1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include <linux/t10-pi.h> 34 #include "blk.h" 35 #include "blk-mq.h" 36 #include "blk-mq-debugfs.h" 37 #include "blk-mq-tag.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static void blk_mq_poll_stats_start(struct request_queue *q); 44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 45 46 static int blk_mq_poll_stats_bkt(const struct request *rq) 47 { 48 int ddir, sectors, bucket; 49 50 ddir = rq_data_dir(rq); 51 sectors = blk_rq_stats_sectors(rq); 52 53 bucket = ddir + 2 * ilog2(sectors); 54 55 if (bucket < 0) 56 return -1; 57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 59 60 return bucket; 61 } 62 63 /* 64 * Check if any of the ctx, dispatch list or elevator 65 * have pending work in this hardware queue. 66 */ 67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 68 { 69 return !list_empty_careful(&hctx->dispatch) || 70 sbitmap_any_bit_set(&hctx->ctx_map) || 71 blk_mq_sched_has_work(hctx); 72 } 73 74 /* 75 * Mark this ctx as having pending work in this hardware queue 76 */ 77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 83 sbitmap_set_bit(&hctx->ctx_map, bit); 84 } 85 86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 87 struct blk_mq_ctx *ctx) 88 { 89 const int bit = ctx->index_hw[hctx->type]; 90 91 sbitmap_clear_bit(&hctx->ctx_map, bit); 92 } 93 94 struct mq_inflight { 95 struct hd_struct *part; 96 unsigned int inflight[2]; 97 }; 98 99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 100 struct request *rq, void *priv, 101 bool reserved) 102 { 103 struct mq_inflight *mi = priv; 104 105 if (rq->part == mi->part) 106 mi->inflight[rq_data_dir(rq)]++; 107 108 return true; 109 } 110 111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 112 { 113 struct mq_inflight mi = { .part = part }; 114 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 117 return mi.inflight[0] + mi.inflight[1]; 118 } 119 120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 121 unsigned int inflight[2]) 122 { 123 struct mq_inflight mi = { .part = part }; 124 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 126 inflight[0] = mi.inflight[0]; 127 inflight[1] = mi.inflight[1]; 128 } 129 130 void blk_freeze_queue_start(struct request_queue *q) 131 { 132 mutex_lock(&q->mq_freeze_lock); 133 if (++q->mq_freeze_depth == 1) { 134 percpu_ref_kill(&q->q_usage_counter); 135 mutex_unlock(&q->mq_freeze_lock); 136 if (queue_is_mq(q)) 137 blk_mq_run_hw_queues(q, false); 138 } else { 139 mutex_unlock(&q->mq_freeze_lock); 140 } 141 } 142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 143 144 void blk_mq_freeze_queue_wait(struct request_queue *q) 145 { 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 149 150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 151 unsigned long timeout) 152 { 153 return wait_event_timeout(q->mq_freeze_wq, 154 percpu_ref_is_zero(&q->q_usage_counter), 155 timeout); 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 158 159 /* 160 * Guarantee no request is in use, so we can change any data structure of 161 * the queue afterward. 162 */ 163 void blk_freeze_queue(struct request_queue *q) 164 { 165 /* 166 * In the !blk_mq case we are only calling this to kill the 167 * q_usage_counter, otherwise this increases the freeze depth 168 * and waits for it to return to zero. For this reason there is 169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 170 * exported to drivers as the only user for unfreeze is blk_mq. 171 */ 172 blk_freeze_queue_start(q); 173 blk_mq_freeze_queue_wait(q); 174 } 175 176 void blk_mq_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * ...just an alias to keep freeze and unfreeze actions balanced 180 * in the blk_mq_* namespace 181 */ 182 blk_freeze_queue(q); 183 } 184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 185 186 void blk_mq_unfreeze_queue(struct request_queue *q) 187 { 188 mutex_lock(&q->mq_freeze_lock); 189 q->mq_freeze_depth--; 190 WARN_ON_ONCE(q->mq_freeze_depth < 0); 191 if (!q->mq_freeze_depth) { 192 percpu_ref_resurrect(&q->q_usage_counter); 193 wake_up_all(&q->mq_freeze_wq); 194 } 195 mutex_unlock(&q->mq_freeze_lock); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 206 } 207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 208 209 /** 210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 211 * @q: request queue. 212 * 213 * Note: this function does not prevent that the struct request end_io() 214 * callback function is invoked. Once this function is returned, we make 215 * sure no dispatch can happen until the queue is unquiesced via 216 * blk_mq_unquiesce_queue(). 217 */ 218 void blk_mq_quiesce_queue(struct request_queue *q) 219 { 220 struct blk_mq_hw_ctx *hctx; 221 unsigned int i; 222 bool rcu = false; 223 224 blk_mq_quiesce_queue_nowait(q); 225 226 queue_for_each_hw_ctx(q, hctx, i) { 227 if (hctx->flags & BLK_MQ_F_BLOCKING) 228 synchronize_srcu(hctx->srcu); 229 else 230 rcu = true; 231 } 232 if (rcu) 233 synchronize_rcu(); 234 } 235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 236 237 /* 238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 239 * @q: request queue. 240 * 241 * This function recovers queue into the state before quiescing 242 * which is done by blk_mq_quiesce_queue. 243 */ 244 void blk_mq_unquiesce_queue(struct request_queue *q) 245 { 246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 /* 264 * Only need start/end time stamping if we have iostat or 265 * blk stats enabled, or using an IO scheduler. 266 */ 267 static inline bool blk_mq_need_time_stamp(struct request *rq) 268 { 269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 270 } 271 272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 273 unsigned int tag, unsigned int op, u64 alloc_time_ns) 274 { 275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 276 struct request *rq = tags->static_rqs[tag]; 277 req_flags_t rq_flags = 0; 278 279 if (data->flags & BLK_MQ_REQ_INTERNAL) { 280 rq->tag = -1; 281 rq->internal_tag = tag; 282 } else { 283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 284 rq_flags = RQF_MQ_INFLIGHT; 285 atomic_inc(&data->hctx->nr_active); 286 } 287 rq->tag = tag; 288 rq->internal_tag = -1; 289 data->hctx->tags->rqs[rq->tag] = rq; 290 } 291 292 /* csd/requeue_work/fifo_time is initialized before use */ 293 rq->q = data->q; 294 rq->mq_ctx = data->ctx; 295 rq->mq_hctx = data->hctx; 296 rq->rq_flags = rq_flags; 297 rq->cmd_flags = op; 298 if (data->flags & BLK_MQ_REQ_PREEMPT) 299 rq->rq_flags |= RQF_PREEMPT; 300 if (blk_queue_io_stat(data->q)) 301 rq->rq_flags |= RQF_IO_STAT; 302 INIT_LIST_HEAD(&rq->queuelist); 303 INIT_HLIST_NODE(&rq->hash); 304 RB_CLEAR_NODE(&rq->rb_node); 305 rq->rq_disk = NULL; 306 rq->part = NULL; 307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 308 rq->alloc_time_ns = alloc_time_ns; 309 #endif 310 if (blk_mq_need_time_stamp(rq)) 311 rq->start_time_ns = ktime_get_ns(); 312 else 313 rq->start_time_ns = 0; 314 rq->io_start_time_ns = 0; 315 rq->stats_sectors = 0; 316 rq->nr_phys_segments = 0; 317 #if defined(CONFIG_BLK_DEV_INTEGRITY) 318 rq->nr_integrity_segments = 0; 319 #endif 320 /* tag was already set */ 321 rq->extra_len = 0; 322 WRITE_ONCE(rq->deadline, 0); 323 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 329 data->ctx->rq_dispatched[op_is_sync(op)]++; 330 refcount_set(&rq->ref, 1); 331 return rq; 332 } 333 334 static struct request *blk_mq_get_request(struct request_queue *q, 335 struct bio *bio, 336 struct blk_mq_alloc_data *data) 337 { 338 struct elevator_queue *e = q->elevator; 339 struct request *rq; 340 unsigned int tag; 341 bool clear_ctx_on_error = false; 342 u64 alloc_time_ns = 0; 343 344 blk_queue_enter_live(q); 345 346 /* alloc_time includes depth and tag waits */ 347 if (blk_queue_rq_alloc_time(q)) 348 alloc_time_ns = ktime_get_ns(); 349 350 data->q = q; 351 if (likely(!data->ctx)) { 352 data->ctx = blk_mq_get_ctx(q); 353 clear_ctx_on_error = true; 354 } 355 if (likely(!data->hctx)) 356 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 357 data->ctx); 358 if (data->cmd_flags & REQ_NOWAIT) 359 data->flags |= BLK_MQ_REQ_NOWAIT; 360 361 if (e) { 362 data->flags |= BLK_MQ_REQ_INTERNAL; 363 364 /* 365 * Flush requests are special and go directly to the 366 * dispatch list. Don't include reserved tags in the 367 * limiting, as it isn't useful. 368 */ 369 if (!op_is_flush(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } else { 374 blk_mq_tag_busy(data->hctx); 375 } 376 377 tag = blk_mq_get_tag(data); 378 if (tag == BLK_MQ_TAG_FAIL) { 379 if (clear_ctx_on_error) 380 data->ctx = NULL; 381 blk_queue_exit(q); 382 return NULL; 383 } 384 385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 386 if (!op_is_flush(data->cmd_flags)) { 387 rq->elv.icq = NULL; 388 if (e && e->type->ops.prepare_request) { 389 if (e->type->icq_cache) 390 blk_mq_sched_assign_ioc(rq); 391 392 e->type->ops.prepare_request(rq, bio); 393 rq->rq_flags |= RQF_ELVPRIV; 394 } 395 } 396 data->hctx->queued++; 397 return rq; 398 } 399 400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 401 blk_mq_req_flags_t flags) 402 { 403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 404 struct request *rq; 405 int ret; 406 407 ret = blk_queue_enter(q, flags); 408 if (ret) 409 return ERR_PTR(ret); 410 411 rq = blk_mq_get_request(q, NULL, &alloc_data); 412 blk_queue_exit(q); 413 414 if (!rq) 415 return ERR_PTR(-EWOULDBLOCK); 416 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 } 422 EXPORT_SYMBOL(blk_mq_alloc_request); 423 424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 426 { 427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 428 struct request *rq; 429 unsigned int cpu; 430 int ret; 431 432 /* 433 * If the tag allocator sleeps we could get an allocation for a 434 * different hardware context. No need to complicate the low level 435 * allocator for this for the rare use case of a command tied to 436 * a specific queue. 437 */ 438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 439 return ERR_PTR(-EINVAL); 440 441 if (hctx_idx >= q->nr_hw_queues) 442 return ERR_PTR(-EIO); 443 444 ret = blk_queue_enter(q, flags); 445 if (ret) 446 return ERR_PTR(ret); 447 448 /* 449 * Check if the hardware context is actually mapped to anything. 450 * If not tell the caller that it should skip this queue. 451 */ 452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 454 blk_queue_exit(q); 455 return ERR_PTR(-EXDEV); 456 } 457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 459 460 rq = blk_mq_get_request(q, NULL, &alloc_data); 461 blk_queue_exit(q); 462 463 if (!rq) 464 return ERR_PTR(-EWOULDBLOCK); 465 466 return rq; 467 } 468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 469 470 static void __blk_mq_free_request(struct request *rq) 471 { 472 struct request_queue *q = rq->q; 473 struct blk_mq_ctx *ctx = rq->mq_ctx; 474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 475 const int sched_tag = rq->internal_tag; 476 477 blk_pm_mark_last_busy(rq); 478 rq->mq_hctx = NULL; 479 if (rq->tag != -1) 480 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 481 if (sched_tag != -1) 482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 483 blk_mq_sched_restart(hctx); 484 blk_queue_exit(q); 485 } 486 487 void blk_mq_free_request(struct request *rq) 488 { 489 struct request_queue *q = rq->q; 490 struct elevator_queue *e = q->elevator; 491 struct blk_mq_ctx *ctx = rq->mq_ctx; 492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 493 494 if (rq->rq_flags & RQF_ELVPRIV) { 495 if (e && e->type->ops.finish_request) 496 e->type->ops.finish_request(rq); 497 if (rq->elv.icq) { 498 put_io_context(rq->elv.icq->ioc); 499 rq->elv.icq = NULL; 500 } 501 } 502 503 ctx->rq_completed[rq_is_sync(rq)]++; 504 if (rq->rq_flags & RQF_MQ_INFLIGHT) 505 atomic_dec(&hctx->nr_active); 506 507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 508 laptop_io_completion(q->backing_dev_info); 509 510 rq_qos_done(q, rq); 511 512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 513 if (refcount_dec_and_test(&rq->ref)) 514 __blk_mq_free_request(rq); 515 } 516 EXPORT_SYMBOL_GPL(blk_mq_free_request); 517 518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 519 { 520 u64 now = 0; 521 522 if (blk_mq_need_time_stamp(rq)) 523 now = ktime_get_ns(); 524 525 if (rq->rq_flags & RQF_STATS) { 526 blk_mq_poll_stats_start(rq->q); 527 blk_stat_add(rq, now); 528 } 529 530 if (rq->internal_tag != -1) 531 blk_mq_sched_completed_request(rq, now); 532 533 blk_account_io_done(rq, now); 534 535 if (rq->end_io) { 536 rq_qos_done(rq->q, rq); 537 rq->end_io(rq, error); 538 } else { 539 blk_mq_free_request(rq); 540 } 541 } 542 EXPORT_SYMBOL(__blk_mq_end_request); 543 544 void blk_mq_end_request(struct request *rq, blk_status_t error) 545 { 546 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 547 BUG(); 548 __blk_mq_end_request(rq, error); 549 } 550 EXPORT_SYMBOL(blk_mq_end_request); 551 552 static void __blk_mq_complete_request_remote(void *data) 553 { 554 struct request *rq = data; 555 struct request_queue *q = rq->q; 556 557 q->mq_ops->complete(rq); 558 } 559 560 static void __blk_mq_complete_request(struct request *rq) 561 { 562 struct blk_mq_ctx *ctx = rq->mq_ctx; 563 struct request_queue *q = rq->q; 564 bool shared = false; 565 int cpu; 566 567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 568 /* 569 * Most of single queue controllers, there is only one irq vector 570 * for handling IO completion, and the only irq's affinity is set 571 * as all possible CPUs. On most of ARCHs, this affinity means the 572 * irq is handled on one specific CPU. 573 * 574 * So complete IO reqeust in softirq context in case of single queue 575 * for not degrading IO performance by irqsoff latency. 576 */ 577 if (q->nr_hw_queues == 1) { 578 __blk_complete_request(rq); 579 return; 580 } 581 582 /* 583 * For a polled request, always complete locallly, it's pointless 584 * to redirect the completion. 585 */ 586 if ((rq->cmd_flags & REQ_HIPRI) || 587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 588 q->mq_ops->complete(rq); 589 return; 590 } 591 592 cpu = get_cpu(); 593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 594 shared = cpus_share_cache(cpu, ctx->cpu); 595 596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 597 rq->csd.func = __blk_mq_complete_request_remote; 598 rq->csd.info = rq; 599 rq->csd.flags = 0; 600 smp_call_function_single_async(ctx->cpu, &rq->csd); 601 } else { 602 q->mq_ops->complete(rq); 603 } 604 put_cpu(); 605 } 606 607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 608 __releases(hctx->srcu) 609 { 610 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 611 rcu_read_unlock(); 612 else 613 srcu_read_unlock(hctx->srcu, srcu_idx); 614 } 615 616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 617 __acquires(hctx->srcu) 618 { 619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 620 /* shut up gcc false positive */ 621 *srcu_idx = 0; 622 rcu_read_lock(); 623 } else 624 *srcu_idx = srcu_read_lock(hctx->srcu); 625 } 626 627 /** 628 * blk_mq_complete_request - end I/O on a request 629 * @rq: the request being processed 630 * 631 * Description: 632 * Ends all I/O on a request. It does not handle partial completions. 633 * The actual completion happens out-of-order, through a IPI handler. 634 **/ 635 bool blk_mq_complete_request(struct request *rq) 636 { 637 if (unlikely(blk_should_fake_timeout(rq->q))) 638 return false; 639 __blk_mq_complete_request(rq); 640 return true; 641 } 642 EXPORT_SYMBOL(blk_mq_complete_request); 643 644 /** 645 * blk_mq_start_request - Start processing a request 646 * @rq: Pointer to request to be started 647 * 648 * Function used by device drivers to notify the block layer that a request 649 * is going to be processed now, so blk layer can do proper initializations 650 * such as starting the timeout timer. 651 */ 652 void blk_mq_start_request(struct request *rq) 653 { 654 struct request_queue *q = rq->q; 655 656 trace_block_rq_issue(q, rq); 657 658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 659 rq->io_start_time_ns = ktime_get_ns(); 660 rq->stats_sectors = blk_rq_sectors(rq); 661 rq->rq_flags |= RQF_STATS; 662 rq_qos_issue(q, rq); 663 } 664 665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 666 667 blk_add_timer(rq); 668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 669 670 if (q->dma_drain_size && blk_rq_bytes(rq)) { 671 /* 672 * Make sure space for the drain appears. We know we can do 673 * this because max_hw_segments has been adjusted to be one 674 * fewer than the device can handle. 675 */ 676 rq->nr_phys_segments++; 677 } 678 679 #ifdef CONFIG_BLK_DEV_INTEGRITY 680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 681 q->integrity.profile->prepare_fn(rq); 682 #endif 683 } 684 EXPORT_SYMBOL(blk_mq_start_request); 685 686 static void __blk_mq_requeue_request(struct request *rq) 687 { 688 struct request_queue *q = rq->q; 689 690 blk_mq_put_driver_tag(rq); 691 692 trace_block_rq_requeue(q, rq); 693 rq_qos_requeue(q, rq); 694 695 if (blk_mq_request_started(rq)) { 696 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 697 rq->rq_flags &= ~RQF_TIMED_OUT; 698 if (q->dma_drain_size && blk_rq_bytes(rq)) 699 rq->nr_phys_segments--; 700 } 701 } 702 703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 704 { 705 __blk_mq_requeue_request(rq); 706 707 /* this request will be re-inserted to io scheduler queue */ 708 blk_mq_sched_requeue_request(rq); 709 710 BUG_ON(!list_empty(&rq->queuelist)); 711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 712 } 713 EXPORT_SYMBOL(blk_mq_requeue_request); 714 715 static void blk_mq_requeue_work(struct work_struct *work) 716 { 717 struct request_queue *q = 718 container_of(work, struct request_queue, requeue_work.work); 719 LIST_HEAD(rq_list); 720 struct request *rq, *next; 721 722 spin_lock_irq(&q->requeue_lock); 723 list_splice_init(&q->requeue_list, &rq_list); 724 spin_unlock_irq(&q->requeue_lock); 725 726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 728 continue; 729 730 rq->rq_flags &= ~RQF_SOFTBARRIER; 731 list_del_init(&rq->queuelist); 732 /* 733 * If RQF_DONTPREP, rq has contained some driver specific 734 * data, so insert it to hctx dispatch list to avoid any 735 * merge. 736 */ 737 if (rq->rq_flags & RQF_DONTPREP) 738 blk_mq_request_bypass_insert(rq, false, false); 739 else 740 blk_mq_sched_insert_request(rq, true, false, false); 741 } 742 743 while (!list_empty(&rq_list)) { 744 rq = list_entry(rq_list.next, struct request, queuelist); 745 list_del_init(&rq->queuelist); 746 blk_mq_sched_insert_request(rq, false, false, false); 747 } 748 749 blk_mq_run_hw_queues(q, false); 750 } 751 752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 753 bool kick_requeue_list) 754 { 755 struct request_queue *q = rq->q; 756 unsigned long flags; 757 758 /* 759 * We abuse this flag that is otherwise used by the I/O scheduler to 760 * request head insertion from the workqueue. 761 */ 762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 763 764 spin_lock_irqsave(&q->requeue_lock, flags); 765 if (at_head) { 766 rq->rq_flags |= RQF_SOFTBARRIER; 767 list_add(&rq->queuelist, &q->requeue_list); 768 } else { 769 list_add_tail(&rq->queuelist, &q->requeue_list); 770 } 771 spin_unlock_irqrestore(&q->requeue_lock, flags); 772 773 if (kick_requeue_list) 774 blk_mq_kick_requeue_list(q); 775 } 776 777 void blk_mq_kick_requeue_list(struct request_queue *q) 778 { 779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 780 } 781 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 782 783 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 784 unsigned long msecs) 785 { 786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 787 msecs_to_jiffies(msecs)); 788 } 789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 790 791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 792 { 793 if (tag < tags->nr_tags) { 794 prefetch(tags->rqs[tag]); 795 return tags->rqs[tag]; 796 } 797 798 return NULL; 799 } 800 EXPORT_SYMBOL(blk_mq_tag_to_rq); 801 802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 803 void *priv, bool reserved) 804 { 805 /* 806 * If we find a request that is inflight and the queue matches, 807 * we know the queue is busy. Return false to stop the iteration. 808 */ 809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 810 bool *busy = priv; 811 812 *busy = true; 813 return false; 814 } 815 816 return true; 817 } 818 819 bool blk_mq_queue_inflight(struct request_queue *q) 820 { 821 bool busy = false; 822 823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 824 return busy; 825 } 826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 827 828 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 829 { 830 req->rq_flags |= RQF_TIMED_OUT; 831 if (req->q->mq_ops->timeout) { 832 enum blk_eh_timer_return ret; 833 834 ret = req->q->mq_ops->timeout(req, reserved); 835 if (ret == BLK_EH_DONE) 836 return; 837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 838 } 839 840 blk_add_timer(req); 841 } 842 843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 844 { 845 unsigned long deadline; 846 847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 848 return false; 849 if (rq->rq_flags & RQF_TIMED_OUT) 850 return false; 851 852 deadline = READ_ONCE(rq->deadline); 853 if (time_after_eq(jiffies, deadline)) 854 return true; 855 856 if (*next == 0) 857 *next = deadline; 858 else if (time_after(*next, deadline)) 859 *next = deadline; 860 return false; 861 } 862 863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 864 struct request *rq, void *priv, bool reserved) 865 { 866 unsigned long *next = priv; 867 868 /* 869 * Just do a quick check if it is expired before locking the request in 870 * so we're not unnecessarilly synchronizing across CPUs. 871 */ 872 if (!blk_mq_req_expired(rq, next)) 873 return true; 874 875 /* 876 * We have reason to believe the request may be expired. Take a 877 * reference on the request to lock this request lifetime into its 878 * currently allocated context to prevent it from being reallocated in 879 * the event the completion by-passes this timeout handler. 880 * 881 * If the reference was already released, then the driver beat the 882 * timeout handler to posting a natural completion. 883 */ 884 if (!refcount_inc_not_zero(&rq->ref)) 885 return true; 886 887 /* 888 * The request is now locked and cannot be reallocated underneath the 889 * timeout handler's processing. Re-verify this exact request is truly 890 * expired; if it is not expired, then the request was completed and 891 * reallocated as a new request. 892 */ 893 if (blk_mq_req_expired(rq, next)) 894 blk_mq_rq_timed_out(rq, reserved); 895 896 if (is_flush_rq(rq, hctx)) 897 rq->end_io(rq, 0); 898 else if (refcount_dec_and_test(&rq->ref)) 899 __blk_mq_free_request(rq); 900 901 return true; 902 } 903 904 static void blk_mq_timeout_work(struct work_struct *work) 905 { 906 struct request_queue *q = 907 container_of(work, struct request_queue, timeout_work); 908 unsigned long next = 0; 909 struct blk_mq_hw_ctx *hctx; 910 int i; 911 912 /* A deadlock might occur if a request is stuck requiring a 913 * timeout at the same time a queue freeze is waiting 914 * completion, since the timeout code would not be able to 915 * acquire the queue reference here. 916 * 917 * That's why we don't use blk_queue_enter here; instead, we use 918 * percpu_ref_tryget directly, because we need to be able to 919 * obtain a reference even in the short window between the queue 920 * starting to freeze, by dropping the first reference in 921 * blk_freeze_queue_start, and the moment the last request is 922 * consumed, marked by the instant q_usage_counter reaches 923 * zero. 924 */ 925 if (!percpu_ref_tryget(&q->q_usage_counter)) 926 return; 927 928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 929 930 if (next != 0) { 931 mod_timer(&q->timeout, next); 932 } else { 933 /* 934 * Request timeouts are handled as a forward rolling timer. If 935 * we end up here it means that no requests are pending and 936 * also that no request has been pending for a while. Mark 937 * each hctx as idle. 938 */ 939 queue_for_each_hw_ctx(q, hctx, i) { 940 /* the hctx may be unmapped, so check it here */ 941 if (blk_mq_hw_queue_mapped(hctx)) 942 blk_mq_tag_idle(hctx); 943 } 944 } 945 blk_queue_exit(q); 946 } 947 948 struct flush_busy_ctx_data { 949 struct blk_mq_hw_ctx *hctx; 950 struct list_head *list; 951 }; 952 953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 954 { 955 struct flush_busy_ctx_data *flush_data = data; 956 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 958 enum hctx_type type = hctx->type; 959 960 spin_lock(&ctx->lock); 961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 962 sbitmap_clear_bit(sb, bitnr); 963 spin_unlock(&ctx->lock); 964 return true; 965 } 966 967 /* 968 * Process software queues that have been marked busy, splicing them 969 * to the for-dispatch 970 */ 971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 972 { 973 struct flush_busy_ctx_data data = { 974 .hctx = hctx, 975 .list = list, 976 }; 977 978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 979 } 980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 981 982 struct dispatch_rq_data { 983 struct blk_mq_hw_ctx *hctx; 984 struct request *rq; 985 }; 986 987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 988 void *data) 989 { 990 struct dispatch_rq_data *dispatch_data = data; 991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 993 enum hctx_type type = hctx->type; 994 995 spin_lock(&ctx->lock); 996 if (!list_empty(&ctx->rq_lists[type])) { 997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 998 list_del_init(&dispatch_data->rq->queuelist); 999 if (list_empty(&ctx->rq_lists[type])) 1000 sbitmap_clear_bit(sb, bitnr); 1001 } 1002 spin_unlock(&ctx->lock); 1003 1004 return !dispatch_data->rq; 1005 } 1006 1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1008 struct blk_mq_ctx *start) 1009 { 1010 unsigned off = start ? start->index_hw[hctx->type] : 0; 1011 struct dispatch_rq_data data = { 1012 .hctx = hctx, 1013 .rq = NULL, 1014 }; 1015 1016 __sbitmap_for_each_set(&hctx->ctx_map, off, 1017 dispatch_rq_from_ctx, &data); 1018 1019 return data.rq; 1020 } 1021 1022 static inline unsigned int queued_to_index(unsigned int queued) 1023 { 1024 if (!queued) 1025 return 0; 1026 1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1028 } 1029 1030 bool blk_mq_get_driver_tag(struct request *rq) 1031 { 1032 struct blk_mq_alloc_data data = { 1033 .q = rq->q, 1034 .hctx = rq->mq_hctx, 1035 .flags = BLK_MQ_REQ_NOWAIT, 1036 .cmd_flags = rq->cmd_flags, 1037 }; 1038 bool shared; 1039 1040 if (rq->tag != -1) 1041 return true; 1042 1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1044 data.flags |= BLK_MQ_REQ_RESERVED; 1045 1046 shared = blk_mq_tag_busy(data.hctx); 1047 rq->tag = blk_mq_get_tag(&data); 1048 if (rq->tag >= 0) { 1049 if (shared) { 1050 rq->rq_flags |= RQF_MQ_INFLIGHT; 1051 atomic_inc(&data.hctx->nr_active); 1052 } 1053 data.hctx->tags->rqs[rq->tag] = rq; 1054 } 1055 1056 return rq->tag != -1; 1057 } 1058 1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1060 int flags, void *key) 1061 { 1062 struct blk_mq_hw_ctx *hctx; 1063 1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1065 1066 spin_lock(&hctx->dispatch_wait_lock); 1067 if (!list_empty(&wait->entry)) { 1068 struct sbitmap_queue *sbq; 1069 1070 list_del_init(&wait->entry); 1071 sbq = &hctx->tags->bitmap_tags; 1072 atomic_dec(&sbq->ws_active); 1073 } 1074 spin_unlock(&hctx->dispatch_wait_lock); 1075 1076 blk_mq_run_hw_queue(hctx, true); 1077 return 1; 1078 } 1079 1080 /* 1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1083 * restart. For both cases, take care to check the condition again after 1084 * marking us as waiting. 1085 */ 1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1087 struct request *rq) 1088 { 1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1090 struct wait_queue_head *wq; 1091 wait_queue_entry_t *wait; 1092 bool ret; 1093 1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1095 blk_mq_sched_mark_restart_hctx(hctx); 1096 1097 /* 1098 * It's possible that a tag was freed in the window between the 1099 * allocation failure and adding the hardware queue to the wait 1100 * queue. 1101 * 1102 * Don't clear RESTART here, someone else could have set it. 1103 * At most this will cost an extra queue run. 1104 */ 1105 return blk_mq_get_driver_tag(rq); 1106 } 1107 1108 wait = &hctx->dispatch_wait; 1109 if (!list_empty_careful(&wait->entry)) 1110 return false; 1111 1112 wq = &bt_wait_ptr(sbq, hctx)->wait; 1113 1114 spin_lock_irq(&wq->lock); 1115 spin_lock(&hctx->dispatch_wait_lock); 1116 if (!list_empty(&wait->entry)) { 1117 spin_unlock(&hctx->dispatch_wait_lock); 1118 spin_unlock_irq(&wq->lock); 1119 return false; 1120 } 1121 1122 atomic_inc(&sbq->ws_active); 1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1124 __add_wait_queue(wq, wait); 1125 1126 /* 1127 * It's possible that a tag was freed in the window between the 1128 * allocation failure and adding the hardware queue to the wait 1129 * queue. 1130 */ 1131 ret = blk_mq_get_driver_tag(rq); 1132 if (!ret) { 1133 spin_unlock(&hctx->dispatch_wait_lock); 1134 spin_unlock_irq(&wq->lock); 1135 return false; 1136 } 1137 1138 /* 1139 * We got a tag, remove ourselves from the wait queue to ensure 1140 * someone else gets the wakeup. 1141 */ 1142 list_del_init(&wait->entry); 1143 atomic_dec(&sbq->ws_active); 1144 spin_unlock(&hctx->dispatch_wait_lock); 1145 spin_unlock_irq(&wq->lock); 1146 1147 return true; 1148 } 1149 1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1152 /* 1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1154 * - EWMA is one simple way to compute running average value 1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1156 * - take 4 as factor for avoiding to get too small(0) result, and this 1157 * factor doesn't matter because EWMA decreases exponentially 1158 */ 1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1160 { 1161 unsigned int ewma; 1162 1163 if (hctx->queue->elevator) 1164 return; 1165 1166 ewma = hctx->dispatch_busy; 1167 1168 if (!ewma && !busy) 1169 return; 1170 1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1172 if (busy) 1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1175 1176 hctx->dispatch_busy = ewma; 1177 } 1178 1179 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1180 1181 static void blk_mq_handle_dev_resource(struct request *rq, 1182 struct list_head *list) 1183 { 1184 struct request *next = 1185 list_first_entry_or_null(list, struct request, queuelist); 1186 1187 /* 1188 * If an I/O scheduler has been configured and we got a driver tag for 1189 * the next request already, free it. 1190 */ 1191 if (next) 1192 blk_mq_put_driver_tag(next); 1193 1194 list_add(&rq->queuelist, list); 1195 __blk_mq_requeue_request(rq); 1196 } 1197 1198 /* 1199 * Returns true if we did some work AND can potentially do more. 1200 */ 1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1202 bool got_budget) 1203 { 1204 struct blk_mq_hw_ctx *hctx; 1205 struct request *rq, *nxt; 1206 bool no_tag = false; 1207 int errors, queued; 1208 blk_status_t ret = BLK_STS_OK; 1209 1210 if (list_empty(list)) 1211 return false; 1212 1213 WARN_ON(!list_is_singular(list) && got_budget); 1214 1215 /* 1216 * Now process all the entries, sending them to the driver. 1217 */ 1218 errors = queued = 0; 1219 do { 1220 struct blk_mq_queue_data bd; 1221 1222 rq = list_first_entry(list, struct request, queuelist); 1223 1224 hctx = rq->mq_hctx; 1225 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1226 blk_mq_put_driver_tag(rq); 1227 break; 1228 } 1229 1230 if (!blk_mq_get_driver_tag(rq)) { 1231 /* 1232 * The initial allocation attempt failed, so we need to 1233 * rerun the hardware queue when a tag is freed. The 1234 * waitqueue takes care of that. If the queue is run 1235 * before we add this entry back on the dispatch list, 1236 * we'll re-run it below. 1237 */ 1238 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1239 blk_mq_put_dispatch_budget(hctx); 1240 /* 1241 * For non-shared tags, the RESTART check 1242 * will suffice. 1243 */ 1244 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1245 no_tag = true; 1246 break; 1247 } 1248 } 1249 1250 list_del_init(&rq->queuelist); 1251 1252 bd.rq = rq; 1253 1254 /* 1255 * Flag last if we have no more requests, or if we have more 1256 * but can't assign a driver tag to it. 1257 */ 1258 if (list_empty(list)) 1259 bd.last = true; 1260 else { 1261 nxt = list_first_entry(list, struct request, queuelist); 1262 bd.last = !blk_mq_get_driver_tag(nxt); 1263 } 1264 1265 ret = q->mq_ops->queue_rq(hctx, &bd); 1266 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1267 blk_mq_handle_dev_resource(rq, list); 1268 break; 1269 } 1270 1271 if (unlikely(ret != BLK_STS_OK)) { 1272 errors++; 1273 blk_mq_end_request(rq, BLK_STS_IOERR); 1274 continue; 1275 } 1276 1277 queued++; 1278 } while (!list_empty(list)); 1279 1280 hctx->dispatched[queued_to_index(queued)]++; 1281 1282 /* 1283 * Any items that need requeuing? Stuff them into hctx->dispatch, 1284 * that is where we will continue on next queue run. 1285 */ 1286 if (!list_empty(list)) { 1287 bool needs_restart; 1288 1289 /* 1290 * If we didn't flush the entire list, we could have told 1291 * the driver there was more coming, but that turned out to 1292 * be a lie. 1293 */ 1294 if (q->mq_ops->commit_rqs && queued) 1295 q->mq_ops->commit_rqs(hctx); 1296 1297 spin_lock(&hctx->lock); 1298 list_splice_tail_init(list, &hctx->dispatch); 1299 spin_unlock(&hctx->lock); 1300 1301 /* 1302 * If SCHED_RESTART was set by the caller of this function and 1303 * it is no longer set that means that it was cleared by another 1304 * thread and hence that a queue rerun is needed. 1305 * 1306 * If 'no_tag' is set, that means that we failed getting 1307 * a driver tag with an I/O scheduler attached. If our dispatch 1308 * waitqueue is no longer active, ensure that we run the queue 1309 * AFTER adding our entries back to the list. 1310 * 1311 * If no I/O scheduler has been configured it is possible that 1312 * the hardware queue got stopped and restarted before requests 1313 * were pushed back onto the dispatch list. Rerun the queue to 1314 * avoid starvation. Notes: 1315 * - blk_mq_run_hw_queue() checks whether or not a queue has 1316 * been stopped before rerunning a queue. 1317 * - Some but not all block drivers stop a queue before 1318 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1319 * and dm-rq. 1320 * 1321 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1322 * bit is set, run queue after a delay to avoid IO stalls 1323 * that could otherwise occur if the queue is idle. 1324 */ 1325 needs_restart = blk_mq_sched_needs_restart(hctx); 1326 if (!needs_restart || 1327 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1328 blk_mq_run_hw_queue(hctx, true); 1329 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1330 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1331 1332 blk_mq_update_dispatch_busy(hctx, true); 1333 return false; 1334 } else 1335 blk_mq_update_dispatch_busy(hctx, false); 1336 1337 /* 1338 * If the host/device is unable to accept more work, inform the 1339 * caller of that. 1340 */ 1341 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1342 return false; 1343 1344 return (queued + errors) != 0; 1345 } 1346 1347 /** 1348 * __blk_mq_run_hw_queue - Run a hardware queue. 1349 * @hctx: Pointer to the hardware queue to run. 1350 * 1351 * Send pending requests to the hardware. 1352 */ 1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1354 { 1355 int srcu_idx; 1356 1357 /* 1358 * We should be running this queue from one of the CPUs that 1359 * are mapped to it. 1360 * 1361 * There are at least two related races now between setting 1362 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1363 * __blk_mq_run_hw_queue(): 1364 * 1365 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1366 * but later it becomes online, then this warning is harmless 1367 * at all 1368 * 1369 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1370 * but later it becomes offline, then the warning can't be 1371 * triggered, and we depend on blk-mq timeout handler to 1372 * handle dispatched requests to this hctx 1373 */ 1374 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1375 cpu_online(hctx->next_cpu)) { 1376 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1377 raw_smp_processor_id(), 1378 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1379 dump_stack(); 1380 } 1381 1382 /* 1383 * We can't run the queue inline with ints disabled. Ensure that 1384 * we catch bad users of this early. 1385 */ 1386 WARN_ON_ONCE(in_interrupt()); 1387 1388 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1389 1390 hctx_lock(hctx, &srcu_idx); 1391 blk_mq_sched_dispatch_requests(hctx); 1392 hctx_unlock(hctx, srcu_idx); 1393 } 1394 1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1396 { 1397 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1398 1399 if (cpu >= nr_cpu_ids) 1400 cpu = cpumask_first(hctx->cpumask); 1401 return cpu; 1402 } 1403 1404 /* 1405 * It'd be great if the workqueue API had a way to pass 1406 * in a mask and had some smarts for more clever placement. 1407 * For now we just round-robin here, switching for every 1408 * BLK_MQ_CPU_WORK_BATCH queued items. 1409 */ 1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1411 { 1412 bool tried = false; 1413 int next_cpu = hctx->next_cpu; 1414 1415 if (hctx->queue->nr_hw_queues == 1) 1416 return WORK_CPU_UNBOUND; 1417 1418 if (--hctx->next_cpu_batch <= 0) { 1419 select_cpu: 1420 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1421 cpu_online_mask); 1422 if (next_cpu >= nr_cpu_ids) 1423 next_cpu = blk_mq_first_mapped_cpu(hctx); 1424 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1425 } 1426 1427 /* 1428 * Do unbound schedule if we can't find a online CPU for this hctx, 1429 * and it should only happen in the path of handling CPU DEAD. 1430 */ 1431 if (!cpu_online(next_cpu)) { 1432 if (!tried) { 1433 tried = true; 1434 goto select_cpu; 1435 } 1436 1437 /* 1438 * Make sure to re-select CPU next time once after CPUs 1439 * in hctx->cpumask become online again. 1440 */ 1441 hctx->next_cpu = next_cpu; 1442 hctx->next_cpu_batch = 1; 1443 return WORK_CPU_UNBOUND; 1444 } 1445 1446 hctx->next_cpu = next_cpu; 1447 return next_cpu; 1448 } 1449 1450 /** 1451 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1452 * @hctx: Pointer to the hardware queue to run. 1453 * @async: If we want to run the queue asynchronously. 1454 * @msecs: Microseconds of delay to wait before running the queue. 1455 * 1456 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1457 * with a delay of @msecs. 1458 */ 1459 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1460 unsigned long msecs) 1461 { 1462 if (unlikely(blk_mq_hctx_stopped(hctx))) 1463 return; 1464 1465 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1466 int cpu = get_cpu(); 1467 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1468 __blk_mq_run_hw_queue(hctx); 1469 put_cpu(); 1470 return; 1471 } 1472 1473 put_cpu(); 1474 } 1475 1476 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1477 msecs_to_jiffies(msecs)); 1478 } 1479 1480 /** 1481 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1482 * @hctx: Pointer to the hardware queue to run. 1483 * @msecs: Microseconds of delay to wait before running the queue. 1484 * 1485 * Run a hardware queue asynchronously with a delay of @msecs. 1486 */ 1487 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1488 { 1489 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1490 } 1491 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1492 1493 /** 1494 * blk_mq_run_hw_queue - Start to run a hardware queue. 1495 * @hctx: Pointer to the hardware queue to run. 1496 * @async: If we want to run the queue asynchronously. 1497 * 1498 * Check if the request queue is not in a quiesced state and if there are 1499 * pending requests to be sent. If this is true, run the queue to send requests 1500 * to hardware. 1501 */ 1502 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1503 { 1504 int srcu_idx; 1505 bool need_run; 1506 1507 /* 1508 * When queue is quiesced, we may be switching io scheduler, or 1509 * updating nr_hw_queues, or other things, and we can't run queue 1510 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1511 * 1512 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1513 * quiesced. 1514 */ 1515 hctx_lock(hctx, &srcu_idx); 1516 need_run = !blk_queue_quiesced(hctx->queue) && 1517 blk_mq_hctx_has_pending(hctx); 1518 hctx_unlock(hctx, srcu_idx); 1519 1520 if (need_run) 1521 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1522 } 1523 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1524 1525 /** 1526 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1527 * @q: Pointer to the request queue to run. 1528 * @async: If we want to run the queue asynchronously. 1529 */ 1530 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1531 { 1532 struct blk_mq_hw_ctx *hctx; 1533 int i; 1534 1535 queue_for_each_hw_ctx(q, hctx, i) { 1536 if (blk_mq_hctx_stopped(hctx)) 1537 continue; 1538 1539 blk_mq_run_hw_queue(hctx, async); 1540 } 1541 } 1542 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1543 1544 /** 1545 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1546 * @q: request queue. 1547 * 1548 * The caller is responsible for serializing this function against 1549 * blk_mq_{start,stop}_hw_queue(). 1550 */ 1551 bool blk_mq_queue_stopped(struct request_queue *q) 1552 { 1553 struct blk_mq_hw_ctx *hctx; 1554 int i; 1555 1556 queue_for_each_hw_ctx(q, hctx, i) 1557 if (blk_mq_hctx_stopped(hctx)) 1558 return true; 1559 1560 return false; 1561 } 1562 EXPORT_SYMBOL(blk_mq_queue_stopped); 1563 1564 /* 1565 * This function is often used for pausing .queue_rq() by driver when 1566 * there isn't enough resource or some conditions aren't satisfied, and 1567 * BLK_STS_RESOURCE is usually returned. 1568 * 1569 * We do not guarantee that dispatch can be drained or blocked 1570 * after blk_mq_stop_hw_queue() returns. Please use 1571 * blk_mq_quiesce_queue() for that requirement. 1572 */ 1573 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1574 { 1575 cancel_delayed_work(&hctx->run_work); 1576 1577 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1578 } 1579 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1580 1581 /* 1582 * This function is often used for pausing .queue_rq() by driver when 1583 * there isn't enough resource or some conditions aren't satisfied, and 1584 * BLK_STS_RESOURCE is usually returned. 1585 * 1586 * We do not guarantee that dispatch can be drained or blocked 1587 * after blk_mq_stop_hw_queues() returns. Please use 1588 * blk_mq_quiesce_queue() for that requirement. 1589 */ 1590 void blk_mq_stop_hw_queues(struct request_queue *q) 1591 { 1592 struct blk_mq_hw_ctx *hctx; 1593 int i; 1594 1595 queue_for_each_hw_ctx(q, hctx, i) 1596 blk_mq_stop_hw_queue(hctx); 1597 } 1598 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1599 1600 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1601 { 1602 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1603 1604 blk_mq_run_hw_queue(hctx, false); 1605 } 1606 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1607 1608 void blk_mq_start_hw_queues(struct request_queue *q) 1609 { 1610 struct blk_mq_hw_ctx *hctx; 1611 int i; 1612 1613 queue_for_each_hw_ctx(q, hctx, i) 1614 blk_mq_start_hw_queue(hctx); 1615 } 1616 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1617 1618 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1619 { 1620 if (!blk_mq_hctx_stopped(hctx)) 1621 return; 1622 1623 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1624 blk_mq_run_hw_queue(hctx, async); 1625 } 1626 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1627 1628 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1629 { 1630 struct blk_mq_hw_ctx *hctx; 1631 int i; 1632 1633 queue_for_each_hw_ctx(q, hctx, i) 1634 blk_mq_start_stopped_hw_queue(hctx, async); 1635 } 1636 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1637 1638 static void blk_mq_run_work_fn(struct work_struct *work) 1639 { 1640 struct blk_mq_hw_ctx *hctx; 1641 1642 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1643 1644 /* 1645 * If we are stopped, don't run the queue. 1646 */ 1647 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1648 return; 1649 1650 __blk_mq_run_hw_queue(hctx); 1651 } 1652 1653 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1654 struct request *rq, 1655 bool at_head) 1656 { 1657 struct blk_mq_ctx *ctx = rq->mq_ctx; 1658 enum hctx_type type = hctx->type; 1659 1660 lockdep_assert_held(&ctx->lock); 1661 1662 trace_block_rq_insert(hctx->queue, rq); 1663 1664 if (at_head) 1665 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1666 else 1667 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1668 } 1669 1670 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1671 bool at_head) 1672 { 1673 struct blk_mq_ctx *ctx = rq->mq_ctx; 1674 1675 lockdep_assert_held(&ctx->lock); 1676 1677 __blk_mq_insert_req_list(hctx, rq, at_head); 1678 blk_mq_hctx_mark_pending(hctx, ctx); 1679 } 1680 1681 /** 1682 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1683 * @rq: Pointer to request to be inserted. 1684 * @run_queue: If we should run the hardware queue after inserting the request. 1685 * 1686 * Should only be used carefully, when the caller knows we want to 1687 * bypass a potential IO scheduler on the target device. 1688 */ 1689 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1690 bool run_queue) 1691 { 1692 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1693 1694 spin_lock(&hctx->lock); 1695 if (at_head) 1696 list_add(&rq->queuelist, &hctx->dispatch); 1697 else 1698 list_add_tail(&rq->queuelist, &hctx->dispatch); 1699 spin_unlock(&hctx->lock); 1700 1701 if (run_queue) 1702 blk_mq_run_hw_queue(hctx, false); 1703 } 1704 1705 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1706 struct list_head *list) 1707 1708 { 1709 struct request *rq; 1710 enum hctx_type type = hctx->type; 1711 1712 /* 1713 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1714 * offline now 1715 */ 1716 list_for_each_entry(rq, list, queuelist) { 1717 BUG_ON(rq->mq_ctx != ctx); 1718 trace_block_rq_insert(hctx->queue, rq); 1719 } 1720 1721 spin_lock(&ctx->lock); 1722 list_splice_tail_init(list, &ctx->rq_lists[type]); 1723 blk_mq_hctx_mark_pending(hctx, ctx); 1724 spin_unlock(&ctx->lock); 1725 } 1726 1727 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1728 { 1729 struct request *rqa = container_of(a, struct request, queuelist); 1730 struct request *rqb = container_of(b, struct request, queuelist); 1731 1732 if (rqa->mq_ctx != rqb->mq_ctx) 1733 return rqa->mq_ctx > rqb->mq_ctx; 1734 if (rqa->mq_hctx != rqb->mq_hctx) 1735 return rqa->mq_hctx > rqb->mq_hctx; 1736 1737 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1738 } 1739 1740 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1741 { 1742 LIST_HEAD(list); 1743 1744 if (list_empty(&plug->mq_list)) 1745 return; 1746 list_splice_init(&plug->mq_list, &list); 1747 1748 if (plug->rq_count > 2 && plug->multiple_queues) 1749 list_sort(NULL, &list, plug_rq_cmp); 1750 1751 plug->rq_count = 0; 1752 1753 do { 1754 struct list_head rq_list; 1755 struct request *rq, *head_rq = list_entry_rq(list.next); 1756 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1757 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1758 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1759 unsigned int depth = 1; 1760 1761 list_for_each_continue(pos, &list) { 1762 rq = list_entry_rq(pos); 1763 BUG_ON(!rq->q); 1764 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1765 break; 1766 depth++; 1767 } 1768 1769 list_cut_before(&rq_list, &list, pos); 1770 trace_block_unplug(head_rq->q, depth, !from_schedule); 1771 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1772 from_schedule); 1773 } while(!list_empty(&list)); 1774 } 1775 1776 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1777 unsigned int nr_segs) 1778 { 1779 if (bio->bi_opf & REQ_RAHEAD) 1780 rq->cmd_flags |= REQ_FAILFAST_MASK; 1781 1782 rq->__sector = bio->bi_iter.bi_sector; 1783 rq->write_hint = bio->bi_write_hint; 1784 blk_rq_bio_prep(rq, bio, nr_segs); 1785 1786 blk_account_io_start(rq, true); 1787 } 1788 1789 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1790 struct request *rq, 1791 blk_qc_t *cookie, bool last) 1792 { 1793 struct request_queue *q = rq->q; 1794 struct blk_mq_queue_data bd = { 1795 .rq = rq, 1796 .last = last, 1797 }; 1798 blk_qc_t new_cookie; 1799 blk_status_t ret; 1800 1801 new_cookie = request_to_qc_t(hctx, rq); 1802 1803 /* 1804 * For OK queue, we are done. For error, caller may kill it. 1805 * Any other error (busy), just add it to our list as we 1806 * previously would have done. 1807 */ 1808 ret = q->mq_ops->queue_rq(hctx, &bd); 1809 switch (ret) { 1810 case BLK_STS_OK: 1811 blk_mq_update_dispatch_busy(hctx, false); 1812 *cookie = new_cookie; 1813 break; 1814 case BLK_STS_RESOURCE: 1815 case BLK_STS_DEV_RESOURCE: 1816 blk_mq_update_dispatch_busy(hctx, true); 1817 __blk_mq_requeue_request(rq); 1818 break; 1819 default: 1820 blk_mq_update_dispatch_busy(hctx, false); 1821 *cookie = BLK_QC_T_NONE; 1822 break; 1823 } 1824 1825 return ret; 1826 } 1827 1828 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1829 struct request *rq, 1830 blk_qc_t *cookie, 1831 bool bypass_insert, bool last) 1832 { 1833 struct request_queue *q = rq->q; 1834 bool run_queue = true; 1835 1836 /* 1837 * RCU or SRCU read lock is needed before checking quiesced flag. 1838 * 1839 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1840 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1841 * and avoid driver to try to dispatch again. 1842 */ 1843 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1844 run_queue = false; 1845 bypass_insert = false; 1846 goto insert; 1847 } 1848 1849 if (q->elevator && !bypass_insert) 1850 goto insert; 1851 1852 if (!blk_mq_get_dispatch_budget(hctx)) 1853 goto insert; 1854 1855 if (!blk_mq_get_driver_tag(rq)) { 1856 blk_mq_put_dispatch_budget(hctx); 1857 goto insert; 1858 } 1859 1860 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1861 insert: 1862 if (bypass_insert) 1863 return BLK_STS_RESOURCE; 1864 1865 blk_mq_request_bypass_insert(rq, false, run_queue); 1866 return BLK_STS_OK; 1867 } 1868 1869 /** 1870 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 1871 * @hctx: Pointer of the associated hardware queue. 1872 * @rq: Pointer to request to be sent. 1873 * @cookie: Request queue cookie. 1874 * 1875 * If the device has enough resources to accept a new request now, send the 1876 * request directly to device driver. Else, insert at hctx->dispatch queue, so 1877 * we can try send it another time in the future. Requests inserted at this 1878 * queue have higher priority. 1879 */ 1880 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1881 struct request *rq, blk_qc_t *cookie) 1882 { 1883 blk_status_t ret; 1884 int srcu_idx; 1885 1886 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1887 1888 hctx_lock(hctx, &srcu_idx); 1889 1890 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1891 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1892 blk_mq_request_bypass_insert(rq, false, true); 1893 else if (ret != BLK_STS_OK) 1894 blk_mq_end_request(rq, ret); 1895 1896 hctx_unlock(hctx, srcu_idx); 1897 } 1898 1899 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1900 { 1901 blk_status_t ret; 1902 int srcu_idx; 1903 blk_qc_t unused_cookie; 1904 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1905 1906 hctx_lock(hctx, &srcu_idx); 1907 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1908 hctx_unlock(hctx, srcu_idx); 1909 1910 return ret; 1911 } 1912 1913 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1914 struct list_head *list) 1915 { 1916 int queued = 0; 1917 1918 while (!list_empty(list)) { 1919 blk_status_t ret; 1920 struct request *rq = list_first_entry(list, struct request, 1921 queuelist); 1922 1923 list_del_init(&rq->queuelist); 1924 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1925 if (ret != BLK_STS_OK) { 1926 if (ret == BLK_STS_RESOURCE || 1927 ret == BLK_STS_DEV_RESOURCE) { 1928 blk_mq_request_bypass_insert(rq, false, 1929 list_empty(list)); 1930 break; 1931 } 1932 blk_mq_end_request(rq, ret); 1933 } else 1934 queued++; 1935 } 1936 1937 /* 1938 * If we didn't flush the entire list, we could have told 1939 * the driver there was more coming, but that turned out to 1940 * be a lie. 1941 */ 1942 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 1943 hctx->queue->mq_ops->commit_rqs(hctx); 1944 } 1945 1946 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1947 { 1948 list_add_tail(&rq->queuelist, &plug->mq_list); 1949 plug->rq_count++; 1950 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1951 struct request *tmp; 1952 1953 tmp = list_first_entry(&plug->mq_list, struct request, 1954 queuelist); 1955 if (tmp->q != rq->q) 1956 plug->multiple_queues = true; 1957 } 1958 } 1959 1960 /** 1961 * blk_mq_make_request - Create and send a request to block device. 1962 * @q: Request queue pointer. 1963 * @bio: Bio pointer. 1964 * 1965 * Builds up a request structure from @q and @bio and send to the device. The 1966 * request may not be queued directly to hardware if: 1967 * * This request can be merged with another one 1968 * * We want to place request at plug queue for possible future merging 1969 * * There is an IO scheduler active at this queue 1970 * 1971 * It will not queue the request if there is an error with the bio, or at the 1972 * request creation. 1973 * 1974 * Returns: Request queue cookie. 1975 */ 1976 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1977 { 1978 const int is_sync = op_is_sync(bio->bi_opf); 1979 const int is_flush_fua = op_is_flush(bio->bi_opf); 1980 struct blk_mq_alloc_data data = { .flags = 0}; 1981 struct request *rq; 1982 struct blk_plug *plug; 1983 struct request *same_queue_rq = NULL; 1984 unsigned int nr_segs; 1985 blk_qc_t cookie; 1986 1987 blk_queue_bounce(q, &bio); 1988 __blk_queue_split(q, &bio, &nr_segs); 1989 1990 if (!bio_integrity_prep(bio)) 1991 return BLK_QC_T_NONE; 1992 1993 if (!is_flush_fua && !blk_queue_nomerges(q) && 1994 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1995 return BLK_QC_T_NONE; 1996 1997 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1998 return BLK_QC_T_NONE; 1999 2000 rq_qos_throttle(q, bio); 2001 2002 data.cmd_flags = bio->bi_opf; 2003 rq = blk_mq_get_request(q, bio, &data); 2004 if (unlikely(!rq)) { 2005 rq_qos_cleanup(q, bio); 2006 if (bio->bi_opf & REQ_NOWAIT) 2007 bio_wouldblock_error(bio); 2008 return BLK_QC_T_NONE; 2009 } 2010 2011 trace_block_getrq(q, bio, bio->bi_opf); 2012 2013 rq_qos_track(q, rq, bio); 2014 2015 cookie = request_to_qc_t(data.hctx, rq); 2016 2017 blk_mq_bio_to_request(rq, bio, nr_segs); 2018 2019 plug = blk_mq_plug(q, bio); 2020 if (unlikely(is_flush_fua)) { 2021 /* Bypass scheduler for flush requests */ 2022 blk_insert_flush(rq); 2023 blk_mq_run_hw_queue(data.hctx, true); 2024 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2025 !blk_queue_nonrot(q))) { 2026 /* 2027 * Use plugging if we have a ->commit_rqs() hook as well, as 2028 * we know the driver uses bd->last in a smart fashion. 2029 * 2030 * Use normal plugging if this disk is slow HDD, as sequential 2031 * IO may benefit a lot from plug merging. 2032 */ 2033 unsigned int request_count = plug->rq_count; 2034 struct request *last = NULL; 2035 2036 if (!request_count) 2037 trace_block_plug(q); 2038 else 2039 last = list_entry_rq(plug->mq_list.prev); 2040 2041 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2042 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2043 blk_flush_plug_list(plug, false); 2044 trace_block_plug(q); 2045 } 2046 2047 blk_add_rq_to_plug(plug, rq); 2048 } else if (q->elevator) { 2049 /* Insert the request at the IO scheduler queue */ 2050 blk_mq_sched_insert_request(rq, false, true, true); 2051 } else if (plug && !blk_queue_nomerges(q)) { 2052 /* 2053 * We do limited plugging. If the bio can be merged, do that. 2054 * Otherwise the existing request in the plug list will be 2055 * issued. So the plug list will have one request at most 2056 * The plug list might get flushed before this. If that happens, 2057 * the plug list is empty, and same_queue_rq is invalid. 2058 */ 2059 if (list_empty(&plug->mq_list)) 2060 same_queue_rq = NULL; 2061 if (same_queue_rq) { 2062 list_del_init(&same_queue_rq->queuelist); 2063 plug->rq_count--; 2064 } 2065 blk_add_rq_to_plug(plug, rq); 2066 trace_block_plug(q); 2067 2068 if (same_queue_rq) { 2069 data.hctx = same_queue_rq->mq_hctx; 2070 trace_block_unplug(q, 1, true); 2071 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2072 &cookie); 2073 } 2074 } else if ((q->nr_hw_queues > 1 && is_sync) || 2075 !data.hctx->dispatch_busy) { 2076 /* 2077 * There is no scheduler and we can try to send directly 2078 * to the hardware. 2079 */ 2080 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2081 } else { 2082 /* Default case. */ 2083 blk_mq_sched_insert_request(rq, false, true, true); 2084 } 2085 2086 return cookie; 2087 } 2088 2089 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2090 unsigned int hctx_idx) 2091 { 2092 struct page *page; 2093 2094 if (tags->rqs && set->ops->exit_request) { 2095 int i; 2096 2097 for (i = 0; i < tags->nr_tags; i++) { 2098 struct request *rq = tags->static_rqs[i]; 2099 2100 if (!rq) 2101 continue; 2102 set->ops->exit_request(set, rq, hctx_idx); 2103 tags->static_rqs[i] = NULL; 2104 } 2105 } 2106 2107 while (!list_empty(&tags->page_list)) { 2108 page = list_first_entry(&tags->page_list, struct page, lru); 2109 list_del_init(&page->lru); 2110 /* 2111 * Remove kmemleak object previously allocated in 2112 * blk_mq_alloc_rqs(). 2113 */ 2114 kmemleak_free(page_address(page)); 2115 __free_pages(page, page->private); 2116 } 2117 } 2118 2119 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2120 { 2121 kfree(tags->rqs); 2122 tags->rqs = NULL; 2123 kfree(tags->static_rqs); 2124 tags->static_rqs = NULL; 2125 2126 blk_mq_free_tags(tags); 2127 } 2128 2129 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2130 unsigned int hctx_idx, 2131 unsigned int nr_tags, 2132 unsigned int reserved_tags) 2133 { 2134 struct blk_mq_tags *tags; 2135 int node; 2136 2137 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2138 if (node == NUMA_NO_NODE) 2139 node = set->numa_node; 2140 2141 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2142 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2143 if (!tags) 2144 return NULL; 2145 2146 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2147 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2148 node); 2149 if (!tags->rqs) { 2150 blk_mq_free_tags(tags); 2151 return NULL; 2152 } 2153 2154 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2155 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2156 node); 2157 if (!tags->static_rqs) { 2158 kfree(tags->rqs); 2159 blk_mq_free_tags(tags); 2160 return NULL; 2161 } 2162 2163 return tags; 2164 } 2165 2166 static size_t order_to_size(unsigned int order) 2167 { 2168 return (size_t)PAGE_SIZE << order; 2169 } 2170 2171 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2172 unsigned int hctx_idx, int node) 2173 { 2174 int ret; 2175 2176 if (set->ops->init_request) { 2177 ret = set->ops->init_request(set, rq, hctx_idx, node); 2178 if (ret) 2179 return ret; 2180 } 2181 2182 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2183 return 0; 2184 } 2185 2186 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2187 unsigned int hctx_idx, unsigned int depth) 2188 { 2189 unsigned int i, j, entries_per_page, max_order = 4; 2190 size_t rq_size, left; 2191 int node; 2192 2193 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2194 if (node == NUMA_NO_NODE) 2195 node = set->numa_node; 2196 2197 INIT_LIST_HEAD(&tags->page_list); 2198 2199 /* 2200 * rq_size is the size of the request plus driver payload, rounded 2201 * to the cacheline size 2202 */ 2203 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2204 cache_line_size()); 2205 left = rq_size * depth; 2206 2207 for (i = 0; i < depth; ) { 2208 int this_order = max_order; 2209 struct page *page; 2210 int to_do; 2211 void *p; 2212 2213 while (this_order && left < order_to_size(this_order - 1)) 2214 this_order--; 2215 2216 do { 2217 page = alloc_pages_node(node, 2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2219 this_order); 2220 if (page) 2221 break; 2222 if (!this_order--) 2223 break; 2224 if (order_to_size(this_order) < rq_size) 2225 break; 2226 } while (1); 2227 2228 if (!page) 2229 goto fail; 2230 2231 page->private = this_order; 2232 list_add_tail(&page->lru, &tags->page_list); 2233 2234 p = page_address(page); 2235 /* 2236 * Allow kmemleak to scan these pages as they contain pointers 2237 * to additional allocations like via ops->init_request(). 2238 */ 2239 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2240 entries_per_page = order_to_size(this_order) / rq_size; 2241 to_do = min(entries_per_page, depth - i); 2242 left -= to_do * rq_size; 2243 for (j = 0; j < to_do; j++) { 2244 struct request *rq = p; 2245 2246 tags->static_rqs[i] = rq; 2247 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2248 tags->static_rqs[i] = NULL; 2249 goto fail; 2250 } 2251 2252 p += rq_size; 2253 i++; 2254 } 2255 } 2256 return 0; 2257 2258 fail: 2259 blk_mq_free_rqs(set, tags, hctx_idx); 2260 return -ENOMEM; 2261 } 2262 2263 /* 2264 * 'cpu' is going away. splice any existing rq_list entries from this 2265 * software queue to the hw queue dispatch list, and ensure that it 2266 * gets run. 2267 */ 2268 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2269 { 2270 struct blk_mq_hw_ctx *hctx; 2271 struct blk_mq_ctx *ctx; 2272 LIST_HEAD(tmp); 2273 enum hctx_type type; 2274 2275 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2276 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2277 type = hctx->type; 2278 2279 spin_lock(&ctx->lock); 2280 if (!list_empty(&ctx->rq_lists[type])) { 2281 list_splice_init(&ctx->rq_lists[type], &tmp); 2282 blk_mq_hctx_clear_pending(hctx, ctx); 2283 } 2284 spin_unlock(&ctx->lock); 2285 2286 if (list_empty(&tmp)) 2287 return 0; 2288 2289 spin_lock(&hctx->lock); 2290 list_splice_tail_init(&tmp, &hctx->dispatch); 2291 spin_unlock(&hctx->lock); 2292 2293 blk_mq_run_hw_queue(hctx, true); 2294 return 0; 2295 } 2296 2297 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2298 { 2299 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2300 &hctx->cpuhp_dead); 2301 } 2302 2303 /* hctx->ctxs will be freed in queue's release handler */ 2304 static void blk_mq_exit_hctx(struct request_queue *q, 2305 struct blk_mq_tag_set *set, 2306 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2307 { 2308 if (blk_mq_hw_queue_mapped(hctx)) 2309 blk_mq_tag_idle(hctx); 2310 2311 if (set->ops->exit_request) 2312 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2313 2314 if (set->ops->exit_hctx) 2315 set->ops->exit_hctx(hctx, hctx_idx); 2316 2317 blk_mq_remove_cpuhp(hctx); 2318 2319 spin_lock(&q->unused_hctx_lock); 2320 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2321 spin_unlock(&q->unused_hctx_lock); 2322 } 2323 2324 static void blk_mq_exit_hw_queues(struct request_queue *q, 2325 struct blk_mq_tag_set *set, int nr_queue) 2326 { 2327 struct blk_mq_hw_ctx *hctx; 2328 unsigned int i; 2329 2330 queue_for_each_hw_ctx(q, hctx, i) { 2331 if (i == nr_queue) 2332 break; 2333 blk_mq_debugfs_unregister_hctx(hctx); 2334 blk_mq_exit_hctx(q, set, hctx, i); 2335 } 2336 } 2337 2338 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2339 { 2340 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2341 2342 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2343 __alignof__(struct blk_mq_hw_ctx)) != 2344 sizeof(struct blk_mq_hw_ctx)); 2345 2346 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2347 hw_ctx_size += sizeof(struct srcu_struct); 2348 2349 return hw_ctx_size; 2350 } 2351 2352 static int blk_mq_init_hctx(struct request_queue *q, 2353 struct blk_mq_tag_set *set, 2354 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2355 { 2356 hctx->queue_num = hctx_idx; 2357 2358 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2359 2360 hctx->tags = set->tags[hctx_idx]; 2361 2362 if (set->ops->init_hctx && 2363 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2364 goto unregister_cpu_notifier; 2365 2366 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2367 hctx->numa_node)) 2368 goto exit_hctx; 2369 return 0; 2370 2371 exit_hctx: 2372 if (set->ops->exit_hctx) 2373 set->ops->exit_hctx(hctx, hctx_idx); 2374 unregister_cpu_notifier: 2375 blk_mq_remove_cpuhp(hctx); 2376 return -1; 2377 } 2378 2379 static struct blk_mq_hw_ctx * 2380 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2381 int node) 2382 { 2383 struct blk_mq_hw_ctx *hctx; 2384 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2385 2386 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2387 if (!hctx) 2388 goto fail_alloc_hctx; 2389 2390 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2391 goto free_hctx; 2392 2393 atomic_set(&hctx->nr_active, 0); 2394 if (node == NUMA_NO_NODE) 2395 node = set->numa_node; 2396 hctx->numa_node = node; 2397 2398 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2399 spin_lock_init(&hctx->lock); 2400 INIT_LIST_HEAD(&hctx->dispatch); 2401 hctx->queue = q; 2402 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2403 2404 INIT_LIST_HEAD(&hctx->hctx_list); 2405 2406 /* 2407 * Allocate space for all possible cpus to avoid allocation at 2408 * runtime 2409 */ 2410 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2411 gfp, node); 2412 if (!hctx->ctxs) 2413 goto free_cpumask; 2414 2415 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2416 gfp, node)) 2417 goto free_ctxs; 2418 hctx->nr_ctx = 0; 2419 2420 spin_lock_init(&hctx->dispatch_wait_lock); 2421 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2422 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2423 2424 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2425 if (!hctx->fq) 2426 goto free_bitmap; 2427 2428 if (hctx->flags & BLK_MQ_F_BLOCKING) 2429 init_srcu_struct(hctx->srcu); 2430 blk_mq_hctx_kobj_init(hctx); 2431 2432 return hctx; 2433 2434 free_bitmap: 2435 sbitmap_free(&hctx->ctx_map); 2436 free_ctxs: 2437 kfree(hctx->ctxs); 2438 free_cpumask: 2439 free_cpumask_var(hctx->cpumask); 2440 free_hctx: 2441 kfree(hctx); 2442 fail_alloc_hctx: 2443 return NULL; 2444 } 2445 2446 static void blk_mq_init_cpu_queues(struct request_queue *q, 2447 unsigned int nr_hw_queues) 2448 { 2449 struct blk_mq_tag_set *set = q->tag_set; 2450 unsigned int i, j; 2451 2452 for_each_possible_cpu(i) { 2453 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2454 struct blk_mq_hw_ctx *hctx; 2455 int k; 2456 2457 __ctx->cpu = i; 2458 spin_lock_init(&__ctx->lock); 2459 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2460 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2461 2462 __ctx->queue = q; 2463 2464 /* 2465 * Set local node, IFF we have more than one hw queue. If 2466 * not, we remain on the home node of the device 2467 */ 2468 for (j = 0; j < set->nr_maps; j++) { 2469 hctx = blk_mq_map_queue_type(q, j, i); 2470 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2471 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2472 } 2473 } 2474 } 2475 2476 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2477 { 2478 int ret = 0; 2479 2480 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2481 set->queue_depth, set->reserved_tags); 2482 if (!set->tags[hctx_idx]) 2483 return false; 2484 2485 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2486 set->queue_depth); 2487 if (!ret) 2488 return true; 2489 2490 blk_mq_free_rq_map(set->tags[hctx_idx]); 2491 set->tags[hctx_idx] = NULL; 2492 return false; 2493 } 2494 2495 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2496 unsigned int hctx_idx) 2497 { 2498 if (set->tags && set->tags[hctx_idx]) { 2499 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2500 blk_mq_free_rq_map(set->tags[hctx_idx]); 2501 set->tags[hctx_idx] = NULL; 2502 } 2503 } 2504 2505 static void blk_mq_map_swqueue(struct request_queue *q) 2506 { 2507 unsigned int i, j, hctx_idx; 2508 struct blk_mq_hw_ctx *hctx; 2509 struct blk_mq_ctx *ctx; 2510 struct blk_mq_tag_set *set = q->tag_set; 2511 2512 queue_for_each_hw_ctx(q, hctx, i) { 2513 cpumask_clear(hctx->cpumask); 2514 hctx->nr_ctx = 0; 2515 hctx->dispatch_from = NULL; 2516 } 2517 2518 /* 2519 * Map software to hardware queues. 2520 * 2521 * If the cpu isn't present, the cpu is mapped to first hctx. 2522 */ 2523 for_each_possible_cpu(i) { 2524 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2525 /* unmapped hw queue can be remapped after CPU topo changed */ 2526 if (!set->tags[hctx_idx] && 2527 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2528 /* 2529 * If tags initialization fail for some hctx, 2530 * that hctx won't be brought online. In this 2531 * case, remap the current ctx to hctx[0] which 2532 * is guaranteed to always have tags allocated 2533 */ 2534 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2535 } 2536 2537 ctx = per_cpu_ptr(q->queue_ctx, i); 2538 for (j = 0; j < set->nr_maps; j++) { 2539 if (!set->map[j].nr_queues) { 2540 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2541 HCTX_TYPE_DEFAULT, i); 2542 continue; 2543 } 2544 2545 hctx = blk_mq_map_queue_type(q, j, i); 2546 ctx->hctxs[j] = hctx; 2547 /* 2548 * If the CPU is already set in the mask, then we've 2549 * mapped this one already. This can happen if 2550 * devices share queues across queue maps. 2551 */ 2552 if (cpumask_test_cpu(i, hctx->cpumask)) 2553 continue; 2554 2555 cpumask_set_cpu(i, hctx->cpumask); 2556 hctx->type = j; 2557 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2558 hctx->ctxs[hctx->nr_ctx++] = ctx; 2559 2560 /* 2561 * If the nr_ctx type overflows, we have exceeded the 2562 * amount of sw queues we can support. 2563 */ 2564 BUG_ON(!hctx->nr_ctx); 2565 } 2566 2567 for (; j < HCTX_MAX_TYPES; j++) 2568 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2569 HCTX_TYPE_DEFAULT, i); 2570 } 2571 2572 queue_for_each_hw_ctx(q, hctx, i) { 2573 /* 2574 * If no software queues are mapped to this hardware queue, 2575 * disable it and free the request entries. 2576 */ 2577 if (!hctx->nr_ctx) { 2578 /* Never unmap queue 0. We need it as a 2579 * fallback in case of a new remap fails 2580 * allocation 2581 */ 2582 if (i && set->tags[i]) 2583 blk_mq_free_map_and_requests(set, i); 2584 2585 hctx->tags = NULL; 2586 continue; 2587 } 2588 2589 hctx->tags = set->tags[i]; 2590 WARN_ON(!hctx->tags); 2591 2592 /* 2593 * Set the map size to the number of mapped software queues. 2594 * This is more accurate and more efficient than looping 2595 * over all possibly mapped software queues. 2596 */ 2597 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2598 2599 /* 2600 * Initialize batch roundrobin counts 2601 */ 2602 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2603 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2604 } 2605 } 2606 2607 /* 2608 * Caller needs to ensure that we're either frozen/quiesced, or that 2609 * the queue isn't live yet. 2610 */ 2611 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2612 { 2613 struct blk_mq_hw_ctx *hctx; 2614 int i; 2615 2616 queue_for_each_hw_ctx(q, hctx, i) { 2617 if (shared) 2618 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2619 else 2620 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2621 } 2622 } 2623 2624 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2625 bool shared) 2626 { 2627 struct request_queue *q; 2628 2629 lockdep_assert_held(&set->tag_list_lock); 2630 2631 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2632 blk_mq_freeze_queue(q); 2633 queue_set_hctx_shared(q, shared); 2634 blk_mq_unfreeze_queue(q); 2635 } 2636 } 2637 2638 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2639 { 2640 struct blk_mq_tag_set *set = q->tag_set; 2641 2642 mutex_lock(&set->tag_list_lock); 2643 list_del_rcu(&q->tag_set_list); 2644 if (list_is_singular(&set->tag_list)) { 2645 /* just transitioned to unshared */ 2646 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2647 /* update existing queue */ 2648 blk_mq_update_tag_set_depth(set, false); 2649 } 2650 mutex_unlock(&set->tag_list_lock); 2651 INIT_LIST_HEAD(&q->tag_set_list); 2652 } 2653 2654 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2655 struct request_queue *q) 2656 { 2657 mutex_lock(&set->tag_list_lock); 2658 2659 /* 2660 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2661 */ 2662 if (!list_empty(&set->tag_list) && 2663 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2664 set->flags |= BLK_MQ_F_TAG_SHARED; 2665 /* update existing queue */ 2666 blk_mq_update_tag_set_depth(set, true); 2667 } 2668 if (set->flags & BLK_MQ_F_TAG_SHARED) 2669 queue_set_hctx_shared(q, true); 2670 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2671 2672 mutex_unlock(&set->tag_list_lock); 2673 } 2674 2675 /* All allocations will be freed in release handler of q->mq_kobj */ 2676 static int blk_mq_alloc_ctxs(struct request_queue *q) 2677 { 2678 struct blk_mq_ctxs *ctxs; 2679 int cpu; 2680 2681 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2682 if (!ctxs) 2683 return -ENOMEM; 2684 2685 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2686 if (!ctxs->queue_ctx) 2687 goto fail; 2688 2689 for_each_possible_cpu(cpu) { 2690 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2691 ctx->ctxs = ctxs; 2692 } 2693 2694 q->mq_kobj = &ctxs->kobj; 2695 q->queue_ctx = ctxs->queue_ctx; 2696 2697 return 0; 2698 fail: 2699 kfree(ctxs); 2700 return -ENOMEM; 2701 } 2702 2703 /* 2704 * It is the actual release handler for mq, but we do it from 2705 * request queue's release handler for avoiding use-after-free 2706 * and headache because q->mq_kobj shouldn't have been introduced, 2707 * but we can't group ctx/kctx kobj without it. 2708 */ 2709 void blk_mq_release(struct request_queue *q) 2710 { 2711 struct blk_mq_hw_ctx *hctx, *next; 2712 int i; 2713 2714 queue_for_each_hw_ctx(q, hctx, i) 2715 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2716 2717 /* all hctx are in .unused_hctx_list now */ 2718 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2719 list_del_init(&hctx->hctx_list); 2720 kobject_put(&hctx->kobj); 2721 } 2722 2723 kfree(q->queue_hw_ctx); 2724 2725 /* 2726 * release .mq_kobj and sw queue's kobject now because 2727 * both share lifetime with request queue. 2728 */ 2729 blk_mq_sysfs_deinit(q); 2730 } 2731 2732 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 2733 void *queuedata) 2734 { 2735 struct request_queue *uninit_q, *q; 2736 2737 uninit_q = __blk_alloc_queue(set->numa_node); 2738 if (!uninit_q) 2739 return ERR_PTR(-ENOMEM); 2740 uninit_q->queuedata = queuedata; 2741 2742 /* 2743 * Initialize the queue without an elevator. device_add_disk() will do 2744 * the initialization. 2745 */ 2746 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2747 if (IS_ERR(q)) 2748 blk_cleanup_queue(uninit_q); 2749 2750 return q; 2751 } 2752 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 2753 2754 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2755 { 2756 return blk_mq_init_queue_data(set, NULL); 2757 } 2758 EXPORT_SYMBOL(blk_mq_init_queue); 2759 2760 /* 2761 * Helper for setting up a queue with mq ops, given queue depth, and 2762 * the passed in mq ops flags. 2763 */ 2764 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2765 const struct blk_mq_ops *ops, 2766 unsigned int queue_depth, 2767 unsigned int set_flags) 2768 { 2769 struct request_queue *q; 2770 int ret; 2771 2772 memset(set, 0, sizeof(*set)); 2773 set->ops = ops; 2774 set->nr_hw_queues = 1; 2775 set->nr_maps = 1; 2776 set->queue_depth = queue_depth; 2777 set->numa_node = NUMA_NO_NODE; 2778 set->flags = set_flags; 2779 2780 ret = blk_mq_alloc_tag_set(set); 2781 if (ret) 2782 return ERR_PTR(ret); 2783 2784 q = blk_mq_init_queue(set); 2785 if (IS_ERR(q)) { 2786 blk_mq_free_tag_set(set); 2787 return q; 2788 } 2789 2790 return q; 2791 } 2792 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2793 2794 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2795 struct blk_mq_tag_set *set, struct request_queue *q, 2796 int hctx_idx, int node) 2797 { 2798 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2799 2800 /* reuse dead hctx first */ 2801 spin_lock(&q->unused_hctx_lock); 2802 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2803 if (tmp->numa_node == node) { 2804 hctx = tmp; 2805 break; 2806 } 2807 } 2808 if (hctx) 2809 list_del_init(&hctx->hctx_list); 2810 spin_unlock(&q->unused_hctx_lock); 2811 2812 if (!hctx) 2813 hctx = blk_mq_alloc_hctx(q, set, node); 2814 if (!hctx) 2815 goto fail; 2816 2817 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2818 goto free_hctx; 2819 2820 return hctx; 2821 2822 free_hctx: 2823 kobject_put(&hctx->kobj); 2824 fail: 2825 return NULL; 2826 } 2827 2828 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2829 struct request_queue *q) 2830 { 2831 int i, j, end; 2832 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2833 2834 if (q->nr_hw_queues < set->nr_hw_queues) { 2835 struct blk_mq_hw_ctx **new_hctxs; 2836 2837 new_hctxs = kcalloc_node(set->nr_hw_queues, 2838 sizeof(*new_hctxs), GFP_KERNEL, 2839 set->numa_node); 2840 if (!new_hctxs) 2841 return; 2842 if (hctxs) 2843 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 2844 sizeof(*hctxs)); 2845 q->queue_hw_ctx = new_hctxs; 2846 kfree(hctxs); 2847 hctxs = new_hctxs; 2848 } 2849 2850 /* protect against switching io scheduler */ 2851 mutex_lock(&q->sysfs_lock); 2852 for (i = 0; i < set->nr_hw_queues; i++) { 2853 int node; 2854 struct blk_mq_hw_ctx *hctx; 2855 2856 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2857 /* 2858 * If the hw queue has been mapped to another numa node, 2859 * we need to realloc the hctx. If allocation fails, fallback 2860 * to use the previous one. 2861 */ 2862 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2863 continue; 2864 2865 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2866 if (hctx) { 2867 if (hctxs[i]) 2868 blk_mq_exit_hctx(q, set, hctxs[i], i); 2869 hctxs[i] = hctx; 2870 } else { 2871 if (hctxs[i]) 2872 pr_warn("Allocate new hctx on node %d fails,\ 2873 fallback to previous one on node %d\n", 2874 node, hctxs[i]->numa_node); 2875 else 2876 break; 2877 } 2878 } 2879 /* 2880 * Increasing nr_hw_queues fails. Free the newly allocated 2881 * hctxs and keep the previous q->nr_hw_queues. 2882 */ 2883 if (i != set->nr_hw_queues) { 2884 j = q->nr_hw_queues; 2885 end = i; 2886 } else { 2887 j = i; 2888 end = q->nr_hw_queues; 2889 q->nr_hw_queues = set->nr_hw_queues; 2890 } 2891 2892 for (; j < end; j++) { 2893 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2894 2895 if (hctx) { 2896 if (hctx->tags) 2897 blk_mq_free_map_and_requests(set, j); 2898 blk_mq_exit_hctx(q, set, hctx, j); 2899 hctxs[j] = NULL; 2900 } 2901 } 2902 mutex_unlock(&q->sysfs_lock); 2903 } 2904 2905 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2906 struct request_queue *q, 2907 bool elevator_init) 2908 { 2909 /* mark the queue as mq asap */ 2910 q->mq_ops = set->ops; 2911 2912 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2913 blk_mq_poll_stats_bkt, 2914 BLK_MQ_POLL_STATS_BKTS, q); 2915 if (!q->poll_cb) 2916 goto err_exit; 2917 2918 if (blk_mq_alloc_ctxs(q)) 2919 goto err_poll; 2920 2921 /* init q->mq_kobj and sw queues' kobjects */ 2922 blk_mq_sysfs_init(q); 2923 2924 INIT_LIST_HEAD(&q->unused_hctx_list); 2925 spin_lock_init(&q->unused_hctx_lock); 2926 2927 blk_mq_realloc_hw_ctxs(set, q); 2928 if (!q->nr_hw_queues) 2929 goto err_hctxs; 2930 2931 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2932 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2933 2934 q->tag_set = set; 2935 2936 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2937 if (set->nr_maps > HCTX_TYPE_POLL && 2938 set->map[HCTX_TYPE_POLL].nr_queues) 2939 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2940 2941 q->sg_reserved_size = INT_MAX; 2942 2943 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2944 INIT_LIST_HEAD(&q->requeue_list); 2945 spin_lock_init(&q->requeue_lock); 2946 2947 q->make_request_fn = blk_mq_make_request; 2948 q->nr_requests = set->queue_depth; 2949 2950 /* 2951 * Default to classic polling 2952 */ 2953 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2954 2955 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2956 blk_mq_add_queue_tag_set(set, q); 2957 blk_mq_map_swqueue(q); 2958 2959 if (elevator_init) 2960 elevator_init_mq(q); 2961 2962 return q; 2963 2964 err_hctxs: 2965 kfree(q->queue_hw_ctx); 2966 q->nr_hw_queues = 0; 2967 blk_mq_sysfs_deinit(q); 2968 err_poll: 2969 blk_stat_free_callback(q->poll_cb); 2970 q->poll_cb = NULL; 2971 err_exit: 2972 q->mq_ops = NULL; 2973 return ERR_PTR(-ENOMEM); 2974 } 2975 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2976 2977 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2978 void blk_mq_exit_queue(struct request_queue *q) 2979 { 2980 struct blk_mq_tag_set *set = q->tag_set; 2981 2982 blk_mq_del_queue_tag_set(q); 2983 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2984 } 2985 2986 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2987 { 2988 int i; 2989 2990 for (i = 0; i < set->nr_hw_queues; i++) 2991 if (!__blk_mq_alloc_rq_map(set, i)) 2992 goto out_unwind; 2993 2994 return 0; 2995 2996 out_unwind: 2997 while (--i >= 0) 2998 blk_mq_free_rq_map(set->tags[i]); 2999 3000 return -ENOMEM; 3001 } 3002 3003 /* 3004 * Allocate the request maps associated with this tag_set. Note that this 3005 * may reduce the depth asked for, if memory is tight. set->queue_depth 3006 * will be updated to reflect the allocated depth. 3007 */ 3008 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3009 { 3010 unsigned int depth; 3011 int err; 3012 3013 depth = set->queue_depth; 3014 do { 3015 err = __blk_mq_alloc_rq_maps(set); 3016 if (!err) 3017 break; 3018 3019 set->queue_depth >>= 1; 3020 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3021 err = -ENOMEM; 3022 break; 3023 } 3024 } while (set->queue_depth); 3025 3026 if (!set->queue_depth || err) { 3027 pr_err("blk-mq: failed to allocate request map\n"); 3028 return -ENOMEM; 3029 } 3030 3031 if (depth != set->queue_depth) 3032 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3033 depth, set->queue_depth); 3034 3035 return 0; 3036 } 3037 3038 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3039 { 3040 /* 3041 * blk_mq_map_queues() and multiple .map_queues() implementations 3042 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3043 * number of hardware queues. 3044 */ 3045 if (set->nr_maps == 1) 3046 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3047 3048 if (set->ops->map_queues && !is_kdump_kernel()) { 3049 int i; 3050 3051 /* 3052 * transport .map_queues is usually done in the following 3053 * way: 3054 * 3055 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3056 * mask = get_cpu_mask(queue) 3057 * for_each_cpu(cpu, mask) 3058 * set->map[x].mq_map[cpu] = queue; 3059 * } 3060 * 3061 * When we need to remap, the table has to be cleared for 3062 * killing stale mapping since one CPU may not be mapped 3063 * to any hw queue. 3064 */ 3065 for (i = 0; i < set->nr_maps; i++) 3066 blk_mq_clear_mq_map(&set->map[i]); 3067 3068 return set->ops->map_queues(set); 3069 } else { 3070 BUG_ON(set->nr_maps > 1); 3071 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3072 } 3073 } 3074 3075 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3076 int cur_nr_hw_queues, int new_nr_hw_queues) 3077 { 3078 struct blk_mq_tags **new_tags; 3079 3080 if (cur_nr_hw_queues >= new_nr_hw_queues) 3081 return 0; 3082 3083 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3084 GFP_KERNEL, set->numa_node); 3085 if (!new_tags) 3086 return -ENOMEM; 3087 3088 if (set->tags) 3089 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3090 sizeof(*set->tags)); 3091 kfree(set->tags); 3092 set->tags = new_tags; 3093 set->nr_hw_queues = new_nr_hw_queues; 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * Alloc a tag set to be associated with one or more request queues. 3100 * May fail with EINVAL for various error conditions. May adjust the 3101 * requested depth down, if it's too large. In that case, the set 3102 * value will be stored in set->queue_depth. 3103 */ 3104 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3105 { 3106 int i, ret; 3107 3108 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3109 3110 if (!set->nr_hw_queues) 3111 return -EINVAL; 3112 if (!set->queue_depth) 3113 return -EINVAL; 3114 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3115 return -EINVAL; 3116 3117 if (!set->ops->queue_rq) 3118 return -EINVAL; 3119 3120 if (!set->ops->get_budget ^ !set->ops->put_budget) 3121 return -EINVAL; 3122 3123 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3124 pr_info("blk-mq: reduced tag depth to %u\n", 3125 BLK_MQ_MAX_DEPTH); 3126 set->queue_depth = BLK_MQ_MAX_DEPTH; 3127 } 3128 3129 if (!set->nr_maps) 3130 set->nr_maps = 1; 3131 else if (set->nr_maps > HCTX_MAX_TYPES) 3132 return -EINVAL; 3133 3134 /* 3135 * If a crashdump is active, then we are potentially in a very 3136 * memory constrained environment. Limit us to 1 queue and 3137 * 64 tags to prevent using too much memory. 3138 */ 3139 if (is_kdump_kernel()) { 3140 set->nr_hw_queues = 1; 3141 set->nr_maps = 1; 3142 set->queue_depth = min(64U, set->queue_depth); 3143 } 3144 /* 3145 * There is no use for more h/w queues than cpus if we just have 3146 * a single map 3147 */ 3148 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3149 set->nr_hw_queues = nr_cpu_ids; 3150 3151 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3152 return -ENOMEM; 3153 3154 ret = -ENOMEM; 3155 for (i = 0; i < set->nr_maps; i++) { 3156 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3157 sizeof(set->map[i].mq_map[0]), 3158 GFP_KERNEL, set->numa_node); 3159 if (!set->map[i].mq_map) 3160 goto out_free_mq_map; 3161 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3162 } 3163 3164 ret = blk_mq_update_queue_map(set); 3165 if (ret) 3166 goto out_free_mq_map; 3167 3168 ret = blk_mq_alloc_rq_maps(set); 3169 if (ret) 3170 goto out_free_mq_map; 3171 3172 mutex_init(&set->tag_list_lock); 3173 INIT_LIST_HEAD(&set->tag_list); 3174 3175 return 0; 3176 3177 out_free_mq_map: 3178 for (i = 0; i < set->nr_maps; i++) { 3179 kfree(set->map[i].mq_map); 3180 set->map[i].mq_map = NULL; 3181 } 3182 kfree(set->tags); 3183 set->tags = NULL; 3184 return ret; 3185 } 3186 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3187 3188 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3189 { 3190 int i, j; 3191 3192 for (i = 0; i < set->nr_hw_queues; i++) 3193 blk_mq_free_map_and_requests(set, i); 3194 3195 for (j = 0; j < set->nr_maps; j++) { 3196 kfree(set->map[j].mq_map); 3197 set->map[j].mq_map = NULL; 3198 } 3199 3200 kfree(set->tags); 3201 set->tags = NULL; 3202 } 3203 EXPORT_SYMBOL(blk_mq_free_tag_set); 3204 3205 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3206 { 3207 struct blk_mq_tag_set *set = q->tag_set; 3208 struct blk_mq_hw_ctx *hctx; 3209 int i, ret; 3210 3211 if (!set) 3212 return -EINVAL; 3213 3214 if (q->nr_requests == nr) 3215 return 0; 3216 3217 blk_mq_freeze_queue(q); 3218 blk_mq_quiesce_queue(q); 3219 3220 ret = 0; 3221 queue_for_each_hw_ctx(q, hctx, i) { 3222 if (!hctx->tags) 3223 continue; 3224 /* 3225 * If we're using an MQ scheduler, just update the scheduler 3226 * queue depth. This is similar to what the old code would do. 3227 */ 3228 if (!hctx->sched_tags) { 3229 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3230 false); 3231 } else { 3232 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3233 nr, true); 3234 } 3235 if (ret) 3236 break; 3237 if (q->elevator && q->elevator->type->ops.depth_updated) 3238 q->elevator->type->ops.depth_updated(hctx); 3239 } 3240 3241 if (!ret) 3242 q->nr_requests = nr; 3243 3244 blk_mq_unquiesce_queue(q); 3245 blk_mq_unfreeze_queue(q); 3246 3247 return ret; 3248 } 3249 3250 /* 3251 * request_queue and elevator_type pair. 3252 * It is just used by __blk_mq_update_nr_hw_queues to cache 3253 * the elevator_type associated with a request_queue. 3254 */ 3255 struct blk_mq_qe_pair { 3256 struct list_head node; 3257 struct request_queue *q; 3258 struct elevator_type *type; 3259 }; 3260 3261 /* 3262 * Cache the elevator_type in qe pair list and switch the 3263 * io scheduler to 'none' 3264 */ 3265 static bool blk_mq_elv_switch_none(struct list_head *head, 3266 struct request_queue *q) 3267 { 3268 struct blk_mq_qe_pair *qe; 3269 3270 if (!q->elevator) 3271 return true; 3272 3273 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3274 if (!qe) 3275 return false; 3276 3277 INIT_LIST_HEAD(&qe->node); 3278 qe->q = q; 3279 qe->type = q->elevator->type; 3280 list_add(&qe->node, head); 3281 3282 mutex_lock(&q->sysfs_lock); 3283 /* 3284 * After elevator_switch_mq, the previous elevator_queue will be 3285 * released by elevator_release. The reference of the io scheduler 3286 * module get by elevator_get will also be put. So we need to get 3287 * a reference of the io scheduler module here to prevent it to be 3288 * removed. 3289 */ 3290 __module_get(qe->type->elevator_owner); 3291 elevator_switch_mq(q, NULL); 3292 mutex_unlock(&q->sysfs_lock); 3293 3294 return true; 3295 } 3296 3297 static void blk_mq_elv_switch_back(struct list_head *head, 3298 struct request_queue *q) 3299 { 3300 struct blk_mq_qe_pair *qe; 3301 struct elevator_type *t = NULL; 3302 3303 list_for_each_entry(qe, head, node) 3304 if (qe->q == q) { 3305 t = qe->type; 3306 break; 3307 } 3308 3309 if (!t) 3310 return; 3311 3312 list_del(&qe->node); 3313 kfree(qe); 3314 3315 mutex_lock(&q->sysfs_lock); 3316 elevator_switch_mq(q, t); 3317 mutex_unlock(&q->sysfs_lock); 3318 } 3319 3320 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3321 int nr_hw_queues) 3322 { 3323 struct request_queue *q; 3324 LIST_HEAD(head); 3325 int prev_nr_hw_queues; 3326 3327 lockdep_assert_held(&set->tag_list_lock); 3328 3329 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3330 nr_hw_queues = nr_cpu_ids; 3331 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3332 return; 3333 3334 list_for_each_entry(q, &set->tag_list, tag_set_list) 3335 blk_mq_freeze_queue(q); 3336 /* 3337 * Switch IO scheduler to 'none', cleaning up the data associated 3338 * with the previous scheduler. We will switch back once we are done 3339 * updating the new sw to hw queue mappings. 3340 */ 3341 list_for_each_entry(q, &set->tag_list, tag_set_list) 3342 if (!blk_mq_elv_switch_none(&head, q)) 3343 goto switch_back; 3344 3345 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3346 blk_mq_debugfs_unregister_hctxs(q); 3347 blk_mq_sysfs_unregister(q); 3348 } 3349 3350 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3351 0) 3352 goto reregister; 3353 3354 prev_nr_hw_queues = set->nr_hw_queues; 3355 set->nr_hw_queues = nr_hw_queues; 3356 blk_mq_update_queue_map(set); 3357 fallback: 3358 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3359 blk_mq_realloc_hw_ctxs(set, q); 3360 if (q->nr_hw_queues != set->nr_hw_queues) { 3361 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3362 nr_hw_queues, prev_nr_hw_queues); 3363 set->nr_hw_queues = prev_nr_hw_queues; 3364 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3365 goto fallback; 3366 } 3367 blk_mq_map_swqueue(q); 3368 } 3369 3370 reregister: 3371 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3372 blk_mq_sysfs_register(q); 3373 blk_mq_debugfs_register_hctxs(q); 3374 } 3375 3376 switch_back: 3377 list_for_each_entry(q, &set->tag_list, tag_set_list) 3378 blk_mq_elv_switch_back(&head, q); 3379 3380 list_for_each_entry(q, &set->tag_list, tag_set_list) 3381 blk_mq_unfreeze_queue(q); 3382 } 3383 3384 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3385 { 3386 mutex_lock(&set->tag_list_lock); 3387 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3388 mutex_unlock(&set->tag_list_lock); 3389 } 3390 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3391 3392 /* Enable polling stats and return whether they were already enabled. */ 3393 static bool blk_poll_stats_enable(struct request_queue *q) 3394 { 3395 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3396 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3397 return true; 3398 blk_stat_add_callback(q, q->poll_cb); 3399 return false; 3400 } 3401 3402 static void blk_mq_poll_stats_start(struct request_queue *q) 3403 { 3404 /* 3405 * We don't arm the callback if polling stats are not enabled or the 3406 * callback is already active. 3407 */ 3408 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3409 blk_stat_is_active(q->poll_cb)) 3410 return; 3411 3412 blk_stat_activate_msecs(q->poll_cb, 100); 3413 } 3414 3415 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3416 { 3417 struct request_queue *q = cb->data; 3418 int bucket; 3419 3420 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3421 if (cb->stat[bucket].nr_samples) 3422 q->poll_stat[bucket] = cb->stat[bucket]; 3423 } 3424 } 3425 3426 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3427 struct request *rq) 3428 { 3429 unsigned long ret = 0; 3430 int bucket; 3431 3432 /* 3433 * If stats collection isn't on, don't sleep but turn it on for 3434 * future users 3435 */ 3436 if (!blk_poll_stats_enable(q)) 3437 return 0; 3438 3439 /* 3440 * As an optimistic guess, use half of the mean service time 3441 * for this type of request. We can (and should) make this smarter. 3442 * For instance, if the completion latencies are tight, we can 3443 * get closer than just half the mean. This is especially 3444 * important on devices where the completion latencies are longer 3445 * than ~10 usec. We do use the stats for the relevant IO size 3446 * if available which does lead to better estimates. 3447 */ 3448 bucket = blk_mq_poll_stats_bkt(rq); 3449 if (bucket < 0) 3450 return ret; 3451 3452 if (q->poll_stat[bucket].nr_samples) 3453 ret = (q->poll_stat[bucket].mean + 1) / 2; 3454 3455 return ret; 3456 } 3457 3458 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3459 struct request *rq) 3460 { 3461 struct hrtimer_sleeper hs; 3462 enum hrtimer_mode mode; 3463 unsigned int nsecs; 3464 ktime_t kt; 3465 3466 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3467 return false; 3468 3469 /* 3470 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3471 * 3472 * 0: use half of prev avg 3473 * >0: use this specific value 3474 */ 3475 if (q->poll_nsec > 0) 3476 nsecs = q->poll_nsec; 3477 else 3478 nsecs = blk_mq_poll_nsecs(q, rq); 3479 3480 if (!nsecs) 3481 return false; 3482 3483 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3484 3485 /* 3486 * This will be replaced with the stats tracking code, using 3487 * 'avg_completion_time / 2' as the pre-sleep target. 3488 */ 3489 kt = nsecs; 3490 3491 mode = HRTIMER_MODE_REL; 3492 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3493 hrtimer_set_expires(&hs.timer, kt); 3494 3495 do { 3496 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3497 break; 3498 set_current_state(TASK_UNINTERRUPTIBLE); 3499 hrtimer_sleeper_start_expires(&hs, mode); 3500 if (hs.task) 3501 io_schedule(); 3502 hrtimer_cancel(&hs.timer); 3503 mode = HRTIMER_MODE_ABS; 3504 } while (hs.task && !signal_pending(current)); 3505 3506 __set_current_state(TASK_RUNNING); 3507 destroy_hrtimer_on_stack(&hs.timer); 3508 return true; 3509 } 3510 3511 static bool blk_mq_poll_hybrid(struct request_queue *q, 3512 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3513 { 3514 struct request *rq; 3515 3516 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3517 return false; 3518 3519 if (!blk_qc_t_is_internal(cookie)) 3520 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3521 else { 3522 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3523 /* 3524 * With scheduling, if the request has completed, we'll 3525 * get a NULL return here, as we clear the sched tag when 3526 * that happens. The request still remains valid, like always, 3527 * so we should be safe with just the NULL check. 3528 */ 3529 if (!rq) 3530 return false; 3531 } 3532 3533 return blk_mq_poll_hybrid_sleep(q, rq); 3534 } 3535 3536 /** 3537 * blk_poll - poll for IO completions 3538 * @q: the queue 3539 * @cookie: cookie passed back at IO submission time 3540 * @spin: whether to spin for completions 3541 * 3542 * Description: 3543 * Poll for completions on the passed in queue. Returns number of 3544 * completed entries found. If @spin is true, then blk_poll will continue 3545 * looping until at least one completion is found, unless the task is 3546 * otherwise marked running (or we need to reschedule). 3547 */ 3548 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3549 { 3550 struct blk_mq_hw_ctx *hctx; 3551 long state; 3552 3553 if (!blk_qc_t_valid(cookie) || 3554 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3555 return 0; 3556 3557 if (current->plug) 3558 blk_flush_plug_list(current->plug, false); 3559 3560 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3561 3562 /* 3563 * If we sleep, have the caller restart the poll loop to reset 3564 * the state. Like for the other success return cases, the 3565 * caller is responsible for checking if the IO completed. If 3566 * the IO isn't complete, we'll get called again and will go 3567 * straight to the busy poll loop. 3568 */ 3569 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3570 return 1; 3571 3572 hctx->poll_considered++; 3573 3574 state = current->state; 3575 do { 3576 int ret; 3577 3578 hctx->poll_invoked++; 3579 3580 ret = q->mq_ops->poll(hctx); 3581 if (ret > 0) { 3582 hctx->poll_success++; 3583 __set_current_state(TASK_RUNNING); 3584 return ret; 3585 } 3586 3587 if (signal_pending_state(state, current)) 3588 __set_current_state(TASK_RUNNING); 3589 3590 if (current->state == TASK_RUNNING) 3591 return 1; 3592 if (ret < 0 || !spin) 3593 break; 3594 cpu_relax(); 3595 } while (!need_resched()); 3596 3597 __set_current_state(TASK_RUNNING); 3598 return 0; 3599 } 3600 EXPORT_SYMBOL_GPL(blk_poll); 3601 3602 unsigned int blk_mq_rq_cpu(struct request *rq) 3603 { 3604 return rq->mq_ctx->cpu; 3605 } 3606 EXPORT_SYMBOL(blk_mq_rq_cpu); 3607 3608 static int __init blk_mq_init(void) 3609 { 3610 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3611 blk_mq_hctx_notify_dead); 3612 return 0; 3613 } 3614 subsys_initcall(blk_mq_init); 3615