xref: /openbmc/linux/block/blk-mq.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	if (data->flags & BLK_MQ_REQ_RESERVED)
478 		data->rq_flags |= RQF_RESV;
479 
480 	/*
481 	 * Try batched alloc if we want more than 1 tag.
482 	 */
483 	if (data->nr_tags > 1) {
484 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 		if (rq)
486 			return rq;
487 		data->nr_tags = 1;
488 	}
489 
490 	/*
491 	 * Waiting allocations only fail because of an inactive hctx.  In that
492 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 	 * should have migrated us to an online CPU by now.
494 	 */
495 	tag = blk_mq_get_tag(data);
496 	if (tag == BLK_MQ_NO_TAG) {
497 		if (data->flags & BLK_MQ_REQ_NOWAIT)
498 			return NULL;
499 		/*
500 		 * Give up the CPU and sleep for a random short time to
501 		 * ensure that thread using a realtime scheduling class
502 		 * are migrated off the CPU, and thus off the hctx that
503 		 * is going away.
504 		 */
505 		msleep(3);
506 		goto retry;
507 	}
508 
509 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 					alloc_time_ns);
511 }
512 
513 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
514 		blk_mq_req_flags_t flags)
515 {
516 	struct blk_mq_alloc_data data = {
517 		.q		= q,
518 		.flags		= flags,
519 		.cmd_flags	= op,
520 		.nr_tags	= 1,
521 	};
522 	struct request *rq;
523 	int ret;
524 
525 	ret = blk_queue_enter(q, flags);
526 	if (ret)
527 		return ERR_PTR(ret);
528 
529 	rq = __blk_mq_alloc_requests(&data);
530 	if (!rq)
531 		goto out_queue_exit;
532 	rq->__data_len = 0;
533 	rq->__sector = (sector_t) -1;
534 	rq->bio = rq->biotail = NULL;
535 	return rq;
536 out_queue_exit:
537 	blk_queue_exit(q);
538 	return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541 
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545 	struct blk_mq_alloc_data data = {
546 		.q		= q,
547 		.flags		= flags,
548 		.cmd_flags	= op,
549 		.nr_tags	= 1,
550 	};
551 	u64 alloc_time_ns = 0;
552 	unsigned int cpu;
553 	unsigned int tag;
554 	int ret;
555 
556 	/* alloc_time includes depth and tag waits */
557 	if (blk_queue_rq_alloc_time(q))
558 		alloc_time_ns = ktime_get_ns();
559 
560 	/*
561 	 * If the tag allocator sleeps we could get an allocation for a
562 	 * different hardware context.  No need to complicate the low level
563 	 * allocator for this for the rare use case of a command tied to
564 	 * a specific queue.
565 	 */
566 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567 		return ERR_PTR(-EINVAL);
568 
569 	if (hctx_idx >= q->nr_hw_queues)
570 		return ERR_PTR(-EIO);
571 
572 	ret = blk_queue_enter(q, flags);
573 	if (ret)
574 		return ERR_PTR(ret);
575 
576 	/*
577 	 * Check if the hardware context is actually mapped to anything.
578 	 * If not tell the caller that it should skip this queue.
579 	 */
580 	ret = -EXDEV;
581 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
582 	if (!blk_mq_hw_queue_mapped(data.hctx))
583 		goto out_queue_exit;
584 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585 	if (cpu >= nr_cpu_ids)
586 		goto out_queue_exit;
587 	data.ctx = __blk_mq_get_ctx(q, cpu);
588 
589 	if (!q->elevator)
590 		blk_mq_tag_busy(data.hctx);
591 	else
592 		data.rq_flags |= RQF_ELV;
593 
594 	if (flags & BLK_MQ_REQ_RESERVED)
595 		data.rq_flags |= RQF_RESV;
596 
597 	ret = -EWOULDBLOCK;
598 	tag = blk_mq_get_tag(&data);
599 	if (tag == BLK_MQ_NO_TAG)
600 		goto out_queue_exit;
601 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602 					alloc_time_ns);
603 
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609 
610 static void __blk_mq_free_request(struct request *rq)
611 {
612 	struct request_queue *q = rq->q;
613 	struct blk_mq_ctx *ctx = rq->mq_ctx;
614 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615 	const int sched_tag = rq->internal_tag;
616 
617 	blk_crypto_free_request(rq);
618 	blk_pm_mark_last_busy(rq);
619 	rq->mq_hctx = NULL;
620 	if (rq->tag != BLK_MQ_NO_TAG)
621 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622 	if (sched_tag != BLK_MQ_NO_TAG)
623 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624 	blk_mq_sched_restart(hctx);
625 	blk_queue_exit(q);
626 }
627 
628 void blk_mq_free_request(struct request *rq)
629 {
630 	struct request_queue *q = rq->q;
631 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632 
633 	if ((rq->rq_flags & RQF_ELVPRIV) &&
634 	    q->elevator->type->ops.finish_request)
635 		q->elevator->type->ops.finish_request(rq);
636 
637 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
638 		__blk_mq_dec_active_requests(hctx);
639 
640 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641 		laptop_io_completion(q->disk->bdi);
642 
643 	rq_qos_done(q, rq);
644 
645 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646 	if (req_ref_put_and_test(rq))
647 		__blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650 
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653 	struct request *rq;
654 
655 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656 		blk_mq_free_request(rq);
657 }
658 
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662 		rq->q->disk ? rq->q->disk->disk_name : "?",
663 		(unsigned long long) rq->cmd_flags);
664 
665 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666 	       (unsigned long long)blk_rq_pos(rq),
667 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672 
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674 			  unsigned int nbytes, blk_status_t error)
675 {
676 	if (unlikely(error)) {
677 		bio->bi_status = error;
678 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679 		/*
680 		 * Partial zone append completions cannot be supported as the
681 		 * BIO fragments may end up not being written sequentially.
682 		 */
683 		if (bio->bi_iter.bi_size != nbytes)
684 			bio->bi_status = BLK_STS_IOERR;
685 		else
686 			bio->bi_iter.bi_sector = rq->__sector;
687 	}
688 
689 	bio_advance(bio, nbytes);
690 
691 	if (unlikely(rq->rq_flags & RQF_QUIET))
692 		bio_set_flag(bio, BIO_QUIET);
693 	/* don't actually finish bio if it's part of flush sequence */
694 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695 		bio_endio(bio);
696 }
697 
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700 	if (req->part && blk_do_io_stat(req)) {
701 		const int sgrp = op_stat_group(req_op(req));
702 
703 		part_stat_lock();
704 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705 		part_stat_unlock();
706 	}
707 }
708 
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711 	printk_ratelimited(KERN_ERR
712 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713 		"phys_seg %u prio class %u\n",
714 		blk_status_to_str(status),
715 		req->q->disk ? req->q->disk->disk_name : "?",
716 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
717 		req->cmd_flags & ~REQ_OP_MASK,
718 		req->nr_phys_segments,
719 		IOPRIO_PRIO_CLASS(req->ioprio));
720 }
721 
722 /*
723  * Fully end IO on a request. Does not support partial completions, or
724  * errors.
725  */
726 static void blk_complete_request(struct request *req)
727 {
728 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
729 	int total_bytes = blk_rq_bytes(req);
730 	struct bio *bio = req->bio;
731 
732 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
733 
734 	if (!bio)
735 		return;
736 
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
739 		req->q->integrity.profile->complete_fn(req, total_bytes);
740 #endif
741 
742 	blk_account_io_completion(req, total_bytes);
743 
744 	do {
745 		struct bio *next = bio->bi_next;
746 
747 		/* Completion has already been traced */
748 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
749 
750 		if (req_op(req) == REQ_OP_ZONE_APPEND)
751 			bio->bi_iter.bi_sector = req->__sector;
752 
753 		if (!is_flush)
754 			bio_endio(bio);
755 		bio = next;
756 	} while (bio);
757 
758 	/*
759 	 * Reset counters so that the request stacking driver
760 	 * can find how many bytes remain in the request
761 	 * later.
762 	 */
763 	req->bio = NULL;
764 	req->__data_len = 0;
765 }
766 
767 /**
768  * blk_update_request - Complete multiple bytes without completing the request
769  * @req:      the request being processed
770  * @error:    block status code
771  * @nr_bytes: number of bytes to complete for @req
772  *
773  * Description:
774  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
775  *     the request structure even if @req doesn't have leftover.
776  *     If @req has leftover, sets it up for the next range of segments.
777  *
778  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
779  *     %false return from this function.
780  *
781  * Note:
782  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
783  *      except in the consistency check at the end of this function.
784  *
785  * Return:
786  *     %false - this request doesn't have any more data
787  *     %true  - this request has more data
788  **/
789 bool blk_update_request(struct request *req, blk_status_t error,
790 		unsigned int nr_bytes)
791 {
792 	int total_bytes;
793 
794 	trace_block_rq_complete(req, error, nr_bytes);
795 
796 	if (!req->bio)
797 		return false;
798 
799 #ifdef CONFIG_BLK_DEV_INTEGRITY
800 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
801 	    error == BLK_STS_OK)
802 		req->q->integrity.profile->complete_fn(req, nr_bytes);
803 #endif
804 
805 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
806 		     !(req->rq_flags & RQF_QUIET)) &&
807 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
808 		blk_print_req_error(req, error);
809 		trace_block_rq_error(req, error, nr_bytes);
810 	}
811 
812 	blk_account_io_completion(req, nr_bytes);
813 
814 	total_bytes = 0;
815 	while (req->bio) {
816 		struct bio *bio = req->bio;
817 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
818 
819 		if (bio_bytes == bio->bi_iter.bi_size)
820 			req->bio = bio->bi_next;
821 
822 		/* Completion has already been traced */
823 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
824 		req_bio_endio(req, bio, bio_bytes, error);
825 
826 		total_bytes += bio_bytes;
827 		nr_bytes -= bio_bytes;
828 
829 		if (!nr_bytes)
830 			break;
831 	}
832 
833 	/*
834 	 * completely done
835 	 */
836 	if (!req->bio) {
837 		/*
838 		 * Reset counters so that the request stacking driver
839 		 * can find how many bytes remain in the request
840 		 * later.
841 		 */
842 		req->__data_len = 0;
843 		return false;
844 	}
845 
846 	req->__data_len -= total_bytes;
847 
848 	/* update sector only for requests with clear definition of sector */
849 	if (!blk_rq_is_passthrough(req))
850 		req->__sector += total_bytes >> 9;
851 
852 	/* mixed attributes always follow the first bio */
853 	if (req->rq_flags & RQF_MIXED_MERGE) {
854 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
855 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
856 	}
857 
858 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
859 		/*
860 		 * If total number of sectors is less than the first segment
861 		 * size, something has gone terribly wrong.
862 		 */
863 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
864 			blk_dump_rq_flags(req, "request botched");
865 			req->__data_len = blk_rq_cur_bytes(req);
866 		}
867 
868 		/* recalculate the number of segments */
869 		req->nr_phys_segments = blk_recalc_rq_segments(req);
870 	}
871 
872 	return true;
873 }
874 EXPORT_SYMBOL_GPL(blk_update_request);
875 
876 static void __blk_account_io_done(struct request *req, u64 now)
877 {
878 	const int sgrp = op_stat_group(req_op(req));
879 
880 	part_stat_lock();
881 	update_io_ticks(req->part, jiffies, true);
882 	part_stat_inc(req->part, ios[sgrp]);
883 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
884 	part_stat_unlock();
885 }
886 
887 static inline void blk_account_io_done(struct request *req, u64 now)
888 {
889 	/*
890 	 * Account IO completion.  flush_rq isn't accounted as a
891 	 * normal IO on queueing nor completion.  Accounting the
892 	 * containing request is enough.
893 	 */
894 	if (blk_do_io_stat(req) && req->part &&
895 	    !(req->rq_flags & RQF_FLUSH_SEQ))
896 		__blk_account_io_done(req, now);
897 }
898 
899 static void __blk_account_io_start(struct request *rq)
900 {
901 	/*
902 	 * All non-passthrough requests are created from a bio with one
903 	 * exception: when a flush command that is part of a flush sequence
904 	 * generated by the state machine in blk-flush.c is cloned onto the
905 	 * lower device by dm-multipath we can get here without a bio.
906 	 */
907 	if (rq->bio)
908 		rq->part = rq->bio->bi_bdev;
909 	else
910 		rq->part = rq->q->disk->part0;
911 
912 	part_stat_lock();
913 	update_io_ticks(rq->part, jiffies, false);
914 	part_stat_unlock();
915 }
916 
917 static inline void blk_account_io_start(struct request *req)
918 {
919 	if (blk_do_io_stat(req))
920 		__blk_account_io_start(req);
921 }
922 
923 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
924 {
925 	if (rq->rq_flags & RQF_STATS) {
926 		blk_mq_poll_stats_start(rq->q);
927 		blk_stat_add(rq, now);
928 	}
929 
930 	blk_mq_sched_completed_request(rq, now);
931 	blk_account_io_done(rq, now);
932 }
933 
934 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
935 {
936 	if (blk_mq_need_time_stamp(rq))
937 		__blk_mq_end_request_acct(rq, ktime_get_ns());
938 
939 	if (rq->end_io) {
940 		rq_qos_done(rq->q, rq);
941 		rq->end_io(rq, error);
942 	} else {
943 		blk_mq_free_request(rq);
944 	}
945 }
946 EXPORT_SYMBOL(__blk_mq_end_request);
947 
948 void blk_mq_end_request(struct request *rq, blk_status_t error)
949 {
950 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
951 		BUG();
952 	__blk_mq_end_request(rq, error);
953 }
954 EXPORT_SYMBOL(blk_mq_end_request);
955 
956 #define TAG_COMP_BATCH		32
957 
958 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
959 					  int *tag_array, int nr_tags)
960 {
961 	struct request_queue *q = hctx->queue;
962 
963 	/*
964 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
965 	 * update hctx->nr_active in batch
966 	 */
967 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
968 		__blk_mq_sub_active_requests(hctx, nr_tags);
969 
970 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
971 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
972 }
973 
974 void blk_mq_end_request_batch(struct io_comp_batch *iob)
975 {
976 	int tags[TAG_COMP_BATCH], nr_tags = 0;
977 	struct blk_mq_hw_ctx *cur_hctx = NULL;
978 	struct request *rq;
979 	u64 now = 0;
980 
981 	if (iob->need_ts)
982 		now = ktime_get_ns();
983 
984 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
985 		prefetch(rq->bio);
986 		prefetch(rq->rq_next);
987 
988 		blk_complete_request(rq);
989 		if (iob->need_ts)
990 			__blk_mq_end_request_acct(rq, now);
991 
992 		rq_qos_done(rq->q, rq);
993 
994 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
995 		if (!req_ref_put_and_test(rq))
996 			continue;
997 
998 		blk_crypto_free_request(rq);
999 		blk_pm_mark_last_busy(rq);
1000 
1001 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1002 			if (cur_hctx)
1003 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1004 			nr_tags = 0;
1005 			cur_hctx = rq->mq_hctx;
1006 		}
1007 		tags[nr_tags++] = rq->tag;
1008 	}
1009 
1010 	if (nr_tags)
1011 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1012 }
1013 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1014 
1015 static void blk_complete_reqs(struct llist_head *list)
1016 {
1017 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1018 	struct request *rq, *next;
1019 
1020 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1021 		rq->q->mq_ops->complete(rq);
1022 }
1023 
1024 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1025 {
1026 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1027 }
1028 
1029 static int blk_softirq_cpu_dead(unsigned int cpu)
1030 {
1031 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1032 	return 0;
1033 }
1034 
1035 static void __blk_mq_complete_request_remote(void *data)
1036 {
1037 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1038 }
1039 
1040 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1041 {
1042 	int cpu = raw_smp_processor_id();
1043 
1044 	if (!IS_ENABLED(CONFIG_SMP) ||
1045 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1046 		return false;
1047 	/*
1048 	 * With force threaded interrupts enabled, raising softirq from an SMP
1049 	 * function call will always result in waking the ksoftirqd thread.
1050 	 * This is probably worse than completing the request on a different
1051 	 * cache domain.
1052 	 */
1053 	if (force_irqthreads())
1054 		return false;
1055 
1056 	/* same CPU or cache domain?  Complete locally */
1057 	if (cpu == rq->mq_ctx->cpu ||
1058 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1059 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1060 		return false;
1061 
1062 	/* don't try to IPI to an offline CPU */
1063 	return cpu_online(rq->mq_ctx->cpu);
1064 }
1065 
1066 static void blk_mq_complete_send_ipi(struct request *rq)
1067 {
1068 	struct llist_head *list;
1069 	unsigned int cpu;
1070 
1071 	cpu = rq->mq_ctx->cpu;
1072 	list = &per_cpu(blk_cpu_done, cpu);
1073 	if (llist_add(&rq->ipi_list, list)) {
1074 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1075 		smp_call_function_single_async(cpu, &rq->csd);
1076 	}
1077 }
1078 
1079 static void blk_mq_raise_softirq(struct request *rq)
1080 {
1081 	struct llist_head *list;
1082 
1083 	preempt_disable();
1084 	list = this_cpu_ptr(&blk_cpu_done);
1085 	if (llist_add(&rq->ipi_list, list))
1086 		raise_softirq(BLOCK_SOFTIRQ);
1087 	preempt_enable();
1088 }
1089 
1090 bool blk_mq_complete_request_remote(struct request *rq)
1091 {
1092 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1093 
1094 	/*
1095 	 * For a polled request, always complete locally, it's pointless
1096 	 * to redirect the completion.
1097 	 */
1098 	if (rq->cmd_flags & REQ_POLLED)
1099 		return false;
1100 
1101 	if (blk_mq_complete_need_ipi(rq)) {
1102 		blk_mq_complete_send_ipi(rq);
1103 		return true;
1104 	}
1105 
1106 	if (rq->q->nr_hw_queues == 1) {
1107 		blk_mq_raise_softirq(rq);
1108 		return true;
1109 	}
1110 	return false;
1111 }
1112 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1113 
1114 /**
1115  * blk_mq_complete_request - end I/O on a request
1116  * @rq:		the request being processed
1117  *
1118  * Description:
1119  *	Complete a request by scheduling the ->complete_rq operation.
1120  **/
1121 void blk_mq_complete_request(struct request *rq)
1122 {
1123 	if (!blk_mq_complete_request_remote(rq))
1124 		rq->q->mq_ops->complete(rq);
1125 }
1126 EXPORT_SYMBOL(blk_mq_complete_request);
1127 
1128 /**
1129  * blk_mq_start_request - Start processing a request
1130  * @rq: Pointer to request to be started
1131  *
1132  * Function used by device drivers to notify the block layer that a request
1133  * is going to be processed now, so blk layer can do proper initializations
1134  * such as starting the timeout timer.
1135  */
1136 void blk_mq_start_request(struct request *rq)
1137 {
1138 	struct request_queue *q = rq->q;
1139 
1140 	trace_block_rq_issue(rq);
1141 
1142 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1143 		rq->io_start_time_ns = ktime_get_ns();
1144 		rq->stats_sectors = blk_rq_sectors(rq);
1145 		rq->rq_flags |= RQF_STATS;
1146 		rq_qos_issue(q, rq);
1147 	}
1148 
1149 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1150 
1151 	blk_add_timer(rq);
1152 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1153 
1154 #ifdef CONFIG_BLK_DEV_INTEGRITY
1155 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1156 		q->integrity.profile->prepare_fn(rq);
1157 #endif
1158 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1159 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1160 }
1161 EXPORT_SYMBOL(blk_mq_start_request);
1162 
1163 /*
1164  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1165  * queues. This is important for md arrays to benefit from merging
1166  * requests.
1167  */
1168 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1169 {
1170 	if (plug->multiple_queues)
1171 		return BLK_MAX_REQUEST_COUNT * 2;
1172 	return BLK_MAX_REQUEST_COUNT;
1173 }
1174 
1175 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1176 {
1177 	struct request *last = rq_list_peek(&plug->mq_list);
1178 
1179 	if (!plug->rq_count) {
1180 		trace_block_plug(rq->q);
1181 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1182 		   (!blk_queue_nomerges(rq->q) &&
1183 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1184 		blk_mq_flush_plug_list(plug, false);
1185 		trace_block_plug(rq->q);
1186 	}
1187 
1188 	if (!plug->multiple_queues && last && last->q != rq->q)
1189 		plug->multiple_queues = true;
1190 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1191 		plug->has_elevator = true;
1192 	rq->rq_next = NULL;
1193 	rq_list_add(&plug->mq_list, rq);
1194 	plug->rq_count++;
1195 }
1196 
1197 /**
1198  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1199  * @rq:		request to insert
1200  * @at_head:    insert request at head or tail of queue
1201  *
1202  * Description:
1203  *    Insert a fully prepared request at the back of the I/O scheduler queue
1204  *    for execution.  Don't wait for completion.
1205  *
1206  * Note:
1207  *    This function will invoke @done directly if the queue is dead.
1208  */
1209 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1210 {
1211 	WARN_ON(irqs_disabled());
1212 	WARN_ON(!blk_rq_is_passthrough(rq));
1213 
1214 	blk_account_io_start(rq);
1215 	if (current->plug)
1216 		blk_add_rq_to_plug(current->plug, rq);
1217 	else
1218 		blk_mq_sched_insert_request(rq, at_head, true, false);
1219 }
1220 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1221 
1222 struct blk_rq_wait {
1223 	struct completion done;
1224 	blk_status_t ret;
1225 };
1226 
1227 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1228 {
1229 	struct blk_rq_wait *wait = rq->end_io_data;
1230 
1231 	wait->ret = ret;
1232 	complete(&wait->done);
1233 }
1234 
1235 static bool blk_rq_is_poll(struct request *rq)
1236 {
1237 	if (!rq->mq_hctx)
1238 		return false;
1239 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1240 		return false;
1241 	if (WARN_ON_ONCE(!rq->bio))
1242 		return false;
1243 	return true;
1244 }
1245 
1246 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1247 {
1248 	do {
1249 		bio_poll(rq->bio, NULL, 0);
1250 		cond_resched();
1251 	} while (!completion_done(wait));
1252 }
1253 
1254 /**
1255  * blk_execute_rq - insert a request into queue for execution
1256  * @rq:		request to insert
1257  * @at_head:    insert request at head or tail of queue
1258  *
1259  * Description:
1260  *    Insert a fully prepared request at the back of the I/O scheduler queue
1261  *    for execution and wait for completion.
1262  * Return: The blk_status_t result provided to blk_mq_end_request().
1263  */
1264 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1265 {
1266 	struct blk_rq_wait wait = {
1267 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1268 	};
1269 
1270 	WARN_ON(irqs_disabled());
1271 	WARN_ON(!blk_rq_is_passthrough(rq));
1272 
1273 	rq->end_io_data = &wait;
1274 	rq->end_io = blk_end_sync_rq;
1275 
1276 	blk_account_io_start(rq);
1277 	blk_mq_sched_insert_request(rq, at_head, true, false);
1278 
1279 	if (blk_rq_is_poll(rq)) {
1280 		blk_rq_poll_completion(rq, &wait.done);
1281 	} else {
1282 		/*
1283 		 * Prevent hang_check timer from firing at us during very long
1284 		 * I/O
1285 		 */
1286 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1287 
1288 		if (hang_check)
1289 			while (!wait_for_completion_io_timeout(&wait.done,
1290 					hang_check * (HZ/2)))
1291 				;
1292 		else
1293 			wait_for_completion_io(&wait.done);
1294 	}
1295 
1296 	return wait.ret;
1297 }
1298 EXPORT_SYMBOL(blk_execute_rq);
1299 
1300 static void __blk_mq_requeue_request(struct request *rq)
1301 {
1302 	struct request_queue *q = rq->q;
1303 
1304 	blk_mq_put_driver_tag(rq);
1305 
1306 	trace_block_rq_requeue(rq);
1307 	rq_qos_requeue(q, rq);
1308 
1309 	if (blk_mq_request_started(rq)) {
1310 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1311 		rq->rq_flags &= ~RQF_TIMED_OUT;
1312 	}
1313 }
1314 
1315 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1316 {
1317 	__blk_mq_requeue_request(rq);
1318 
1319 	/* this request will be re-inserted to io scheduler queue */
1320 	blk_mq_sched_requeue_request(rq);
1321 
1322 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1323 }
1324 EXPORT_SYMBOL(blk_mq_requeue_request);
1325 
1326 static void blk_mq_requeue_work(struct work_struct *work)
1327 {
1328 	struct request_queue *q =
1329 		container_of(work, struct request_queue, requeue_work.work);
1330 	LIST_HEAD(rq_list);
1331 	struct request *rq, *next;
1332 
1333 	spin_lock_irq(&q->requeue_lock);
1334 	list_splice_init(&q->requeue_list, &rq_list);
1335 	spin_unlock_irq(&q->requeue_lock);
1336 
1337 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1338 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1339 			continue;
1340 
1341 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1342 		list_del_init(&rq->queuelist);
1343 		/*
1344 		 * If RQF_DONTPREP, rq has contained some driver specific
1345 		 * data, so insert it to hctx dispatch list to avoid any
1346 		 * merge.
1347 		 */
1348 		if (rq->rq_flags & RQF_DONTPREP)
1349 			blk_mq_request_bypass_insert(rq, false, false);
1350 		else
1351 			blk_mq_sched_insert_request(rq, true, false, false);
1352 	}
1353 
1354 	while (!list_empty(&rq_list)) {
1355 		rq = list_entry(rq_list.next, struct request, queuelist);
1356 		list_del_init(&rq->queuelist);
1357 		blk_mq_sched_insert_request(rq, false, false, false);
1358 	}
1359 
1360 	blk_mq_run_hw_queues(q, false);
1361 }
1362 
1363 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1364 				bool kick_requeue_list)
1365 {
1366 	struct request_queue *q = rq->q;
1367 	unsigned long flags;
1368 
1369 	/*
1370 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1371 	 * request head insertion from the workqueue.
1372 	 */
1373 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1374 
1375 	spin_lock_irqsave(&q->requeue_lock, flags);
1376 	if (at_head) {
1377 		rq->rq_flags |= RQF_SOFTBARRIER;
1378 		list_add(&rq->queuelist, &q->requeue_list);
1379 	} else {
1380 		list_add_tail(&rq->queuelist, &q->requeue_list);
1381 	}
1382 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1383 
1384 	if (kick_requeue_list)
1385 		blk_mq_kick_requeue_list(q);
1386 }
1387 
1388 void blk_mq_kick_requeue_list(struct request_queue *q)
1389 {
1390 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1391 }
1392 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1393 
1394 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1395 				    unsigned long msecs)
1396 {
1397 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1398 				    msecs_to_jiffies(msecs));
1399 }
1400 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1401 
1402 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1403 {
1404 	/*
1405 	 * If we find a request that isn't idle we know the queue is busy
1406 	 * as it's checked in the iter.
1407 	 * Return false to stop the iteration.
1408 	 */
1409 	if (blk_mq_request_started(rq)) {
1410 		bool *busy = priv;
1411 
1412 		*busy = true;
1413 		return false;
1414 	}
1415 
1416 	return true;
1417 }
1418 
1419 bool blk_mq_queue_inflight(struct request_queue *q)
1420 {
1421 	bool busy = false;
1422 
1423 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1424 	return busy;
1425 }
1426 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1427 
1428 static void blk_mq_rq_timed_out(struct request *req)
1429 {
1430 	req->rq_flags |= RQF_TIMED_OUT;
1431 	if (req->q->mq_ops->timeout) {
1432 		enum blk_eh_timer_return ret;
1433 
1434 		ret = req->q->mq_ops->timeout(req);
1435 		if (ret == BLK_EH_DONE)
1436 			return;
1437 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1438 	}
1439 
1440 	blk_add_timer(req);
1441 }
1442 
1443 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1444 {
1445 	unsigned long deadline;
1446 
1447 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1448 		return false;
1449 	if (rq->rq_flags & RQF_TIMED_OUT)
1450 		return false;
1451 
1452 	deadline = READ_ONCE(rq->deadline);
1453 	if (time_after_eq(jiffies, deadline))
1454 		return true;
1455 
1456 	if (*next == 0)
1457 		*next = deadline;
1458 	else if (time_after(*next, deadline))
1459 		*next = deadline;
1460 	return false;
1461 }
1462 
1463 void blk_mq_put_rq_ref(struct request *rq)
1464 {
1465 	if (is_flush_rq(rq))
1466 		rq->end_io(rq, 0);
1467 	else if (req_ref_put_and_test(rq))
1468 		__blk_mq_free_request(rq);
1469 }
1470 
1471 static bool blk_mq_check_expired(struct request *rq, void *priv)
1472 {
1473 	unsigned long *next = priv;
1474 
1475 	/*
1476 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1477 	 * be reallocated underneath the timeout handler's processing, then
1478 	 * the expire check is reliable. If the request is not expired, then
1479 	 * it was completed and reallocated as a new request after returning
1480 	 * from blk_mq_check_expired().
1481 	 */
1482 	if (blk_mq_req_expired(rq, next))
1483 		blk_mq_rq_timed_out(rq);
1484 	return true;
1485 }
1486 
1487 static void blk_mq_timeout_work(struct work_struct *work)
1488 {
1489 	struct request_queue *q =
1490 		container_of(work, struct request_queue, timeout_work);
1491 	unsigned long next = 0;
1492 	struct blk_mq_hw_ctx *hctx;
1493 	unsigned long i;
1494 
1495 	/* A deadlock might occur if a request is stuck requiring a
1496 	 * timeout at the same time a queue freeze is waiting
1497 	 * completion, since the timeout code would not be able to
1498 	 * acquire the queue reference here.
1499 	 *
1500 	 * That's why we don't use blk_queue_enter here; instead, we use
1501 	 * percpu_ref_tryget directly, because we need to be able to
1502 	 * obtain a reference even in the short window between the queue
1503 	 * starting to freeze, by dropping the first reference in
1504 	 * blk_freeze_queue_start, and the moment the last request is
1505 	 * consumed, marked by the instant q_usage_counter reaches
1506 	 * zero.
1507 	 */
1508 	if (!percpu_ref_tryget(&q->q_usage_counter))
1509 		return;
1510 
1511 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1512 
1513 	if (next != 0) {
1514 		mod_timer(&q->timeout, next);
1515 	} else {
1516 		/*
1517 		 * Request timeouts are handled as a forward rolling timer. If
1518 		 * we end up here it means that no requests are pending and
1519 		 * also that no request has been pending for a while. Mark
1520 		 * each hctx as idle.
1521 		 */
1522 		queue_for_each_hw_ctx(q, hctx, i) {
1523 			/* the hctx may be unmapped, so check it here */
1524 			if (blk_mq_hw_queue_mapped(hctx))
1525 				blk_mq_tag_idle(hctx);
1526 		}
1527 	}
1528 	blk_queue_exit(q);
1529 }
1530 
1531 struct flush_busy_ctx_data {
1532 	struct blk_mq_hw_ctx *hctx;
1533 	struct list_head *list;
1534 };
1535 
1536 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1537 {
1538 	struct flush_busy_ctx_data *flush_data = data;
1539 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1540 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1541 	enum hctx_type type = hctx->type;
1542 
1543 	spin_lock(&ctx->lock);
1544 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1545 	sbitmap_clear_bit(sb, bitnr);
1546 	spin_unlock(&ctx->lock);
1547 	return true;
1548 }
1549 
1550 /*
1551  * Process software queues that have been marked busy, splicing them
1552  * to the for-dispatch
1553  */
1554 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1555 {
1556 	struct flush_busy_ctx_data data = {
1557 		.hctx = hctx,
1558 		.list = list,
1559 	};
1560 
1561 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1562 }
1563 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1564 
1565 struct dispatch_rq_data {
1566 	struct blk_mq_hw_ctx *hctx;
1567 	struct request *rq;
1568 };
1569 
1570 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1571 		void *data)
1572 {
1573 	struct dispatch_rq_data *dispatch_data = data;
1574 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1575 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1576 	enum hctx_type type = hctx->type;
1577 
1578 	spin_lock(&ctx->lock);
1579 	if (!list_empty(&ctx->rq_lists[type])) {
1580 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1581 		list_del_init(&dispatch_data->rq->queuelist);
1582 		if (list_empty(&ctx->rq_lists[type]))
1583 			sbitmap_clear_bit(sb, bitnr);
1584 	}
1585 	spin_unlock(&ctx->lock);
1586 
1587 	return !dispatch_data->rq;
1588 }
1589 
1590 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1591 					struct blk_mq_ctx *start)
1592 {
1593 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1594 	struct dispatch_rq_data data = {
1595 		.hctx = hctx,
1596 		.rq   = NULL,
1597 	};
1598 
1599 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1600 			       dispatch_rq_from_ctx, &data);
1601 
1602 	return data.rq;
1603 }
1604 
1605 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1606 {
1607 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1608 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1609 	int tag;
1610 
1611 	blk_mq_tag_busy(rq->mq_hctx);
1612 
1613 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1614 		bt = &rq->mq_hctx->tags->breserved_tags;
1615 		tag_offset = 0;
1616 	} else {
1617 		if (!hctx_may_queue(rq->mq_hctx, bt))
1618 			return false;
1619 	}
1620 
1621 	tag = __sbitmap_queue_get(bt);
1622 	if (tag == BLK_MQ_NO_TAG)
1623 		return false;
1624 
1625 	rq->tag = tag + tag_offset;
1626 	return true;
1627 }
1628 
1629 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1630 {
1631 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1632 		return false;
1633 
1634 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1635 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1636 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1637 		__blk_mq_inc_active_requests(hctx);
1638 	}
1639 	hctx->tags->rqs[rq->tag] = rq;
1640 	return true;
1641 }
1642 
1643 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1644 				int flags, void *key)
1645 {
1646 	struct blk_mq_hw_ctx *hctx;
1647 
1648 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1649 
1650 	spin_lock(&hctx->dispatch_wait_lock);
1651 	if (!list_empty(&wait->entry)) {
1652 		struct sbitmap_queue *sbq;
1653 
1654 		list_del_init(&wait->entry);
1655 		sbq = &hctx->tags->bitmap_tags;
1656 		atomic_dec(&sbq->ws_active);
1657 	}
1658 	spin_unlock(&hctx->dispatch_wait_lock);
1659 
1660 	blk_mq_run_hw_queue(hctx, true);
1661 	return 1;
1662 }
1663 
1664 /*
1665  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1666  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1667  * restart. For both cases, take care to check the condition again after
1668  * marking us as waiting.
1669  */
1670 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1671 				 struct request *rq)
1672 {
1673 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1674 	struct wait_queue_head *wq;
1675 	wait_queue_entry_t *wait;
1676 	bool ret;
1677 
1678 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1679 		blk_mq_sched_mark_restart_hctx(hctx);
1680 
1681 		/*
1682 		 * It's possible that a tag was freed in the window between the
1683 		 * allocation failure and adding the hardware queue to the wait
1684 		 * queue.
1685 		 *
1686 		 * Don't clear RESTART here, someone else could have set it.
1687 		 * At most this will cost an extra queue run.
1688 		 */
1689 		return blk_mq_get_driver_tag(rq);
1690 	}
1691 
1692 	wait = &hctx->dispatch_wait;
1693 	if (!list_empty_careful(&wait->entry))
1694 		return false;
1695 
1696 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1697 
1698 	spin_lock_irq(&wq->lock);
1699 	spin_lock(&hctx->dispatch_wait_lock);
1700 	if (!list_empty(&wait->entry)) {
1701 		spin_unlock(&hctx->dispatch_wait_lock);
1702 		spin_unlock_irq(&wq->lock);
1703 		return false;
1704 	}
1705 
1706 	atomic_inc(&sbq->ws_active);
1707 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1708 	__add_wait_queue(wq, wait);
1709 
1710 	/*
1711 	 * It's possible that a tag was freed in the window between the
1712 	 * allocation failure and adding the hardware queue to the wait
1713 	 * queue.
1714 	 */
1715 	ret = blk_mq_get_driver_tag(rq);
1716 	if (!ret) {
1717 		spin_unlock(&hctx->dispatch_wait_lock);
1718 		spin_unlock_irq(&wq->lock);
1719 		return false;
1720 	}
1721 
1722 	/*
1723 	 * We got a tag, remove ourselves from the wait queue to ensure
1724 	 * someone else gets the wakeup.
1725 	 */
1726 	list_del_init(&wait->entry);
1727 	atomic_dec(&sbq->ws_active);
1728 	spin_unlock(&hctx->dispatch_wait_lock);
1729 	spin_unlock_irq(&wq->lock);
1730 
1731 	return true;
1732 }
1733 
1734 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1736 /*
1737  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1738  * - EWMA is one simple way to compute running average value
1739  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1740  * - take 4 as factor for avoiding to get too small(0) result, and this
1741  *   factor doesn't matter because EWMA decreases exponentially
1742  */
1743 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1744 {
1745 	unsigned int ewma;
1746 
1747 	ewma = hctx->dispatch_busy;
1748 
1749 	if (!ewma && !busy)
1750 		return;
1751 
1752 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1753 	if (busy)
1754 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1755 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1756 
1757 	hctx->dispatch_busy = ewma;
1758 }
1759 
1760 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1761 
1762 static void blk_mq_handle_dev_resource(struct request *rq,
1763 				       struct list_head *list)
1764 {
1765 	struct request *next =
1766 		list_first_entry_or_null(list, struct request, queuelist);
1767 
1768 	/*
1769 	 * If an I/O scheduler has been configured and we got a driver tag for
1770 	 * the next request already, free it.
1771 	 */
1772 	if (next)
1773 		blk_mq_put_driver_tag(next);
1774 
1775 	list_add(&rq->queuelist, list);
1776 	__blk_mq_requeue_request(rq);
1777 }
1778 
1779 static void blk_mq_handle_zone_resource(struct request *rq,
1780 					struct list_head *zone_list)
1781 {
1782 	/*
1783 	 * If we end up here it is because we cannot dispatch a request to a
1784 	 * specific zone due to LLD level zone-write locking or other zone
1785 	 * related resource not being available. In this case, set the request
1786 	 * aside in zone_list for retrying it later.
1787 	 */
1788 	list_add(&rq->queuelist, zone_list);
1789 	__blk_mq_requeue_request(rq);
1790 }
1791 
1792 enum prep_dispatch {
1793 	PREP_DISPATCH_OK,
1794 	PREP_DISPATCH_NO_TAG,
1795 	PREP_DISPATCH_NO_BUDGET,
1796 };
1797 
1798 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1799 						  bool need_budget)
1800 {
1801 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1802 	int budget_token = -1;
1803 
1804 	if (need_budget) {
1805 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1806 		if (budget_token < 0) {
1807 			blk_mq_put_driver_tag(rq);
1808 			return PREP_DISPATCH_NO_BUDGET;
1809 		}
1810 		blk_mq_set_rq_budget_token(rq, budget_token);
1811 	}
1812 
1813 	if (!blk_mq_get_driver_tag(rq)) {
1814 		/*
1815 		 * The initial allocation attempt failed, so we need to
1816 		 * rerun the hardware queue when a tag is freed. The
1817 		 * waitqueue takes care of that. If the queue is run
1818 		 * before we add this entry back on the dispatch list,
1819 		 * we'll re-run it below.
1820 		 */
1821 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1822 			/*
1823 			 * All budgets not got from this function will be put
1824 			 * together during handling partial dispatch
1825 			 */
1826 			if (need_budget)
1827 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1828 			return PREP_DISPATCH_NO_TAG;
1829 		}
1830 	}
1831 
1832 	return PREP_DISPATCH_OK;
1833 }
1834 
1835 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1836 static void blk_mq_release_budgets(struct request_queue *q,
1837 		struct list_head *list)
1838 {
1839 	struct request *rq;
1840 
1841 	list_for_each_entry(rq, list, queuelist) {
1842 		int budget_token = blk_mq_get_rq_budget_token(rq);
1843 
1844 		if (budget_token >= 0)
1845 			blk_mq_put_dispatch_budget(q, budget_token);
1846 	}
1847 }
1848 
1849 /*
1850  * Returns true if we did some work AND can potentially do more.
1851  */
1852 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1853 			     unsigned int nr_budgets)
1854 {
1855 	enum prep_dispatch prep;
1856 	struct request_queue *q = hctx->queue;
1857 	struct request *rq, *nxt;
1858 	int errors, queued;
1859 	blk_status_t ret = BLK_STS_OK;
1860 	LIST_HEAD(zone_list);
1861 	bool needs_resource = false;
1862 
1863 	if (list_empty(list))
1864 		return false;
1865 
1866 	/*
1867 	 * Now process all the entries, sending them to the driver.
1868 	 */
1869 	errors = queued = 0;
1870 	do {
1871 		struct blk_mq_queue_data bd;
1872 
1873 		rq = list_first_entry(list, struct request, queuelist);
1874 
1875 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1876 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1877 		if (prep != PREP_DISPATCH_OK)
1878 			break;
1879 
1880 		list_del_init(&rq->queuelist);
1881 
1882 		bd.rq = rq;
1883 
1884 		/*
1885 		 * Flag last if we have no more requests, or if we have more
1886 		 * but can't assign a driver tag to it.
1887 		 */
1888 		if (list_empty(list))
1889 			bd.last = true;
1890 		else {
1891 			nxt = list_first_entry(list, struct request, queuelist);
1892 			bd.last = !blk_mq_get_driver_tag(nxt);
1893 		}
1894 
1895 		/*
1896 		 * once the request is queued to lld, no need to cover the
1897 		 * budget any more
1898 		 */
1899 		if (nr_budgets)
1900 			nr_budgets--;
1901 		ret = q->mq_ops->queue_rq(hctx, &bd);
1902 		switch (ret) {
1903 		case BLK_STS_OK:
1904 			queued++;
1905 			break;
1906 		case BLK_STS_RESOURCE:
1907 			needs_resource = true;
1908 			fallthrough;
1909 		case BLK_STS_DEV_RESOURCE:
1910 			blk_mq_handle_dev_resource(rq, list);
1911 			goto out;
1912 		case BLK_STS_ZONE_RESOURCE:
1913 			/*
1914 			 * Move the request to zone_list and keep going through
1915 			 * the dispatch list to find more requests the drive can
1916 			 * accept.
1917 			 */
1918 			blk_mq_handle_zone_resource(rq, &zone_list);
1919 			needs_resource = true;
1920 			break;
1921 		default:
1922 			errors++;
1923 			blk_mq_end_request(rq, ret);
1924 		}
1925 	} while (!list_empty(list));
1926 out:
1927 	if (!list_empty(&zone_list))
1928 		list_splice_tail_init(&zone_list, list);
1929 
1930 	/* If we didn't flush the entire list, we could have told the driver
1931 	 * there was more coming, but that turned out to be a lie.
1932 	 */
1933 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1934 		q->mq_ops->commit_rqs(hctx);
1935 	/*
1936 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1937 	 * that is where we will continue on next queue run.
1938 	 */
1939 	if (!list_empty(list)) {
1940 		bool needs_restart;
1941 		/* For non-shared tags, the RESTART check will suffice */
1942 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1943 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1944 
1945 		if (nr_budgets)
1946 			blk_mq_release_budgets(q, list);
1947 
1948 		spin_lock(&hctx->lock);
1949 		list_splice_tail_init(list, &hctx->dispatch);
1950 		spin_unlock(&hctx->lock);
1951 
1952 		/*
1953 		 * Order adding requests to hctx->dispatch and checking
1954 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1955 		 * in blk_mq_sched_restart(). Avoid restart code path to
1956 		 * miss the new added requests to hctx->dispatch, meantime
1957 		 * SCHED_RESTART is observed here.
1958 		 */
1959 		smp_mb();
1960 
1961 		/*
1962 		 * If SCHED_RESTART was set by the caller of this function and
1963 		 * it is no longer set that means that it was cleared by another
1964 		 * thread and hence that a queue rerun is needed.
1965 		 *
1966 		 * If 'no_tag' is set, that means that we failed getting
1967 		 * a driver tag with an I/O scheduler attached. If our dispatch
1968 		 * waitqueue is no longer active, ensure that we run the queue
1969 		 * AFTER adding our entries back to the list.
1970 		 *
1971 		 * If no I/O scheduler has been configured it is possible that
1972 		 * the hardware queue got stopped and restarted before requests
1973 		 * were pushed back onto the dispatch list. Rerun the queue to
1974 		 * avoid starvation. Notes:
1975 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1976 		 *   been stopped before rerunning a queue.
1977 		 * - Some but not all block drivers stop a queue before
1978 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1979 		 *   and dm-rq.
1980 		 *
1981 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1982 		 * bit is set, run queue after a delay to avoid IO stalls
1983 		 * that could otherwise occur if the queue is idle.  We'll do
1984 		 * similar if we couldn't get budget or couldn't lock a zone
1985 		 * and SCHED_RESTART is set.
1986 		 */
1987 		needs_restart = blk_mq_sched_needs_restart(hctx);
1988 		if (prep == PREP_DISPATCH_NO_BUDGET)
1989 			needs_resource = true;
1990 		if (!needs_restart ||
1991 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1992 			blk_mq_run_hw_queue(hctx, true);
1993 		else if (needs_restart && needs_resource)
1994 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1995 
1996 		blk_mq_update_dispatch_busy(hctx, true);
1997 		return false;
1998 	} else
1999 		blk_mq_update_dispatch_busy(hctx, false);
2000 
2001 	return (queued + errors) != 0;
2002 }
2003 
2004 /**
2005  * __blk_mq_run_hw_queue - Run a hardware queue.
2006  * @hctx: Pointer to the hardware queue to run.
2007  *
2008  * Send pending requests to the hardware.
2009  */
2010 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2011 {
2012 	/*
2013 	 * We can't run the queue inline with ints disabled. Ensure that
2014 	 * we catch bad users of this early.
2015 	 */
2016 	WARN_ON_ONCE(in_interrupt());
2017 
2018 	blk_mq_run_dispatch_ops(hctx->queue,
2019 			blk_mq_sched_dispatch_requests(hctx));
2020 }
2021 
2022 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2023 {
2024 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2025 
2026 	if (cpu >= nr_cpu_ids)
2027 		cpu = cpumask_first(hctx->cpumask);
2028 	return cpu;
2029 }
2030 
2031 /*
2032  * It'd be great if the workqueue API had a way to pass
2033  * in a mask and had some smarts for more clever placement.
2034  * For now we just round-robin here, switching for every
2035  * BLK_MQ_CPU_WORK_BATCH queued items.
2036  */
2037 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2038 {
2039 	bool tried = false;
2040 	int next_cpu = hctx->next_cpu;
2041 
2042 	if (hctx->queue->nr_hw_queues == 1)
2043 		return WORK_CPU_UNBOUND;
2044 
2045 	if (--hctx->next_cpu_batch <= 0) {
2046 select_cpu:
2047 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2048 				cpu_online_mask);
2049 		if (next_cpu >= nr_cpu_ids)
2050 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2051 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2052 	}
2053 
2054 	/*
2055 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2056 	 * and it should only happen in the path of handling CPU DEAD.
2057 	 */
2058 	if (!cpu_online(next_cpu)) {
2059 		if (!tried) {
2060 			tried = true;
2061 			goto select_cpu;
2062 		}
2063 
2064 		/*
2065 		 * Make sure to re-select CPU next time once after CPUs
2066 		 * in hctx->cpumask become online again.
2067 		 */
2068 		hctx->next_cpu = next_cpu;
2069 		hctx->next_cpu_batch = 1;
2070 		return WORK_CPU_UNBOUND;
2071 	}
2072 
2073 	hctx->next_cpu = next_cpu;
2074 	return next_cpu;
2075 }
2076 
2077 /**
2078  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2079  * @hctx: Pointer to the hardware queue to run.
2080  * @async: If we want to run the queue asynchronously.
2081  * @msecs: Milliseconds of delay to wait before running the queue.
2082  *
2083  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2084  * with a delay of @msecs.
2085  */
2086 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2087 					unsigned long msecs)
2088 {
2089 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2090 		return;
2091 
2092 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2093 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2094 			__blk_mq_run_hw_queue(hctx);
2095 			return;
2096 		}
2097 	}
2098 
2099 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2100 				    msecs_to_jiffies(msecs));
2101 }
2102 
2103 /**
2104  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2105  * @hctx: Pointer to the hardware queue to run.
2106  * @msecs: Milliseconds of delay to wait before running the queue.
2107  *
2108  * Run a hardware queue asynchronously with a delay of @msecs.
2109  */
2110 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2111 {
2112 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2113 }
2114 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2115 
2116 /**
2117  * blk_mq_run_hw_queue - Start to run a hardware queue.
2118  * @hctx: Pointer to the hardware queue to run.
2119  * @async: If we want to run the queue asynchronously.
2120  *
2121  * Check if the request queue is not in a quiesced state and if there are
2122  * pending requests to be sent. If this is true, run the queue to send requests
2123  * to hardware.
2124  */
2125 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2126 {
2127 	bool need_run;
2128 
2129 	/*
2130 	 * When queue is quiesced, we may be switching io scheduler, or
2131 	 * updating nr_hw_queues, or other things, and we can't run queue
2132 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2133 	 *
2134 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2135 	 * quiesced.
2136 	 */
2137 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2138 		need_run = !blk_queue_quiesced(hctx->queue) &&
2139 		blk_mq_hctx_has_pending(hctx));
2140 
2141 	if (need_run)
2142 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2143 }
2144 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2145 
2146 /*
2147  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2148  * scheduler.
2149  */
2150 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2151 {
2152 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2153 	/*
2154 	 * If the IO scheduler does not respect hardware queues when
2155 	 * dispatching, we just don't bother with multiple HW queues and
2156 	 * dispatch from hctx for the current CPU since running multiple queues
2157 	 * just causes lock contention inside the scheduler and pointless cache
2158 	 * bouncing.
2159 	 */
2160 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2161 
2162 	if (!blk_mq_hctx_stopped(hctx))
2163 		return hctx;
2164 	return NULL;
2165 }
2166 
2167 /**
2168  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2169  * @q: Pointer to the request queue to run.
2170  * @async: If we want to run the queue asynchronously.
2171  */
2172 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2173 {
2174 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2175 	unsigned long i;
2176 
2177 	sq_hctx = NULL;
2178 	if (blk_queue_sq_sched(q))
2179 		sq_hctx = blk_mq_get_sq_hctx(q);
2180 	queue_for_each_hw_ctx(q, hctx, i) {
2181 		if (blk_mq_hctx_stopped(hctx))
2182 			continue;
2183 		/*
2184 		 * Dispatch from this hctx either if there's no hctx preferred
2185 		 * by IO scheduler or if it has requests that bypass the
2186 		 * scheduler.
2187 		 */
2188 		if (!sq_hctx || sq_hctx == hctx ||
2189 		    !list_empty_careful(&hctx->dispatch))
2190 			blk_mq_run_hw_queue(hctx, async);
2191 	}
2192 }
2193 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2194 
2195 /**
2196  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2197  * @q: Pointer to the request queue to run.
2198  * @msecs: Milliseconds of delay to wait before running the queues.
2199  */
2200 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2201 {
2202 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2203 	unsigned long i;
2204 
2205 	sq_hctx = NULL;
2206 	if (blk_queue_sq_sched(q))
2207 		sq_hctx = blk_mq_get_sq_hctx(q);
2208 	queue_for_each_hw_ctx(q, hctx, i) {
2209 		if (blk_mq_hctx_stopped(hctx))
2210 			continue;
2211 		/*
2212 		 * If there is already a run_work pending, leave the
2213 		 * pending delay untouched. Otherwise, a hctx can stall
2214 		 * if another hctx is re-delaying the other's work
2215 		 * before the work executes.
2216 		 */
2217 		if (delayed_work_pending(&hctx->run_work))
2218 			continue;
2219 		/*
2220 		 * Dispatch from this hctx either if there's no hctx preferred
2221 		 * by IO scheduler or if it has requests that bypass the
2222 		 * scheduler.
2223 		 */
2224 		if (!sq_hctx || sq_hctx == hctx ||
2225 		    !list_empty_careful(&hctx->dispatch))
2226 			blk_mq_delay_run_hw_queue(hctx, msecs);
2227 	}
2228 }
2229 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2230 
2231 /**
2232  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2233  * @q: request queue.
2234  *
2235  * The caller is responsible for serializing this function against
2236  * blk_mq_{start,stop}_hw_queue().
2237  */
2238 bool blk_mq_queue_stopped(struct request_queue *q)
2239 {
2240 	struct blk_mq_hw_ctx *hctx;
2241 	unsigned long i;
2242 
2243 	queue_for_each_hw_ctx(q, hctx, i)
2244 		if (blk_mq_hctx_stopped(hctx))
2245 			return true;
2246 
2247 	return false;
2248 }
2249 EXPORT_SYMBOL(blk_mq_queue_stopped);
2250 
2251 /*
2252  * This function is often used for pausing .queue_rq() by driver when
2253  * there isn't enough resource or some conditions aren't satisfied, and
2254  * BLK_STS_RESOURCE is usually returned.
2255  *
2256  * We do not guarantee that dispatch can be drained or blocked
2257  * after blk_mq_stop_hw_queue() returns. Please use
2258  * blk_mq_quiesce_queue() for that requirement.
2259  */
2260 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2261 {
2262 	cancel_delayed_work(&hctx->run_work);
2263 
2264 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2265 }
2266 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2267 
2268 /*
2269  * This function is often used for pausing .queue_rq() by driver when
2270  * there isn't enough resource or some conditions aren't satisfied, and
2271  * BLK_STS_RESOURCE is usually returned.
2272  *
2273  * We do not guarantee that dispatch can be drained or blocked
2274  * after blk_mq_stop_hw_queues() returns. Please use
2275  * blk_mq_quiesce_queue() for that requirement.
2276  */
2277 void blk_mq_stop_hw_queues(struct request_queue *q)
2278 {
2279 	struct blk_mq_hw_ctx *hctx;
2280 	unsigned long i;
2281 
2282 	queue_for_each_hw_ctx(q, hctx, i)
2283 		blk_mq_stop_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2286 
2287 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2288 {
2289 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2290 
2291 	blk_mq_run_hw_queue(hctx, false);
2292 }
2293 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2294 
2295 void blk_mq_start_hw_queues(struct request_queue *q)
2296 {
2297 	struct blk_mq_hw_ctx *hctx;
2298 	unsigned long i;
2299 
2300 	queue_for_each_hw_ctx(q, hctx, i)
2301 		blk_mq_start_hw_queue(hctx);
2302 }
2303 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2304 
2305 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2306 {
2307 	if (!blk_mq_hctx_stopped(hctx))
2308 		return;
2309 
2310 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2311 	blk_mq_run_hw_queue(hctx, async);
2312 }
2313 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2314 
2315 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2316 {
2317 	struct blk_mq_hw_ctx *hctx;
2318 	unsigned long i;
2319 
2320 	queue_for_each_hw_ctx(q, hctx, i)
2321 		blk_mq_start_stopped_hw_queue(hctx, async);
2322 }
2323 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2324 
2325 static void blk_mq_run_work_fn(struct work_struct *work)
2326 {
2327 	struct blk_mq_hw_ctx *hctx;
2328 
2329 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2330 
2331 	/*
2332 	 * If we are stopped, don't run the queue.
2333 	 */
2334 	if (blk_mq_hctx_stopped(hctx))
2335 		return;
2336 
2337 	__blk_mq_run_hw_queue(hctx);
2338 }
2339 
2340 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2341 					    struct request *rq,
2342 					    bool at_head)
2343 {
2344 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2345 	enum hctx_type type = hctx->type;
2346 
2347 	lockdep_assert_held(&ctx->lock);
2348 
2349 	trace_block_rq_insert(rq);
2350 
2351 	if (at_head)
2352 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2353 	else
2354 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2355 }
2356 
2357 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2358 			     bool at_head)
2359 {
2360 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2361 
2362 	lockdep_assert_held(&ctx->lock);
2363 
2364 	__blk_mq_insert_req_list(hctx, rq, at_head);
2365 	blk_mq_hctx_mark_pending(hctx, ctx);
2366 }
2367 
2368 /**
2369  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2370  * @rq: Pointer to request to be inserted.
2371  * @at_head: true if the request should be inserted at the head of the list.
2372  * @run_queue: If we should run the hardware queue after inserting the request.
2373  *
2374  * Should only be used carefully, when the caller knows we want to
2375  * bypass a potential IO scheduler on the target device.
2376  */
2377 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2378 				  bool run_queue)
2379 {
2380 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2381 
2382 	spin_lock(&hctx->lock);
2383 	if (at_head)
2384 		list_add(&rq->queuelist, &hctx->dispatch);
2385 	else
2386 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2387 	spin_unlock(&hctx->lock);
2388 
2389 	if (run_queue)
2390 		blk_mq_run_hw_queue(hctx, false);
2391 }
2392 
2393 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2394 			    struct list_head *list)
2395 
2396 {
2397 	struct request *rq;
2398 	enum hctx_type type = hctx->type;
2399 
2400 	/*
2401 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2402 	 * offline now
2403 	 */
2404 	list_for_each_entry(rq, list, queuelist) {
2405 		BUG_ON(rq->mq_ctx != ctx);
2406 		trace_block_rq_insert(rq);
2407 	}
2408 
2409 	spin_lock(&ctx->lock);
2410 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2411 	blk_mq_hctx_mark_pending(hctx, ctx);
2412 	spin_unlock(&ctx->lock);
2413 }
2414 
2415 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2416 			      bool from_schedule)
2417 {
2418 	if (hctx->queue->mq_ops->commit_rqs) {
2419 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2420 		hctx->queue->mq_ops->commit_rqs(hctx);
2421 	}
2422 	*queued = 0;
2423 }
2424 
2425 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2426 		unsigned int nr_segs)
2427 {
2428 	int err;
2429 
2430 	if (bio->bi_opf & REQ_RAHEAD)
2431 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2432 
2433 	rq->__sector = bio->bi_iter.bi_sector;
2434 	blk_rq_bio_prep(rq, bio, nr_segs);
2435 
2436 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2437 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2438 	WARN_ON_ONCE(err);
2439 
2440 	blk_account_io_start(rq);
2441 }
2442 
2443 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2444 					    struct request *rq, bool last)
2445 {
2446 	struct request_queue *q = rq->q;
2447 	struct blk_mq_queue_data bd = {
2448 		.rq = rq,
2449 		.last = last,
2450 	};
2451 	blk_status_t ret;
2452 
2453 	/*
2454 	 * For OK queue, we are done. For error, caller may kill it.
2455 	 * Any other error (busy), just add it to our list as we
2456 	 * previously would have done.
2457 	 */
2458 	ret = q->mq_ops->queue_rq(hctx, &bd);
2459 	switch (ret) {
2460 	case BLK_STS_OK:
2461 		blk_mq_update_dispatch_busy(hctx, false);
2462 		break;
2463 	case BLK_STS_RESOURCE:
2464 	case BLK_STS_DEV_RESOURCE:
2465 		blk_mq_update_dispatch_busy(hctx, true);
2466 		__blk_mq_requeue_request(rq);
2467 		break;
2468 	default:
2469 		blk_mq_update_dispatch_busy(hctx, false);
2470 		break;
2471 	}
2472 
2473 	return ret;
2474 }
2475 
2476 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2477 						struct request *rq,
2478 						bool bypass_insert, bool last)
2479 {
2480 	struct request_queue *q = rq->q;
2481 	bool run_queue = true;
2482 	int budget_token;
2483 
2484 	/*
2485 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2486 	 *
2487 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2488 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2489 	 * and avoid driver to try to dispatch again.
2490 	 */
2491 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2492 		run_queue = false;
2493 		bypass_insert = false;
2494 		goto insert;
2495 	}
2496 
2497 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2498 		goto insert;
2499 
2500 	budget_token = blk_mq_get_dispatch_budget(q);
2501 	if (budget_token < 0)
2502 		goto insert;
2503 
2504 	blk_mq_set_rq_budget_token(rq, budget_token);
2505 
2506 	if (!blk_mq_get_driver_tag(rq)) {
2507 		blk_mq_put_dispatch_budget(q, budget_token);
2508 		goto insert;
2509 	}
2510 
2511 	return __blk_mq_issue_directly(hctx, rq, last);
2512 insert:
2513 	if (bypass_insert)
2514 		return BLK_STS_RESOURCE;
2515 
2516 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2517 
2518 	return BLK_STS_OK;
2519 }
2520 
2521 /**
2522  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2523  * @hctx: Pointer of the associated hardware queue.
2524  * @rq: Pointer to request to be sent.
2525  *
2526  * If the device has enough resources to accept a new request now, send the
2527  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2528  * we can try send it another time in the future. Requests inserted at this
2529  * queue have higher priority.
2530  */
2531 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2532 		struct request *rq)
2533 {
2534 	blk_status_t ret =
2535 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2536 
2537 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2538 		blk_mq_request_bypass_insert(rq, false, true);
2539 	else if (ret != BLK_STS_OK)
2540 		blk_mq_end_request(rq, ret);
2541 }
2542 
2543 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2544 {
2545 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2546 }
2547 
2548 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2549 {
2550 	struct blk_mq_hw_ctx *hctx = NULL;
2551 	struct request *rq;
2552 	int queued = 0;
2553 	int errors = 0;
2554 
2555 	while ((rq = rq_list_pop(&plug->mq_list))) {
2556 		bool last = rq_list_empty(plug->mq_list);
2557 		blk_status_t ret;
2558 
2559 		if (hctx != rq->mq_hctx) {
2560 			if (hctx)
2561 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2562 			hctx = rq->mq_hctx;
2563 		}
2564 
2565 		ret = blk_mq_request_issue_directly(rq, last);
2566 		switch (ret) {
2567 		case BLK_STS_OK:
2568 			queued++;
2569 			break;
2570 		case BLK_STS_RESOURCE:
2571 		case BLK_STS_DEV_RESOURCE:
2572 			blk_mq_request_bypass_insert(rq, false, last);
2573 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2574 			return;
2575 		default:
2576 			blk_mq_end_request(rq, ret);
2577 			errors++;
2578 			break;
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If we didn't flush the entire list, we could have told the driver
2584 	 * there was more coming, but that turned out to be a lie.
2585 	 */
2586 	if (errors)
2587 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2588 }
2589 
2590 static void __blk_mq_flush_plug_list(struct request_queue *q,
2591 				     struct blk_plug *plug)
2592 {
2593 	if (blk_queue_quiesced(q))
2594 		return;
2595 	q->mq_ops->queue_rqs(&plug->mq_list);
2596 }
2597 
2598 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2599 {
2600 	struct blk_mq_hw_ctx *this_hctx = NULL;
2601 	struct blk_mq_ctx *this_ctx = NULL;
2602 	struct request *requeue_list = NULL;
2603 	unsigned int depth = 0;
2604 	LIST_HEAD(list);
2605 
2606 	do {
2607 		struct request *rq = rq_list_pop(&plug->mq_list);
2608 
2609 		if (!this_hctx) {
2610 			this_hctx = rq->mq_hctx;
2611 			this_ctx = rq->mq_ctx;
2612 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2613 			rq_list_add(&requeue_list, rq);
2614 			continue;
2615 		}
2616 		list_add_tail(&rq->queuelist, &list);
2617 		depth++;
2618 	} while (!rq_list_empty(plug->mq_list));
2619 
2620 	plug->mq_list = requeue_list;
2621 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2622 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2623 }
2624 
2625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2626 {
2627 	struct request *rq;
2628 
2629 	if (rq_list_empty(plug->mq_list))
2630 		return;
2631 	plug->rq_count = 0;
2632 
2633 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2634 		struct request_queue *q;
2635 
2636 		rq = rq_list_peek(&plug->mq_list);
2637 		q = rq->q;
2638 
2639 		/*
2640 		 * Peek first request and see if we have a ->queue_rqs() hook.
2641 		 * If we do, we can dispatch the whole plug list in one go. We
2642 		 * already know at this point that all requests belong to the
2643 		 * same queue, caller must ensure that's the case.
2644 		 *
2645 		 * Since we pass off the full list to the driver at this point,
2646 		 * we do not increment the active request count for the queue.
2647 		 * Bypass shared tags for now because of that.
2648 		 */
2649 		if (q->mq_ops->queue_rqs &&
2650 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2651 			blk_mq_run_dispatch_ops(q,
2652 				__blk_mq_flush_plug_list(q, plug));
2653 			if (rq_list_empty(plug->mq_list))
2654 				return;
2655 		}
2656 
2657 		blk_mq_run_dispatch_ops(q,
2658 				blk_mq_plug_issue_direct(plug, false));
2659 		if (rq_list_empty(plug->mq_list))
2660 			return;
2661 	}
2662 
2663 	do {
2664 		blk_mq_dispatch_plug_list(plug, from_schedule);
2665 	} while (!rq_list_empty(plug->mq_list));
2666 }
2667 
2668 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2669 		struct list_head *list)
2670 {
2671 	int queued = 0;
2672 	int errors = 0;
2673 
2674 	while (!list_empty(list)) {
2675 		blk_status_t ret;
2676 		struct request *rq = list_first_entry(list, struct request,
2677 				queuelist);
2678 
2679 		list_del_init(&rq->queuelist);
2680 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2681 		if (ret != BLK_STS_OK) {
2682 			if (ret == BLK_STS_RESOURCE ||
2683 					ret == BLK_STS_DEV_RESOURCE) {
2684 				blk_mq_request_bypass_insert(rq, false,
2685 							list_empty(list));
2686 				break;
2687 			}
2688 			blk_mq_end_request(rq, ret);
2689 			errors++;
2690 		} else
2691 			queued++;
2692 	}
2693 
2694 	/*
2695 	 * If we didn't flush the entire list, we could have told
2696 	 * the driver there was more coming, but that turned out to
2697 	 * be a lie.
2698 	 */
2699 	if ((!list_empty(list) || errors) &&
2700 	     hctx->queue->mq_ops->commit_rqs && queued)
2701 		hctx->queue->mq_ops->commit_rqs(hctx);
2702 }
2703 
2704 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2705 				     struct bio *bio, unsigned int nr_segs)
2706 {
2707 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2708 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2709 			return true;
2710 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2711 			return true;
2712 	}
2713 	return false;
2714 }
2715 
2716 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2717 					       struct blk_plug *plug,
2718 					       struct bio *bio,
2719 					       unsigned int nsegs)
2720 {
2721 	struct blk_mq_alloc_data data = {
2722 		.q		= q,
2723 		.nr_tags	= 1,
2724 		.cmd_flags	= bio->bi_opf,
2725 	};
2726 	struct request *rq;
2727 
2728 	if (unlikely(bio_queue_enter(bio)))
2729 		return NULL;
2730 
2731 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2732 		goto queue_exit;
2733 
2734 	rq_qos_throttle(q, bio);
2735 
2736 	if (plug) {
2737 		data.nr_tags = plug->nr_ios;
2738 		plug->nr_ios = 1;
2739 		data.cached_rq = &plug->cached_rq;
2740 	}
2741 
2742 	rq = __blk_mq_alloc_requests(&data);
2743 	if (rq)
2744 		return rq;
2745 	rq_qos_cleanup(q, bio);
2746 	if (bio->bi_opf & REQ_NOWAIT)
2747 		bio_wouldblock_error(bio);
2748 queue_exit:
2749 	blk_queue_exit(q);
2750 	return NULL;
2751 }
2752 
2753 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2754 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2755 {
2756 	struct request *rq;
2757 
2758 	if (!plug)
2759 		return NULL;
2760 	rq = rq_list_peek(&plug->cached_rq);
2761 	if (!rq || rq->q != q)
2762 		return NULL;
2763 
2764 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2765 		*bio = NULL;
2766 		return NULL;
2767 	}
2768 
2769 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2770 		return NULL;
2771 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2772 		return NULL;
2773 
2774 	/*
2775 	 * If any qos ->throttle() end up blocking, we will have flushed the
2776 	 * plug and hence killed the cached_rq list as well. Pop this entry
2777 	 * before we throttle.
2778 	 */
2779 	plug->cached_rq = rq_list_next(rq);
2780 	rq_qos_throttle(q, *bio);
2781 
2782 	rq->cmd_flags = (*bio)->bi_opf;
2783 	INIT_LIST_HEAD(&rq->queuelist);
2784 	return rq;
2785 }
2786 
2787 static void bio_set_ioprio(struct bio *bio)
2788 {
2789 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2790 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2791 		bio->bi_ioprio = get_current_ioprio();
2792 	blkcg_set_ioprio(bio);
2793 }
2794 
2795 /**
2796  * blk_mq_submit_bio - Create and send a request to block device.
2797  * @bio: Bio pointer.
2798  *
2799  * Builds up a request structure from @q and @bio and send to the device. The
2800  * request may not be queued directly to hardware if:
2801  * * This request can be merged with another one
2802  * * We want to place request at plug queue for possible future merging
2803  * * There is an IO scheduler active at this queue
2804  *
2805  * It will not queue the request if there is an error with the bio, or at the
2806  * request creation.
2807  */
2808 void blk_mq_submit_bio(struct bio *bio)
2809 {
2810 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2811 	struct blk_plug *plug = blk_mq_plug(q, bio);
2812 	const int is_sync = op_is_sync(bio->bi_opf);
2813 	struct request *rq;
2814 	unsigned int nr_segs = 1;
2815 	blk_status_t ret;
2816 
2817 	blk_queue_bounce(q, &bio);
2818 	if (blk_may_split(q, bio))
2819 		__blk_queue_split(q, &bio, &nr_segs);
2820 
2821 	if (!bio_integrity_prep(bio))
2822 		return;
2823 
2824 	bio_set_ioprio(bio);
2825 
2826 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2827 	if (!rq) {
2828 		if (!bio)
2829 			return;
2830 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2831 		if (unlikely(!rq))
2832 			return;
2833 	}
2834 
2835 	trace_block_getrq(bio);
2836 
2837 	rq_qos_track(q, rq, bio);
2838 
2839 	blk_mq_bio_to_request(rq, bio, nr_segs);
2840 
2841 	ret = blk_crypto_init_request(rq);
2842 	if (ret != BLK_STS_OK) {
2843 		bio->bi_status = ret;
2844 		bio_endio(bio);
2845 		blk_mq_free_request(rq);
2846 		return;
2847 	}
2848 
2849 	if (op_is_flush(bio->bi_opf)) {
2850 		blk_insert_flush(rq);
2851 		return;
2852 	}
2853 
2854 	if (plug)
2855 		blk_add_rq_to_plug(plug, rq);
2856 	else if ((rq->rq_flags & RQF_ELV) ||
2857 		 (rq->mq_hctx->dispatch_busy &&
2858 		  (q->nr_hw_queues == 1 || !is_sync)))
2859 		blk_mq_sched_insert_request(rq, false, true, true);
2860 	else
2861 		blk_mq_run_dispatch_ops(rq->q,
2862 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2863 }
2864 
2865 #ifdef CONFIG_BLK_MQ_STACKING
2866 /**
2867  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2868  * @rq: the request being queued
2869  */
2870 blk_status_t blk_insert_cloned_request(struct request *rq)
2871 {
2872 	struct request_queue *q = rq->q;
2873 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2874 	blk_status_t ret;
2875 
2876 	if (blk_rq_sectors(rq) > max_sectors) {
2877 		/*
2878 		 * SCSI device does not have a good way to return if
2879 		 * Write Same/Zero is actually supported. If a device rejects
2880 		 * a non-read/write command (discard, write same,etc.) the
2881 		 * low-level device driver will set the relevant queue limit to
2882 		 * 0 to prevent blk-lib from issuing more of the offending
2883 		 * operations. Commands queued prior to the queue limit being
2884 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2885 		 * errors being propagated to upper layers.
2886 		 */
2887 		if (max_sectors == 0)
2888 			return BLK_STS_NOTSUPP;
2889 
2890 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2891 			__func__, blk_rq_sectors(rq), max_sectors);
2892 		return BLK_STS_IOERR;
2893 	}
2894 
2895 	/*
2896 	 * The queue settings related to segment counting may differ from the
2897 	 * original queue.
2898 	 */
2899 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2900 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2901 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2902 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2903 		return BLK_STS_IOERR;
2904 	}
2905 
2906 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2907 		return BLK_STS_IOERR;
2908 
2909 	if (blk_crypto_insert_cloned_request(rq))
2910 		return BLK_STS_IOERR;
2911 
2912 	blk_account_io_start(rq);
2913 
2914 	/*
2915 	 * Since we have a scheduler attached on the top device,
2916 	 * bypass a potential scheduler on the bottom device for
2917 	 * insert.
2918 	 */
2919 	blk_mq_run_dispatch_ops(q,
2920 			ret = blk_mq_request_issue_directly(rq, true));
2921 	if (ret)
2922 		blk_account_io_done(rq, ktime_get_ns());
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2926 
2927 /**
2928  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2929  * @rq: the clone request to be cleaned up
2930  *
2931  * Description:
2932  *     Free all bios in @rq for a cloned request.
2933  */
2934 void blk_rq_unprep_clone(struct request *rq)
2935 {
2936 	struct bio *bio;
2937 
2938 	while ((bio = rq->bio) != NULL) {
2939 		rq->bio = bio->bi_next;
2940 
2941 		bio_put(bio);
2942 	}
2943 }
2944 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2945 
2946 /**
2947  * blk_rq_prep_clone - Helper function to setup clone request
2948  * @rq: the request to be setup
2949  * @rq_src: original request to be cloned
2950  * @bs: bio_set that bios for clone are allocated from
2951  * @gfp_mask: memory allocation mask for bio
2952  * @bio_ctr: setup function to be called for each clone bio.
2953  *           Returns %0 for success, non %0 for failure.
2954  * @data: private data to be passed to @bio_ctr
2955  *
2956  * Description:
2957  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2958  *     Also, pages which the original bios are pointing to are not copied
2959  *     and the cloned bios just point same pages.
2960  *     So cloned bios must be completed before original bios, which means
2961  *     the caller must complete @rq before @rq_src.
2962  */
2963 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2964 		      struct bio_set *bs, gfp_t gfp_mask,
2965 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2966 		      void *data)
2967 {
2968 	struct bio *bio, *bio_src;
2969 
2970 	if (!bs)
2971 		bs = &fs_bio_set;
2972 
2973 	__rq_for_each_bio(bio_src, rq_src) {
2974 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2975 				      bs);
2976 		if (!bio)
2977 			goto free_and_out;
2978 
2979 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2980 			goto free_and_out;
2981 
2982 		if (rq->bio) {
2983 			rq->biotail->bi_next = bio;
2984 			rq->biotail = bio;
2985 		} else {
2986 			rq->bio = rq->biotail = bio;
2987 		}
2988 		bio = NULL;
2989 	}
2990 
2991 	/* Copy attributes of the original request to the clone request. */
2992 	rq->__sector = blk_rq_pos(rq_src);
2993 	rq->__data_len = blk_rq_bytes(rq_src);
2994 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2995 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2996 		rq->special_vec = rq_src->special_vec;
2997 	}
2998 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2999 	rq->ioprio = rq_src->ioprio;
3000 
3001 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3002 		goto free_and_out;
3003 
3004 	return 0;
3005 
3006 free_and_out:
3007 	if (bio)
3008 		bio_put(bio);
3009 	blk_rq_unprep_clone(rq);
3010 
3011 	return -ENOMEM;
3012 }
3013 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3014 #endif /* CONFIG_BLK_MQ_STACKING */
3015 
3016 /*
3017  * Steal bios from a request and add them to a bio list.
3018  * The request must not have been partially completed before.
3019  */
3020 void blk_steal_bios(struct bio_list *list, struct request *rq)
3021 {
3022 	if (rq->bio) {
3023 		if (list->tail)
3024 			list->tail->bi_next = rq->bio;
3025 		else
3026 			list->head = rq->bio;
3027 		list->tail = rq->biotail;
3028 
3029 		rq->bio = NULL;
3030 		rq->biotail = NULL;
3031 	}
3032 
3033 	rq->__data_len = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(blk_steal_bios);
3036 
3037 static size_t order_to_size(unsigned int order)
3038 {
3039 	return (size_t)PAGE_SIZE << order;
3040 }
3041 
3042 /* called before freeing request pool in @tags */
3043 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3044 				    struct blk_mq_tags *tags)
3045 {
3046 	struct page *page;
3047 	unsigned long flags;
3048 
3049 	/* There is no need to clear a driver tags own mapping */
3050 	if (drv_tags == tags)
3051 		return;
3052 
3053 	list_for_each_entry(page, &tags->page_list, lru) {
3054 		unsigned long start = (unsigned long)page_address(page);
3055 		unsigned long end = start + order_to_size(page->private);
3056 		int i;
3057 
3058 		for (i = 0; i < drv_tags->nr_tags; i++) {
3059 			struct request *rq = drv_tags->rqs[i];
3060 			unsigned long rq_addr = (unsigned long)rq;
3061 
3062 			if (rq_addr >= start && rq_addr < end) {
3063 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3064 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3065 			}
3066 		}
3067 	}
3068 
3069 	/*
3070 	 * Wait until all pending iteration is done.
3071 	 *
3072 	 * Request reference is cleared and it is guaranteed to be observed
3073 	 * after the ->lock is released.
3074 	 */
3075 	spin_lock_irqsave(&drv_tags->lock, flags);
3076 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3077 }
3078 
3079 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3080 		     unsigned int hctx_idx)
3081 {
3082 	struct blk_mq_tags *drv_tags;
3083 	struct page *page;
3084 
3085 	if (list_empty(&tags->page_list))
3086 		return;
3087 
3088 	if (blk_mq_is_shared_tags(set->flags))
3089 		drv_tags = set->shared_tags;
3090 	else
3091 		drv_tags = set->tags[hctx_idx];
3092 
3093 	if (tags->static_rqs && set->ops->exit_request) {
3094 		int i;
3095 
3096 		for (i = 0; i < tags->nr_tags; i++) {
3097 			struct request *rq = tags->static_rqs[i];
3098 
3099 			if (!rq)
3100 				continue;
3101 			set->ops->exit_request(set, rq, hctx_idx);
3102 			tags->static_rqs[i] = NULL;
3103 		}
3104 	}
3105 
3106 	blk_mq_clear_rq_mapping(drv_tags, tags);
3107 
3108 	while (!list_empty(&tags->page_list)) {
3109 		page = list_first_entry(&tags->page_list, struct page, lru);
3110 		list_del_init(&page->lru);
3111 		/*
3112 		 * Remove kmemleak object previously allocated in
3113 		 * blk_mq_alloc_rqs().
3114 		 */
3115 		kmemleak_free(page_address(page));
3116 		__free_pages(page, page->private);
3117 	}
3118 }
3119 
3120 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3121 {
3122 	kfree(tags->rqs);
3123 	tags->rqs = NULL;
3124 	kfree(tags->static_rqs);
3125 	tags->static_rqs = NULL;
3126 
3127 	blk_mq_free_tags(tags);
3128 }
3129 
3130 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3131 		unsigned int hctx_idx)
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < set->nr_maps; i++) {
3136 		unsigned int start = set->map[i].queue_offset;
3137 		unsigned int end = start + set->map[i].nr_queues;
3138 
3139 		if (hctx_idx >= start && hctx_idx < end)
3140 			break;
3141 	}
3142 
3143 	if (i >= set->nr_maps)
3144 		i = HCTX_TYPE_DEFAULT;
3145 
3146 	return i;
3147 }
3148 
3149 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3150 		unsigned int hctx_idx)
3151 {
3152 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3153 
3154 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3155 }
3156 
3157 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3158 					       unsigned int hctx_idx,
3159 					       unsigned int nr_tags,
3160 					       unsigned int reserved_tags)
3161 {
3162 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3163 	struct blk_mq_tags *tags;
3164 
3165 	if (node == NUMA_NO_NODE)
3166 		node = set->numa_node;
3167 
3168 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3169 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3170 	if (!tags)
3171 		return NULL;
3172 
3173 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3174 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3175 				 node);
3176 	if (!tags->rqs) {
3177 		blk_mq_free_tags(tags);
3178 		return NULL;
3179 	}
3180 
3181 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3182 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3183 					node);
3184 	if (!tags->static_rqs) {
3185 		kfree(tags->rqs);
3186 		blk_mq_free_tags(tags);
3187 		return NULL;
3188 	}
3189 
3190 	return tags;
3191 }
3192 
3193 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3194 			       unsigned int hctx_idx, int node)
3195 {
3196 	int ret;
3197 
3198 	if (set->ops->init_request) {
3199 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3200 		if (ret)
3201 			return ret;
3202 	}
3203 
3204 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3205 	return 0;
3206 }
3207 
3208 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3209 			    struct blk_mq_tags *tags,
3210 			    unsigned int hctx_idx, unsigned int depth)
3211 {
3212 	unsigned int i, j, entries_per_page, max_order = 4;
3213 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3214 	size_t rq_size, left;
3215 
3216 	if (node == NUMA_NO_NODE)
3217 		node = set->numa_node;
3218 
3219 	INIT_LIST_HEAD(&tags->page_list);
3220 
3221 	/*
3222 	 * rq_size is the size of the request plus driver payload, rounded
3223 	 * to the cacheline size
3224 	 */
3225 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3226 				cache_line_size());
3227 	left = rq_size * depth;
3228 
3229 	for (i = 0; i < depth; ) {
3230 		int this_order = max_order;
3231 		struct page *page;
3232 		int to_do;
3233 		void *p;
3234 
3235 		while (this_order && left < order_to_size(this_order - 1))
3236 			this_order--;
3237 
3238 		do {
3239 			page = alloc_pages_node(node,
3240 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3241 				this_order);
3242 			if (page)
3243 				break;
3244 			if (!this_order--)
3245 				break;
3246 			if (order_to_size(this_order) < rq_size)
3247 				break;
3248 		} while (1);
3249 
3250 		if (!page)
3251 			goto fail;
3252 
3253 		page->private = this_order;
3254 		list_add_tail(&page->lru, &tags->page_list);
3255 
3256 		p = page_address(page);
3257 		/*
3258 		 * Allow kmemleak to scan these pages as they contain pointers
3259 		 * to additional allocations like via ops->init_request().
3260 		 */
3261 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3262 		entries_per_page = order_to_size(this_order) / rq_size;
3263 		to_do = min(entries_per_page, depth - i);
3264 		left -= to_do * rq_size;
3265 		for (j = 0; j < to_do; j++) {
3266 			struct request *rq = p;
3267 
3268 			tags->static_rqs[i] = rq;
3269 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3270 				tags->static_rqs[i] = NULL;
3271 				goto fail;
3272 			}
3273 
3274 			p += rq_size;
3275 			i++;
3276 		}
3277 	}
3278 	return 0;
3279 
3280 fail:
3281 	blk_mq_free_rqs(set, tags, hctx_idx);
3282 	return -ENOMEM;
3283 }
3284 
3285 struct rq_iter_data {
3286 	struct blk_mq_hw_ctx *hctx;
3287 	bool has_rq;
3288 };
3289 
3290 static bool blk_mq_has_request(struct request *rq, void *data)
3291 {
3292 	struct rq_iter_data *iter_data = data;
3293 
3294 	if (rq->mq_hctx != iter_data->hctx)
3295 		return true;
3296 	iter_data->has_rq = true;
3297 	return false;
3298 }
3299 
3300 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3301 {
3302 	struct blk_mq_tags *tags = hctx->sched_tags ?
3303 			hctx->sched_tags : hctx->tags;
3304 	struct rq_iter_data data = {
3305 		.hctx	= hctx,
3306 	};
3307 
3308 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3309 	return data.has_rq;
3310 }
3311 
3312 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3313 		struct blk_mq_hw_ctx *hctx)
3314 {
3315 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3316 		return false;
3317 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3318 		return false;
3319 	return true;
3320 }
3321 
3322 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3323 {
3324 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3325 			struct blk_mq_hw_ctx, cpuhp_online);
3326 
3327 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3328 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3329 		return 0;
3330 
3331 	/*
3332 	 * Prevent new request from being allocated on the current hctx.
3333 	 *
3334 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3335 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3336 	 * seen once we return from the tag allocator.
3337 	 */
3338 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3339 	smp_mb__after_atomic();
3340 
3341 	/*
3342 	 * Try to grab a reference to the queue and wait for any outstanding
3343 	 * requests.  If we could not grab a reference the queue has been
3344 	 * frozen and there are no requests.
3345 	 */
3346 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3347 		while (blk_mq_hctx_has_requests(hctx))
3348 			msleep(5);
3349 		percpu_ref_put(&hctx->queue->q_usage_counter);
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3356 {
3357 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3358 			struct blk_mq_hw_ctx, cpuhp_online);
3359 
3360 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3361 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3362 	return 0;
3363 }
3364 
3365 /*
3366  * 'cpu' is going away. splice any existing rq_list entries from this
3367  * software queue to the hw queue dispatch list, and ensure that it
3368  * gets run.
3369  */
3370 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3371 {
3372 	struct blk_mq_hw_ctx *hctx;
3373 	struct blk_mq_ctx *ctx;
3374 	LIST_HEAD(tmp);
3375 	enum hctx_type type;
3376 
3377 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3378 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3379 		return 0;
3380 
3381 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3382 	type = hctx->type;
3383 
3384 	spin_lock(&ctx->lock);
3385 	if (!list_empty(&ctx->rq_lists[type])) {
3386 		list_splice_init(&ctx->rq_lists[type], &tmp);
3387 		blk_mq_hctx_clear_pending(hctx, ctx);
3388 	}
3389 	spin_unlock(&ctx->lock);
3390 
3391 	if (list_empty(&tmp))
3392 		return 0;
3393 
3394 	spin_lock(&hctx->lock);
3395 	list_splice_tail_init(&tmp, &hctx->dispatch);
3396 	spin_unlock(&hctx->lock);
3397 
3398 	blk_mq_run_hw_queue(hctx, true);
3399 	return 0;
3400 }
3401 
3402 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3403 {
3404 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3405 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3406 						    &hctx->cpuhp_online);
3407 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3408 					    &hctx->cpuhp_dead);
3409 }
3410 
3411 /*
3412  * Before freeing hw queue, clearing the flush request reference in
3413  * tags->rqs[] for avoiding potential UAF.
3414  */
3415 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3416 		unsigned int queue_depth, struct request *flush_rq)
3417 {
3418 	int i;
3419 	unsigned long flags;
3420 
3421 	/* The hw queue may not be mapped yet */
3422 	if (!tags)
3423 		return;
3424 
3425 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3426 
3427 	for (i = 0; i < queue_depth; i++)
3428 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3429 
3430 	/*
3431 	 * Wait until all pending iteration is done.
3432 	 *
3433 	 * Request reference is cleared and it is guaranteed to be observed
3434 	 * after the ->lock is released.
3435 	 */
3436 	spin_lock_irqsave(&tags->lock, flags);
3437 	spin_unlock_irqrestore(&tags->lock, flags);
3438 }
3439 
3440 /* hctx->ctxs will be freed in queue's release handler */
3441 static void blk_mq_exit_hctx(struct request_queue *q,
3442 		struct blk_mq_tag_set *set,
3443 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3444 {
3445 	struct request *flush_rq = hctx->fq->flush_rq;
3446 
3447 	if (blk_mq_hw_queue_mapped(hctx))
3448 		blk_mq_tag_idle(hctx);
3449 
3450 	if (blk_queue_init_done(q))
3451 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3452 				set->queue_depth, flush_rq);
3453 	if (set->ops->exit_request)
3454 		set->ops->exit_request(set, flush_rq, hctx_idx);
3455 
3456 	if (set->ops->exit_hctx)
3457 		set->ops->exit_hctx(hctx, hctx_idx);
3458 
3459 	blk_mq_remove_cpuhp(hctx);
3460 
3461 	xa_erase(&q->hctx_table, hctx_idx);
3462 
3463 	spin_lock(&q->unused_hctx_lock);
3464 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3465 	spin_unlock(&q->unused_hctx_lock);
3466 }
3467 
3468 static void blk_mq_exit_hw_queues(struct request_queue *q,
3469 		struct blk_mq_tag_set *set, int nr_queue)
3470 {
3471 	struct blk_mq_hw_ctx *hctx;
3472 	unsigned long i;
3473 
3474 	queue_for_each_hw_ctx(q, hctx, i) {
3475 		if (i == nr_queue)
3476 			break;
3477 		blk_mq_exit_hctx(q, set, hctx, i);
3478 	}
3479 }
3480 
3481 static int blk_mq_init_hctx(struct request_queue *q,
3482 		struct blk_mq_tag_set *set,
3483 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3484 {
3485 	hctx->queue_num = hctx_idx;
3486 
3487 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3488 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3489 				&hctx->cpuhp_online);
3490 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3491 
3492 	hctx->tags = set->tags[hctx_idx];
3493 
3494 	if (set->ops->init_hctx &&
3495 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3496 		goto unregister_cpu_notifier;
3497 
3498 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3499 				hctx->numa_node))
3500 		goto exit_hctx;
3501 
3502 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3503 		goto exit_flush_rq;
3504 
3505 	return 0;
3506 
3507  exit_flush_rq:
3508 	if (set->ops->exit_request)
3509 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3510  exit_hctx:
3511 	if (set->ops->exit_hctx)
3512 		set->ops->exit_hctx(hctx, hctx_idx);
3513  unregister_cpu_notifier:
3514 	blk_mq_remove_cpuhp(hctx);
3515 	return -1;
3516 }
3517 
3518 static struct blk_mq_hw_ctx *
3519 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3520 		int node)
3521 {
3522 	struct blk_mq_hw_ctx *hctx;
3523 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3524 
3525 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3526 	if (!hctx)
3527 		goto fail_alloc_hctx;
3528 
3529 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3530 		goto free_hctx;
3531 
3532 	atomic_set(&hctx->nr_active, 0);
3533 	if (node == NUMA_NO_NODE)
3534 		node = set->numa_node;
3535 	hctx->numa_node = node;
3536 
3537 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3538 	spin_lock_init(&hctx->lock);
3539 	INIT_LIST_HEAD(&hctx->dispatch);
3540 	hctx->queue = q;
3541 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3542 
3543 	INIT_LIST_HEAD(&hctx->hctx_list);
3544 
3545 	/*
3546 	 * Allocate space for all possible cpus to avoid allocation at
3547 	 * runtime
3548 	 */
3549 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3550 			gfp, node);
3551 	if (!hctx->ctxs)
3552 		goto free_cpumask;
3553 
3554 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3555 				gfp, node, false, false))
3556 		goto free_ctxs;
3557 	hctx->nr_ctx = 0;
3558 
3559 	spin_lock_init(&hctx->dispatch_wait_lock);
3560 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3561 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3562 
3563 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3564 	if (!hctx->fq)
3565 		goto free_bitmap;
3566 
3567 	blk_mq_hctx_kobj_init(hctx);
3568 
3569 	return hctx;
3570 
3571  free_bitmap:
3572 	sbitmap_free(&hctx->ctx_map);
3573  free_ctxs:
3574 	kfree(hctx->ctxs);
3575  free_cpumask:
3576 	free_cpumask_var(hctx->cpumask);
3577  free_hctx:
3578 	kfree(hctx);
3579  fail_alloc_hctx:
3580 	return NULL;
3581 }
3582 
3583 static void blk_mq_init_cpu_queues(struct request_queue *q,
3584 				   unsigned int nr_hw_queues)
3585 {
3586 	struct blk_mq_tag_set *set = q->tag_set;
3587 	unsigned int i, j;
3588 
3589 	for_each_possible_cpu(i) {
3590 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3591 		struct blk_mq_hw_ctx *hctx;
3592 		int k;
3593 
3594 		__ctx->cpu = i;
3595 		spin_lock_init(&__ctx->lock);
3596 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3597 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3598 
3599 		__ctx->queue = q;
3600 
3601 		/*
3602 		 * Set local node, IFF we have more than one hw queue. If
3603 		 * not, we remain on the home node of the device
3604 		 */
3605 		for (j = 0; j < set->nr_maps; j++) {
3606 			hctx = blk_mq_map_queue_type(q, j, i);
3607 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3608 				hctx->numa_node = cpu_to_node(i);
3609 		}
3610 	}
3611 }
3612 
3613 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3614 					     unsigned int hctx_idx,
3615 					     unsigned int depth)
3616 {
3617 	struct blk_mq_tags *tags;
3618 	int ret;
3619 
3620 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3621 	if (!tags)
3622 		return NULL;
3623 
3624 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3625 	if (ret) {
3626 		blk_mq_free_rq_map(tags);
3627 		return NULL;
3628 	}
3629 
3630 	return tags;
3631 }
3632 
3633 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3634 				       int hctx_idx)
3635 {
3636 	if (blk_mq_is_shared_tags(set->flags)) {
3637 		set->tags[hctx_idx] = set->shared_tags;
3638 
3639 		return true;
3640 	}
3641 
3642 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3643 						       set->queue_depth);
3644 
3645 	return set->tags[hctx_idx];
3646 }
3647 
3648 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3649 			     struct blk_mq_tags *tags,
3650 			     unsigned int hctx_idx)
3651 {
3652 	if (tags) {
3653 		blk_mq_free_rqs(set, tags, hctx_idx);
3654 		blk_mq_free_rq_map(tags);
3655 	}
3656 }
3657 
3658 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659 				      unsigned int hctx_idx)
3660 {
3661 	if (!blk_mq_is_shared_tags(set->flags))
3662 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3663 
3664 	set->tags[hctx_idx] = NULL;
3665 }
3666 
3667 static void blk_mq_map_swqueue(struct request_queue *q)
3668 {
3669 	unsigned int j, hctx_idx;
3670 	unsigned long i;
3671 	struct blk_mq_hw_ctx *hctx;
3672 	struct blk_mq_ctx *ctx;
3673 	struct blk_mq_tag_set *set = q->tag_set;
3674 
3675 	queue_for_each_hw_ctx(q, hctx, i) {
3676 		cpumask_clear(hctx->cpumask);
3677 		hctx->nr_ctx = 0;
3678 		hctx->dispatch_from = NULL;
3679 	}
3680 
3681 	/*
3682 	 * Map software to hardware queues.
3683 	 *
3684 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3685 	 */
3686 	for_each_possible_cpu(i) {
3687 
3688 		ctx = per_cpu_ptr(q->queue_ctx, i);
3689 		for (j = 0; j < set->nr_maps; j++) {
3690 			if (!set->map[j].nr_queues) {
3691 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3692 						HCTX_TYPE_DEFAULT, i);
3693 				continue;
3694 			}
3695 			hctx_idx = set->map[j].mq_map[i];
3696 			/* unmapped hw queue can be remapped after CPU topo changed */
3697 			if (!set->tags[hctx_idx] &&
3698 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3699 				/*
3700 				 * If tags initialization fail for some hctx,
3701 				 * that hctx won't be brought online.  In this
3702 				 * case, remap the current ctx to hctx[0] which
3703 				 * is guaranteed to always have tags allocated
3704 				 */
3705 				set->map[j].mq_map[i] = 0;
3706 			}
3707 
3708 			hctx = blk_mq_map_queue_type(q, j, i);
3709 			ctx->hctxs[j] = hctx;
3710 			/*
3711 			 * If the CPU is already set in the mask, then we've
3712 			 * mapped this one already. This can happen if
3713 			 * devices share queues across queue maps.
3714 			 */
3715 			if (cpumask_test_cpu(i, hctx->cpumask))
3716 				continue;
3717 
3718 			cpumask_set_cpu(i, hctx->cpumask);
3719 			hctx->type = j;
3720 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3721 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3722 
3723 			/*
3724 			 * If the nr_ctx type overflows, we have exceeded the
3725 			 * amount of sw queues we can support.
3726 			 */
3727 			BUG_ON(!hctx->nr_ctx);
3728 		}
3729 
3730 		for (; j < HCTX_MAX_TYPES; j++)
3731 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3732 					HCTX_TYPE_DEFAULT, i);
3733 	}
3734 
3735 	queue_for_each_hw_ctx(q, hctx, i) {
3736 		/*
3737 		 * If no software queues are mapped to this hardware queue,
3738 		 * disable it and free the request entries.
3739 		 */
3740 		if (!hctx->nr_ctx) {
3741 			/* Never unmap queue 0.  We need it as a
3742 			 * fallback in case of a new remap fails
3743 			 * allocation
3744 			 */
3745 			if (i)
3746 				__blk_mq_free_map_and_rqs(set, i);
3747 
3748 			hctx->tags = NULL;
3749 			continue;
3750 		}
3751 
3752 		hctx->tags = set->tags[i];
3753 		WARN_ON(!hctx->tags);
3754 
3755 		/*
3756 		 * Set the map size to the number of mapped software queues.
3757 		 * This is more accurate and more efficient than looping
3758 		 * over all possibly mapped software queues.
3759 		 */
3760 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3761 
3762 		/*
3763 		 * Initialize batch roundrobin counts
3764 		 */
3765 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3766 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3767 	}
3768 }
3769 
3770 /*
3771  * Caller needs to ensure that we're either frozen/quiesced, or that
3772  * the queue isn't live yet.
3773  */
3774 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3775 {
3776 	struct blk_mq_hw_ctx *hctx;
3777 	unsigned long i;
3778 
3779 	queue_for_each_hw_ctx(q, hctx, i) {
3780 		if (shared) {
3781 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3782 		} else {
3783 			blk_mq_tag_idle(hctx);
3784 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3785 		}
3786 	}
3787 }
3788 
3789 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3790 					 bool shared)
3791 {
3792 	struct request_queue *q;
3793 
3794 	lockdep_assert_held(&set->tag_list_lock);
3795 
3796 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3797 		blk_mq_freeze_queue(q);
3798 		queue_set_hctx_shared(q, shared);
3799 		blk_mq_unfreeze_queue(q);
3800 	}
3801 }
3802 
3803 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3804 {
3805 	struct blk_mq_tag_set *set = q->tag_set;
3806 
3807 	mutex_lock(&set->tag_list_lock);
3808 	list_del(&q->tag_set_list);
3809 	if (list_is_singular(&set->tag_list)) {
3810 		/* just transitioned to unshared */
3811 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3812 		/* update existing queue */
3813 		blk_mq_update_tag_set_shared(set, false);
3814 	}
3815 	mutex_unlock(&set->tag_list_lock);
3816 	INIT_LIST_HEAD(&q->tag_set_list);
3817 }
3818 
3819 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3820 				     struct request_queue *q)
3821 {
3822 	mutex_lock(&set->tag_list_lock);
3823 
3824 	/*
3825 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3826 	 */
3827 	if (!list_empty(&set->tag_list) &&
3828 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3829 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3830 		/* update existing queue */
3831 		blk_mq_update_tag_set_shared(set, true);
3832 	}
3833 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3834 		queue_set_hctx_shared(q, true);
3835 	list_add_tail(&q->tag_set_list, &set->tag_list);
3836 
3837 	mutex_unlock(&set->tag_list_lock);
3838 }
3839 
3840 /* All allocations will be freed in release handler of q->mq_kobj */
3841 static int blk_mq_alloc_ctxs(struct request_queue *q)
3842 {
3843 	struct blk_mq_ctxs *ctxs;
3844 	int cpu;
3845 
3846 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3847 	if (!ctxs)
3848 		return -ENOMEM;
3849 
3850 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3851 	if (!ctxs->queue_ctx)
3852 		goto fail;
3853 
3854 	for_each_possible_cpu(cpu) {
3855 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3856 		ctx->ctxs = ctxs;
3857 	}
3858 
3859 	q->mq_kobj = &ctxs->kobj;
3860 	q->queue_ctx = ctxs->queue_ctx;
3861 
3862 	return 0;
3863  fail:
3864 	kfree(ctxs);
3865 	return -ENOMEM;
3866 }
3867 
3868 /*
3869  * It is the actual release handler for mq, but we do it from
3870  * request queue's release handler for avoiding use-after-free
3871  * and headache because q->mq_kobj shouldn't have been introduced,
3872  * but we can't group ctx/kctx kobj without it.
3873  */
3874 void blk_mq_release(struct request_queue *q)
3875 {
3876 	struct blk_mq_hw_ctx *hctx, *next;
3877 	unsigned long i;
3878 
3879 	queue_for_each_hw_ctx(q, hctx, i)
3880 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3881 
3882 	/* all hctx are in .unused_hctx_list now */
3883 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3884 		list_del_init(&hctx->hctx_list);
3885 		kobject_put(&hctx->kobj);
3886 	}
3887 
3888 	xa_destroy(&q->hctx_table);
3889 
3890 	/*
3891 	 * release .mq_kobj and sw queue's kobject now because
3892 	 * both share lifetime with request queue.
3893 	 */
3894 	blk_mq_sysfs_deinit(q);
3895 }
3896 
3897 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3898 		void *queuedata)
3899 {
3900 	struct request_queue *q;
3901 	int ret;
3902 
3903 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3904 	if (!q)
3905 		return ERR_PTR(-ENOMEM);
3906 	q->queuedata = queuedata;
3907 	ret = blk_mq_init_allocated_queue(set, q);
3908 	if (ret) {
3909 		blk_put_queue(q);
3910 		return ERR_PTR(ret);
3911 	}
3912 	return q;
3913 }
3914 
3915 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3916 {
3917 	return blk_mq_init_queue_data(set, NULL);
3918 }
3919 EXPORT_SYMBOL(blk_mq_init_queue);
3920 
3921 /**
3922  * blk_mq_destroy_queue - shutdown a request queue
3923  * @q: request queue to shutdown
3924  *
3925  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3926  * the initial reference.  All future requests will failed with -ENODEV.
3927  *
3928  * Context: can sleep
3929  */
3930 void blk_mq_destroy_queue(struct request_queue *q)
3931 {
3932 	WARN_ON_ONCE(!queue_is_mq(q));
3933 	WARN_ON_ONCE(blk_queue_registered(q));
3934 
3935 	might_sleep();
3936 
3937 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3938 	blk_queue_start_drain(q);
3939 	blk_freeze_queue(q);
3940 
3941 	blk_sync_queue(q);
3942 	blk_mq_cancel_work_sync(q);
3943 	blk_mq_exit_queue(q);
3944 
3945 	/* @q is and will stay empty, shutdown and put */
3946 	blk_put_queue(q);
3947 }
3948 EXPORT_SYMBOL(blk_mq_destroy_queue);
3949 
3950 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3951 		struct lock_class_key *lkclass)
3952 {
3953 	struct request_queue *q;
3954 	struct gendisk *disk;
3955 
3956 	q = blk_mq_init_queue_data(set, queuedata);
3957 	if (IS_ERR(q))
3958 		return ERR_CAST(q);
3959 
3960 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3961 	if (!disk) {
3962 		blk_put_queue(q);
3963 		return ERR_PTR(-ENOMEM);
3964 	}
3965 	set_bit(GD_OWNS_QUEUE, &disk->state);
3966 	return disk;
3967 }
3968 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3969 
3970 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3971 		struct lock_class_key *lkclass)
3972 {
3973 	if (!blk_get_queue(q))
3974 		return NULL;
3975 	return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3976 }
3977 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3978 
3979 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3980 		struct blk_mq_tag_set *set, struct request_queue *q,
3981 		int hctx_idx, int node)
3982 {
3983 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3984 
3985 	/* reuse dead hctx first */
3986 	spin_lock(&q->unused_hctx_lock);
3987 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3988 		if (tmp->numa_node == node) {
3989 			hctx = tmp;
3990 			break;
3991 		}
3992 	}
3993 	if (hctx)
3994 		list_del_init(&hctx->hctx_list);
3995 	spin_unlock(&q->unused_hctx_lock);
3996 
3997 	if (!hctx)
3998 		hctx = blk_mq_alloc_hctx(q, set, node);
3999 	if (!hctx)
4000 		goto fail;
4001 
4002 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4003 		goto free_hctx;
4004 
4005 	return hctx;
4006 
4007  free_hctx:
4008 	kobject_put(&hctx->kobj);
4009  fail:
4010 	return NULL;
4011 }
4012 
4013 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4014 						struct request_queue *q)
4015 {
4016 	struct blk_mq_hw_ctx *hctx;
4017 	unsigned long i, j;
4018 
4019 	/* protect against switching io scheduler  */
4020 	mutex_lock(&q->sysfs_lock);
4021 	for (i = 0; i < set->nr_hw_queues; i++) {
4022 		int old_node;
4023 		int node = blk_mq_get_hctx_node(set, i);
4024 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4025 
4026 		if (old_hctx) {
4027 			old_node = old_hctx->numa_node;
4028 			blk_mq_exit_hctx(q, set, old_hctx, i);
4029 		}
4030 
4031 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4032 			if (!old_hctx)
4033 				break;
4034 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4035 					node, old_node);
4036 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4037 			WARN_ON_ONCE(!hctx);
4038 		}
4039 	}
4040 	/*
4041 	 * Increasing nr_hw_queues fails. Free the newly allocated
4042 	 * hctxs and keep the previous q->nr_hw_queues.
4043 	 */
4044 	if (i != set->nr_hw_queues) {
4045 		j = q->nr_hw_queues;
4046 	} else {
4047 		j = i;
4048 		q->nr_hw_queues = set->nr_hw_queues;
4049 	}
4050 
4051 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4052 		blk_mq_exit_hctx(q, set, hctx, j);
4053 	mutex_unlock(&q->sysfs_lock);
4054 }
4055 
4056 static void blk_mq_update_poll_flag(struct request_queue *q)
4057 {
4058 	struct blk_mq_tag_set *set = q->tag_set;
4059 
4060 	if (set->nr_maps > HCTX_TYPE_POLL &&
4061 	    set->map[HCTX_TYPE_POLL].nr_queues)
4062 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4063 	else
4064 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4065 }
4066 
4067 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4068 		struct request_queue *q)
4069 {
4070 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4071 			!!(set->flags & BLK_MQ_F_BLOCKING));
4072 
4073 	/* mark the queue as mq asap */
4074 	q->mq_ops = set->ops;
4075 
4076 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4077 					     blk_mq_poll_stats_bkt,
4078 					     BLK_MQ_POLL_STATS_BKTS, q);
4079 	if (!q->poll_cb)
4080 		goto err_exit;
4081 
4082 	if (blk_mq_alloc_ctxs(q))
4083 		goto err_poll;
4084 
4085 	/* init q->mq_kobj and sw queues' kobjects */
4086 	blk_mq_sysfs_init(q);
4087 
4088 	INIT_LIST_HEAD(&q->unused_hctx_list);
4089 	spin_lock_init(&q->unused_hctx_lock);
4090 
4091 	xa_init(&q->hctx_table);
4092 
4093 	blk_mq_realloc_hw_ctxs(set, q);
4094 	if (!q->nr_hw_queues)
4095 		goto err_hctxs;
4096 
4097 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4098 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4099 
4100 	q->tag_set = set;
4101 
4102 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4103 	blk_mq_update_poll_flag(q);
4104 
4105 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4106 	INIT_LIST_HEAD(&q->requeue_list);
4107 	spin_lock_init(&q->requeue_lock);
4108 
4109 	q->nr_requests = set->queue_depth;
4110 
4111 	/*
4112 	 * Default to classic polling
4113 	 */
4114 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4115 
4116 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4117 	blk_mq_add_queue_tag_set(set, q);
4118 	blk_mq_map_swqueue(q);
4119 	return 0;
4120 
4121 err_hctxs:
4122 	xa_destroy(&q->hctx_table);
4123 	q->nr_hw_queues = 0;
4124 	blk_mq_sysfs_deinit(q);
4125 err_poll:
4126 	blk_stat_free_callback(q->poll_cb);
4127 	q->poll_cb = NULL;
4128 err_exit:
4129 	q->mq_ops = NULL;
4130 	return -ENOMEM;
4131 }
4132 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4133 
4134 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4135 void blk_mq_exit_queue(struct request_queue *q)
4136 {
4137 	struct blk_mq_tag_set *set = q->tag_set;
4138 
4139 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4140 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4141 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4142 	blk_mq_del_queue_tag_set(q);
4143 }
4144 
4145 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4146 {
4147 	int i;
4148 
4149 	if (blk_mq_is_shared_tags(set->flags)) {
4150 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4151 						BLK_MQ_NO_HCTX_IDX,
4152 						set->queue_depth);
4153 		if (!set->shared_tags)
4154 			return -ENOMEM;
4155 	}
4156 
4157 	for (i = 0; i < set->nr_hw_queues; i++) {
4158 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4159 			goto out_unwind;
4160 		cond_resched();
4161 	}
4162 
4163 	return 0;
4164 
4165 out_unwind:
4166 	while (--i >= 0)
4167 		__blk_mq_free_map_and_rqs(set, i);
4168 
4169 	if (blk_mq_is_shared_tags(set->flags)) {
4170 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4171 					BLK_MQ_NO_HCTX_IDX);
4172 	}
4173 
4174 	return -ENOMEM;
4175 }
4176 
4177 /*
4178  * Allocate the request maps associated with this tag_set. Note that this
4179  * may reduce the depth asked for, if memory is tight. set->queue_depth
4180  * will be updated to reflect the allocated depth.
4181  */
4182 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4183 {
4184 	unsigned int depth;
4185 	int err;
4186 
4187 	depth = set->queue_depth;
4188 	do {
4189 		err = __blk_mq_alloc_rq_maps(set);
4190 		if (!err)
4191 			break;
4192 
4193 		set->queue_depth >>= 1;
4194 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4195 			err = -ENOMEM;
4196 			break;
4197 		}
4198 	} while (set->queue_depth);
4199 
4200 	if (!set->queue_depth || err) {
4201 		pr_err("blk-mq: failed to allocate request map\n");
4202 		return -ENOMEM;
4203 	}
4204 
4205 	if (depth != set->queue_depth)
4206 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4207 						depth, set->queue_depth);
4208 
4209 	return 0;
4210 }
4211 
4212 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4213 {
4214 	/*
4215 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4216 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4217 	 * number of hardware queues.
4218 	 */
4219 	if (set->nr_maps == 1)
4220 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4221 
4222 	if (set->ops->map_queues && !is_kdump_kernel()) {
4223 		int i;
4224 
4225 		/*
4226 		 * transport .map_queues is usually done in the following
4227 		 * way:
4228 		 *
4229 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4230 		 * 	mask = get_cpu_mask(queue)
4231 		 * 	for_each_cpu(cpu, mask)
4232 		 * 		set->map[x].mq_map[cpu] = queue;
4233 		 * }
4234 		 *
4235 		 * When we need to remap, the table has to be cleared for
4236 		 * killing stale mapping since one CPU may not be mapped
4237 		 * to any hw queue.
4238 		 */
4239 		for (i = 0; i < set->nr_maps; i++)
4240 			blk_mq_clear_mq_map(&set->map[i]);
4241 
4242 		return set->ops->map_queues(set);
4243 	} else {
4244 		BUG_ON(set->nr_maps > 1);
4245 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4246 	}
4247 }
4248 
4249 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4250 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4251 {
4252 	struct blk_mq_tags **new_tags;
4253 
4254 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4255 		return 0;
4256 
4257 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4258 				GFP_KERNEL, set->numa_node);
4259 	if (!new_tags)
4260 		return -ENOMEM;
4261 
4262 	if (set->tags)
4263 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4264 		       sizeof(*set->tags));
4265 	kfree(set->tags);
4266 	set->tags = new_tags;
4267 	set->nr_hw_queues = new_nr_hw_queues;
4268 
4269 	return 0;
4270 }
4271 
4272 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4273 				int new_nr_hw_queues)
4274 {
4275 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4276 }
4277 
4278 /*
4279  * Alloc a tag set to be associated with one or more request queues.
4280  * May fail with EINVAL for various error conditions. May adjust the
4281  * requested depth down, if it's too large. In that case, the set
4282  * value will be stored in set->queue_depth.
4283  */
4284 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4285 {
4286 	int i, ret;
4287 
4288 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4289 
4290 	if (!set->nr_hw_queues)
4291 		return -EINVAL;
4292 	if (!set->queue_depth)
4293 		return -EINVAL;
4294 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4295 		return -EINVAL;
4296 
4297 	if (!set->ops->queue_rq)
4298 		return -EINVAL;
4299 
4300 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4301 		return -EINVAL;
4302 
4303 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4304 		pr_info("blk-mq: reduced tag depth to %u\n",
4305 			BLK_MQ_MAX_DEPTH);
4306 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4307 	}
4308 
4309 	if (!set->nr_maps)
4310 		set->nr_maps = 1;
4311 	else if (set->nr_maps > HCTX_MAX_TYPES)
4312 		return -EINVAL;
4313 
4314 	/*
4315 	 * If a crashdump is active, then we are potentially in a very
4316 	 * memory constrained environment. Limit us to 1 queue and
4317 	 * 64 tags to prevent using too much memory.
4318 	 */
4319 	if (is_kdump_kernel()) {
4320 		set->nr_hw_queues = 1;
4321 		set->nr_maps = 1;
4322 		set->queue_depth = min(64U, set->queue_depth);
4323 	}
4324 	/*
4325 	 * There is no use for more h/w queues than cpus if we just have
4326 	 * a single map
4327 	 */
4328 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4329 		set->nr_hw_queues = nr_cpu_ids;
4330 
4331 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4332 		return -ENOMEM;
4333 
4334 	ret = -ENOMEM;
4335 	for (i = 0; i < set->nr_maps; i++) {
4336 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4337 						  sizeof(set->map[i].mq_map[0]),
4338 						  GFP_KERNEL, set->numa_node);
4339 		if (!set->map[i].mq_map)
4340 			goto out_free_mq_map;
4341 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4342 	}
4343 
4344 	ret = blk_mq_update_queue_map(set);
4345 	if (ret)
4346 		goto out_free_mq_map;
4347 
4348 	ret = blk_mq_alloc_set_map_and_rqs(set);
4349 	if (ret)
4350 		goto out_free_mq_map;
4351 
4352 	mutex_init(&set->tag_list_lock);
4353 	INIT_LIST_HEAD(&set->tag_list);
4354 
4355 	return 0;
4356 
4357 out_free_mq_map:
4358 	for (i = 0; i < set->nr_maps; i++) {
4359 		kfree(set->map[i].mq_map);
4360 		set->map[i].mq_map = NULL;
4361 	}
4362 	kfree(set->tags);
4363 	set->tags = NULL;
4364 	return ret;
4365 }
4366 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4367 
4368 /* allocate and initialize a tagset for a simple single-queue device */
4369 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4370 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4371 		unsigned int set_flags)
4372 {
4373 	memset(set, 0, sizeof(*set));
4374 	set->ops = ops;
4375 	set->nr_hw_queues = 1;
4376 	set->nr_maps = 1;
4377 	set->queue_depth = queue_depth;
4378 	set->numa_node = NUMA_NO_NODE;
4379 	set->flags = set_flags;
4380 	return blk_mq_alloc_tag_set(set);
4381 }
4382 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4383 
4384 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4385 {
4386 	int i, j;
4387 
4388 	for (i = 0; i < set->nr_hw_queues; i++)
4389 		__blk_mq_free_map_and_rqs(set, i);
4390 
4391 	if (blk_mq_is_shared_tags(set->flags)) {
4392 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4393 					BLK_MQ_NO_HCTX_IDX);
4394 	}
4395 
4396 	for (j = 0; j < set->nr_maps; j++) {
4397 		kfree(set->map[j].mq_map);
4398 		set->map[j].mq_map = NULL;
4399 	}
4400 
4401 	kfree(set->tags);
4402 	set->tags = NULL;
4403 }
4404 EXPORT_SYMBOL(blk_mq_free_tag_set);
4405 
4406 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4407 {
4408 	struct blk_mq_tag_set *set = q->tag_set;
4409 	struct blk_mq_hw_ctx *hctx;
4410 	int ret;
4411 	unsigned long i;
4412 
4413 	if (!set)
4414 		return -EINVAL;
4415 
4416 	if (q->nr_requests == nr)
4417 		return 0;
4418 
4419 	blk_mq_freeze_queue(q);
4420 	blk_mq_quiesce_queue(q);
4421 
4422 	ret = 0;
4423 	queue_for_each_hw_ctx(q, hctx, i) {
4424 		if (!hctx->tags)
4425 			continue;
4426 		/*
4427 		 * If we're using an MQ scheduler, just update the scheduler
4428 		 * queue depth. This is similar to what the old code would do.
4429 		 */
4430 		if (hctx->sched_tags) {
4431 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4432 						      nr, true);
4433 		} else {
4434 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4435 						      false);
4436 		}
4437 		if (ret)
4438 			break;
4439 		if (q->elevator && q->elevator->type->ops.depth_updated)
4440 			q->elevator->type->ops.depth_updated(hctx);
4441 	}
4442 	if (!ret) {
4443 		q->nr_requests = nr;
4444 		if (blk_mq_is_shared_tags(set->flags)) {
4445 			if (q->elevator)
4446 				blk_mq_tag_update_sched_shared_tags(q);
4447 			else
4448 				blk_mq_tag_resize_shared_tags(set, nr);
4449 		}
4450 	}
4451 
4452 	blk_mq_unquiesce_queue(q);
4453 	blk_mq_unfreeze_queue(q);
4454 
4455 	return ret;
4456 }
4457 
4458 /*
4459  * request_queue and elevator_type pair.
4460  * It is just used by __blk_mq_update_nr_hw_queues to cache
4461  * the elevator_type associated with a request_queue.
4462  */
4463 struct blk_mq_qe_pair {
4464 	struct list_head node;
4465 	struct request_queue *q;
4466 	struct elevator_type *type;
4467 };
4468 
4469 /*
4470  * Cache the elevator_type in qe pair list and switch the
4471  * io scheduler to 'none'
4472  */
4473 static bool blk_mq_elv_switch_none(struct list_head *head,
4474 		struct request_queue *q)
4475 {
4476 	struct blk_mq_qe_pair *qe;
4477 
4478 	if (!q->elevator)
4479 		return true;
4480 
4481 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4482 	if (!qe)
4483 		return false;
4484 
4485 	/* q->elevator needs protection from ->sysfs_lock */
4486 	mutex_lock(&q->sysfs_lock);
4487 
4488 	INIT_LIST_HEAD(&qe->node);
4489 	qe->q = q;
4490 	qe->type = q->elevator->type;
4491 	list_add(&qe->node, head);
4492 
4493 	/*
4494 	 * After elevator_switch_mq, the previous elevator_queue will be
4495 	 * released by elevator_release. The reference of the io scheduler
4496 	 * module get by elevator_get will also be put. So we need to get
4497 	 * a reference of the io scheduler module here to prevent it to be
4498 	 * removed.
4499 	 */
4500 	__module_get(qe->type->elevator_owner);
4501 	elevator_switch_mq(q, NULL);
4502 	mutex_unlock(&q->sysfs_lock);
4503 
4504 	return true;
4505 }
4506 
4507 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4508 						struct request_queue *q)
4509 {
4510 	struct blk_mq_qe_pair *qe;
4511 
4512 	list_for_each_entry(qe, head, node)
4513 		if (qe->q == q)
4514 			return qe;
4515 
4516 	return NULL;
4517 }
4518 
4519 static void blk_mq_elv_switch_back(struct list_head *head,
4520 				  struct request_queue *q)
4521 {
4522 	struct blk_mq_qe_pair *qe;
4523 	struct elevator_type *t;
4524 
4525 	qe = blk_lookup_qe_pair(head, q);
4526 	if (!qe)
4527 		return;
4528 	t = qe->type;
4529 	list_del(&qe->node);
4530 	kfree(qe);
4531 
4532 	mutex_lock(&q->sysfs_lock);
4533 	elevator_switch_mq(q, t);
4534 	mutex_unlock(&q->sysfs_lock);
4535 }
4536 
4537 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4538 							int nr_hw_queues)
4539 {
4540 	struct request_queue *q;
4541 	LIST_HEAD(head);
4542 	int prev_nr_hw_queues;
4543 
4544 	lockdep_assert_held(&set->tag_list_lock);
4545 
4546 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4547 		nr_hw_queues = nr_cpu_ids;
4548 	if (nr_hw_queues < 1)
4549 		return;
4550 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4551 		return;
4552 
4553 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4554 		blk_mq_freeze_queue(q);
4555 	/*
4556 	 * Switch IO scheduler to 'none', cleaning up the data associated
4557 	 * with the previous scheduler. We will switch back once we are done
4558 	 * updating the new sw to hw queue mappings.
4559 	 */
4560 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4561 		if (!blk_mq_elv_switch_none(&head, q))
4562 			goto switch_back;
4563 
4564 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4565 		blk_mq_debugfs_unregister_hctxs(q);
4566 		blk_mq_sysfs_unregister_hctxs(q);
4567 	}
4568 
4569 	prev_nr_hw_queues = set->nr_hw_queues;
4570 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4571 	    0)
4572 		goto reregister;
4573 
4574 	set->nr_hw_queues = nr_hw_queues;
4575 fallback:
4576 	blk_mq_update_queue_map(set);
4577 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4578 		blk_mq_realloc_hw_ctxs(set, q);
4579 		blk_mq_update_poll_flag(q);
4580 		if (q->nr_hw_queues != set->nr_hw_queues) {
4581 			int i = prev_nr_hw_queues;
4582 
4583 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4584 					nr_hw_queues, prev_nr_hw_queues);
4585 			for (; i < set->nr_hw_queues; i++)
4586 				__blk_mq_free_map_and_rqs(set, i);
4587 
4588 			set->nr_hw_queues = prev_nr_hw_queues;
4589 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4590 			goto fallback;
4591 		}
4592 		blk_mq_map_swqueue(q);
4593 	}
4594 
4595 reregister:
4596 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4597 		blk_mq_sysfs_register_hctxs(q);
4598 		blk_mq_debugfs_register_hctxs(q);
4599 	}
4600 
4601 switch_back:
4602 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4603 		blk_mq_elv_switch_back(&head, q);
4604 
4605 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4606 		blk_mq_unfreeze_queue(q);
4607 }
4608 
4609 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4610 {
4611 	mutex_lock(&set->tag_list_lock);
4612 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4613 	mutex_unlock(&set->tag_list_lock);
4614 }
4615 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4616 
4617 /* Enable polling stats and return whether they were already enabled. */
4618 static bool blk_poll_stats_enable(struct request_queue *q)
4619 {
4620 	if (q->poll_stat)
4621 		return true;
4622 
4623 	return blk_stats_alloc_enable(q);
4624 }
4625 
4626 static void blk_mq_poll_stats_start(struct request_queue *q)
4627 {
4628 	/*
4629 	 * We don't arm the callback if polling stats are not enabled or the
4630 	 * callback is already active.
4631 	 */
4632 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4633 		return;
4634 
4635 	blk_stat_activate_msecs(q->poll_cb, 100);
4636 }
4637 
4638 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4639 {
4640 	struct request_queue *q = cb->data;
4641 	int bucket;
4642 
4643 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4644 		if (cb->stat[bucket].nr_samples)
4645 			q->poll_stat[bucket] = cb->stat[bucket];
4646 	}
4647 }
4648 
4649 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4650 				       struct request *rq)
4651 {
4652 	unsigned long ret = 0;
4653 	int bucket;
4654 
4655 	/*
4656 	 * If stats collection isn't on, don't sleep but turn it on for
4657 	 * future users
4658 	 */
4659 	if (!blk_poll_stats_enable(q))
4660 		return 0;
4661 
4662 	/*
4663 	 * As an optimistic guess, use half of the mean service time
4664 	 * for this type of request. We can (and should) make this smarter.
4665 	 * For instance, if the completion latencies are tight, we can
4666 	 * get closer than just half the mean. This is especially
4667 	 * important on devices where the completion latencies are longer
4668 	 * than ~10 usec. We do use the stats for the relevant IO size
4669 	 * if available which does lead to better estimates.
4670 	 */
4671 	bucket = blk_mq_poll_stats_bkt(rq);
4672 	if (bucket < 0)
4673 		return ret;
4674 
4675 	if (q->poll_stat[bucket].nr_samples)
4676 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4677 
4678 	return ret;
4679 }
4680 
4681 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4682 {
4683 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4684 	struct request *rq = blk_qc_to_rq(hctx, qc);
4685 	struct hrtimer_sleeper hs;
4686 	enum hrtimer_mode mode;
4687 	unsigned int nsecs;
4688 	ktime_t kt;
4689 
4690 	/*
4691 	 * If a request has completed on queue that uses an I/O scheduler, we
4692 	 * won't get back a request from blk_qc_to_rq.
4693 	 */
4694 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4695 		return false;
4696 
4697 	/*
4698 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4699 	 *
4700 	 *  0:	use half of prev avg
4701 	 * >0:	use this specific value
4702 	 */
4703 	if (q->poll_nsec > 0)
4704 		nsecs = q->poll_nsec;
4705 	else
4706 		nsecs = blk_mq_poll_nsecs(q, rq);
4707 
4708 	if (!nsecs)
4709 		return false;
4710 
4711 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4712 
4713 	/*
4714 	 * This will be replaced with the stats tracking code, using
4715 	 * 'avg_completion_time / 2' as the pre-sleep target.
4716 	 */
4717 	kt = nsecs;
4718 
4719 	mode = HRTIMER_MODE_REL;
4720 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4721 	hrtimer_set_expires(&hs.timer, kt);
4722 
4723 	do {
4724 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4725 			break;
4726 		set_current_state(TASK_UNINTERRUPTIBLE);
4727 		hrtimer_sleeper_start_expires(&hs, mode);
4728 		if (hs.task)
4729 			io_schedule();
4730 		hrtimer_cancel(&hs.timer);
4731 		mode = HRTIMER_MODE_ABS;
4732 	} while (hs.task && !signal_pending(current));
4733 
4734 	__set_current_state(TASK_RUNNING);
4735 	destroy_hrtimer_on_stack(&hs.timer);
4736 
4737 	/*
4738 	 * If we sleep, have the caller restart the poll loop to reset the
4739 	 * state.  Like for the other success return cases, the caller is
4740 	 * responsible for checking if the IO completed.  If the IO isn't
4741 	 * complete, we'll get called again and will go straight to the busy
4742 	 * poll loop.
4743 	 */
4744 	return true;
4745 }
4746 
4747 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4748 			       struct io_comp_batch *iob, unsigned int flags)
4749 {
4750 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4751 	long state = get_current_state();
4752 	int ret;
4753 
4754 	do {
4755 		ret = q->mq_ops->poll(hctx, iob);
4756 		if (ret > 0) {
4757 			__set_current_state(TASK_RUNNING);
4758 			return ret;
4759 		}
4760 
4761 		if (signal_pending_state(state, current))
4762 			__set_current_state(TASK_RUNNING);
4763 		if (task_is_running(current))
4764 			return 1;
4765 
4766 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4767 			break;
4768 		cpu_relax();
4769 	} while (!need_resched());
4770 
4771 	__set_current_state(TASK_RUNNING);
4772 	return 0;
4773 }
4774 
4775 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4776 		unsigned int flags)
4777 {
4778 	if (!(flags & BLK_POLL_NOSLEEP) &&
4779 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4780 		if (blk_mq_poll_hybrid(q, cookie))
4781 			return 1;
4782 	}
4783 	return blk_mq_poll_classic(q, cookie, iob, flags);
4784 }
4785 
4786 unsigned int blk_mq_rq_cpu(struct request *rq)
4787 {
4788 	return rq->mq_ctx->cpu;
4789 }
4790 EXPORT_SYMBOL(blk_mq_rq_cpu);
4791 
4792 void blk_mq_cancel_work_sync(struct request_queue *q)
4793 {
4794 	if (queue_is_mq(q)) {
4795 		struct blk_mq_hw_ctx *hctx;
4796 		unsigned long i;
4797 
4798 		cancel_delayed_work_sync(&q->requeue_work);
4799 
4800 		queue_for_each_hw_ctx(q, hctx, i)
4801 			cancel_delayed_work_sync(&hctx->run_work);
4802 	}
4803 }
4804 
4805 static int __init blk_mq_init(void)
4806 {
4807 	int i;
4808 
4809 	for_each_possible_cpu(i)
4810 		init_llist_head(&per_cpu(blk_cpu_done, i));
4811 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4812 
4813 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4814 				  "block/softirq:dead", NULL,
4815 				  blk_softirq_cpu_dead);
4816 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4817 				blk_mq_hctx_notify_dead);
4818 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4819 				blk_mq_hctx_notify_online,
4820 				blk_mq_hctx_notify_offline);
4821 	return 0;
4822 }
4823 subsys_initcall(blk_mq_init);
4824