_NONE; 1773 1774 if (blk_mq_sched_bio_merge(q, bio)) 1775 return BLK_QC_T_NONE; 1776 1777 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1778 1779 trace_block_getrq(q, bio, bio->bi_opf); 1780 1781 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1782 if (unlikely(!rq)) { 1783 __wbt_done(q->rq_wb, wb_acct); 1784 if (bio->bi_opf & REQ_NOWAIT) 1785 bio_wouldblock_error(bio); 1786 return BLK_QC_T_NONE; 1787 } 1788 1789 wbt_track(rq, wb_acct); 1790 1791 cookie = request_to_qc_t(data.hctx, rq); 1792 1793 plug = current->plug; 1794 if (unlikely(is_flush_fua)) { 1795 blk_mq_put_ctx(data.ctx); 1796 blk_mq_bio_to_request(rq, bio); 1797 1798 /* bypass scheduler for flush rq */ 1799 blk_insert_flush(rq); 1800 blk_mq_run_hw_queue(data.hctx, true); 1801 } else if (plug && q->nr_hw_queues == 1) { 1802 struct request *last = NULL; 1803 1804 blk_mq_put_ctx(data.ctx); 1805 blk_mq_bio_to_request(rq, bio); 1806 1807 /* 1808 * @request_count may become stale because of schedule 1809 * out, so check the list again. 1810 */ 1811 if (list_empty(&plug->mq_list)) 1812 request_count = 0; 1813 else if (blk_queue_nomerges(q)) 1814 request_count = blk_plug_queued_count(q); 1815 1816 if (!request_count) 1817 trace_block_plug(q); 1818 else 1819 last = list_entry_rq(plug->mq_list.prev); 1820 1821 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1822 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1823 blk_flush_plug_list(plug, false); 1824 trace_block_plug(q); 1825 } 1826 1827 list_add_tail(&rq->queuelist, &plug->mq_list); 1828 } else if (plug && !blk_queue_nomerges(q)) { 1829 blk_mq_bio_to_request(rq, bio); 1830 1831 /* 1832 * We do limited plugging. If the bio can be merged, do that. 1833 * Otherwise the existing request in the plug list will be 1834 * issued. So the plug list will have one request at most 1835 * The plug list might get flushed before this. If that happens, 1836 * the plug list is empty, and same_queue_rq is invalid. 1837 */ 1838 if (list_empty(&plug->mq_list)) 1839 same_queue_rq = NULL; 1840 if (same_queue_rq) 1841 list_del_init(&same_queue_rq->queuelist); 1842 list_add_tail(&rq->queuelist, &plug->mq_list); 1843 1844 blk_mq_put_ctx(data.ctx); 1845 1846 if (same_queue_rq) { 1847 data.hctx = blk_mq_map_queue(q, 1848 same_queue_rq->mq_ctx->cpu); 1849 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1850 &cookie); 1851 } 1852 } else if (q->nr_hw_queues > 1 && is_sync) { 1853 blk_mq_put_ctx(data.ctx); 1854 blk_mq_bio_to_request(rq, bio); 1855 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1856 } else { 1857 blk_mq_put_ctx(data.ctx); 1858 blk_mq_bio_to_request(rq, bio); 1859 blk_mq_sched_insert_request(rq, false, true, true); 1860 } 1861 1862 return cookie; 1863 } 1864 1865 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1866 unsigned int hctx_idx) 1867 { 1868 struct page *page; 1869 1870 if (tags->rqs && set->ops->exit_request) { 1871 int i; 1872 1873 for (i = 0; i < tags->nr_tags; i++) { 1874 struct request *rq = tags->static_rqs[i]; 1875 1876 if (!rq) 1877 continue; 1878 set->ops->exit_request(set, rq, hctx_idx); 1879 tags->static_rqs[i] = NULL; 1880 } 1881 } 1882 1883 while (!list_empty(&tags->page_list)) { 1884 page = list_first_entry(&tags->page_list, struct page, lru); 1885 list_del_init(&page->lru); 1886 /* 1887 * Remove kmemleak object previously allocated in 1888 * blk_mq_init_rq_map(). 1889 */ 1890 kmemleak_free(page_address(page)); 1891 __free_pages(page, page->private); 1892 } 1893 } 1894 1895 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1896 { 1897 kfree(tags->rqs); 1898 tags->rqs = NULL; 1899 kfree(tags->static_rqs); 1900 tags->static_rqs = NULL; 1901 1902 blk_mq_free_tags(tags); 1903 } 1904 1905 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1906 unsigned int hctx_idx, 1907 unsigned int nr_tags, 1908 unsigned int reserved_tags) 1909 { 1910 struct blk_mq_tags *tags; 1911 int node; 1912 1913 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1914 if (node == NUMA_NO_NODE) 1915 node = set->numa_node; 1916 1917 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1918 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1919 if (!tags) 1920 return NULL; 1921 1922 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 1923 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1924 node); 1925 if (!tags->rqs) { 1926 blk_mq_free_tags(tags); 1927 return NULL; 1928 } 1929 1930 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 1931 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1932 node); 1933 if (!tags->static_rqs) { 1934 kfree(tags->rqs); 1935 blk_mq_free_tags(tags); 1936 return NULL; 1937 } 1938 1939 return tags; 1940 } 1941 1942 static size_t order_to_size(unsigned int order) 1943 { 1944 return (size_t)PAGE_SIZE << order; 1945 } 1946 1947 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1948 unsigned int hctx_idx, int node) 1949 { 1950 int ret; 1951 1952 if (set->ops->init_request) { 1953 ret = set->ops->init_request(set, rq, hctx_idx, node); 1954 if (ret) 1955 return ret; 1956 } 1957 1958 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1959 return 0; 1960 } 1961 1962 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1963 unsigned int hctx_idx, unsigned int depth) 1964 { 1965 unsigned int i, j, entries_per_page, max_order = 4; 1966 size_t rq_size, left; 1967 int node; 1968 1969 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1970 if (node == NUMA_NO_NODE) 1971 node = set->numa_node; 1972 1973 INIT_LIST_HEAD(&tags->page_list); 1974 1975 /* 1976 * rq_size is the size of the request plus driver payload, rounded 1977 * to the cacheline size 1978 */ 1979 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1980 cache_line_size()); 1981 left = rq_size * depth; 1982 1983 for (i = 0; i < depth; ) { 1984 int this_order = max_order; 1985 struct page *page; 1986 int to_do; 1987 void *p; 1988 1989 while (this_order && left < order_to_size(this_order - 1)) 1990 this_order--; 1991 1992 do { 1993 page = alloc_pages_node(node, 1994 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1995 this_order); 1996 if (page) 1997 break; 1998 if (!this_order--) 1999 break; 2000 if (order_to_size(this_order) < rq_size) 2001 break; 2002 } while (1); 2003 2004 if (!page) 2005 goto fail; 2006 2007 page->private = this_order; 2008 list_add_tail(&page->lru, &tags->page_list); 2009 2010 p = page_address(page); 2011 /* 2012 * Allow kmemleak to scan these pages as they contain pointers 2013 * to additional allocations like via ops->init_request(). 2014 */ 2015 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2016 entries_per_page = order_to_size(this_order) / rq_size; 2017 to_do = min(entries_per_page, depth - i); 2018 left -= to_do * rq_size; 2019 for (j = 0; j < to_do; j++) { 2020 struct request *rq = p; 2021 2022 tags->static_rqs[i] = rq; 2023 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2024 tags->static_rqs[i] = NULL; 2025 goto fail; 2026 } 2027 2028 p += rq_size; 2029 i++; 2030 } 2031 } 2032 return 0; 2033 2034 fail: 2035 blk_mq_free_rqs(set, tags, hctx_idx); 2036 return -ENOMEM; 2037 } 2038 2039 /* 2040 * 'cpu' is going away. splice any existing rq_list entries from this 2041 * software queue to the hw queue dispatch list, and ensure that it 2042 * gets run. 2043 */ 2044 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2045 { 2046 struct blk_mq_hw_ctx *hctx; 2047 struct blk_mq_ctx *ctx; 2048 LIST_HEAD(tmp); 2049 2050 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2051 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2052 2053 spin_lock(&ctx->lock); 2054 if (!list_empty(&ctx->rq_list)) { 2055 list_splice_init(&ctx->rq_list, &tmp); 2056 blk_mq_hctx_clear_pending(hctx, ctx); 2057 } 2058 spin_unlock(&ctx->lock); 2059 2060 if (list_empty(&tmp)) 2061 return 0; 2062 2063 spin_lock(&hctx->lock); 2064 list_splice_tail_init(&tmp, &hctx->dispatch); 2065 spin_unlock(&hctx->lock); 2066 2067 blk_mq_run_hw_queue(hctx, true); 2068 return 0; 2069 } 2070 2071 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2072 { 2073 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2074 &hctx->cpuhp_dead); 2075 } 2076 2077 /* hctx->ctxs will be freed in queue's release handler */ 2078 static void blk_mq_exit_hctx(struct request_queue *q, 2079 struct blk_mq_tag_set *set, 2080 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2081 { 2082 blk_mq_debugfs_unregister_hctx(hctx); 2083 2084 if (blk_mq_hw_queue_mapped(hctx)) 2085 blk_mq_tag_idle(hctx); 2086 2087 if (set->ops->exit_request) 2088 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2089 2090 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2091 2092 if (set->ops->exit_hctx) 2093 set->ops->exit_hctx(hctx, hctx_idx); 2094 2095 if (hctx->flags & BLK_MQ_F_BLOCKING) 2096 cleanup_srcu_struct(hctx->srcu); 2097 2098 blk_mq_remove_cpuhp(hctx); 2099 blk_free_flush_queue(hctx->fq); 2100 sbitmap_free(&hctx->ctx_map); 2101 } 2102 2103 static void blk_mq_exit_hw_queues(struct request_queue *q, 2104 struct blk_mq_tag_set *set, int nr_queue) 2105 { 2106 struct blk_mq_hw_ctx *hctx; 2107 unsigned int i; 2108 2109 queue_for_each_hw_ctx(q, hctx, i) { 2110 if (i == nr_queue) 2111 break; 2112 blk_mq_exit_hctx(q, set, hctx, i); 2113 } 2114 } 2115 2116 static int blk_mq_init_hctx(struct request_queue *q, 2117 struct blk_mq_tag_set *set, 2118 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2119 { 2120 int node; 2121 2122 node = hctx->numa_node; 2123 if (node == NUMA_NO_NODE) 2124 node = hctx->numa_node = set->numa_node; 2125 2126 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2127 spin_lock_init(&hctx->lock); 2128 INIT_LIST_HEAD(&hctx->dispatch); 2129 hctx->queue = q; 2130 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2131 2132 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2133 2134 hctx->tags = set->tags[hctx_idx]; 2135 2136 /* 2137 * Allocate space for all possible cpus to avoid allocation at 2138 * runtime 2139 */ 2140 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2141 GFP_KERNEL, node); 2142 if (!hctx->ctxs) 2143 goto unregister_cpu_notifier; 2144 2145 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2146 node)) 2147 goto free_ctxs; 2148 2149 hctx->nr_ctx = 0; 2150 2151 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2152 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2153 2154 if (set->ops->init_hctx && 2155 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2156 goto free_bitmap; 2157 2158 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2159 goto exit_hctx; 2160 2161 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2162 if (!hctx->fq) 2163 goto sched_exit_hctx; 2164 2165 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2166 goto free_fq; 2167 2168 if (hctx->flags & BLK_MQ_F_BLOCKING) 2169 init_srcu_struct(hctx->srcu); 2170 2171 blk_mq_debugfs_register_hctx(q, hctx); 2172 2173 return 0; 2174 2175 free_fq: 2176 kfree(hctx->fq); 2177 sched_exit_hctx: 2178 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2179 exit_hctx: 2180 if (set->ops->exit_hctx) 2181 set->ops->exit_hctx(hctx, hctx_idx); 2182 free_bitmap: 2183 sbitmap_free(&hctx->ctx_map); 2184 free_ctxs: 2185 kfree(hctx->ctxs); 2186 unregister_cpu_notifier: 2187 blk_mq_remove_cpuhp(hctx); 2188 return -1; 2189 } 2190 2191 static void blk_mq_init_cpu_queues(struct request_queue *q, 2192 unsigned int nr_hw_queues) 2193 { 2194 unsigned int i; 2195 2196 for_each_possible_cpu(i) { 2197 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2198 struct blk_mq_hw_ctx *hctx; 2199 2200 __ctx->cpu = i; 2201 spin_lock_init(&__ctx->lock); 2202 INIT_LIST_HEAD(&__ctx->rq_list); 2203 __ctx->queue = q; 2204 2205 /* 2206 * Set local node, IFF we have more than one hw queue. If 2207 * not, we remain on the home node of the device 2208 */ 2209 hctx = blk_mq_map_queue(q, i); 2210 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2211 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2212 } 2213 } 2214 2215 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2216 { 2217 int ret = 0; 2218 2219 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2220 set->queue_depth, set->reserved_tags); 2221 if (!set->tags[hctx_idx]) 2222 return false; 2223 2224 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2225 set->queue_depth); 2226 if (!ret) 2227 return true; 2228 2229 blk_mq_free_rq_map(set->tags[hctx_idx]); 2230 set->tags[hctx_idx] = NULL; 2231 return false; 2232 } 2233 2234 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2235 unsigned int hctx_idx) 2236 { 2237 if (set->tags[hctx_idx]) { 2238 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2239 blk_mq_free_rq_map(set->tags[hctx_idx]); 2240 set->tags[hctx_idx] = NULL; 2241 } 2242 } 2243 2244 static void blk_mq_map_swqueue(struct request_queue *q) 2245 { 2246 unsigned int i, hctx_idx; 2247 struct blk_mq_hw_ctx *hctx; 2248 struct blk_mq_ctx *ctx; 2249 struct blk_mq_tag_set *set = q->tag_set; 2250 2251 /* 2252 * Avoid others reading imcomplete hctx->cpumask through sysfs 2253 */ 2254 mutex_lock(&q->sysfs_lock); 2255 2256 queue_for_each_hw_ctx(q, hctx, i) { 2257 cpumask_clear(hctx->cpumask); 2258 hctx->nr_ctx = 0; 2259 hctx->dispatch_from = NULL; 2260 } 2261 2262 /* 2263 * Map software to hardware queues. 2264 * 2265 * If the cpu isn't present, the cpu is mapped to first hctx. 2266 */ 2267 for_each_possible_cpu(i) { 2268 hctx_idx = q->mq_map[i]; 2269 /* unmapped hw queue can be remapped after CPU topo changed */ 2270 if (!set->tags[hctx_idx] && 2271 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2272 /* 2273 * If tags initialization fail for some hctx, 2274 * that hctx won't be brought online. In this 2275 * case, remap the current ctx to hctx[0] which 2276 * is guaranteed to always have tags allocated 2277 */ 2278 q->mq_map[i] = 0; 2279 } 2280 2281 ctx = per_cpu_ptr(q->queue_ctx, i); 2282 hctx = blk_mq_map_queue(q, i); 2283 2284 cpumask_set_cpu(i, hctx->cpumask); 2285 ctx->index_hw = hctx->nr_ctx; 2286 hctx->ctxs[hctx->nr_ctx++] = ctx; 2287 } 2288 2289 mutex_unlock(&q->sysfs_lock); 2290 2291 queue_for_each_hw_ctx(q, hctx, i) { 2292 /* 2293 * If no software queues are mapped to this hardware queue, 2294 * disable it and free the request entries. 2295 */ 2296 if (!hctx->nr_ctx) { 2297 /* Never unmap queue 0. We need it as a 2298 * fallback in case of a new remap fails 2299 * allocation 2300 */ 2301 if (i && set->tags[i]) 2302 blk_mq_free_map_and_requests(set, i); 2303 2304 hctx->tags = NULL; 2305 continue; 2306 } 2307 2308 hctx->tags = set->tags[i]; 2309 WARN_ON(!hctx->tags); 2310 2311 /* 2312 * Set the map size to the number of mapped software queues. 2313 * This is more accurate and more efficient than looping 2314 * over all possibly mapped software queues. 2315 */ 2316 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2317 2318 /* 2319 * Initialize batch roundrobin counts 2320 */ 2321 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2322 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2323 } 2324 } 2325 2326 /* 2327 * Caller needs to ensure that we're either frozen/quiesced, or that 2328 * the queue isn't live yet. 2329 */ 2330 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2331 { 2332 struct blk_mq_hw_ctx *hctx; 2333 int i; 2334 2335 queue_for_each_hw_ctx(q, hctx, i) { 2336 if (shared) { 2337 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2338 atomic_inc(&q->shared_hctx_restart); 2339 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2340 } else { 2341 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2342 atomic_dec(&q->shared_hctx_restart); 2343 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2344 } 2345 } 2346 } 2347 2348 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2349 bool shared) 2350 { 2351 struct request_queue *q; 2352 2353 lockdep_assert_held(&set->tag_list_lock); 2354 2355 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2356 blk_mq_freeze_queue(q); 2357 queue_set_hctx_shared(q, shared); 2358 blk_mq_unfreeze_queue(q); 2359 } 2360 } 2361 2362 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2363 { 2364 struct blk_mq_tag_set *set = q->tag_set; 2365 2366 mutex_lock(&set->tag_list_lock); 2367 list_del_rcu(&q->tag_set_list); 2368 if (list_is_singular(&set->tag_list)) { 2369 /* just transitioned to unshared */ 2370 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2371 /* update existing queue */ 2372 blk_mq_update_tag_set_depth(set, false); 2373 } 2374 mutex_unlock(&set->tag_list_lock); 2375 synchronize_rcu(); 2376 INIT_LIST_HEAD(&q->tag_set_list); 2377 } 2378 2379 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2380 struct request_queue *q) 2381 { 2382 q->tag_set = set; 2383 2384 mutex_lock(&set->tag_list_lock); 2385 2386 /* 2387 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2388 */ 2389 if (!list_empty(&set->tag_list) && 2390 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2391 set->flags |= BLK_MQ_F_TAG_SHARED; 2392 /* update existing queue */ 2393 blk_mq_update_tag_set_depth(set, true); 2394 } 2395 if (set->flags & BLK_MQ_F_TAG_SHARED) 2396 queue_set_hctx_shared(q, true); 2397 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2398 2399 mutex_unlock(&set->tag_list_lock); 2400 } 2401 2402 /* 2403 * It is the actual release handler for mq, but we do it from 2404 * request queue's release handler for avoiding use-after-free 2405 * and headache because q->mq_kobj shouldn't have been introduced, 2406 * but we can't group ctx/kctx kobj without it. 2407 */ 2408 void blk_mq_release(struct request_queue *q) 2409 { 2410 struct blk_mq_hw_ctx *hctx; 2411 unsigned int i; 2412 2413 /* hctx kobj stays in hctx */ 2414 queue_for_each_hw_ctx(q, hctx, i) { 2415 if (!hctx) 2416 continue; 2417 kobject_put(&hctx->kobj); 2418 } 2419 2420 q->mq_map = NULL; 2421 2422 kfree(q->queue_hw_ctx); 2423 2424 /* 2425 * release .mq_kobj and sw queue's kobject now because 2426 * both share lifetime with request queue. 2427 */ 2428 blk_mq_sysfs_deinit(q); 2429 2430 free_percpu(q->queue_ctx); 2431 } 2432 2433 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2434 { 2435 struct request_queue *uninit_q, *q; 2436 2437 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2438 if (!uninit_q) 2439 return ERR_PTR(-ENOMEM); 2440 2441 q = blk_mq_init_allocated_queue(set, uninit_q); 2442 if (IS_ERR(q)) 2443 blk_cleanup_queue(uninit_q); 2444 2445 return q; 2446 } 2447 EXPORT_SYMBOL(blk_mq_init_queue); 2448 2449 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2450 { 2451 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2452 2453 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2454 __alignof__(struct blk_mq_hw_ctx)) != 2455 sizeof(struct blk_mq_hw_ctx)); 2456 2457 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2458 hw_ctx_size += sizeof(struct srcu_struct); 2459 2460 return hw_ctx_size; 2461 } 2462 2463 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2464 struct request_queue *q) 2465 { 2466 int i, j; 2467 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2468 2469 blk_mq_sysfs_unregister(q); 2470 2471 /* protect against switching io scheduler */ 2472 mutex_lock(&q->sysfs_lock); 2473 for (i = 0; i < set->nr_hw_queues; i++) { 2474 int node; 2475 2476 if (hctxs[i]) 2477 continue; 2478 2479 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2480 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2481 GFP_KERNEL, node); 2482 if (!hctxs[i]) 2483 break; 2484 2485 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2486 node)) { 2487 kfree(hctxs[i]); 2488 hctxs[i] = NULL; 2489 break; 2490 } 2491 2492 atomic_set(&hctxs[i]->nr_active, 0); 2493 hctxs[i]->numa_node = node; 2494 hctxs[i]->queue_num = i; 2495 2496 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2497 free_cpumask_var(hctxs[i]->cpumask); 2498 kfree(hctxs[i]); 2499 hctxs[i] = NULL; 2500 break; 2501 } 2502 blk_mq_hctx_kobj_init(hctxs[i]); 2503 } 2504 for (j = i; j < q->nr_hw_queues; j++) { 2505 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2506 2507 if (hctx) { 2508 if (hctx->tags) 2509 blk_mq_free_map_and_requests(set, j); 2510 blk_mq_exit_hctx(q, set, hctx, j); 2511 kobject_put(&hctx->kobj); 2512 hctxs[j] = NULL; 2513 2514 } 2515 } 2516 q->nr_hw_queues = i; 2517 mutex_unlock(&q->sysfs_lock); 2518 blk_mq_sysfs_register(q); 2519 } 2520 2521 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2522 struct request_queue *q) 2523 { 2524 /* mark the queue as mq asap */ 2525 q->mq_ops = set->ops; 2526 2527 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2528 blk_mq_poll_stats_bkt, 2529 BLK_MQ_POLL_STATS_BKTS, q); 2530 if (!q->poll_cb) 2531 goto err_exit; 2532 2533 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2534 if (!q->queue_ctx) 2535 goto err_exit; 2536 2537 /* init q->mq_kobj and sw queues' kobjects */ 2538 blk_mq_sysfs_init(q); 2539 2540 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)), 2541 GFP_KERNEL, set->numa_node); 2542 if (!q->queue_hw_ctx) 2543 goto err_percpu; 2544 2545 q->mq_map = set->mq_map; 2546 2547 blk_mq_realloc_hw_ctxs(set, q); 2548 if (!q->nr_hw_queues) 2549 goto err_hctxs; 2550 2551 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2552 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2553 2554 q->nr_queues = nr_cpu_ids; 2555 2556 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2557 2558 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2559 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2560 2561 q->sg_reserved_size = INT_MAX; 2562 2563 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2564 INIT_LIST_HEAD(&q->requeue_list); 2565 spin_lock_init(&q->requeue_lock); 2566 2567 blk_queue_make_request(q, blk_mq_make_request); 2568 if (q->mq_ops->poll) 2569 q->poll_fn = blk_mq_poll; 2570 2571 /* 2572 * Do this after blk_queue_make_request() overrides it... 2573 */ 2574 q->nr_requests = set->queue_depth; 2575 2576 /* 2577 * Default to classic polling 2578 */ 2579 q->poll_nsec = -1; 2580 2581 if (set->ops->complete) 2582 blk_queue_softirq_done(q, set->ops->complete); 2583 2584 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2585 blk_mq_add_queue_tag_set(set, q); 2586 blk_mq_map_swqueue(q); 2587 2588 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2589 int ret; 2590 2591 ret = elevator_init_mq(q); 2592 if (ret) 2593 return ERR_PTR(ret); 2594 } 2595 2596 return q; 2597 2598 err_hctxs: 2599 kfree(q->queue_hw_ctx); 2600 err_percpu: 2601 free_percpu(q->queue_ctx); 2602 err_exit: 2603 q->mq_ops = NULL; 2604 return ERR_PTR(-ENOMEM); 2605 } 2606 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2607 2608 void blk_mq_free_queue(struct request_queue *q) 2609 { 2610 struct blk_mq_tag_set *set = q->tag_set; 2611 2612 blk_mq_del_queue_tag_set(q); 2613 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2614 } 2615 2616 /* Basically redo blk_mq_init_queue with queue frozen */ 2617 static void blk_mq_queue_reinit(struct request_queue *q) 2618 { 2619 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2620 2621 blk_mq_debugfs_unregister_hctxs(q); 2622 blk_mq_sysfs_unregister(q); 2623 2624 /* 2625 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2626 * we should change hctx numa_node according to the new topology (this 2627 * involves freeing and re-allocating memory, worth doing?) 2628 */ 2629 blk_mq_map_swqueue(q); 2630 2631 blk_mq_sysfs_register(q); 2632 blk_mq_debugfs_register_hctxs(q); 2633 } 2634 2635 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2636 { 2637 int i; 2638 2639 for (i = 0; i < set->nr_hw_queues; i++) 2640 if (!__blk_mq_alloc_rq_map(set, i)) 2641 goto out_unwind; 2642 2643 return 0; 2644 2645 out_unwind: 2646 while (--i >= 0) 2647 blk_mq_free_rq_map(set->tags[i]); 2648 2649 return -ENOMEM; 2650 } 2651 2652 /* 2653 * Allocate the request maps associated with this tag_set. Note that this 2654 * may reduce the depth asked for, if memory is tight. set->queue_depth 2655 * will be updated to reflect the allocated depth. 2656 */ 2657 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2658 { 2659 unsigned int depth; 2660 int err; 2661 2662 depth = set->queue_depth; 2663 do { 2664 err = __blk_mq_alloc_rq_maps(set); 2665 if (!err) 2666 break; 2667 2668 set->queue_depth >>= 1; 2669 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2670 err = -ENOMEM; 2671 break; 2672 } 2673 } while (set->queue_depth); 2674 2675 if (!set->queue_depth || err) { 2676 pr_err("blk-mq: failed to allocate request map\n"); 2677 return -ENOMEM; 2678 } 2679 2680 if (depth != set->queue_depth) 2681 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2682 depth, set->queue_depth); 2683 2684 return 0; 2685 } 2686 2687 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2688 { 2689 if (set->ops->map_queues) { 2690 int cpu; 2691 /* 2692 * transport .map_queues is usually done in the following 2693 * way: 2694 * 2695 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2696 * mask = get_cpu_mask(queue) 2697 * for_each_cpu(cpu, mask) 2698 * set->mq_map[cpu] = queue; 2699 * } 2700 * 2701 * When we need to remap, the table has to be cleared for 2702 * killing stale mapping since one CPU may not be mapped 2703 * to any hw queue. 2704 */ 2705 for_each_possible_cpu(cpu) 2706 set->mq_map[cpu] = 0; 2707 2708 return set->ops->map_queues(set); 2709 } else 2710 return blk_mq_map_queues(set); 2711 } 2712 2713 /* 2714 * Alloc a tag set to be associated with one or more request queues. 2715 * May fail with EINVAL for various error conditions. May adjust the 2716 * requested depth down, if if it too large. In that case, the set 2717 * value will be stored in set->queue_depth. 2718 */ 2719 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2720 { 2721 int ret; 2722 2723 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2724 2725 if (!set->nr_hw_queues) 2726 return -EINVAL; 2727 if (!set->queue_depth) 2728 return -EINVAL; 2729 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2730 return -EINVAL; 2731 2732 if (!set->ops->queue_rq) 2733 return -EINVAL; 2734 2735 if (!set->ops->get_budget ^ !set->ops->put_budget) 2736 return -EINVAL; 2737 2738 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2739 pr_info("blk-mq: reduced tag depth to %u\n", 2740 BLK_MQ_MAX_DEPTH); 2741 set->queue_depth = BLK_MQ_MAX_DEPTH; 2742 } 2743 2744 /* 2745 * If a crashdump is active, then we are potentially in a very 2746 * memory constrained environment. Limit us to 1 queue and 2747 * 64 tags to prevent using too much memory. 2748 */ 2749 if (is_kdump_kernel()) { 2750 set->nr_hw_queues = 1; 2751 set->queue_depth = min(64U, set->queue_depth); 2752 } 2753 /* 2754 * There is no use for more h/w queues than cpus. 2755 */ 2756 if (set->nr_hw_queues > nr_cpu_ids) 2757 set->nr_hw_queues = nr_cpu_ids; 2758 2759 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *), 2760 GFP_KERNEL, set->numa_node); 2761 if (!set->tags) 2762 return -ENOMEM; 2763 2764 ret = -ENOMEM; 2765 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map), 2766 GFP_KERNEL, set->numa_node); 2767 if (!set->mq_map) 2768 goto out_free_tags; 2769 2770 ret = blk_mq_update_queue_map(set); 2771 if (ret) 2772 goto out_free_mq_map; 2773 2774 ret = blk_mq_alloc_rq_maps(set); 2775 if (ret) 2776 goto out_free_mq_map; 2777 2778 mutex_init(&set->tag_list_lock); 2779 INIT_LIST_HEAD(&set->tag_list); 2780 2781 return 0; 2782 2783 out_free_mq_map: 2784 kfree(set->mq_map); 2785 set->mq_map = NULL; 2786 out_free_tags: 2787 kfree(set->tags); 2788 set->tags = NULL; 2789 return ret; 2790 } 2791 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2792 2793 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2794 { 2795 int i; 2796 2797 for (i = 0; i < nr_cpu_ids; i++) 2798 blk_mq_free_map_and_requests(set, i); 2799 2800 kfree(set->mq_map); 2801 set->mq_map = NULL; 2802 2803 kfree(set->tags); 2804 set->tags = NULL; 2805 } 2806 EXPORT_SYMBOL(blk_mq_free_tag_set); 2807 2808 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2809 { 2810 struct blk_mq_tag_set *set = q->tag_set; 2811 struct blk_mq_hw_ctx *hctx; 2812 int i, ret; 2813 2814 if (!set) 2815 return -EINVAL; 2816 2817 blk_mq_freeze_queue(q); 2818 blk_mq_quiesce_queue(q); 2819 2820 ret = 0; 2821 queue_for_each_hw_ctx(q, hctx, i) { 2822 if (!hctx->tags) 2823 continue; 2824 /* 2825 * If we're using an MQ scheduler, just update the scheduler 2826 * queue depth. This is similar to what the old code would do. 2827 */ 2828 if (!hctx->sched_tags) { 2829 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2830 false); 2831 } else { 2832 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2833 nr, true); 2834 } 2835 if (ret) 2836 break; 2837 } 2838 2839 if (!ret) 2840 q->nr_requests = nr; 2841 2842 blk_mq_unquiesce_queue(q); 2843 blk_mq_unfreeze_queue(q); 2844 2845 return ret; 2846 } 2847 2848 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2849 int nr_hw_queues) 2850 { 2851 struct request_queue *q; 2852 2853 lockdep_assert_held(&set->tag_list_lock); 2854 2855 if (nr_hw_queues > nr_cpu_ids) 2856 nr_hw_queues = nr_cpu_ids; 2857 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2858 return; 2859 2860 list_for_each_entry(q, &set->tag_list, tag_set_list) 2861 blk_mq_freeze_queue(q); 2862 2863 set->nr_hw_queues = nr_hw_queues; 2864 blk_mq_update_queue_map(set); 2865 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2866 blk_mq_realloc_hw_ctxs(set, q); 2867 blk_mq_queue_reinit(q); 2868 } 2869 2870 list_for_each_entry(q, &set->tag_list, tag_set_list) 2871 blk_mq_unfreeze_queue(q); 2872 } 2873 2874 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2875 { 2876 mutex_lock(&set->tag_list_lock); 2877 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2878 mutex_unlock(&set->tag_list_lock); 2879 } 2880 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2881 2882 /* Enable polling stats and return whether they were already enabled. */ 2883 static bool blk_poll_stats_enable(struct request_queue *q) 2884 { 2885 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2886 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 2887 return true; 2888 blk_stat_add_callback(q, q->poll_cb); 2889 return false; 2890 } 2891 2892 static void blk_mq_poll_stats_start(struct request_queue *q) 2893 { 2894 /* 2895 * We don't arm the callback if polling stats are not enabled or the 2896 * callback is already active. 2897 */ 2898 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2899 blk_stat_is_active(q->poll_cb)) 2900 return; 2901 2902 blk_stat_activate_msecs(q->poll_cb, 100); 2903 } 2904 2905 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 2906 { 2907 struct request_queue *q = cb->data; 2908 int bucket; 2909 2910 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 2911 if (cb->stat[bucket].nr_samples) 2912 q->poll_stat[bucket] = cb->stat[bucket]; 2913 } 2914 } 2915 2916 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2917 struct blk_mq_hw_ctx *hctx, 2918 struct request *rq) 2919 { 2920 unsigned long ret = 0; 2921 int bucket; 2922 2923 /* 2924 * If stats collection isn't on, don't sleep but turn it on for 2925 * future users 2926 */ 2927 if (!blk_poll_stats_enable(q)) 2928 return 0; 2929 2930 /* 2931 * As an optimistic guess, use half of the mean service time 2932 * for this type of request. We can (and should) make this smarter. 2933 * For instance, if the completion latencies are tight, we can 2934 * get closer than just half the mean. This is especially 2935 * important on devices where the completion latencies are longer 2936 * than ~10 usec. We do use the stats for the relevant IO size 2937 * if available which does lead to better estimates. 2938 */ 2939 bucket = blk_mq_poll_stats_bkt(rq); 2940 if (bucket < 0) 2941 return ret; 2942 2943 if (q->poll_stat[bucket].nr_samples) 2944 ret = (q->poll_stat[bucket].mean + 1) / 2; 2945 2946 return ret; 2947 } 2948 2949 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2950 struct blk_mq_hw_ctx *hctx, 2951 struct request *rq) 2952 { 2953 struct hrtimer_sleeper hs; 2954 enum hrtimer_mode mode; 2955 unsigned int nsecs; 2956 ktime_t kt; 2957 2958 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 2959 return false; 2960 2961 /* 2962 * poll_nsec can be: 2963 * 2964 * -1: don't ever hybrid sleep 2965 * 0: use half of prev avg 2966 * >0: use this specific value 2967 */ 2968 if (q->poll_nsec == -1) 2969 return false; 2970 else if (q->poll_nsec > 0) 2971 nsecs = q->poll_nsec; 2972 else 2973 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2974 2975 if (!nsecs) 2976 return false; 2977 2978 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 2979 2980 /* 2981 * This will be replaced with the stats tracking code, using 2982 * 'avg_completion_time / 2' as the pre-sleep target. 2983 */ 2984 kt = nsecs; 2985 2986 mode = HRTIMER_MODE_REL; 2987 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2988 hrtimer_set_expires(&hs.timer, kt); 2989 2990 hrtimer_init_sleeper(&hs, current); 2991 do { 2992 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 2993 break; 2994 set_current_state(TASK_UNINTERRUPTIBLE); 2995 hrtimer_start_expires(&hs.timer, mode); 2996 if (hs.task) 2997 io_schedule(); 2998 hrtimer_cancel(&hs.timer); 2999 mode = HRTIMER_MODE_ABS; 3000 } while (hs.task && !signal_pending(current)); 3001 3002 __set_current_state(TASK_RUNNING); 3003 destroy_hrtimer_on_stack(&hs.timer); 3004 return true; 3005 } 3006 3007 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3008 { 3009 struct request_queue *q = hctx->queue; 3010 long state; 3011 3012 /* 3013 * If we sleep, have the caller restart the poll loop to reset 3014 * the state. Like for the other success return cases, the 3015 * caller is responsible for checking if the IO completed. If 3016 * the IO isn't complete, we'll get called again and will go 3017 * straight to the busy poll loop. 3018 */ 3019 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3020 return true; 3021 3022 hctx->poll_considered++; 3023 3024 state = current->state; 3025 while (!need_resched()) { 3026 int ret; 3027 3028 hctx->poll_invoked++; 3029 3030 ret = q->mq_ops->poll(hctx, rq->tag); 3031 if (ret > 0) { 3032 hctx->poll_success++; 3033 set_current_state(TASK_RUNNING); 3034 return true; 3035 } 3036 3037 if (signal_pending_state(state, current)) 3038 set_current_state(TASK_RUNNING); 3039 3040 if (current->state == TASK_RUNNING) 3041 return true; 3042 if (ret < 0) 3043 break; 3044 cpu_relax(); 3045 } 3046 3047 __set_current_state(TASK_RUNNING); 3048 return false; 3049 } 3050 3051 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3052 { 3053 struct blk_mq_hw_ctx *hctx; 3054 struct request *rq; 3055 3056 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3057 return false; 3058 3059 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3060 if (!blk_qc_t_is_internal(cookie)) 3061 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3062 else { 3063 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3064 /* 3065 * With scheduling, if the request has completed, we'll 3066 * get a NULL return here, as we clear the sched tag when 3067 * that happens. The request still remains valid, like always, 3068 * so we should be safe with just the NULL check. 3069 */ 3070 if (!rq) 3071 return false; 3072 } 3073 3074 return __blk_mq_poll(hctx, rq); 3075 } 3076 3077 static int __init blk_mq_init(void) 3078 { 3079 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3080 blk_mq_hctx_notify_dead); 3081 return 0; 3082 } 3083 subsys_initcall(blk_mq_init); 3084