xref: /openbmc/linux/block/blk-mq.c (revision 31af04cd)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	const int bit = ctx->index_hw[hctx->type];
78 
79 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 		sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82 
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 				      struct blk_mq_ctx *ctx)
85 {
86 	const int bit = ctx->index_hw[hctx->type];
87 
88 	sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90 
91 struct mq_inflight {
92 	struct hd_struct *part;
93 	unsigned int *inflight;
94 };
95 
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 				  struct request *rq, void *priv,
98 				  bool reserved)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	/*
103 	 * index[0] counts the specific partition that was asked for.
104 	 */
105 	if (rq->part == mi->part)
106 		mi->inflight[0]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	unsigned inflight[2];
114 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
115 
116 	inflight[0] = inflight[1] = 0;
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 
119 	return inflight[0];
120 }
121 
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 				     struct request *rq, void *priv,
124 				     bool reserved)
125 {
126 	struct mq_inflight *mi = priv;
127 
128 	if (rq->part == mi->part)
129 		mi->inflight[rq_data_dir(rq)]++;
130 
131 	return true;
132 }
133 
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 			 unsigned int inflight[2])
136 {
137 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
138 
139 	inflight[0] = inflight[1] = 0;
140 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142 
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 	int freeze_depth;
146 
147 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 	if (freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		if (queue_is_mq(q))
151 			blk_mq_run_hw_queues(q, false);
152 	}
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155 
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161 
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 				     unsigned long timeout)
164 {
165 	return wait_event_timeout(q->mq_freeze_wq,
166 					percpu_ref_is_zero(&q->q_usage_counter),
167 					timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170 
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 	/*
178 	 * In the !blk_mq case we are only calling this to kill the
179 	 * q_usage_counter, otherwise this increases the freeze depth
180 	 * and waits for it to return to zero.  For this reason there is
181 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 	 * exported to drivers as the only user for unfreeze is blk_mq.
183 	 */
184 	blk_freeze_queue_start(q);
185 	blk_mq_freeze_queue_wait(q);
186 }
187 
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 	/*
191 	 * ...just an alias to keep freeze and unfreeze actions balanced
192 	 * in the blk_mq_* namespace
193 	 */
194 	blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197 
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 	int freeze_depth;
201 
202 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 	WARN_ON_ONCE(freeze_depth < 0);
204 	if (!freeze_depth) {
205 		percpu_ref_resurrect(&q->q_usage_counter);
206 		wake_up_all(&q->mq_freeze_wq);
207 	}
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 	return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280 
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289 
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 		unsigned int tag, unsigned int op)
292 {
293 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 	struct request *rq = tags->static_rqs[tag];
295 	req_flags_t rq_flags = 0;
296 
297 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 		rq->tag = -1;
299 		rq->internal_tag = tag;
300 	} else {
301 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 			rq_flags = RQF_MQ_INFLIGHT;
303 			atomic_inc(&data->hctx->nr_active);
304 		}
305 		rq->tag = tag;
306 		rq->internal_tag = -1;
307 		data->hctx->tags->rqs[rq->tag] = rq;
308 	}
309 
310 	/* csd/requeue_work/fifo_time is initialized before use */
311 	rq->q = data->q;
312 	rq->mq_ctx = data->ctx;
313 	rq->mq_hctx = data->hctx;
314 	rq->rq_flags = rq_flags;
315 	rq->cmd_flags = op;
316 	if (data->flags & BLK_MQ_REQ_PREEMPT)
317 		rq->rq_flags |= RQF_PREEMPT;
318 	if (blk_queue_io_stat(data->q))
319 		rq->rq_flags |= RQF_IO_STAT;
320 	INIT_LIST_HEAD(&rq->queuelist);
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->rq_disk = NULL;
324 	rq->part = NULL;
325 	if (blk_mq_need_time_stamp(rq))
326 		rq->start_time_ns = ktime_get_ns();
327 	else
328 		rq->start_time_ns = 0;
329 	rq->io_start_time_ns = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	rq->special = NULL;
335 	/* tag was already set */
336 	rq->extra_len = 0;
337 	WRITE_ONCE(rq->deadline, 0);
338 
339 	rq->timeout = 0;
340 
341 	rq->end_io = NULL;
342 	rq->end_io_data = NULL;
343 	rq->next_rq = NULL;
344 
345 	data->ctx->rq_dispatched[op_is_sync(op)]++;
346 	refcount_set(&rq->ref, 1);
347 	return rq;
348 }
349 
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 					  struct bio *bio,
352 					  struct blk_mq_alloc_data *data)
353 {
354 	struct elevator_queue *e = q->elevator;
355 	struct request *rq;
356 	unsigned int tag;
357 	bool put_ctx_on_error = false;
358 
359 	blk_queue_enter_live(q);
360 	data->q = q;
361 	if (likely(!data->ctx)) {
362 		data->ctx = blk_mq_get_ctx(q);
363 		put_ctx_on_error = true;
364 	}
365 	if (likely(!data->hctx))
366 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 						data->ctx->cpu);
368 	if (data->cmd_flags & REQ_NOWAIT)
369 		data->flags |= BLK_MQ_REQ_NOWAIT;
370 
371 	if (e) {
372 		data->flags |= BLK_MQ_REQ_INTERNAL;
373 
374 		/*
375 		 * Flush requests are special and go directly to the
376 		 * dispatch list. Don't include reserved tags in the
377 		 * limiting, as it isn't useful.
378 		 */
379 		if (!op_is_flush(data->cmd_flags) &&
380 		    e->type->ops.limit_depth &&
381 		    !(data->flags & BLK_MQ_REQ_RESERVED))
382 			e->type->ops.limit_depth(data->cmd_flags, data);
383 	} else {
384 		blk_mq_tag_busy(data->hctx);
385 	}
386 
387 	tag = blk_mq_get_tag(data);
388 	if (tag == BLK_MQ_TAG_FAIL) {
389 		if (put_ctx_on_error) {
390 			blk_mq_put_ctx(data->ctx);
391 			data->ctx = NULL;
392 		}
393 		blk_queue_exit(q);
394 		return NULL;
395 	}
396 
397 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 	if (!op_is_flush(data->cmd_flags)) {
399 		rq->elv.icq = NULL;
400 		if (e && e->type->ops.prepare_request) {
401 			if (e->type->icq_cache)
402 				blk_mq_sched_assign_ioc(rq);
403 
404 			e->type->ops.prepare_request(rq, bio);
405 			rq->rq_flags |= RQF_ELVPRIV;
406 		}
407 	}
408 	data->hctx->queued++;
409 	return rq;
410 }
411 
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 		blk_mq_req_flags_t flags)
414 {
415 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 	struct request *rq;
417 	int ret;
418 
419 	ret = blk_queue_enter(q, flags);
420 	if (ret)
421 		return ERR_PTR(ret);
422 
423 	rq = blk_mq_get_request(q, NULL, &alloc_data);
424 	blk_queue_exit(q);
425 
426 	if (!rq)
427 		return ERR_PTR(-EWOULDBLOCK);
428 
429 	blk_mq_put_ctx(alloc_data.ctx);
430 
431 	rq->__data_len = 0;
432 	rq->__sector = (sector_t) -1;
433 	rq->bio = rq->biotail = NULL;
434 	return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437 
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 	struct request *rq;
443 	unsigned int cpu;
444 	int ret;
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 		blk_queue_exit(q);
469 		return ERR_PTR(-EXDEV);
470 	}
471 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	rq = blk_mq_get_request(q, NULL, &alloc_data);
475 	blk_queue_exit(q);
476 
477 	if (!rq)
478 		return ERR_PTR(-EWOULDBLOCK);
479 
480 	return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483 
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct blk_mq_ctx *ctx = rq->mq_ctx;
488 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 	const int sched_tag = rq->internal_tag;
490 
491 	blk_pm_mark_last_busy(rq);
492 	rq->mq_hctx = NULL;
493 	if (rq->tag != -1)
494 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 	if (sched_tag != -1)
496 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 	blk_mq_sched_restart(hctx);
498 	blk_queue_exit(q);
499 }
500 
501 void blk_mq_free_request(struct request *rq)
502 {
503 	struct request_queue *q = rq->q;
504 	struct elevator_queue *e = q->elevator;
505 	struct blk_mq_ctx *ctx = rq->mq_ctx;
506 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507 
508 	if (rq->rq_flags & RQF_ELVPRIV) {
509 		if (e && e->type->ops.finish_request)
510 			e->type->ops.finish_request(rq);
511 		if (rq->elv.icq) {
512 			put_io_context(rq->elv.icq->ioc);
513 			rq->elv.icq = NULL;
514 		}
515 	}
516 
517 	ctx->rq_completed[rq_is_sync(rq)]++;
518 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 		atomic_dec(&hctx->nr_active);
520 
521 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 		laptop_io_completion(q->backing_dev_info);
523 
524 	rq_qos_done(q, rq);
525 
526 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 	if (refcount_dec_and_test(&rq->ref))
528 		__blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531 
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 	u64 now = 0;
535 
536 	if (blk_mq_need_time_stamp(rq))
537 		now = ktime_get_ns();
538 
539 	if (rq->rq_flags & RQF_STATS) {
540 		blk_mq_poll_stats_start(rq->q);
541 		blk_stat_add(rq, now);
542 	}
543 
544 	if (rq->internal_tag != -1)
545 		blk_mq_sched_completed_request(rq, now);
546 
547 	blk_account_io_done(rq, now);
548 
549 	if (rq->end_io) {
550 		rq_qos_done(rq->q, rq);
551 		rq->end_io(rq, error);
552 	} else {
553 		if (unlikely(blk_bidi_rq(rq)))
554 			blk_mq_free_request(rq->next_rq);
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 	struct request *rq = data;
571 	struct request_queue *q = rq->q;
572 
573 	q->mq_ops->complete(rq);
574 }
575 
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 	struct blk_mq_ctx *ctx = rq->mq_ctx;
579 	struct request_queue *q = rq->q;
580 	bool shared = false;
581 	int cpu;
582 
583 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 	/*
585 	 * Most of single queue controllers, there is only one irq vector
586 	 * for handling IO completion, and the only irq's affinity is set
587 	 * as all possible CPUs. On most of ARCHs, this affinity means the
588 	 * irq is handled on one specific CPU.
589 	 *
590 	 * So complete IO reqeust in softirq context in case of single queue
591 	 * for not degrading IO performance by irqsoff latency.
592 	 */
593 	if (q->nr_hw_queues == 1) {
594 		__blk_complete_request(rq);
595 		return;
596 	}
597 
598 	/*
599 	 * For a polled request, always complete locallly, it's pointless
600 	 * to redirect the completion.
601 	 */
602 	if ((rq->cmd_flags & REQ_HIPRI) ||
603 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 		q->mq_ops->complete(rq);
605 		return;
606 	}
607 
608 	cpu = get_cpu();
609 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 		shared = cpus_share_cache(cpu, ctx->cpu);
611 
612 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 		rq->csd.func = __blk_mq_complete_request_remote;
614 		rq->csd.info = rq;
615 		rq->csd.flags = 0;
616 		smp_call_function_single_async(ctx->cpu, &rq->csd);
617 	} else {
618 		q->mq_ops->complete(rq);
619 	}
620 	put_cpu();
621 }
622 
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 	__releases(hctx->srcu)
625 {
626 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 		rcu_read_unlock();
628 	else
629 		srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631 
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 	__acquires(hctx->srcu)
634 {
635 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 		/* shut up gcc false positive */
637 		*srcu_idx = 0;
638 		rcu_read_lock();
639 	} else
640 		*srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642 
643 /**
644  * blk_mq_complete_request - end I/O on a request
645  * @rq:		the request being processed
646  *
647  * Description:
648  *	Ends all I/O on a request. It does not handle partial completions.
649  *	The actual completion happens out-of-order, through a IPI handler.
650  **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 	if (unlikely(blk_should_fake_timeout(rq->q)))
654 		return false;
655 	__blk_mq_complete_request(rq);
656 	return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659 
660 int blk_mq_request_started(struct request *rq)
661 {
662 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665 
666 void blk_mq_start_request(struct request *rq)
667 {
668 	struct request_queue *q = rq->q;
669 
670 	blk_mq_sched_started_request(rq);
671 
672 	trace_block_rq_issue(q, rq);
673 
674 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 		rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 		rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 		rq->rq_flags |= RQF_STATS;
680 		rq_qos_issue(q, rq);
681 	}
682 
683 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684 
685 	blk_add_timer(rq);
686 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687 
688 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 		/*
690 		 * Make sure space for the drain appears.  We know we can do
691 		 * this because max_hw_segments has been adjusted to be one
692 		 * fewer than the device can handle.
693 		 */
694 		rq->nr_phys_segments++;
695 	}
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698 
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 
703 	blk_mq_put_driver_tag(rq);
704 
705 	trace_block_rq_requeue(q, rq);
706 	rq_qos_requeue(q, rq);
707 
708 	if (blk_mq_request_started(rq)) {
709 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 		rq->rq_flags &= ~RQF_TIMED_OUT;
711 		if (q->dma_drain_size && blk_rq_bytes(rq))
712 			rq->nr_phys_segments--;
713 	}
714 }
715 
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 	__blk_mq_requeue_request(rq);
719 
720 	/* this request will be re-inserted to io scheduler queue */
721 	blk_mq_sched_requeue_request(rq);
722 
723 	BUG_ON(!list_empty(&rq->queuelist));
724 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727 
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 	struct request_queue *q =
731 		container_of(work, struct request_queue, requeue_work.work);
732 	LIST_HEAD(rq_list);
733 	struct request *rq, *next;
734 
735 	spin_lock_irq(&q->requeue_lock);
736 	list_splice_init(&q->requeue_list, &rq_list);
737 	spin_unlock_irq(&q->requeue_lock);
738 
739 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
741 			continue;
742 
743 		rq->rq_flags &= ~RQF_SOFTBARRIER;
744 		list_del_init(&rq->queuelist);
745 		blk_mq_sched_insert_request(rq, true, false, false);
746 	}
747 
748 	while (!list_empty(&rq_list)) {
749 		rq = list_entry(rq_list.next, struct request, queuelist);
750 		list_del_init(&rq->queuelist);
751 		blk_mq_sched_insert_request(rq, false, false, false);
752 	}
753 
754 	blk_mq_run_hw_queues(q, false);
755 }
756 
757 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
758 				bool kick_requeue_list)
759 {
760 	struct request_queue *q = rq->q;
761 	unsigned long flags;
762 
763 	/*
764 	 * We abuse this flag that is otherwise used by the I/O scheduler to
765 	 * request head insertion from the workqueue.
766 	 */
767 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
768 
769 	spin_lock_irqsave(&q->requeue_lock, flags);
770 	if (at_head) {
771 		rq->rq_flags |= RQF_SOFTBARRIER;
772 		list_add(&rq->queuelist, &q->requeue_list);
773 	} else {
774 		list_add_tail(&rq->queuelist, &q->requeue_list);
775 	}
776 	spin_unlock_irqrestore(&q->requeue_lock, flags);
777 
778 	if (kick_requeue_list)
779 		blk_mq_kick_requeue_list(q);
780 }
781 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
782 
783 void blk_mq_kick_requeue_list(struct request_queue *q)
784 {
785 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
786 }
787 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
788 
789 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
790 				    unsigned long msecs)
791 {
792 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
793 				    msecs_to_jiffies(msecs));
794 }
795 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
796 
797 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
798 {
799 	if (tag < tags->nr_tags) {
800 		prefetch(tags->rqs[tag]);
801 		return tags->rqs[tag];
802 	}
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(blk_mq_tag_to_rq);
807 
808 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 			       void *priv, bool reserved)
810 {
811 	/*
812 	 * If we find a request that is inflight and the queue matches,
813 	 * we know the queue is busy. Return false to stop the iteration.
814 	 */
815 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
816 		bool *busy = priv;
817 
818 		*busy = true;
819 		return false;
820 	}
821 
822 	return true;
823 }
824 
825 bool blk_mq_queue_inflight(struct request_queue *q)
826 {
827 	bool busy = false;
828 
829 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
830 	return busy;
831 }
832 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
833 
834 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835 {
836 	req->rq_flags |= RQF_TIMED_OUT;
837 	if (req->q->mq_ops->timeout) {
838 		enum blk_eh_timer_return ret;
839 
840 		ret = req->q->mq_ops->timeout(req, reserved);
841 		if (ret == BLK_EH_DONE)
842 			return;
843 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
844 	}
845 
846 	blk_add_timer(req);
847 }
848 
849 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
850 {
851 	unsigned long deadline;
852 
853 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
854 		return false;
855 	if (rq->rq_flags & RQF_TIMED_OUT)
856 		return false;
857 
858 	deadline = READ_ONCE(rq->deadline);
859 	if (time_after_eq(jiffies, deadline))
860 		return true;
861 
862 	if (*next == 0)
863 		*next = deadline;
864 	else if (time_after(*next, deadline))
865 		*next = deadline;
866 	return false;
867 }
868 
869 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
870 		struct request *rq, void *priv, bool reserved)
871 {
872 	unsigned long *next = priv;
873 
874 	/*
875 	 * Just do a quick check if it is expired before locking the request in
876 	 * so we're not unnecessarilly synchronizing across CPUs.
877 	 */
878 	if (!blk_mq_req_expired(rq, next))
879 		return true;
880 
881 	/*
882 	 * We have reason to believe the request may be expired. Take a
883 	 * reference on the request to lock this request lifetime into its
884 	 * currently allocated context to prevent it from being reallocated in
885 	 * the event the completion by-passes this timeout handler.
886 	 *
887 	 * If the reference was already released, then the driver beat the
888 	 * timeout handler to posting a natural completion.
889 	 */
890 	if (!refcount_inc_not_zero(&rq->ref))
891 		return true;
892 
893 	/*
894 	 * The request is now locked and cannot be reallocated underneath the
895 	 * timeout handler's processing. Re-verify this exact request is truly
896 	 * expired; if it is not expired, then the request was completed and
897 	 * reallocated as a new request.
898 	 */
899 	if (blk_mq_req_expired(rq, next))
900 		blk_mq_rq_timed_out(rq, reserved);
901 	if (refcount_dec_and_test(&rq->ref))
902 		__blk_mq_free_request(rq);
903 
904 	return true;
905 }
906 
907 static void blk_mq_timeout_work(struct work_struct *work)
908 {
909 	struct request_queue *q =
910 		container_of(work, struct request_queue, timeout_work);
911 	unsigned long next = 0;
912 	struct blk_mq_hw_ctx *hctx;
913 	int i;
914 
915 	/* A deadlock might occur if a request is stuck requiring a
916 	 * timeout at the same time a queue freeze is waiting
917 	 * completion, since the timeout code would not be able to
918 	 * acquire the queue reference here.
919 	 *
920 	 * That's why we don't use blk_queue_enter here; instead, we use
921 	 * percpu_ref_tryget directly, because we need to be able to
922 	 * obtain a reference even in the short window between the queue
923 	 * starting to freeze, by dropping the first reference in
924 	 * blk_freeze_queue_start, and the moment the last request is
925 	 * consumed, marked by the instant q_usage_counter reaches
926 	 * zero.
927 	 */
928 	if (!percpu_ref_tryget(&q->q_usage_counter))
929 		return;
930 
931 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
932 
933 	if (next != 0) {
934 		mod_timer(&q->timeout, next);
935 	} else {
936 		/*
937 		 * Request timeouts are handled as a forward rolling timer. If
938 		 * we end up here it means that no requests are pending and
939 		 * also that no request has been pending for a while. Mark
940 		 * each hctx as idle.
941 		 */
942 		queue_for_each_hw_ctx(q, hctx, i) {
943 			/* the hctx may be unmapped, so check it here */
944 			if (blk_mq_hw_queue_mapped(hctx))
945 				blk_mq_tag_idle(hctx);
946 		}
947 	}
948 	blk_queue_exit(q);
949 }
950 
951 struct flush_busy_ctx_data {
952 	struct blk_mq_hw_ctx *hctx;
953 	struct list_head *list;
954 };
955 
956 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
957 {
958 	struct flush_busy_ctx_data *flush_data = data;
959 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
960 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
961 	enum hctx_type type = hctx->type;
962 
963 	spin_lock(&ctx->lock);
964 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
965 	sbitmap_clear_bit(sb, bitnr);
966 	spin_unlock(&ctx->lock);
967 	return true;
968 }
969 
970 /*
971  * Process software queues that have been marked busy, splicing them
972  * to the for-dispatch
973  */
974 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
975 {
976 	struct flush_busy_ctx_data data = {
977 		.hctx = hctx,
978 		.list = list,
979 	};
980 
981 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
984 
985 struct dispatch_rq_data {
986 	struct blk_mq_hw_ctx *hctx;
987 	struct request *rq;
988 };
989 
990 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
991 		void *data)
992 {
993 	struct dispatch_rq_data *dispatch_data = data;
994 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
995 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
996 	enum hctx_type type = hctx->type;
997 
998 	spin_lock(&ctx->lock);
999 	if (!list_empty(&ctx->rq_lists[type])) {
1000 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1001 		list_del_init(&dispatch_data->rq->queuelist);
1002 		if (list_empty(&ctx->rq_lists[type]))
1003 			sbitmap_clear_bit(sb, bitnr);
1004 	}
1005 	spin_unlock(&ctx->lock);
1006 
1007 	return !dispatch_data->rq;
1008 }
1009 
1010 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011 					struct blk_mq_ctx *start)
1012 {
1013 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1014 	struct dispatch_rq_data data = {
1015 		.hctx = hctx,
1016 		.rq   = NULL,
1017 	};
1018 
1019 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1020 			       dispatch_rq_from_ctx, &data);
1021 
1022 	return data.rq;
1023 }
1024 
1025 static inline unsigned int queued_to_index(unsigned int queued)
1026 {
1027 	if (!queued)
1028 		return 0;
1029 
1030 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1031 }
1032 
1033 bool blk_mq_get_driver_tag(struct request *rq)
1034 {
1035 	struct blk_mq_alloc_data data = {
1036 		.q = rq->q,
1037 		.hctx = rq->mq_hctx,
1038 		.flags = BLK_MQ_REQ_NOWAIT,
1039 		.cmd_flags = rq->cmd_flags,
1040 	};
1041 	bool shared;
1042 
1043 	if (rq->tag != -1)
1044 		goto done;
1045 
1046 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047 		data.flags |= BLK_MQ_REQ_RESERVED;
1048 
1049 	shared = blk_mq_tag_busy(data.hctx);
1050 	rq->tag = blk_mq_get_tag(&data);
1051 	if (rq->tag >= 0) {
1052 		if (shared) {
1053 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1054 			atomic_inc(&data.hctx->nr_active);
1055 		}
1056 		data.hctx->tags->rqs[rq->tag] = rq;
1057 	}
1058 
1059 done:
1060 	return rq->tag != -1;
1061 }
1062 
1063 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064 				int flags, void *key)
1065 {
1066 	struct blk_mq_hw_ctx *hctx;
1067 
1068 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069 
1070 	spin_lock(&hctx->dispatch_wait_lock);
1071 	list_del_init(&wait->entry);
1072 	spin_unlock(&hctx->dispatch_wait_lock);
1073 
1074 	blk_mq_run_hw_queue(hctx, true);
1075 	return 1;
1076 }
1077 
1078 /*
1079  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1080  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081  * restart. For both cases, take care to check the condition again after
1082  * marking us as waiting.
1083  */
1084 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1085 				 struct request *rq)
1086 {
1087 	struct wait_queue_head *wq;
1088 	wait_queue_entry_t *wait;
1089 	bool ret;
1090 
1091 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1094 
1095 		/*
1096 		 * It's possible that a tag was freed in the window between the
1097 		 * allocation failure and adding the hardware queue to the wait
1098 		 * queue.
1099 		 *
1100 		 * Don't clear RESTART here, someone else could have set it.
1101 		 * At most this will cost an extra queue run.
1102 		 */
1103 		return blk_mq_get_driver_tag(rq);
1104 	}
1105 
1106 	wait = &hctx->dispatch_wait;
1107 	if (!list_empty_careful(&wait->entry))
1108 		return false;
1109 
1110 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111 
1112 	spin_lock_irq(&wq->lock);
1113 	spin_lock(&hctx->dispatch_wait_lock);
1114 	if (!list_empty(&wait->entry)) {
1115 		spin_unlock(&hctx->dispatch_wait_lock);
1116 		spin_unlock_irq(&wq->lock);
1117 		return false;
1118 	}
1119 
1120 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121 	__add_wait_queue(wq, wait);
1122 
1123 	/*
1124 	 * It's possible that a tag was freed in the window between the
1125 	 * allocation failure and adding the hardware queue to the wait
1126 	 * queue.
1127 	 */
1128 	ret = blk_mq_get_driver_tag(rq);
1129 	if (!ret) {
1130 		spin_unlock(&hctx->dispatch_wait_lock);
1131 		spin_unlock_irq(&wq->lock);
1132 		return false;
1133 	}
1134 
1135 	/*
1136 	 * We got a tag, remove ourselves from the wait queue to ensure
1137 	 * someone else gets the wakeup.
1138 	 */
1139 	list_del_init(&wait->entry);
1140 	spin_unlock(&hctx->dispatch_wait_lock);
1141 	spin_unlock_irq(&wq->lock);
1142 
1143 	return true;
1144 }
1145 
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1148 /*
1149  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150  * - EWMA is one simple way to compute running average value
1151  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152  * - take 4 as factor for avoiding to get too small(0) result, and this
1153  *   factor doesn't matter because EWMA decreases exponentially
1154  */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 	unsigned int ewma;
1158 
1159 	if (hctx->queue->elevator)
1160 		return;
1161 
1162 	ewma = hctx->dispatch_busy;
1163 
1164 	if (!ewma && !busy)
1165 		return;
1166 
1167 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 	if (busy)
1169 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171 
1172 	hctx->dispatch_busy = ewma;
1173 }
1174 
1175 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1176 
1177 /*
1178  * Returns true if we did some work AND can potentially do more.
1179  */
1180 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1181 			     bool got_budget)
1182 {
1183 	struct blk_mq_hw_ctx *hctx;
1184 	struct request *rq, *nxt;
1185 	bool no_tag = false;
1186 	int errors, queued;
1187 	blk_status_t ret = BLK_STS_OK;
1188 
1189 	if (list_empty(list))
1190 		return false;
1191 
1192 	WARN_ON(!list_is_singular(list) && got_budget);
1193 
1194 	/*
1195 	 * Now process all the entries, sending them to the driver.
1196 	 */
1197 	errors = queued = 0;
1198 	do {
1199 		struct blk_mq_queue_data bd;
1200 
1201 		rq = list_first_entry(list, struct request, queuelist);
1202 
1203 		hctx = rq->mq_hctx;
1204 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205 			break;
1206 
1207 		if (!blk_mq_get_driver_tag(rq)) {
1208 			/*
1209 			 * The initial allocation attempt failed, so we need to
1210 			 * rerun the hardware queue when a tag is freed. The
1211 			 * waitqueue takes care of that. If the queue is run
1212 			 * before we add this entry back on the dispatch list,
1213 			 * we'll re-run it below.
1214 			 */
1215 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1216 				blk_mq_put_dispatch_budget(hctx);
1217 				/*
1218 				 * For non-shared tags, the RESTART check
1219 				 * will suffice.
1220 				 */
1221 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222 					no_tag = true;
1223 				break;
1224 			}
1225 		}
1226 
1227 		list_del_init(&rq->queuelist);
1228 
1229 		bd.rq = rq;
1230 
1231 		/*
1232 		 * Flag last if we have no more requests, or if we have more
1233 		 * but can't assign a driver tag to it.
1234 		 */
1235 		if (list_empty(list))
1236 			bd.last = true;
1237 		else {
1238 			nxt = list_first_entry(list, struct request, queuelist);
1239 			bd.last = !blk_mq_get_driver_tag(nxt);
1240 		}
1241 
1242 		ret = q->mq_ops->queue_rq(hctx, &bd);
1243 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1244 			/*
1245 			 * If an I/O scheduler has been configured and we got a
1246 			 * driver tag for the next request already, free it
1247 			 * again.
1248 			 */
1249 			if (!list_empty(list)) {
1250 				nxt = list_first_entry(list, struct request, queuelist);
1251 				blk_mq_put_driver_tag(nxt);
1252 			}
1253 			list_add(&rq->queuelist, list);
1254 			__blk_mq_requeue_request(rq);
1255 			break;
1256 		}
1257 
1258 		if (unlikely(ret != BLK_STS_OK)) {
1259 			errors++;
1260 			blk_mq_end_request(rq, BLK_STS_IOERR);
1261 			continue;
1262 		}
1263 
1264 		queued++;
1265 	} while (!list_empty(list));
1266 
1267 	hctx->dispatched[queued_to_index(queued)]++;
1268 
1269 	/*
1270 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1271 	 * that is where we will continue on next queue run.
1272 	 */
1273 	if (!list_empty(list)) {
1274 		bool needs_restart;
1275 
1276 		/*
1277 		 * If we didn't flush the entire list, we could have told
1278 		 * the driver there was more coming, but that turned out to
1279 		 * be a lie.
1280 		 */
1281 		if (q->mq_ops->commit_rqs)
1282 			q->mq_ops->commit_rqs(hctx);
1283 
1284 		spin_lock(&hctx->lock);
1285 		list_splice_init(list, &hctx->dispatch);
1286 		spin_unlock(&hctx->lock);
1287 
1288 		/*
1289 		 * If SCHED_RESTART was set by the caller of this function and
1290 		 * it is no longer set that means that it was cleared by another
1291 		 * thread and hence that a queue rerun is needed.
1292 		 *
1293 		 * If 'no_tag' is set, that means that we failed getting
1294 		 * a driver tag with an I/O scheduler attached. If our dispatch
1295 		 * waitqueue is no longer active, ensure that we run the queue
1296 		 * AFTER adding our entries back to the list.
1297 		 *
1298 		 * If no I/O scheduler has been configured it is possible that
1299 		 * the hardware queue got stopped and restarted before requests
1300 		 * were pushed back onto the dispatch list. Rerun the queue to
1301 		 * avoid starvation. Notes:
1302 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1303 		 *   been stopped before rerunning a queue.
1304 		 * - Some but not all block drivers stop a queue before
1305 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1306 		 *   and dm-rq.
1307 		 *
1308 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309 		 * bit is set, run queue after a delay to avoid IO stalls
1310 		 * that could otherwise occur if the queue is idle.
1311 		 */
1312 		needs_restart = blk_mq_sched_needs_restart(hctx);
1313 		if (!needs_restart ||
1314 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1315 			blk_mq_run_hw_queue(hctx, true);
1316 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1318 
1319 		blk_mq_update_dispatch_busy(hctx, true);
1320 		return false;
1321 	} else
1322 		blk_mq_update_dispatch_busy(hctx, false);
1323 
1324 	/*
1325 	 * If the host/device is unable to accept more work, inform the
1326 	 * caller of that.
1327 	 */
1328 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329 		return false;
1330 
1331 	return (queued + errors) != 0;
1332 }
1333 
1334 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335 {
1336 	int srcu_idx;
1337 
1338 	/*
1339 	 * We should be running this queue from one of the CPUs that
1340 	 * are mapped to it.
1341 	 *
1342 	 * There are at least two related races now between setting
1343 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344 	 * __blk_mq_run_hw_queue():
1345 	 *
1346 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347 	 *   but later it becomes online, then this warning is harmless
1348 	 *   at all
1349 	 *
1350 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351 	 *   but later it becomes offline, then the warning can't be
1352 	 *   triggered, and we depend on blk-mq timeout handler to
1353 	 *   handle dispatched requests to this hctx
1354 	 */
1355 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356 		cpu_online(hctx->next_cpu)) {
1357 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358 			raw_smp_processor_id(),
1359 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360 		dump_stack();
1361 	}
1362 
1363 	/*
1364 	 * We can't run the queue inline with ints disabled. Ensure that
1365 	 * we catch bad users of this early.
1366 	 */
1367 	WARN_ON_ONCE(in_interrupt());
1368 
1369 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1370 
1371 	hctx_lock(hctx, &srcu_idx);
1372 	blk_mq_sched_dispatch_requests(hctx);
1373 	hctx_unlock(hctx, srcu_idx);
1374 }
1375 
1376 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379 
1380 	if (cpu >= nr_cpu_ids)
1381 		cpu = cpumask_first(hctx->cpumask);
1382 	return cpu;
1383 }
1384 
1385 /*
1386  * It'd be great if the workqueue API had a way to pass
1387  * in a mask and had some smarts for more clever placement.
1388  * For now we just round-robin here, switching for every
1389  * BLK_MQ_CPU_WORK_BATCH queued items.
1390  */
1391 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 	bool tried = false;
1394 	int next_cpu = hctx->next_cpu;
1395 
1396 	if (hctx->queue->nr_hw_queues == 1)
1397 		return WORK_CPU_UNBOUND;
1398 
1399 	if (--hctx->next_cpu_batch <= 0) {
1400 select_cpu:
1401 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1402 				cpu_online_mask);
1403 		if (next_cpu >= nr_cpu_ids)
1404 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1405 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406 	}
1407 
1408 	/*
1409 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1410 	 * and it should only happen in the path of handling CPU DEAD.
1411 	 */
1412 	if (!cpu_online(next_cpu)) {
1413 		if (!tried) {
1414 			tried = true;
1415 			goto select_cpu;
1416 		}
1417 
1418 		/*
1419 		 * Make sure to re-select CPU next time once after CPUs
1420 		 * in hctx->cpumask become online again.
1421 		 */
1422 		hctx->next_cpu = next_cpu;
1423 		hctx->next_cpu_batch = 1;
1424 		return WORK_CPU_UNBOUND;
1425 	}
1426 
1427 	hctx->next_cpu = next_cpu;
1428 	return next_cpu;
1429 }
1430 
1431 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432 					unsigned long msecs)
1433 {
1434 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1435 		return;
1436 
1437 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1438 		int cpu = get_cpu();
1439 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1440 			__blk_mq_run_hw_queue(hctx);
1441 			put_cpu();
1442 			return;
1443 		}
1444 
1445 		put_cpu();
1446 	}
1447 
1448 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449 				    msecs_to_jiffies(msecs));
1450 }
1451 
1452 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453 {
1454 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455 }
1456 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457 
1458 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1459 {
1460 	int srcu_idx;
1461 	bool need_run;
1462 
1463 	/*
1464 	 * When queue is quiesced, we may be switching io scheduler, or
1465 	 * updating nr_hw_queues, or other things, and we can't run queue
1466 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467 	 *
1468 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469 	 * quiesced.
1470 	 */
1471 	hctx_lock(hctx, &srcu_idx);
1472 	need_run = !blk_queue_quiesced(hctx->queue) &&
1473 		blk_mq_hctx_has_pending(hctx);
1474 	hctx_unlock(hctx, srcu_idx);
1475 
1476 	if (need_run) {
1477 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1478 		return true;
1479 	}
1480 
1481 	return false;
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1484 
1485 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1486 {
1487 	struct blk_mq_hw_ctx *hctx;
1488 	int i;
1489 
1490 	queue_for_each_hw_ctx(q, hctx, i) {
1491 		if (blk_mq_hctx_stopped(hctx))
1492 			continue;
1493 
1494 		blk_mq_run_hw_queue(hctx, async);
1495 	}
1496 }
1497 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1498 
1499 /**
1500  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501  * @q: request queue.
1502  *
1503  * The caller is responsible for serializing this function against
1504  * blk_mq_{start,stop}_hw_queue().
1505  */
1506 bool blk_mq_queue_stopped(struct request_queue *q)
1507 {
1508 	struct blk_mq_hw_ctx *hctx;
1509 	int i;
1510 
1511 	queue_for_each_hw_ctx(q, hctx, i)
1512 		if (blk_mq_hctx_stopped(hctx))
1513 			return true;
1514 
1515 	return false;
1516 }
1517 EXPORT_SYMBOL(blk_mq_queue_stopped);
1518 
1519 /*
1520  * This function is often used for pausing .queue_rq() by driver when
1521  * there isn't enough resource or some conditions aren't satisfied, and
1522  * BLK_STS_RESOURCE is usually returned.
1523  *
1524  * We do not guarantee that dispatch can be drained or blocked
1525  * after blk_mq_stop_hw_queue() returns. Please use
1526  * blk_mq_quiesce_queue() for that requirement.
1527  */
1528 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529 {
1530 	cancel_delayed_work(&hctx->run_work);
1531 
1532 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1533 }
1534 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1535 
1536 /*
1537  * This function is often used for pausing .queue_rq() by driver when
1538  * there isn't enough resource or some conditions aren't satisfied, and
1539  * BLK_STS_RESOURCE is usually returned.
1540  *
1541  * We do not guarantee that dispatch can be drained or blocked
1542  * after blk_mq_stop_hw_queues() returns. Please use
1543  * blk_mq_quiesce_queue() for that requirement.
1544  */
1545 void blk_mq_stop_hw_queues(struct request_queue *q)
1546 {
1547 	struct blk_mq_hw_ctx *hctx;
1548 	int i;
1549 
1550 	queue_for_each_hw_ctx(q, hctx, i)
1551 		blk_mq_stop_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554 
1555 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556 {
1557 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1558 
1559 	blk_mq_run_hw_queue(hctx, false);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562 
1563 void blk_mq_start_hw_queues(struct request_queue *q)
1564 {
1565 	struct blk_mq_hw_ctx *hctx;
1566 	int i;
1567 
1568 	queue_for_each_hw_ctx(q, hctx, i)
1569 		blk_mq_start_hw_queue(hctx);
1570 }
1571 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572 
1573 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574 {
1575 	if (!blk_mq_hctx_stopped(hctx))
1576 		return;
1577 
1578 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 	blk_mq_run_hw_queue(hctx, async);
1580 }
1581 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582 
1583 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1584 {
1585 	struct blk_mq_hw_ctx *hctx;
1586 	int i;
1587 
1588 	queue_for_each_hw_ctx(q, hctx, i)
1589 		blk_mq_start_stopped_hw_queue(hctx, async);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592 
1593 static void blk_mq_run_work_fn(struct work_struct *work)
1594 {
1595 	struct blk_mq_hw_ctx *hctx;
1596 
1597 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1598 
1599 	/*
1600 	 * If we are stopped, don't run the queue.
1601 	 */
1602 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1603 		return;
1604 
1605 	__blk_mq_run_hw_queue(hctx);
1606 }
1607 
1608 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1609 					    struct request *rq,
1610 					    bool at_head)
1611 {
1612 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1613 	enum hctx_type type = hctx->type;
1614 
1615 	lockdep_assert_held(&ctx->lock);
1616 
1617 	trace_block_rq_insert(hctx->queue, rq);
1618 
1619 	if (at_head)
1620 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1621 	else
1622 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1623 }
1624 
1625 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1626 			     bool at_head)
1627 {
1628 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1629 
1630 	lockdep_assert_held(&ctx->lock);
1631 
1632 	__blk_mq_insert_req_list(hctx, rq, at_head);
1633 	blk_mq_hctx_mark_pending(hctx, ctx);
1634 }
1635 
1636 /*
1637  * Should only be used carefully, when the caller knows we want to
1638  * bypass a potential IO scheduler on the target device.
1639  */
1640 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1641 {
1642 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1643 
1644 	spin_lock(&hctx->lock);
1645 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1646 	spin_unlock(&hctx->lock);
1647 
1648 	if (run_queue)
1649 		blk_mq_run_hw_queue(hctx, false);
1650 }
1651 
1652 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1653 			    struct list_head *list)
1654 
1655 {
1656 	struct request *rq;
1657 	enum hctx_type type = hctx->type;
1658 
1659 	/*
1660 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1661 	 * offline now
1662 	 */
1663 	list_for_each_entry(rq, list, queuelist) {
1664 		BUG_ON(rq->mq_ctx != ctx);
1665 		trace_block_rq_insert(hctx->queue, rq);
1666 	}
1667 
1668 	spin_lock(&ctx->lock);
1669 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1670 	blk_mq_hctx_mark_pending(hctx, ctx);
1671 	spin_unlock(&ctx->lock);
1672 }
1673 
1674 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1675 {
1676 	struct request *rqa = container_of(a, struct request, queuelist);
1677 	struct request *rqb = container_of(b, struct request, queuelist);
1678 
1679 	if (rqa->mq_ctx < rqb->mq_ctx)
1680 		return -1;
1681 	else if (rqa->mq_ctx > rqb->mq_ctx)
1682 		return 1;
1683 	else if (rqa->mq_hctx < rqb->mq_hctx)
1684 		return -1;
1685 	else if (rqa->mq_hctx > rqb->mq_hctx)
1686 		return 1;
1687 
1688 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1689 }
1690 
1691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1692 {
1693 	struct blk_mq_hw_ctx *this_hctx;
1694 	struct blk_mq_ctx *this_ctx;
1695 	struct request_queue *this_q;
1696 	struct request *rq;
1697 	LIST_HEAD(list);
1698 	LIST_HEAD(rq_list);
1699 	unsigned int depth;
1700 
1701 	list_splice_init(&plug->mq_list, &list);
1702 	plug->rq_count = 0;
1703 
1704 	if (plug->rq_count > 2 && plug->multiple_queues)
1705 		list_sort(NULL, &list, plug_rq_cmp);
1706 
1707 	this_q = NULL;
1708 	this_hctx = NULL;
1709 	this_ctx = NULL;
1710 	depth = 0;
1711 
1712 	while (!list_empty(&list)) {
1713 		rq = list_entry_rq(list.next);
1714 		list_del_init(&rq->queuelist);
1715 		BUG_ON(!rq->q);
1716 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1717 			if (this_hctx) {
1718 				trace_block_unplug(this_q, depth, !from_schedule);
1719 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1720 								&rq_list,
1721 								from_schedule);
1722 			}
1723 
1724 			this_q = rq->q;
1725 			this_ctx = rq->mq_ctx;
1726 			this_hctx = rq->mq_hctx;
1727 			depth = 0;
1728 		}
1729 
1730 		depth++;
1731 		list_add_tail(&rq->queuelist, &rq_list);
1732 	}
1733 
1734 	/*
1735 	 * If 'this_hctx' is set, we know we have entries to complete
1736 	 * on 'rq_list'. Do those.
1737 	 */
1738 	if (this_hctx) {
1739 		trace_block_unplug(this_q, depth, !from_schedule);
1740 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1741 						from_schedule);
1742 	}
1743 }
1744 
1745 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1746 {
1747 	blk_init_request_from_bio(rq, bio);
1748 
1749 	blk_account_io_start(rq, true);
1750 }
1751 
1752 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1753 					    struct request *rq,
1754 					    blk_qc_t *cookie, bool last)
1755 {
1756 	struct request_queue *q = rq->q;
1757 	struct blk_mq_queue_data bd = {
1758 		.rq = rq,
1759 		.last = last,
1760 	};
1761 	blk_qc_t new_cookie;
1762 	blk_status_t ret;
1763 
1764 	new_cookie = request_to_qc_t(hctx, rq);
1765 
1766 	/*
1767 	 * For OK queue, we are done. For error, caller may kill it.
1768 	 * Any other error (busy), just add it to our list as we
1769 	 * previously would have done.
1770 	 */
1771 	ret = q->mq_ops->queue_rq(hctx, &bd);
1772 	switch (ret) {
1773 	case BLK_STS_OK:
1774 		blk_mq_update_dispatch_busy(hctx, false);
1775 		*cookie = new_cookie;
1776 		break;
1777 	case BLK_STS_RESOURCE:
1778 	case BLK_STS_DEV_RESOURCE:
1779 		blk_mq_update_dispatch_busy(hctx, true);
1780 		__blk_mq_requeue_request(rq);
1781 		break;
1782 	default:
1783 		blk_mq_update_dispatch_busy(hctx, false);
1784 		*cookie = BLK_QC_T_NONE;
1785 		break;
1786 	}
1787 
1788 	return ret;
1789 }
1790 
1791 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1792 						struct request *rq,
1793 						blk_qc_t *cookie,
1794 						bool bypass, bool last)
1795 {
1796 	struct request_queue *q = rq->q;
1797 	bool run_queue = true;
1798 	blk_status_t ret = BLK_STS_RESOURCE;
1799 	int srcu_idx;
1800 	bool force = false;
1801 
1802 	hctx_lock(hctx, &srcu_idx);
1803 	/*
1804 	 * hctx_lock is needed before checking quiesced flag.
1805 	 *
1806 	 * When queue is stopped or quiesced, ignore 'bypass', insert
1807 	 * and return BLK_STS_OK to caller, and avoid driver to try to
1808 	 * dispatch again.
1809 	 */
1810 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1811 		run_queue = false;
1812 		bypass = false;
1813 		goto out_unlock;
1814 	}
1815 
1816 	if (unlikely(q->elevator && !bypass))
1817 		goto out_unlock;
1818 
1819 	if (!blk_mq_get_dispatch_budget(hctx))
1820 		goto out_unlock;
1821 
1822 	if (!blk_mq_get_driver_tag(rq)) {
1823 		blk_mq_put_dispatch_budget(hctx);
1824 		goto out_unlock;
1825 	}
1826 
1827 	/*
1828 	 * Always add a request that has been through
1829 	 *.queue_rq() to the hardware dispatch list.
1830 	 */
1831 	force = true;
1832 	ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1833 out_unlock:
1834 	hctx_unlock(hctx, srcu_idx);
1835 	switch (ret) {
1836 	case BLK_STS_OK:
1837 		break;
1838 	case BLK_STS_DEV_RESOURCE:
1839 	case BLK_STS_RESOURCE:
1840 		if (force) {
1841 			blk_mq_request_bypass_insert(rq, run_queue);
1842 			/*
1843 			 * We have to return BLK_STS_OK for the DM
1844 			 * to avoid livelock. Otherwise, we return
1845 			 * the real result to indicate whether the
1846 			 * request is direct-issued successfully.
1847 			 */
1848 			ret = bypass ? BLK_STS_OK : ret;
1849 		} else if (!bypass) {
1850 			blk_mq_sched_insert_request(rq, false,
1851 						    run_queue, false);
1852 		}
1853 		break;
1854 	default:
1855 		if (!bypass)
1856 			blk_mq_end_request(rq, ret);
1857 		break;
1858 	}
1859 
1860 	return ret;
1861 }
1862 
1863 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1864 		struct list_head *list)
1865 {
1866 	blk_qc_t unused;
1867 	blk_status_t ret = BLK_STS_OK;
1868 
1869 	while (!list_empty(list)) {
1870 		struct request *rq = list_first_entry(list, struct request,
1871 				queuelist);
1872 
1873 		list_del_init(&rq->queuelist);
1874 		if (ret == BLK_STS_OK)
1875 			ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1876 							false,
1877 							list_empty(list));
1878 		else
1879 			blk_mq_sched_insert_request(rq, false, true, false);
1880 	}
1881 
1882 	/*
1883 	 * If we didn't flush the entire list, we could have told
1884 	 * the driver there was more coming, but that turned out to
1885 	 * be a lie.
1886 	 */
1887 	if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1888 		hctx->queue->mq_ops->commit_rqs(hctx);
1889 }
1890 
1891 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1892 {
1893 	list_add_tail(&rq->queuelist, &plug->mq_list);
1894 	plug->rq_count++;
1895 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1896 		struct request *tmp;
1897 
1898 		tmp = list_first_entry(&plug->mq_list, struct request,
1899 						queuelist);
1900 		if (tmp->q != rq->q)
1901 			plug->multiple_queues = true;
1902 	}
1903 }
1904 
1905 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1906 {
1907 	const int is_sync = op_is_sync(bio->bi_opf);
1908 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1909 	struct blk_mq_alloc_data data = { .flags = 0};
1910 	struct request *rq;
1911 	struct blk_plug *plug;
1912 	struct request *same_queue_rq = NULL;
1913 	blk_qc_t cookie;
1914 
1915 	blk_queue_bounce(q, &bio);
1916 
1917 	blk_queue_split(q, &bio);
1918 
1919 	if (!bio_integrity_prep(bio))
1920 		return BLK_QC_T_NONE;
1921 
1922 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1923 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1924 		return BLK_QC_T_NONE;
1925 
1926 	if (blk_mq_sched_bio_merge(q, bio))
1927 		return BLK_QC_T_NONE;
1928 
1929 	rq_qos_throttle(q, bio);
1930 
1931 	data.cmd_flags = bio->bi_opf;
1932 	rq = blk_mq_get_request(q, bio, &data);
1933 	if (unlikely(!rq)) {
1934 		rq_qos_cleanup(q, bio);
1935 		if (bio->bi_opf & REQ_NOWAIT)
1936 			bio_wouldblock_error(bio);
1937 		return BLK_QC_T_NONE;
1938 	}
1939 
1940 	trace_block_getrq(q, bio, bio->bi_opf);
1941 
1942 	rq_qos_track(q, rq, bio);
1943 
1944 	cookie = request_to_qc_t(data.hctx, rq);
1945 
1946 	plug = current->plug;
1947 	if (unlikely(is_flush_fua)) {
1948 		blk_mq_put_ctx(data.ctx);
1949 		blk_mq_bio_to_request(rq, bio);
1950 
1951 		/* bypass scheduler for flush rq */
1952 		blk_insert_flush(rq);
1953 		blk_mq_run_hw_queue(data.hctx, true);
1954 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1955 		/*
1956 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1957 		 * we know the driver uses bd->last in a smart fashion.
1958 		 */
1959 		unsigned int request_count = plug->rq_count;
1960 		struct request *last = NULL;
1961 
1962 		blk_mq_put_ctx(data.ctx);
1963 		blk_mq_bio_to_request(rq, bio);
1964 
1965 		if (!request_count)
1966 			trace_block_plug(q);
1967 		else
1968 			last = list_entry_rq(plug->mq_list.prev);
1969 
1970 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1971 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1972 			blk_flush_plug_list(plug, false);
1973 			trace_block_plug(q);
1974 		}
1975 
1976 		blk_add_rq_to_plug(plug, rq);
1977 	} else if (plug && !blk_queue_nomerges(q)) {
1978 		blk_mq_bio_to_request(rq, bio);
1979 
1980 		/*
1981 		 * We do limited plugging. If the bio can be merged, do that.
1982 		 * Otherwise the existing request in the plug list will be
1983 		 * issued. So the plug list will have one request at most
1984 		 * The plug list might get flushed before this. If that happens,
1985 		 * the plug list is empty, and same_queue_rq is invalid.
1986 		 */
1987 		if (list_empty(&plug->mq_list))
1988 			same_queue_rq = NULL;
1989 		if (same_queue_rq) {
1990 			list_del_init(&same_queue_rq->queuelist);
1991 			plug->rq_count--;
1992 		}
1993 		blk_add_rq_to_plug(plug, rq);
1994 
1995 		blk_mq_put_ctx(data.ctx);
1996 
1997 		if (same_queue_rq) {
1998 			data.hctx = same_queue_rq->mq_hctx;
1999 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2000 					&cookie, false, true);
2001 		}
2002 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2003 			!data.hctx->dispatch_busy)) {
2004 		blk_mq_put_ctx(data.ctx);
2005 		blk_mq_bio_to_request(rq, bio);
2006 		blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2007 	} else {
2008 		blk_mq_put_ctx(data.ctx);
2009 		blk_mq_bio_to_request(rq, bio);
2010 		blk_mq_sched_insert_request(rq, false, true, true);
2011 	}
2012 
2013 	return cookie;
2014 }
2015 
2016 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2017 		     unsigned int hctx_idx)
2018 {
2019 	struct page *page;
2020 
2021 	if (tags->rqs && set->ops->exit_request) {
2022 		int i;
2023 
2024 		for (i = 0; i < tags->nr_tags; i++) {
2025 			struct request *rq = tags->static_rqs[i];
2026 
2027 			if (!rq)
2028 				continue;
2029 			set->ops->exit_request(set, rq, hctx_idx);
2030 			tags->static_rqs[i] = NULL;
2031 		}
2032 	}
2033 
2034 	while (!list_empty(&tags->page_list)) {
2035 		page = list_first_entry(&tags->page_list, struct page, lru);
2036 		list_del_init(&page->lru);
2037 		/*
2038 		 * Remove kmemleak object previously allocated in
2039 		 * blk_mq_init_rq_map().
2040 		 */
2041 		kmemleak_free(page_address(page));
2042 		__free_pages(page, page->private);
2043 	}
2044 }
2045 
2046 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2047 {
2048 	kfree(tags->rqs);
2049 	tags->rqs = NULL;
2050 	kfree(tags->static_rqs);
2051 	tags->static_rqs = NULL;
2052 
2053 	blk_mq_free_tags(tags);
2054 }
2055 
2056 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2057 					unsigned int hctx_idx,
2058 					unsigned int nr_tags,
2059 					unsigned int reserved_tags)
2060 {
2061 	struct blk_mq_tags *tags;
2062 	int node;
2063 
2064 	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2065 	if (node == NUMA_NO_NODE)
2066 		node = set->numa_node;
2067 
2068 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2069 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2070 	if (!tags)
2071 		return NULL;
2072 
2073 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2074 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2075 				 node);
2076 	if (!tags->rqs) {
2077 		blk_mq_free_tags(tags);
2078 		return NULL;
2079 	}
2080 
2081 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2082 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2083 					node);
2084 	if (!tags->static_rqs) {
2085 		kfree(tags->rqs);
2086 		blk_mq_free_tags(tags);
2087 		return NULL;
2088 	}
2089 
2090 	return tags;
2091 }
2092 
2093 static size_t order_to_size(unsigned int order)
2094 {
2095 	return (size_t)PAGE_SIZE << order;
2096 }
2097 
2098 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2099 			       unsigned int hctx_idx, int node)
2100 {
2101 	int ret;
2102 
2103 	if (set->ops->init_request) {
2104 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2105 		if (ret)
2106 			return ret;
2107 	}
2108 
2109 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2110 	return 0;
2111 }
2112 
2113 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2114 		     unsigned int hctx_idx, unsigned int depth)
2115 {
2116 	unsigned int i, j, entries_per_page, max_order = 4;
2117 	size_t rq_size, left;
2118 	int node;
2119 
2120 	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2121 	if (node == NUMA_NO_NODE)
2122 		node = set->numa_node;
2123 
2124 	INIT_LIST_HEAD(&tags->page_list);
2125 
2126 	/*
2127 	 * rq_size is the size of the request plus driver payload, rounded
2128 	 * to the cacheline size
2129 	 */
2130 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2131 				cache_line_size());
2132 	left = rq_size * depth;
2133 
2134 	for (i = 0; i < depth; ) {
2135 		int this_order = max_order;
2136 		struct page *page;
2137 		int to_do;
2138 		void *p;
2139 
2140 		while (this_order && left < order_to_size(this_order - 1))
2141 			this_order--;
2142 
2143 		do {
2144 			page = alloc_pages_node(node,
2145 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2146 				this_order);
2147 			if (page)
2148 				break;
2149 			if (!this_order--)
2150 				break;
2151 			if (order_to_size(this_order) < rq_size)
2152 				break;
2153 		} while (1);
2154 
2155 		if (!page)
2156 			goto fail;
2157 
2158 		page->private = this_order;
2159 		list_add_tail(&page->lru, &tags->page_list);
2160 
2161 		p = page_address(page);
2162 		/*
2163 		 * Allow kmemleak to scan these pages as they contain pointers
2164 		 * to additional allocations like via ops->init_request().
2165 		 */
2166 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2167 		entries_per_page = order_to_size(this_order) / rq_size;
2168 		to_do = min(entries_per_page, depth - i);
2169 		left -= to_do * rq_size;
2170 		for (j = 0; j < to_do; j++) {
2171 			struct request *rq = p;
2172 
2173 			tags->static_rqs[i] = rq;
2174 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2175 				tags->static_rqs[i] = NULL;
2176 				goto fail;
2177 			}
2178 
2179 			p += rq_size;
2180 			i++;
2181 		}
2182 	}
2183 	return 0;
2184 
2185 fail:
2186 	blk_mq_free_rqs(set, tags, hctx_idx);
2187 	return -ENOMEM;
2188 }
2189 
2190 /*
2191  * 'cpu' is going away. splice any existing rq_list entries from this
2192  * software queue to the hw queue dispatch list, and ensure that it
2193  * gets run.
2194  */
2195 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2196 {
2197 	struct blk_mq_hw_ctx *hctx;
2198 	struct blk_mq_ctx *ctx;
2199 	LIST_HEAD(tmp);
2200 	enum hctx_type type;
2201 
2202 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2203 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2204 	type = hctx->type;
2205 
2206 	spin_lock(&ctx->lock);
2207 	if (!list_empty(&ctx->rq_lists[type])) {
2208 		list_splice_init(&ctx->rq_lists[type], &tmp);
2209 		blk_mq_hctx_clear_pending(hctx, ctx);
2210 	}
2211 	spin_unlock(&ctx->lock);
2212 
2213 	if (list_empty(&tmp))
2214 		return 0;
2215 
2216 	spin_lock(&hctx->lock);
2217 	list_splice_tail_init(&tmp, &hctx->dispatch);
2218 	spin_unlock(&hctx->lock);
2219 
2220 	blk_mq_run_hw_queue(hctx, true);
2221 	return 0;
2222 }
2223 
2224 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2225 {
2226 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2227 					    &hctx->cpuhp_dead);
2228 }
2229 
2230 /* hctx->ctxs will be freed in queue's release handler */
2231 static void blk_mq_exit_hctx(struct request_queue *q,
2232 		struct blk_mq_tag_set *set,
2233 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2234 {
2235 	if (blk_mq_hw_queue_mapped(hctx))
2236 		blk_mq_tag_idle(hctx);
2237 
2238 	if (set->ops->exit_request)
2239 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2240 
2241 	if (set->ops->exit_hctx)
2242 		set->ops->exit_hctx(hctx, hctx_idx);
2243 
2244 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2245 		cleanup_srcu_struct(hctx->srcu);
2246 
2247 	blk_mq_remove_cpuhp(hctx);
2248 	blk_free_flush_queue(hctx->fq);
2249 	sbitmap_free(&hctx->ctx_map);
2250 }
2251 
2252 static void blk_mq_exit_hw_queues(struct request_queue *q,
2253 		struct blk_mq_tag_set *set, int nr_queue)
2254 {
2255 	struct blk_mq_hw_ctx *hctx;
2256 	unsigned int i;
2257 
2258 	queue_for_each_hw_ctx(q, hctx, i) {
2259 		if (i == nr_queue)
2260 			break;
2261 		blk_mq_debugfs_unregister_hctx(hctx);
2262 		blk_mq_exit_hctx(q, set, hctx, i);
2263 	}
2264 }
2265 
2266 static int blk_mq_init_hctx(struct request_queue *q,
2267 		struct blk_mq_tag_set *set,
2268 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2269 {
2270 	int node;
2271 
2272 	node = hctx->numa_node;
2273 	if (node == NUMA_NO_NODE)
2274 		node = hctx->numa_node = set->numa_node;
2275 
2276 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2277 	spin_lock_init(&hctx->lock);
2278 	INIT_LIST_HEAD(&hctx->dispatch);
2279 	hctx->queue = q;
2280 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2281 
2282 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2283 
2284 	hctx->tags = set->tags[hctx_idx];
2285 
2286 	/*
2287 	 * Allocate space for all possible cpus to avoid allocation at
2288 	 * runtime
2289 	 */
2290 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2291 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2292 	if (!hctx->ctxs)
2293 		goto unregister_cpu_notifier;
2294 
2295 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2296 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2297 		goto free_ctxs;
2298 
2299 	hctx->nr_ctx = 0;
2300 
2301 	spin_lock_init(&hctx->dispatch_wait_lock);
2302 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2303 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2304 
2305 	if (set->ops->init_hctx &&
2306 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2307 		goto free_bitmap;
2308 
2309 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2310 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2311 	if (!hctx->fq)
2312 		goto exit_hctx;
2313 
2314 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2315 		goto free_fq;
2316 
2317 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2318 		init_srcu_struct(hctx->srcu);
2319 
2320 	return 0;
2321 
2322  free_fq:
2323 	kfree(hctx->fq);
2324  exit_hctx:
2325 	if (set->ops->exit_hctx)
2326 		set->ops->exit_hctx(hctx, hctx_idx);
2327  free_bitmap:
2328 	sbitmap_free(&hctx->ctx_map);
2329  free_ctxs:
2330 	kfree(hctx->ctxs);
2331  unregister_cpu_notifier:
2332 	blk_mq_remove_cpuhp(hctx);
2333 	return -1;
2334 }
2335 
2336 static void blk_mq_init_cpu_queues(struct request_queue *q,
2337 				   unsigned int nr_hw_queues)
2338 {
2339 	struct blk_mq_tag_set *set = q->tag_set;
2340 	unsigned int i, j;
2341 
2342 	for_each_possible_cpu(i) {
2343 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2344 		struct blk_mq_hw_ctx *hctx;
2345 		int k;
2346 
2347 		__ctx->cpu = i;
2348 		spin_lock_init(&__ctx->lock);
2349 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2350 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2351 
2352 		__ctx->queue = q;
2353 
2354 		/*
2355 		 * Set local node, IFF we have more than one hw queue. If
2356 		 * not, we remain on the home node of the device
2357 		 */
2358 		for (j = 0; j < set->nr_maps; j++) {
2359 			hctx = blk_mq_map_queue_type(q, j, i);
2360 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2361 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2362 		}
2363 	}
2364 }
2365 
2366 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2367 {
2368 	int ret = 0;
2369 
2370 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2371 					set->queue_depth, set->reserved_tags);
2372 	if (!set->tags[hctx_idx])
2373 		return false;
2374 
2375 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2376 				set->queue_depth);
2377 	if (!ret)
2378 		return true;
2379 
2380 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2381 	set->tags[hctx_idx] = NULL;
2382 	return false;
2383 }
2384 
2385 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2386 					 unsigned int hctx_idx)
2387 {
2388 	if (set->tags && set->tags[hctx_idx]) {
2389 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2390 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2391 		set->tags[hctx_idx] = NULL;
2392 	}
2393 }
2394 
2395 static void blk_mq_map_swqueue(struct request_queue *q)
2396 {
2397 	unsigned int i, j, hctx_idx;
2398 	struct blk_mq_hw_ctx *hctx;
2399 	struct blk_mq_ctx *ctx;
2400 	struct blk_mq_tag_set *set = q->tag_set;
2401 
2402 	/*
2403 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2404 	 */
2405 	mutex_lock(&q->sysfs_lock);
2406 
2407 	queue_for_each_hw_ctx(q, hctx, i) {
2408 		cpumask_clear(hctx->cpumask);
2409 		hctx->nr_ctx = 0;
2410 		hctx->dispatch_from = NULL;
2411 	}
2412 
2413 	/*
2414 	 * Map software to hardware queues.
2415 	 *
2416 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2417 	 */
2418 	for_each_possible_cpu(i) {
2419 		hctx_idx = set->map[0].mq_map[i];
2420 		/* unmapped hw queue can be remapped after CPU topo changed */
2421 		if (!set->tags[hctx_idx] &&
2422 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2423 			/*
2424 			 * If tags initialization fail for some hctx,
2425 			 * that hctx won't be brought online.  In this
2426 			 * case, remap the current ctx to hctx[0] which
2427 			 * is guaranteed to always have tags allocated
2428 			 */
2429 			set->map[0].mq_map[i] = 0;
2430 		}
2431 
2432 		ctx = per_cpu_ptr(q->queue_ctx, i);
2433 		for (j = 0; j < set->nr_maps; j++) {
2434 			if (!set->map[j].nr_queues)
2435 				continue;
2436 
2437 			hctx = blk_mq_map_queue_type(q, j, i);
2438 
2439 			/*
2440 			 * If the CPU is already set in the mask, then we've
2441 			 * mapped this one already. This can happen if
2442 			 * devices share queues across queue maps.
2443 			 */
2444 			if (cpumask_test_cpu(i, hctx->cpumask))
2445 				continue;
2446 
2447 			cpumask_set_cpu(i, hctx->cpumask);
2448 			hctx->type = j;
2449 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2450 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2451 
2452 			/*
2453 			 * If the nr_ctx type overflows, we have exceeded the
2454 			 * amount of sw queues we can support.
2455 			 */
2456 			BUG_ON(!hctx->nr_ctx);
2457 		}
2458 	}
2459 
2460 	mutex_unlock(&q->sysfs_lock);
2461 
2462 	queue_for_each_hw_ctx(q, hctx, i) {
2463 		/*
2464 		 * If no software queues are mapped to this hardware queue,
2465 		 * disable it and free the request entries.
2466 		 */
2467 		if (!hctx->nr_ctx) {
2468 			/* Never unmap queue 0.  We need it as a
2469 			 * fallback in case of a new remap fails
2470 			 * allocation
2471 			 */
2472 			if (i && set->tags[i])
2473 				blk_mq_free_map_and_requests(set, i);
2474 
2475 			hctx->tags = NULL;
2476 			continue;
2477 		}
2478 
2479 		hctx->tags = set->tags[i];
2480 		WARN_ON(!hctx->tags);
2481 
2482 		/*
2483 		 * Set the map size to the number of mapped software queues.
2484 		 * This is more accurate and more efficient than looping
2485 		 * over all possibly mapped software queues.
2486 		 */
2487 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2488 
2489 		/*
2490 		 * Initialize batch roundrobin counts
2491 		 */
2492 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2493 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2494 	}
2495 }
2496 
2497 /*
2498  * Caller needs to ensure that we're either frozen/quiesced, or that
2499  * the queue isn't live yet.
2500  */
2501 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2502 {
2503 	struct blk_mq_hw_ctx *hctx;
2504 	int i;
2505 
2506 	queue_for_each_hw_ctx(q, hctx, i) {
2507 		if (shared)
2508 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2509 		else
2510 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2511 	}
2512 }
2513 
2514 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2515 					bool shared)
2516 {
2517 	struct request_queue *q;
2518 
2519 	lockdep_assert_held(&set->tag_list_lock);
2520 
2521 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2522 		blk_mq_freeze_queue(q);
2523 		queue_set_hctx_shared(q, shared);
2524 		blk_mq_unfreeze_queue(q);
2525 	}
2526 }
2527 
2528 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2529 {
2530 	struct blk_mq_tag_set *set = q->tag_set;
2531 
2532 	mutex_lock(&set->tag_list_lock);
2533 	list_del_rcu(&q->tag_set_list);
2534 	if (list_is_singular(&set->tag_list)) {
2535 		/* just transitioned to unshared */
2536 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2537 		/* update existing queue */
2538 		blk_mq_update_tag_set_depth(set, false);
2539 	}
2540 	mutex_unlock(&set->tag_list_lock);
2541 	INIT_LIST_HEAD(&q->tag_set_list);
2542 }
2543 
2544 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2545 				     struct request_queue *q)
2546 {
2547 	mutex_lock(&set->tag_list_lock);
2548 
2549 	/*
2550 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2551 	 */
2552 	if (!list_empty(&set->tag_list) &&
2553 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2554 		set->flags |= BLK_MQ_F_TAG_SHARED;
2555 		/* update existing queue */
2556 		blk_mq_update_tag_set_depth(set, true);
2557 	}
2558 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2559 		queue_set_hctx_shared(q, true);
2560 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2561 
2562 	mutex_unlock(&set->tag_list_lock);
2563 }
2564 
2565 /* All allocations will be freed in release handler of q->mq_kobj */
2566 static int blk_mq_alloc_ctxs(struct request_queue *q)
2567 {
2568 	struct blk_mq_ctxs *ctxs;
2569 	int cpu;
2570 
2571 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2572 	if (!ctxs)
2573 		return -ENOMEM;
2574 
2575 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2576 	if (!ctxs->queue_ctx)
2577 		goto fail;
2578 
2579 	for_each_possible_cpu(cpu) {
2580 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2581 		ctx->ctxs = ctxs;
2582 	}
2583 
2584 	q->mq_kobj = &ctxs->kobj;
2585 	q->queue_ctx = ctxs->queue_ctx;
2586 
2587 	return 0;
2588  fail:
2589 	kfree(ctxs);
2590 	return -ENOMEM;
2591 }
2592 
2593 /*
2594  * It is the actual release handler for mq, but we do it from
2595  * request queue's release handler for avoiding use-after-free
2596  * and headache because q->mq_kobj shouldn't have been introduced,
2597  * but we can't group ctx/kctx kobj without it.
2598  */
2599 void blk_mq_release(struct request_queue *q)
2600 {
2601 	struct blk_mq_hw_ctx *hctx;
2602 	unsigned int i;
2603 
2604 	/* hctx kobj stays in hctx */
2605 	queue_for_each_hw_ctx(q, hctx, i) {
2606 		if (!hctx)
2607 			continue;
2608 		kobject_put(&hctx->kobj);
2609 	}
2610 
2611 	kfree(q->queue_hw_ctx);
2612 
2613 	/*
2614 	 * release .mq_kobj and sw queue's kobject now because
2615 	 * both share lifetime with request queue.
2616 	 */
2617 	blk_mq_sysfs_deinit(q);
2618 }
2619 
2620 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2621 {
2622 	struct request_queue *uninit_q, *q;
2623 
2624 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2625 	if (!uninit_q)
2626 		return ERR_PTR(-ENOMEM);
2627 
2628 	q = blk_mq_init_allocated_queue(set, uninit_q);
2629 	if (IS_ERR(q))
2630 		blk_cleanup_queue(uninit_q);
2631 
2632 	return q;
2633 }
2634 EXPORT_SYMBOL(blk_mq_init_queue);
2635 
2636 /*
2637  * Helper for setting up a queue with mq ops, given queue depth, and
2638  * the passed in mq ops flags.
2639  */
2640 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2641 					   const struct blk_mq_ops *ops,
2642 					   unsigned int queue_depth,
2643 					   unsigned int set_flags)
2644 {
2645 	struct request_queue *q;
2646 	int ret;
2647 
2648 	memset(set, 0, sizeof(*set));
2649 	set->ops = ops;
2650 	set->nr_hw_queues = 1;
2651 	set->nr_maps = 1;
2652 	set->queue_depth = queue_depth;
2653 	set->numa_node = NUMA_NO_NODE;
2654 	set->flags = set_flags;
2655 
2656 	ret = blk_mq_alloc_tag_set(set);
2657 	if (ret)
2658 		return ERR_PTR(ret);
2659 
2660 	q = blk_mq_init_queue(set);
2661 	if (IS_ERR(q)) {
2662 		blk_mq_free_tag_set(set);
2663 		return q;
2664 	}
2665 
2666 	return q;
2667 }
2668 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2669 
2670 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2671 {
2672 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2673 
2674 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2675 			   __alignof__(struct blk_mq_hw_ctx)) !=
2676 		     sizeof(struct blk_mq_hw_ctx));
2677 
2678 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2679 		hw_ctx_size += sizeof(struct srcu_struct);
2680 
2681 	return hw_ctx_size;
2682 }
2683 
2684 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2685 		struct blk_mq_tag_set *set, struct request_queue *q,
2686 		int hctx_idx, int node)
2687 {
2688 	struct blk_mq_hw_ctx *hctx;
2689 
2690 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2691 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2692 			node);
2693 	if (!hctx)
2694 		return NULL;
2695 
2696 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2697 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2698 				node)) {
2699 		kfree(hctx);
2700 		return NULL;
2701 	}
2702 
2703 	atomic_set(&hctx->nr_active, 0);
2704 	hctx->numa_node = node;
2705 	hctx->queue_num = hctx_idx;
2706 
2707 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2708 		free_cpumask_var(hctx->cpumask);
2709 		kfree(hctx);
2710 		return NULL;
2711 	}
2712 	blk_mq_hctx_kobj_init(hctx);
2713 
2714 	return hctx;
2715 }
2716 
2717 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2718 						struct request_queue *q)
2719 {
2720 	int i, j, end;
2721 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2722 
2723 	/* protect against switching io scheduler  */
2724 	mutex_lock(&q->sysfs_lock);
2725 	for (i = 0; i < set->nr_hw_queues; i++) {
2726 		int node;
2727 		struct blk_mq_hw_ctx *hctx;
2728 
2729 		node = blk_mq_hw_queue_to_node(&set->map[0], i);
2730 		/*
2731 		 * If the hw queue has been mapped to another numa node,
2732 		 * we need to realloc the hctx. If allocation fails, fallback
2733 		 * to use the previous one.
2734 		 */
2735 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2736 			continue;
2737 
2738 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2739 		if (hctx) {
2740 			if (hctxs[i]) {
2741 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2742 				kobject_put(&hctxs[i]->kobj);
2743 			}
2744 			hctxs[i] = hctx;
2745 		} else {
2746 			if (hctxs[i])
2747 				pr_warn("Allocate new hctx on node %d fails,\
2748 						fallback to previous one on node %d\n",
2749 						node, hctxs[i]->numa_node);
2750 			else
2751 				break;
2752 		}
2753 	}
2754 	/*
2755 	 * Increasing nr_hw_queues fails. Free the newly allocated
2756 	 * hctxs and keep the previous q->nr_hw_queues.
2757 	 */
2758 	if (i != set->nr_hw_queues) {
2759 		j = q->nr_hw_queues;
2760 		end = i;
2761 	} else {
2762 		j = i;
2763 		end = q->nr_hw_queues;
2764 		q->nr_hw_queues = set->nr_hw_queues;
2765 	}
2766 
2767 	for (; j < end; j++) {
2768 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2769 
2770 		if (hctx) {
2771 			if (hctx->tags)
2772 				blk_mq_free_map_and_requests(set, j);
2773 			blk_mq_exit_hctx(q, set, hctx, j);
2774 			kobject_put(&hctx->kobj);
2775 			hctxs[j] = NULL;
2776 
2777 		}
2778 	}
2779 	mutex_unlock(&q->sysfs_lock);
2780 }
2781 
2782 /*
2783  * Maximum number of hardware queues we support. For single sets, we'll never
2784  * have more than the CPUs (software queues). For multiple sets, the tag_set
2785  * user may have set ->nr_hw_queues larger.
2786  */
2787 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2788 {
2789 	if (set->nr_maps == 1)
2790 		return nr_cpu_ids;
2791 
2792 	return max(set->nr_hw_queues, nr_cpu_ids);
2793 }
2794 
2795 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2796 						  struct request_queue *q)
2797 {
2798 	/* mark the queue as mq asap */
2799 	q->mq_ops = set->ops;
2800 
2801 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2802 					     blk_mq_poll_stats_bkt,
2803 					     BLK_MQ_POLL_STATS_BKTS, q);
2804 	if (!q->poll_cb)
2805 		goto err_exit;
2806 
2807 	if (blk_mq_alloc_ctxs(q))
2808 		goto err_exit;
2809 
2810 	/* init q->mq_kobj and sw queues' kobjects */
2811 	blk_mq_sysfs_init(q);
2812 
2813 	q->nr_queues = nr_hw_queues(set);
2814 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2815 						GFP_KERNEL, set->numa_node);
2816 	if (!q->queue_hw_ctx)
2817 		goto err_sys_init;
2818 
2819 	blk_mq_realloc_hw_ctxs(set, q);
2820 	if (!q->nr_hw_queues)
2821 		goto err_hctxs;
2822 
2823 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2824 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2825 
2826 	q->tag_set = set;
2827 
2828 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2829 	if (set->nr_maps > HCTX_TYPE_POLL &&
2830 	    set->map[HCTX_TYPE_POLL].nr_queues)
2831 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2832 
2833 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2834 		blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2835 
2836 	q->sg_reserved_size = INT_MAX;
2837 
2838 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2839 	INIT_LIST_HEAD(&q->requeue_list);
2840 	spin_lock_init(&q->requeue_lock);
2841 
2842 	blk_queue_make_request(q, blk_mq_make_request);
2843 
2844 	/*
2845 	 * Do this after blk_queue_make_request() overrides it...
2846 	 */
2847 	q->nr_requests = set->queue_depth;
2848 
2849 	/*
2850 	 * Default to classic polling
2851 	 */
2852 	q->poll_nsec = -1;
2853 
2854 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2855 	blk_mq_add_queue_tag_set(set, q);
2856 	blk_mq_map_swqueue(q);
2857 
2858 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2859 		int ret;
2860 
2861 		ret = elevator_init_mq(q);
2862 		if (ret)
2863 			return ERR_PTR(ret);
2864 	}
2865 
2866 	return q;
2867 
2868 err_hctxs:
2869 	kfree(q->queue_hw_ctx);
2870 err_sys_init:
2871 	blk_mq_sysfs_deinit(q);
2872 err_exit:
2873 	q->mq_ops = NULL;
2874 	return ERR_PTR(-ENOMEM);
2875 }
2876 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2877 
2878 void blk_mq_free_queue(struct request_queue *q)
2879 {
2880 	struct blk_mq_tag_set	*set = q->tag_set;
2881 
2882 	blk_mq_del_queue_tag_set(q);
2883 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2884 }
2885 
2886 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2887 {
2888 	int i;
2889 
2890 	for (i = 0; i < set->nr_hw_queues; i++)
2891 		if (!__blk_mq_alloc_rq_map(set, i))
2892 			goto out_unwind;
2893 
2894 	return 0;
2895 
2896 out_unwind:
2897 	while (--i >= 0)
2898 		blk_mq_free_rq_map(set->tags[i]);
2899 
2900 	return -ENOMEM;
2901 }
2902 
2903 /*
2904  * Allocate the request maps associated with this tag_set. Note that this
2905  * may reduce the depth asked for, if memory is tight. set->queue_depth
2906  * will be updated to reflect the allocated depth.
2907  */
2908 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2909 {
2910 	unsigned int depth;
2911 	int err;
2912 
2913 	depth = set->queue_depth;
2914 	do {
2915 		err = __blk_mq_alloc_rq_maps(set);
2916 		if (!err)
2917 			break;
2918 
2919 		set->queue_depth >>= 1;
2920 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2921 			err = -ENOMEM;
2922 			break;
2923 		}
2924 	} while (set->queue_depth);
2925 
2926 	if (!set->queue_depth || err) {
2927 		pr_err("blk-mq: failed to allocate request map\n");
2928 		return -ENOMEM;
2929 	}
2930 
2931 	if (depth != set->queue_depth)
2932 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2933 						depth, set->queue_depth);
2934 
2935 	return 0;
2936 }
2937 
2938 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2939 {
2940 	if (set->ops->map_queues && !is_kdump_kernel()) {
2941 		int i;
2942 
2943 		/*
2944 		 * transport .map_queues is usually done in the following
2945 		 * way:
2946 		 *
2947 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2948 		 * 	mask = get_cpu_mask(queue)
2949 		 * 	for_each_cpu(cpu, mask)
2950 		 * 		set->map[x].mq_map[cpu] = queue;
2951 		 * }
2952 		 *
2953 		 * When we need to remap, the table has to be cleared for
2954 		 * killing stale mapping since one CPU may not be mapped
2955 		 * to any hw queue.
2956 		 */
2957 		for (i = 0; i < set->nr_maps; i++)
2958 			blk_mq_clear_mq_map(&set->map[i]);
2959 
2960 		return set->ops->map_queues(set);
2961 	} else {
2962 		BUG_ON(set->nr_maps > 1);
2963 		return blk_mq_map_queues(&set->map[0]);
2964 	}
2965 }
2966 
2967 /*
2968  * Alloc a tag set to be associated with one or more request queues.
2969  * May fail with EINVAL for various error conditions. May adjust the
2970  * requested depth down, if it's too large. In that case, the set
2971  * value will be stored in set->queue_depth.
2972  */
2973 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2974 {
2975 	int i, ret;
2976 
2977 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2978 
2979 	if (!set->nr_hw_queues)
2980 		return -EINVAL;
2981 	if (!set->queue_depth)
2982 		return -EINVAL;
2983 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2984 		return -EINVAL;
2985 
2986 	if (!set->ops->queue_rq)
2987 		return -EINVAL;
2988 
2989 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2990 		return -EINVAL;
2991 
2992 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2993 		pr_info("blk-mq: reduced tag depth to %u\n",
2994 			BLK_MQ_MAX_DEPTH);
2995 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2996 	}
2997 
2998 	if (!set->nr_maps)
2999 		set->nr_maps = 1;
3000 	else if (set->nr_maps > HCTX_MAX_TYPES)
3001 		return -EINVAL;
3002 
3003 	/*
3004 	 * If a crashdump is active, then we are potentially in a very
3005 	 * memory constrained environment. Limit us to 1 queue and
3006 	 * 64 tags to prevent using too much memory.
3007 	 */
3008 	if (is_kdump_kernel()) {
3009 		set->nr_hw_queues = 1;
3010 		set->nr_maps = 1;
3011 		set->queue_depth = min(64U, set->queue_depth);
3012 	}
3013 	/*
3014 	 * There is no use for more h/w queues than cpus if we just have
3015 	 * a single map
3016 	 */
3017 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3018 		set->nr_hw_queues = nr_cpu_ids;
3019 
3020 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3021 				 GFP_KERNEL, set->numa_node);
3022 	if (!set->tags)
3023 		return -ENOMEM;
3024 
3025 	ret = -ENOMEM;
3026 	for (i = 0; i < set->nr_maps; i++) {
3027 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3028 						  sizeof(set->map[i].mq_map[0]),
3029 						  GFP_KERNEL, set->numa_node);
3030 		if (!set->map[i].mq_map)
3031 			goto out_free_mq_map;
3032 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3033 	}
3034 
3035 	ret = blk_mq_update_queue_map(set);
3036 	if (ret)
3037 		goto out_free_mq_map;
3038 
3039 	ret = blk_mq_alloc_rq_maps(set);
3040 	if (ret)
3041 		goto out_free_mq_map;
3042 
3043 	mutex_init(&set->tag_list_lock);
3044 	INIT_LIST_HEAD(&set->tag_list);
3045 
3046 	return 0;
3047 
3048 out_free_mq_map:
3049 	for (i = 0; i < set->nr_maps; i++) {
3050 		kfree(set->map[i].mq_map);
3051 		set->map[i].mq_map = NULL;
3052 	}
3053 	kfree(set->tags);
3054 	set->tags = NULL;
3055 	return ret;
3056 }
3057 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3058 
3059 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3060 {
3061 	int i, j;
3062 
3063 	for (i = 0; i < nr_hw_queues(set); i++)
3064 		blk_mq_free_map_and_requests(set, i);
3065 
3066 	for (j = 0; j < set->nr_maps; j++) {
3067 		kfree(set->map[j].mq_map);
3068 		set->map[j].mq_map = NULL;
3069 	}
3070 
3071 	kfree(set->tags);
3072 	set->tags = NULL;
3073 }
3074 EXPORT_SYMBOL(blk_mq_free_tag_set);
3075 
3076 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3077 {
3078 	struct blk_mq_tag_set *set = q->tag_set;
3079 	struct blk_mq_hw_ctx *hctx;
3080 	int i, ret;
3081 
3082 	if (!set)
3083 		return -EINVAL;
3084 
3085 	blk_mq_freeze_queue(q);
3086 	blk_mq_quiesce_queue(q);
3087 
3088 	ret = 0;
3089 	queue_for_each_hw_ctx(q, hctx, i) {
3090 		if (!hctx->tags)
3091 			continue;
3092 		/*
3093 		 * If we're using an MQ scheduler, just update the scheduler
3094 		 * queue depth. This is similar to what the old code would do.
3095 		 */
3096 		if (!hctx->sched_tags) {
3097 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3098 							false);
3099 		} else {
3100 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3101 							nr, true);
3102 		}
3103 		if (ret)
3104 			break;
3105 	}
3106 
3107 	if (!ret)
3108 		q->nr_requests = nr;
3109 
3110 	blk_mq_unquiesce_queue(q);
3111 	blk_mq_unfreeze_queue(q);
3112 
3113 	return ret;
3114 }
3115 
3116 /*
3117  * request_queue and elevator_type pair.
3118  * It is just used by __blk_mq_update_nr_hw_queues to cache
3119  * the elevator_type associated with a request_queue.
3120  */
3121 struct blk_mq_qe_pair {
3122 	struct list_head node;
3123 	struct request_queue *q;
3124 	struct elevator_type *type;
3125 };
3126 
3127 /*
3128  * Cache the elevator_type in qe pair list and switch the
3129  * io scheduler to 'none'
3130  */
3131 static bool blk_mq_elv_switch_none(struct list_head *head,
3132 		struct request_queue *q)
3133 {
3134 	struct blk_mq_qe_pair *qe;
3135 
3136 	if (!q->elevator)
3137 		return true;
3138 
3139 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3140 	if (!qe)
3141 		return false;
3142 
3143 	INIT_LIST_HEAD(&qe->node);
3144 	qe->q = q;
3145 	qe->type = q->elevator->type;
3146 	list_add(&qe->node, head);
3147 
3148 	mutex_lock(&q->sysfs_lock);
3149 	/*
3150 	 * After elevator_switch_mq, the previous elevator_queue will be
3151 	 * released by elevator_release. The reference of the io scheduler
3152 	 * module get by elevator_get will also be put. So we need to get
3153 	 * a reference of the io scheduler module here to prevent it to be
3154 	 * removed.
3155 	 */
3156 	__module_get(qe->type->elevator_owner);
3157 	elevator_switch_mq(q, NULL);
3158 	mutex_unlock(&q->sysfs_lock);
3159 
3160 	return true;
3161 }
3162 
3163 static void blk_mq_elv_switch_back(struct list_head *head,
3164 		struct request_queue *q)
3165 {
3166 	struct blk_mq_qe_pair *qe;
3167 	struct elevator_type *t = NULL;
3168 
3169 	list_for_each_entry(qe, head, node)
3170 		if (qe->q == q) {
3171 			t = qe->type;
3172 			break;
3173 		}
3174 
3175 	if (!t)
3176 		return;
3177 
3178 	list_del(&qe->node);
3179 	kfree(qe);
3180 
3181 	mutex_lock(&q->sysfs_lock);
3182 	elevator_switch_mq(q, t);
3183 	mutex_unlock(&q->sysfs_lock);
3184 }
3185 
3186 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3187 							int nr_hw_queues)
3188 {
3189 	struct request_queue *q;
3190 	LIST_HEAD(head);
3191 	int prev_nr_hw_queues;
3192 
3193 	lockdep_assert_held(&set->tag_list_lock);
3194 
3195 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3196 		nr_hw_queues = nr_cpu_ids;
3197 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3198 		return;
3199 
3200 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3201 		blk_mq_freeze_queue(q);
3202 	/*
3203 	 * Sync with blk_mq_queue_tag_busy_iter.
3204 	 */
3205 	synchronize_rcu();
3206 	/*
3207 	 * Switch IO scheduler to 'none', cleaning up the data associated
3208 	 * with the previous scheduler. We will switch back once we are done
3209 	 * updating the new sw to hw queue mappings.
3210 	 */
3211 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3212 		if (!blk_mq_elv_switch_none(&head, q))
3213 			goto switch_back;
3214 
3215 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3216 		blk_mq_debugfs_unregister_hctxs(q);
3217 		blk_mq_sysfs_unregister(q);
3218 	}
3219 
3220 	prev_nr_hw_queues = set->nr_hw_queues;
3221 	set->nr_hw_queues = nr_hw_queues;
3222 	blk_mq_update_queue_map(set);
3223 fallback:
3224 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3225 		blk_mq_realloc_hw_ctxs(set, q);
3226 		if (q->nr_hw_queues != set->nr_hw_queues) {
3227 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3228 					nr_hw_queues, prev_nr_hw_queues);
3229 			set->nr_hw_queues = prev_nr_hw_queues;
3230 			blk_mq_map_queues(&set->map[0]);
3231 			goto fallback;
3232 		}
3233 		blk_mq_map_swqueue(q);
3234 	}
3235 
3236 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3237 		blk_mq_sysfs_register(q);
3238 		blk_mq_debugfs_register_hctxs(q);
3239 	}
3240 
3241 switch_back:
3242 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3243 		blk_mq_elv_switch_back(&head, q);
3244 
3245 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3246 		blk_mq_unfreeze_queue(q);
3247 }
3248 
3249 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3250 {
3251 	mutex_lock(&set->tag_list_lock);
3252 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3253 	mutex_unlock(&set->tag_list_lock);
3254 }
3255 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3256 
3257 /* Enable polling stats and return whether they were already enabled. */
3258 static bool blk_poll_stats_enable(struct request_queue *q)
3259 {
3260 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3261 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3262 		return true;
3263 	blk_stat_add_callback(q, q->poll_cb);
3264 	return false;
3265 }
3266 
3267 static void blk_mq_poll_stats_start(struct request_queue *q)
3268 {
3269 	/*
3270 	 * We don't arm the callback if polling stats are not enabled or the
3271 	 * callback is already active.
3272 	 */
3273 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3274 	    blk_stat_is_active(q->poll_cb))
3275 		return;
3276 
3277 	blk_stat_activate_msecs(q->poll_cb, 100);
3278 }
3279 
3280 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3281 {
3282 	struct request_queue *q = cb->data;
3283 	int bucket;
3284 
3285 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3286 		if (cb->stat[bucket].nr_samples)
3287 			q->poll_stat[bucket] = cb->stat[bucket];
3288 	}
3289 }
3290 
3291 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3292 				       struct blk_mq_hw_ctx *hctx,
3293 				       struct request *rq)
3294 {
3295 	unsigned long ret = 0;
3296 	int bucket;
3297 
3298 	/*
3299 	 * If stats collection isn't on, don't sleep but turn it on for
3300 	 * future users
3301 	 */
3302 	if (!blk_poll_stats_enable(q))
3303 		return 0;
3304 
3305 	/*
3306 	 * As an optimistic guess, use half of the mean service time
3307 	 * for this type of request. We can (and should) make this smarter.
3308 	 * For instance, if the completion latencies are tight, we can
3309 	 * get closer than just half the mean. This is especially
3310 	 * important on devices where the completion latencies are longer
3311 	 * than ~10 usec. We do use the stats for the relevant IO size
3312 	 * if available which does lead to better estimates.
3313 	 */
3314 	bucket = blk_mq_poll_stats_bkt(rq);
3315 	if (bucket < 0)
3316 		return ret;
3317 
3318 	if (q->poll_stat[bucket].nr_samples)
3319 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3320 
3321 	return ret;
3322 }
3323 
3324 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3325 				     struct blk_mq_hw_ctx *hctx,
3326 				     struct request *rq)
3327 {
3328 	struct hrtimer_sleeper hs;
3329 	enum hrtimer_mode mode;
3330 	unsigned int nsecs;
3331 	ktime_t kt;
3332 
3333 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3334 		return false;
3335 
3336 	/*
3337 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3338 	 *
3339 	 *  0:	use half of prev avg
3340 	 * >0:	use this specific value
3341 	 */
3342 	if (q->poll_nsec > 0)
3343 		nsecs = q->poll_nsec;
3344 	else
3345 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3346 
3347 	if (!nsecs)
3348 		return false;
3349 
3350 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3351 
3352 	/*
3353 	 * This will be replaced with the stats tracking code, using
3354 	 * 'avg_completion_time / 2' as the pre-sleep target.
3355 	 */
3356 	kt = nsecs;
3357 
3358 	mode = HRTIMER_MODE_REL;
3359 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3360 	hrtimer_set_expires(&hs.timer, kt);
3361 
3362 	hrtimer_init_sleeper(&hs, current);
3363 	do {
3364 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3365 			break;
3366 		set_current_state(TASK_UNINTERRUPTIBLE);
3367 		hrtimer_start_expires(&hs.timer, mode);
3368 		if (hs.task)
3369 			io_schedule();
3370 		hrtimer_cancel(&hs.timer);
3371 		mode = HRTIMER_MODE_ABS;
3372 	} while (hs.task && !signal_pending(current));
3373 
3374 	__set_current_state(TASK_RUNNING);
3375 	destroy_hrtimer_on_stack(&hs.timer);
3376 	return true;
3377 }
3378 
3379 static bool blk_mq_poll_hybrid(struct request_queue *q,
3380 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3381 {
3382 	struct request *rq;
3383 
3384 	if (q->poll_nsec == -1)
3385 		return false;
3386 
3387 	if (!blk_qc_t_is_internal(cookie))
3388 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3389 	else {
3390 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3391 		/*
3392 		 * With scheduling, if the request has completed, we'll
3393 		 * get a NULL return here, as we clear the sched tag when
3394 		 * that happens. The request still remains valid, like always,
3395 		 * so we should be safe with just the NULL check.
3396 		 */
3397 		if (!rq)
3398 			return false;
3399 	}
3400 
3401 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3402 }
3403 
3404 /**
3405  * blk_poll - poll for IO completions
3406  * @q:  the queue
3407  * @cookie: cookie passed back at IO submission time
3408  * @spin: whether to spin for completions
3409  *
3410  * Description:
3411  *    Poll for completions on the passed in queue. Returns number of
3412  *    completed entries found. If @spin is true, then blk_poll will continue
3413  *    looping until at least one completion is found, unless the task is
3414  *    otherwise marked running (or we need to reschedule).
3415  */
3416 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3417 {
3418 	struct blk_mq_hw_ctx *hctx;
3419 	long state;
3420 
3421 	if (!blk_qc_t_valid(cookie) ||
3422 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3423 		return 0;
3424 
3425 	if (current->plug)
3426 		blk_flush_plug_list(current->plug, false);
3427 
3428 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3429 
3430 	/*
3431 	 * If we sleep, have the caller restart the poll loop to reset
3432 	 * the state. Like for the other success return cases, the
3433 	 * caller is responsible for checking if the IO completed. If
3434 	 * the IO isn't complete, we'll get called again and will go
3435 	 * straight to the busy poll loop.
3436 	 */
3437 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3438 		return 1;
3439 
3440 	hctx->poll_considered++;
3441 
3442 	state = current->state;
3443 	do {
3444 		int ret;
3445 
3446 		hctx->poll_invoked++;
3447 
3448 		ret = q->mq_ops->poll(hctx);
3449 		if (ret > 0) {
3450 			hctx->poll_success++;
3451 			__set_current_state(TASK_RUNNING);
3452 			return ret;
3453 		}
3454 
3455 		if (signal_pending_state(state, current))
3456 			__set_current_state(TASK_RUNNING);
3457 
3458 		if (current->state == TASK_RUNNING)
3459 			return 1;
3460 		if (ret < 0 || !spin)
3461 			break;
3462 		cpu_relax();
3463 	} while (!need_resched());
3464 
3465 	__set_current_state(TASK_RUNNING);
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(blk_poll);
3469 
3470 unsigned int blk_mq_rq_cpu(struct request *rq)
3471 {
3472 	return rq->mq_ctx->cpu;
3473 }
3474 EXPORT_SYMBOL(blk_mq_rq_cpu);
3475 
3476 static int __init blk_mq_init(void)
3477 {
3478 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3479 				blk_mq_hctx_notify_dead);
3480 	return 0;
3481 }
3482 subsys_initcall(blk_mq_init);
3483