1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include "blk.h" 34 #include "blk-mq.h" 35 #include "blk-mq-debugfs.h" 36 #include "blk-mq-tag.h" 37 #include "blk-pm.h" 38 #include "blk-stat.h" 39 #include "blk-mq-sched.h" 40 #include "blk-rq-qos.h" 41 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, bytes, bucket; 48 49 ddir = rq_data_dir(rq); 50 bytes = blk_rq_bytes(rq); 51 52 bucket = ddir + 2*(ilog2(bytes) - 9); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct hd_struct *part; 95 unsigned int *inflight; 96 }; 97 98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 99 struct request *rq, void *priv, 100 bool reserved) 101 { 102 struct mq_inflight *mi = priv; 103 104 /* 105 * index[0] counts the specific partition that was asked for. 106 */ 107 if (rq->part == mi->part) 108 mi->inflight[0]++; 109 110 return true; 111 } 112 113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 114 { 115 unsigned inflight[2]; 116 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 117 118 inflight[0] = inflight[1] = 0; 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return inflight[0]; 122 } 123 124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 125 struct request *rq, void *priv, 126 bool reserved) 127 { 128 struct mq_inflight *mi = priv; 129 130 if (rq->part == mi->part) 131 mi->inflight[rq_data_dir(rq)]++; 132 133 return true; 134 } 135 136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 137 unsigned int inflight[2]) 138 { 139 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 140 141 inflight[0] = inflight[1] = 0; 142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 143 } 144 145 void blk_freeze_queue_start(struct request_queue *q) 146 { 147 int freeze_depth; 148 149 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 150 if (freeze_depth == 1) { 151 percpu_ref_kill(&q->q_usage_counter); 152 if (queue_is_mq(q)) 153 blk_mq_run_hw_queues(q, false); 154 } 155 } 156 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 157 158 void blk_mq_freeze_queue_wait(struct request_queue *q) 159 { 160 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 163 164 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 165 unsigned long timeout) 166 { 167 return wait_event_timeout(q->mq_freeze_wq, 168 percpu_ref_is_zero(&q->q_usage_counter), 169 timeout); 170 } 171 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 172 173 /* 174 * Guarantee no request is in use, so we can change any data structure of 175 * the queue afterward. 176 */ 177 void blk_freeze_queue(struct request_queue *q) 178 { 179 /* 180 * In the !blk_mq case we are only calling this to kill the 181 * q_usage_counter, otherwise this increases the freeze depth 182 * and waits for it to return to zero. For this reason there is 183 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 184 * exported to drivers as the only user for unfreeze is blk_mq. 185 */ 186 blk_freeze_queue_start(q); 187 blk_mq_freeze_queue_wait(q); 188 } 189 190 void blk_mq_freeze_queue(struct request_queue *q) 191 { 192 /* 193 * ...just an alias to keep freeze and unfreeze actions balanced 194 * in the blk_mq_* namespace 195 */ 196 blk_freeze_queue(q); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 199 200 void blk_mq_unfreeze_queue(struct request_queue *q) 201 { 202 int freeze_depth; 203 204 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 205 WARN_ON_ONCE(freeze_depth < 0); 206 if (!freeze_depth) { 207 percpu_ref_resurrect(&q->q_usage_counter); 208 wake_up_all(&q->mq_freeze_wq); 209 } 210 } 211 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 212 213 /* 214 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 215 * mpt3sas driver such that this function can be removed. 216 */ 217 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 218 { 219 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 220 } 221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 222 223 /** 224 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 225 * @q: request queue. 226 * 227 * Note: this function does not prevent that the struct request end_io() 228 * callback function is invoked. Once this function is returned, we make 229 * sure no dispatch can happen until the queue is unquiesced via 230 * blk_mq_unquiesce_queue(). 231 */ 232 void blk_mq_quiesce_queue(struct request_queue *q) 233 { 234 struct blk_mq_hw_ctx *hctx; 235 unsigned int i; 236 bool rcu = false; 237 238 blk_mq_quiesce_queue_nowait(q); 239 240 queue_for_each_hw_ctx(q, hctx, i) { 241 if (hctx->flags & BLK_MQ_F_BLOCKING) 242 synchronize_srcu(hctx->srcu); 243 else 244 rcu = true; 245 } 246 if (rcu) 247 synchronize_rcu(); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 261 262 /* dispatch requests which are inserted during quiescing */ 263 blk_mq_run_hw_queues(q, true); 264 } 265 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 266 267 void blk_mq_wake_waiters(struct request_queue *q) 268 { 269 struct blk_mq_hw_ctx *hctx; 270 unsigned int i; 271 272 queue_for_each_hw_ctx(q, hctx, i) 273 if (blk_mq_hw_queue_mapped(hctx)) 274 blk_mq_tag_wakeup_all(hctx->tags, true); 275 } 276 277 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 278 { 279 return blk_mq_has_free_tags(hctx->tags); 280 } 281 EXPORT_SYMBOL(blk_mq_can_queue); 282 283 /* 284 * Only need start/end time stamping if we have stats enabled, or using 285 * an IO scheduler. 286 */ 287 static inline bool blk_mq_need_time_stamp(struct request *rq) 288 { 289 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 290 } 291 292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 293 unsigned int tag, unsigned int op) 294 { 295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 296 struct request *rq = tags->static_rqs[tag]; 297 req_flags_t rq_flags = 0; 298 299 if (data->flags & BLK_MQ_REQ_INTERNAL) { 300 rq->tag = -1; 301 rq->internal_tag = tag; 302 } else { 303 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 304 rq_flags = RQF_MQ_INFLIGHT; 305 atomic_inc(&data->hctx->nr_active); 306 } 307 rq->tag = tag; 308 rq->internal_tag = -1; 309 data->hctx->tags->rqs[rq->tag] = rq; 310 } 311 312 /* csd/requeue_work/fifo_time is initialized before use */ 313 rq->q = data->q; 314 rq->mq_ctx = data->ctx; 315 rq->mq_hctx = data->hctx; 316 rq->rq_flags = rq_flags; 317 rq->cmd_flags = op; 318 if (data->flags & BLK_MQ_REQ_PREEMPT) 319 rq->rq_flags |= RQF_PREEMPT; 320 if (blk_queue_io_stat(data->q)) 321 rq->rq_flags |= RQF_IO_STAT; 322 INIT_LIST_HEAD(&rq->queuelist); 323 INIT_HLIST_NODE(&rq->hash); 324 RB_CLEAR_NODE(&rq->rb_node); 325 rq->rq_disk = NULL; 326 rq->part = NULL; 327 if (blk_mq_need_time_stamp(rq)) 328 rq->start_time_ns = ktime_get_ns(); 329 else 330 rq->start_time_ns = 0; 331 rq->io_start_time_ns = 0; 332 rq->nr_phys_segments = 0; 333 #if defined(CONFIG_BLK_DEV_INTEGRITY) 334 rq->nr_integrity_segments = 0; 335 #endif 336 /* tag was already set */ 337 rq->extra_len = 0; 338 WRITE_ONCE(rq->deadline, 0); 339 340 rq->timeout = 0; 341 342 rq->end_io = NULL; 343 rq->end_io_data = NULL; 344 345 data->ctx->rq_dispatched[op_is_sync(op)]++; 346 refcount_set(&rq->ref, 1); 347 return rq; 348 } 349 350 static struct request *blk_mq_get_request(struct request_queue *q, 351 struct bio *bio, 352 struct blk_mq_alloc_data *data) 353 { 354 struct elevator_queue *e = q->elevator; 355 struct request *rq; 356 unsigned int tag; 357 bool put_ctx_on_error = false; 358 359 blk_queue_enter_live(q); 360 data->q = q; 361 if (likely(!data->ctx)) { 362 data->ctx = blk_mq_get_ctx(q); 363 put_ctx_on_error = true; 364 } 365 if (likely(!data->hctx)) 366 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 367 data->ctx); 368 if (data->cmd_flags & REQ_NOWAIT) 369 data->flags |= BLK_MQ_REQ_NOWAIT; 370 371 if (e) { 372 data->flags |= BLK_MQ_REQ_INTERNAL; 373 374 /* 375 * Flush requests are special and go directly to the 376 * dispatch list. Don't include reserved tags in the 377 * limiting, as it isn't useful. 378 */ 379 if (!op_is_flush(data->cmd_flags) && 380 e->type->ops.limit_depth && 381 !(data->flags & BLK_MQ_REQ_RESERVED)) 382 e->type->ops.limit_depth(data->cmd_flags, data); 383 } else { 384 blk_mq_tag_busy(data->hctx); 385 } 386 387 tag = blk_mq_get_tag(data); 388 if (tag == BLK_MQ_TAG_FAIL) { 389 if (put_ctx_on_error) { 390 blk_mq_put_ctx(data->ctx); 391 data->ctx = NULL; 392 } 393 blk_queue_exit(q); 394 return NULL; 395 } 396 397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 398 if (!op_is_flush(data->cmd_flags)) { 399 rq->elv.icq = NULL; 400 if (e && e->type->ops.prepare_request) { 401 if (e->type->icq_cache) 402 blk_mq_sched_assign_ioc(rq); 403 404 e->type->ops.prepare_request(rq, bio); 405 rq->rq_flags |= RQF_ELVPRIV; 406 } 407 } 408 data->hctx->queued++; 409 return rq; 410 } 411 412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 413 blk_mq_req_flags_t flags) 414 { 415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 416 struct request *rq; 417 int ret; 418 419 ret = blk_queue_enter(q, flags); 420 if (ret) 421 return ERR_PTR(ret); 422 423 rq = blk_mq_get_request(q, NULL, &alloc_data); 424 blk_queue_exit(q); 425 426 if (!rq) 427 return ERR_PTR(-EWOULDBLOCK); 428 429 blk_mq_put_ctx(alloc_data.ctx); 430 431 rq->__data_len = 0; 432 rq->__sector = (sector_t) -1; 433 rq->bio = rq->biotail = NULL; 434 return rq; 435 } 436 EXPORT_SYMBOL(blk_mq_alloc_request); 437 438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 440 { 441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 442 struct request *rq; 443 unsigned int cpu; 444 int ret; 445 446 /* 447 * If the tag allocator sleeps we could get an allocation for a 448 * different hardware context. No need to complicate the low level 449 * allocator for this for the rare use case of a command tied to 450 * a specific queue. 451 */ 452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 453 return ERR_PTR(-EINVAL); 454 455 if (hctx_idx >= q->nr_hw_queues) 456 return ERR_PTR(-EIO); 457 458 ret = blk_queue_enter(q, flags); 459 if (ret) 460 return ERR_PTR(ret); 461 462 /* 463 * Check if the hardware context is actually mapped to anything. 464 * If not tell the caller that it should skip this queue. 465 */ 466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 468 blk_queue_exit(q); 469 return ERR_PTR(-EXDEV); 470 } 471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 rq = blk_mq_get_request(q, NULL, &alloc_data); 475 blk_queue_exit(q); 476 477 if (!rq) 478 return ERR_PTR(-EWOULDBLOCK); 479 480 return rq; 481 } 482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 483 484 static void __blk_mq_free_request(struct request *rq) 485 { 486 struct request_queue *q = rq->q; 487 struct blk_mq_ctx *ctx = rq->mq_ctx; 488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 489 const int sched_tag = rq->internal_tag; 490 491 blk_pm_mark_last_busy(rq); 492 rq->mq_hctx = NULL; 493 if (rq->tag != -1) 494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 495 if (sched_tag != -1) 496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 497 blk_mq_sched_restart(hctx); 498 blk_queue_exit(q); 499 } 500 501 void blk_mq_free_request(struct request *rq) 502 { 503 struct request_queue *q = rq->q; 504 struct elevator_queue *e = q->elevator; 505 struct blk_mq_ctx *ctx = rq->mq_ctx; 506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 507 508 if (rq->rq_flags & RQF_ELVPRIV) { 509 if (e && e->type->ops.finish_request) 510 e->type->ops.finish_request(rq); 511 if (rq->elv.icq) { 512 put_io_context(rq->elv.icq->ioc); 513 rq->elv.icq = NULL; 514 } 515 } 516 517 ctx->rq_completed[rq_is_sync(rq)]++; 518 if (rq->rq_flags & RQF_MQ_INFLIGHT) 519 atomic_dec(&hctx->nr_active); 520 521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 522 laptop_io_completion(q->backing_dev_info); 523 524 rq_qos_done(q, rq); 525 526 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 527 if (refcount_dec_and_test(&rq->ref)) 528 __blk_mq_free_request(rq); 529 } 530 EXPORT_SYMBOL_GPL(blk_mq_free_request); 531 532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 533 { 534 u64 now = 0; 535 536 if (blk_mq_need_time_stamp(rq)) 537 now = ktime_get_ns(); 538 539 if (rq->rq_flags & RQF_STATS) { 540 blk_mq_poll_stats_start(rq->q); 541 blk_stat_add(rq, now); 542 } 543 544 if (rq->internal_tag != -1) 545 blk_mq_sched_completed_request(rq, now); 546 547 blk_account_io_done(rq, now); 548 549 if (rq->end_io) { 550 rq_qos_done(rq->q, rq); 551 rq->end_io(rq, error); 552 } else { 553 blk_mq_free_request(rq); 554 } 555 } 556 EXPORT_SYMBOL(__blk_mq_end_request); 557 558 void blk_mq_end_request(struct request *rq, blk_status_t error) 559 { 560 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 561 BUG(); 562 __blk_mq_end_request(rq, error); 563 } 564 EXPORT_SYMBOL(blk_mq_end_request); 565 566 static void __blk_mq_complete_request_remote(void *data) 567 { 568 struct request *rq = data; 569 struct request_queue *q = rq->q; 570 571 q->mq_ops->complete(rq); 572 } 573 574 static void __blk_mq_complete_request(struct request *rq) 575 { 576 struct blk_mq_ctx *ctx = rq->mq_ctx; 577 struct request_queue *q = rq->q; 578 bool shared = false; 579 int cpu; 580 581 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 582 /* 583 * Most of single queue controllers, there is only one irq vector 584 * for handling IO completion, and the only irq's affinity is set 585 * as all possible CPUs. On most of ARCHs, this affinity means the 586 * irq is handled on one specific CPU. 587 * 588 * So complete IO reqeust in softirq context in case of single queue 589 * for not degrading IO performance by irqsoff latency. 590 */ 591 if (q->nr_hw_queues == 1) { 592 __blk_complete_request(rq); 593 return; 594 } 595 596 /* 597 * For a polled request, always complete locallly, it's pointless 598 * to redirect the completion. 599 */ 600 if ((rq->cmd_flags & REQ_HIPRI) || 601 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 602 q->mq_ops->complete(rq); 603 return; 604 } 605 606 cpu = get_cpu(); 607 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 608 shared = cpus_share_cache(cpu, ctx->cpu); 609 610 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 611 rq->csd.func = __blk_mq_complete_request_remote; 612 rq->csd.info = rq; 613 rq->csd.flags = 0; 614 smp_call_function_single_async(ctx->cpu, &rq->csd); 615 } else { 616 q->mq_ops->complete(rq); 617 } 618 put_cpu(); 619 } 620 621 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 622 __releases(hctx->srcu) 623 { 624 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 625 rcu_read_unlock(); 626 else 627 srcu_read_unlock(hctx->srcu, srcu_idx); 628 } 629 630 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 631 __acquires(hctx->srcu) 632 { 633 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 634 /* shut up gcc false positive */ 635 *srcu_idx = 0; 636 rcu_read_lock(); 637 } else 638 *srcu_idx = srcu_read_lock(hctx->srcu); 639 } 640 641 /** 642 * blk_mq_complete_request - end I/O on a request 643 * @rq: the request being processed 644 * 645 * Description: 646 * Ends all I/O on a request. It does not handle partial completions. 647 * The actual completion happens out-of-order, through a IPI handler. 648 **/ 649 bool blk_mq_complete_request(struct request *rq) 650 { 651 if (unlikely(blk_should_fake_timeout(rq->q))) 652 return false; 653 __blk_mq_complete_request(rq); 654 return true; 655 } 656 EXPORT_SYMBOL(blk_mq_complete_request); 657 658 void blk_mq_complete_request_sync(struct request *rq) 659 { 660 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 661 rq->q->mq_ops->complete(rq); 662 } 663 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync); 664 665 int blk_mq_request_started(struct request *rq) 666 { 667 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 668 } 669 EXPORT_SYMBOL_GPL(blk_mq_request_started); 670 671 void blk_mq_start_request(struct request *rq) 672 { 673 struct request_queue *q = rq->q; 674 675 blk_mq_sched_started_request(rq); 676 677 trace_block_rq_issue(q, rq); 678 679 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 680 rq->io_start_time_ns = ktime_get_ns(); 681 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 682 rq->throtl_size = blk_rq_sectors(rq); 683 #endif 684 rq->rq_flags |= RQF_STATS; 685 rq_qos_issue(q, rq); 686 } 687 688 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 689 690 blk_add_timer(rq); 691 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 692 693 if (q->dma_drain_size && blk_rq_bytes(rq)) { 694 /* 695 * Make sure space for the drain appears. We know we can do 696 * this because max_hw_segments has been adjusted to be one 697 * fewer than the device can handle. 698 */ 699 rq->nr_phys_segments++; 700 } 701 } 702 EXPORT_SYMBOL(blk_mq_start_request); 703 704 static void __blk_mq_requeue_request(struct request *rq) 705 { 706 struct request_queue *q = rq->q; 707 708 blk_mq_put_driver_tag(rq); 709 710 trace_block_rq_requeue(q, rq); 711 rq_qos_requeue(q, rq); 712 713 if (blk_mq_request_started(rq)) { 714 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 715 rq->rq_flags &= ~RQF_TIMED_OUT; 716 if (q->dma_drain_size && blk_rq_bytes(rq)) 717 rq->nr_phys_segments--; 718 } 719 } 720 721 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 722 { 723 __blk_mq_requeue_request(rq); 724 725 /* this request will be re-inserted to io scheduler queue */ 726 blk_mq_sched_requeue_request(rq); 727 728 BUG_ON(!list_empty(&rq->queuelist)); 729 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 730 } 731 EXPORT_SYMBOL(blk_mq_requeue_request); 732 733 static void blk_mq_requeue_work(struct work_struct *work) 734 { 735 struct request_queue *q = 736 container_of(work, struct request_queue, requeue_work.work); 737 LIST_HEAD(rq_list); 738 struct request *rq, *next; 739 740 spin_lock_irq(&q->requeue_lock); 741 list_splice_init(&q->requeue_list, &rq_list); 742 spin_unlock_irq(&q->requeue_lock); 743 744 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 745 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 746 continue; 747 748 rq->rq_flags &= ~RQF_SOFTBARRIER; 749 list_del_init(&rq->queuelist); 750 /* 751 * If RQF_DONTPREP, rq has contained some driver specific 752 * data, so insert it to hctx dispatch list to avoid any 753 * merge. 754 */ 755 if (rq->rq_flags & RQF_DONTPREP) 756 blk_mq_request_bypass_insert(rq, false); 757 else 758 blk_mq_sched_insert_request(rq, true, false, false); 759 } 760 761 while (!list_empty(&rq_list)) { 762 rq = list_entry(rq_list.next, struct request, queuelist); 763 list_del_init(&rq->queuelist); 764 blk_mq_sched_insert_request(rq, false, false, false); 765 } 766 767 blk_mq_run_hw_queues(q, false); 768 } 769 770 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 771 bool kick_requeue_list) 772 { 773 struct request_queue *q = rq->q; 774 unsigned long flags; 775 776 /* 777 * We abuse this flag that is otherwise used by the I/O scheduler to 778 * request head insertion from the workqueue. 779 */ 780 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 781 782 spin_lock_irqsave(&q->requeue_lock, flags); 783 if (at_head) { 784 rq->rq_flags |= RQF_SOFTBARRIER; 785 list_add(&rq->queuelist, &q->requeue_list); 786 } else { 787 list_add_tail(&rq->queuelist, &q->requeue_list); 788 } 789 spin_unlock_irqrestore(&q->requeue_lock, flags); 790 791 if (kick_requeue_list) 792 blk_mq_kick_requeue_list(q); 793 } 794 795 void blk_mq_kick_requeue_list(struct request_queue *q) 796 { 797 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 798 } 799 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 800 801 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 802 unsigned long msecs) 803 { 804 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 805 msecs_to_jiffies(msecs)); 806 } 807 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 808 809 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 810 { 811 if (tag < tags->nr_tags) { 812 prefetch(tags->rqs[tag]); 813 return tags->rqs[tag]; 814 } 815 816 return NULL; 817 } 818 EXPORT_SYMBOL(blk_mq_tag_to_rq); 819 820 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 821 void *priv, bool reserved) 822 { 823 /* 824 * If we find a request that is inflight and the queue matches, 825 * we know the queue is busy. Return false to stop the iteration. 826 */ 827 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 828 bool *busy = priv; 829 830 *busy = true; 831 return false; 832 } 833 834 return true; 835 } 836 837 bool blk_mq_queue_inflight(struct request_queue *q) 838 { 839 bool busy = false; 840 841 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 842 return busy; 843 } 844 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 845 846 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 847 { 848 req->rq_flags |= RQF_TIMED_OUT; 849 if (req->q->mq_ops->timeout) { 850 enum blk_eh_timer_return ret; 851 852 ret = req->q->mq_ops->timeout(req, reserved); 853 if (ret == BLK_EH_DONE) 854 return; 855 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 856 } 857 858 blk_add_timer(req); 859 } 860 861 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 862 { 863 unsigned long deadline; 864 865 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 866 return false; 867 if (rq->rq_flags & RQF_TIMED_OUT) 868 return false; 869 870 deadline = READ_ONCE(rq->deadline); 871 if (time_after_eq(jiffies, deadline)) 872 return true; 873 874 if (*next == 0) 875 *next = deadline; 876 else if (time_after(*next, deadline)) 877 *next = deadline; 878 return false; 879 } 880 881 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 882 struct request *rq, void *priv, bool reserved) 883 { 884 unsigned long *next = priv; 885 886 /* 887 * Just do a quick check if it is expired before locking the request in 888 * so we're not unnecessarilly synchronizing across CPUs. 889 */ 890 if (!blk_mq_req_expired(rq, next)) 891 return true; 892 893 /* 894 * We have reason to believe the request may be expired. Take a 895 * reference on the request to lock this request lifetime into its 896 * currently allocated context to prevent it from being reallocated in 897 * the event the completion by-passes this timeout handler. 898 * 899 * If the reference was already released, then the driver beat the 900 * timeout handler to posting a natural completion. 901 */ 902 if (!refcount_inc_not_zero(&rq->ref)) 903 return true; 904 905 /* 906 * The request is now locked and cannot be reallocated underneath the 907 * timeout handler's processing. Re-verify this exact request is truly 908 * expired; if it is not expired, then the request was completed and 909 * reallocated as a new request. 910 */ 911 if (blk_mq_req_expired(rq, next)) 912 blk_mq_rq_timed_out(rq, reserved); 913 if (refcount_dec_and_test(&rq->ref)) 914 __blk_mq_free_request(rq); 915 916 return true; 917 } 918 919 static void blk_mq_timeout_work(struct work_struct *work) 920 { 921 struct request_queue *q = 922 container_of(work, struct request_queue, timeout_work); 923 unsigned long next = 0; 924 struct blk_mq_hw_ctx *hctx; 925 int i; 926 927 /* A deadlock might occur if a request is stuck requiring a 928 * timeout at the same time a queue freeze is waiting 929 * completion, since the timeout code would not be able to 930 * acquire the queue reference here. 931 * 932 * That's why we don't use blk_queue_enter here; instead, we use 933 * percpu_ref_tryget directly, because we need to be able to 934 * obtain a reference even in the short window between the queue 935 * starting to freeze, by dropping the first reference in 936 * blk_freeze_queue_start, and the moment the last request is 937 * consumed, marked by the instant q_usage_counter reaches 938 * zero. 939 */ 940 if (!percpu_ref_tryget(&q->q_usage_counter)) 941 return; 942 943 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 944 945 if (next != 0) { 946 mod_timer(&q->timeout, next); 947 } else { 948 /* 949 * Request timeouts are handled as a forward rolling timer. If 950 * we end up here it means that no requests are pending and 951 * also that no request has been pending for a while. Mark 952 * each hctx as idle. 953 */ 954 queue_for_each_hw_ctx(q, hctx, i) { 955 /* the hctx may be unmapped, so check it here */ 956 if (blk_mq_hw_queue_mapped(hctx)) 957 blk_mq_tag_idle(hctx); 958 } 959 } 960 blk_queue_exit(q); 961 } 962 963 struct flush_busy_ctx_data { 964 struct blk_mq_hw_ctx *hctx; 965 struct list_head *list; 966 }; 967 968 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 969 { 970 struct flush_busy_ctx_data *flush_data = data; 971 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 972 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 973 enum hctx_type type = hctx->type; 974 975 spin_lock(&ctx->lock); 976 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 977 sbitmap_clear_bit(sb, bitnr); 978 spin_unlock(&ctx->lock); 979 return true; 980 } 981 982 /* 983 * Process software queues that have been marked busy, splicing them 984 * to the for-dispatch 985 */ 986 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 987 { 988 struct flush_busy_ctx_data data = { 989 .hctx = hctx, 990 .list = list, 991 }; 992 993 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 994 } 995 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 996 997 struct dispatch_rq_data { 998 struct blk_mq_hw_ctx *hctx; 999 struct request *rq; 1000 }; 1001 1002 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1003 void *data) 1004 { 1005 struct dispatch_rq_data *dispatch_data = data; 1006 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1007 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1008 enum hctx_type type = hctx->type; 1009 1010 spin_lock(&ctx->lock); 1011 if (!list_empty(&ctx->rq_lists[type])) { 1012 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1013 list_del_init(&dispatch_data->rq->queuelist); 1014 if (list_empty(&ctx->rq_lists[type])) 1015 sbitmap_clear_bit(sb, bitnr); 1016 } 1017 spin_unlock(&ctx->lock); 1018 1019 return !dispatch_data->rq; 1020 } 1021 1022 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1023 struct blk_mq_ctx *start) 1024 { 1025 unsigned off = start ? start->index_hw[hctx->type] : 0; 1026 struct dispatch_rq_data data = { 1027 .hctx = hctx, 1028 .rq = NULL, 1029 }; 1030 1031 __sbitmap_for_each_set(&hctx->ctx_map, off, 1032 dispatch_rq_from_ctx, &data); 1033 1034 return data.rq; 1035 } 1036 1037 static inline unsigned int queued_to_index(unsigned int queued) 1038 { 1039 if (!queued) 1040 return 0; 1041 1042 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1043 } 1044 1045 bool blk_mq_get_driver_tag(struct request *rq) 1046 { 1047 struct blk_mq_alloc_data data = { 1048 .q = rq->q, 1049 .hctx = rq->mq_hctx, 1050 .flags = BLK_MQ_REQ_NOWAIT, 1051 .cmd_flags = rq->cmd_flags, 1052 }; 1053 bool shared; 1054 1055 if (rq->tag != -1) 1056 goto done; 1057 1058 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1059 data.flags |= BLK_MQ_REQ_RESERVED; 1060 1061 shared = blk_mq_tag_busy(data.hctx); 1062 rq->tag = blk_mq_get_tag(&data); 1063 if (rq->tag >= 0) { 1064 if (shared) { 1065 rq->rq_flags |= RQF_MQ_INFLIGHT; 1066 atomic_inc(&data.hctx->nr_active); 1067 } 1068 data.hctx->tags->rqs[rq->tag] = rq; 1069 } 1070 1071 done: 1072 return rq->tag != -1; 1073 } 1074 1075 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1076 int flags, void *key) 1077 { 1078 struct blk_mq_hw_ctx *hctx; 1079 1080 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1081 1082 spin_lock(&hctx->dispatch_wait_lock); 1083 if (!list_empty(&wait->entry)) { 1084 struct sbitmap_queue *sbq; 1085 1086 list_del_init(&wait->entry); 1087 sbq = &hctx->tags->bitmap_tags; 1088 atomic_dec(&sbq->ws_active); 1089 } 1090 spin_unlock(&hctx->dispatch_wait_lock); 1091 1092 blk_mq_run_hw_queue(hctx, true); 1093 return 1; 1094 } 1095 1096 /* 1097 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1098 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1099 * restart. For both cases, take care to check the condition again after 1100 * marking us as waiting. 1101 */ 1102 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1103 struct request *rq) 1104 { 1105 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1106 struct wait_queue_head *wq; 1107 wait_queue_entry_t *wait; 1108 bool ret; 1109 1110 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1111 blk_mq_sched_mark_restart_hctx(hctx); 1112 1113 /* 1114 * It's possible that a tag was freed in the window between the 1115 * allocation failure and adding the hardware queue to the wait 1116 * queue. 1117 * 1118 * Don't clear RESTART here, someone else could have set it. 1119 * At most this will cost an extra queue run. 1120 */ 1121 return blk_mq_get_driver_tag(rq); 1122 } 1123 1124 wait = &hctx->dispatch_wait; 1125 if (!list_empty_careful(&wait->entry)) 1126 return false; 1127 1128 wq = &bt_wait_ptr(sbq, hctx)->wait; 1129 1130 spin_lock_irq(&wq->lock); 1131 spin_lock(&hctx->dispatch_wait_lock); 1132 if (!list_empty(&wait->entry)) { 1133 spin_unlock(&hctx->dispatch_wait_lock); 1134 spin_unlock_irq(&wq->lock); 1135 return false; 1136 } 1137 1138 atomic_inc(&sbq->ws_active); 1139 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1140 __add_wait_queue(wq, wait); 1141 1142 /* 1143 * It's possible that a tag was freed in the window between the 1144 * allocation failure and adding the hardware queue to the wait 1145 * queue. 1146 */ 1147 ret = blk_mq_get_driver_tag(rq); 1148 if (!ret) { 1149 spin_unlock(&hctx->dispatch_wait_lock); 1150 spin_unlock_irq(&wq->lock); 1151 return false; 1152 } 1153 1154 /* 1155 * We got a tag, remove ourselves from the wait queue to ensure 1156 * someone else gets the wakeup. 1157 */ 1158 list_del_init(&wait->entry); 1159 atomic_dec(&sbq->ws_active); 1160 spin_unlock(&hctx->dispatch_wait_lock); 1161 spin_unlock_irq(&wq->lock); 1162 1163 return true; 1164 } 1165 1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1167 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1168 /* 1169 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1170 * - EWMA is one simple way to compute running average value 1171 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1172 * - take 4 as factor for avoiding to get too small(0) result, and this 1173 * factor doesn't matter because EWMA decreases exponentially 1174 */ 1175 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1176 { 1177 unsigned int ewma; 1178 1179 if (hctx->queue->elevator) 1180 return; 1181 1182 ewma = hctx->dispatch_busy; 1183 1184 if (!ewma && !busy) 1185 return; 1186 1187 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1188 if (busy) 1189 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1190 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1191 1192 hctx->dispatch_busy = ewma; 1193 } 1194 1195 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1196 1197 /* 1198 * Returns true if we did some work AND can potentially do more. 1199 */ 1200 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1201 bool got_budget) 1202 { 1203 struct blk_mq_hw_ctx *hctx; 1204 struct request *rq, *nxt; 1205 bool no_tag = false; 1206 int errors, queued; 1207 blk_status_t ret = BLK_STS_OK; 1208 1209 if (list_empty(list)) 1210 return false; 1211 1212 WARN_ON(!list_is_singular(list) && got_budget); 1213 1214 /* 1215 * Now process all the entries, sending them to the driver. 1216 */ 1217 errors = queued = 0; 1218 do { 1219 struct blk_mq_queue_data bd; 1220 1221 rq = list_first_entry(list, struct request, queuelist); 1222 1223 hctx = rq->mq_hctx; 1224 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1225 break; 1226 1227 if (!blk_mq_get_driver_tag(rq)) { 1228 /* 1229 * The initial allocation attempt failed, so we need to 1230 * rerun the hardware queue when a tag is freed. The 1231 * waitqueue takes care of that. If the queue is run 1232 * before we add this entry back on the dispatch list, 1233 * we'll re-run it below. 1234 */ 1235 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1236 blk_mq_put_dispatch_budget(hctx); 1237 /* 1238 * For non-shared tags, the RESTART check 1239 * will suffice. 1240 */ 1241 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1242 no_tag = true; 1243 break; 1244 } 1245 } 1246 1247 list_del_init(&rq->queuelist); 1248 1249 bd.rq = rq; 1250 1251 /* 1252 * Flag last if we have no more requests, or if we have more 1253 * but can't assign a driver tag to it. 1254 */ 1255 if (list_empty(list)) 1256 bd.last = true; 1257 else { 1258 nxt = list_first_entry(list, struct request, queuelist); 1259 bd.last = !blk_mq_get_driver_tag(nxt); 1260 } 1261 1262 ret = q->mq_ops->queue_rq(hctx, &bd); 1263 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1264 /* 1265 * If an I/O scheduler has been configured and we got a 1266 * driver tag for the next request already, free it 1267 * again. 1268 */ 1269 if (!list_empty(list)) { 1270 nxt = list_first_entry(list, struct request, queuelist); 1271 blk_mq_put_driver_tag(nxt); 1272 } 1273 list_add(&rq->queuelist, list); 1274 __blk_mq_requeue_request(rq); 1275 break; 1276 } 1277 1278 if (unlikely(ret != BLK_STS_OK)) { 1279 errors++; 1280 blk_mq_end_request(rq, BLK_STS_IOERR); 1281 continue; 1282 } 1283 1284 queued++; 1285 } while (!list_empty(list)); 1286 1287 hctx->dispatched[queued_to_index(queued)]++; 1288 1289 /* 1290 * Any items that need requeuing? Stuff them into hctx->dispatch, 1291 * that is where we will continue on next queue run. 1292 */ 1293 if (!list_empty(list)) { 1294 bool needs_restart; 1295 1296 /* 1297 * If we didn't flush the entire list, we could have told 1298 * the driver there was more coming, but that turned out to 1299 * be a lie. 1300 */ 1301 if (q->mq_ops->commit_rqs) 1302 q->mq_ops->commit_rqs(hctx); 1303 1304 spin_lock(&hctx->lock); 1305 list_splice_init(list, &hctx->dispatch); 1306 spin_unlock(&hctx->lock); 1307 1308 /* 1309 * If SCHED_RESTART was set by the caller of this function and 1310 * it is no longer set that means that it was cleared by another 1311 * thread and hence that a queue rerun is needed. 1312 * 1313 * If 'no_tag' is set, that means that we failed getting 1314 * a driver tag with an I/O scheduler attached. If our dispatch 1315 * waitqueue is no longer active, ensure that we run the queue 1316 * AFTER adding our entries back to the list. 1317 * 1318 * If no I/O scheduler has been configured it is possible that 1319 * the hardware queue got stopped and restarted before requests 1320 * were pushed back onto the dispatch list. Rerun the queue to 1321 * avoid starvation. Notes: 1322 * - blk_mq_run_hw_queue() checks whether or not a queue has 1323 * been stopped before rerunning a queue. 1324 * - Some but not all block drivers stop a queue before 1325 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1326 * and dm-rq. 1327 * 1328 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1329 * bit is set, run queue after a delay to avoid IO stalls 1330 * that could otherwise occur if the queue is idle. 1331 */ 1332 needs_restart = blk_mq_sched_needs_restart(hctx); 1333 if (!needs_restart || 1334 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1335 blk_mq_run_hw_queue(hctx, true); 1336 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1337 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1338 1339 blk_mq_update_dispatch_busy(hctx, true); 1340 return false; 1341 } else 1342 blk_mq_update_dispatch_busy(hctx, false); 1343 1344 /* 1345 * If the host/device is unable to accept more work, inform the 1346 * caller of that. 1347 */ 1348 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1349 return false; 1350 1351 return (queued + errors) != 0; 1352 } 1353 1354 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1355 { 1356 int srcu_idx; 1357 1358 /* 1359 * We should be running this queue from one of the CPUs that 1360 * are mapped to it. 1361 * 1362 * There are at least two related races now between setting 1363 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1364 * __blk_mq_run_hw_queue(): 1365 * 1366 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1367 * but later it becomes online, then this warning is harmless 1368 * at all 1369 * 1370 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1371 * but later it becomes offline, then the warning can't be 1372 * triggered, and we depend on blk-mq timeout handler to 1373 * handle dispatched requests to this hctx 1374 */ 1375 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1376 cpu_online(hctx->next_cpu)) { 1377 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1378 raw_smp_processor_id(), 1379 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1380 dump_stack(); 1381 } 1382 1383 /* 1384 * We can't run the queue inline with ints disabled. Ensure that 1385 * we catch bad users of this early. 1386 */ 1387 WARN_ON_ONCE(in_interrupt()); 1388 1389 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1390 1391 hctx_lock(hctx, &srcu_idx); 1392 blk_mq_sched_dispatch_requests(hctx); 1393 hctx_unlock(hctx, srcu_idx); 1394 } 1395 1396 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1397 { 1398 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1399 1400 if (cpu >= nr_cpu_ids) 1401 cpu = cpumask_first(hctx->cpumask); 1402 return cpu; 1403 } 1404 1405 /* 1406 * It'd be great if the workqueue API had a way to pass 1407 * in a mask and had some smarts for more clever placement. 1408 * For now we just round-robin here, switching for every 1409 * BLK_MQ_CPU_WORK_BATCH queued items. 1410 */ 1411 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1412 { 1413 bool tried = false; 1414 int next_cpu = hctx->next_cpu; 1415 1416 if (hctx->queue->nr_hw_queues == 1) 1417 return WORK_CPU_UNBOUND; 1418 1419 if (--hctx->next_cpu_batch <= 0) { 1420 select_cpu: 1421 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1422 cpu_online_mask); 1423 if (next_cpu >= nr_cpu_ids) 1424 next_cpu = blk_mq_first_mapped_cpu(hctx); 1425 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1426 } 1427 1428 /* 1429 * Do unbound schedule if we can't find a online CPU for this hctx, 1430 * and it should only happen in the path of handling CPU DEAD. 1431 */ 1432 if (!cpu_online(next_cpu)) { 1433 if (!tried) { 1434 tried = true; 1435 goto select_cpu; 1436 } 1437 1438 /* 1439 * Make sure to re-select CPU next time once after CPUs 1440 * in hctx->cpumask become online again. 1441 */ 1442 hctx->next_cpu = next_cpu; 1443 hctx->next_cpu_batch = 1; 1444 return WORK_CPU_UNBOUND; 1445 } 1446 1447 hctx->next_cpu = next_cpu; 1448 return next_cpu; 1449 } 1450 1451 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1452 unsigned long msecs) 1453 { 1454 if (unlikely(blk_mq_hctx_stopped(hctx))) 1455 return; 1456 1457 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1458 int cpu = get_cpu(); 1459 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1460 __blk_mq_run_hw_queue(hctx); 1461 put_cpu(); 1462 return; 1463 } 1464 1465 put_cpu(); 1466 } 1467 1468 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1469 msecs_to_jiffies(msecs)); 1470 } 1471 1472 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1473 { 1474 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1475 } 1476 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1477 1478 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1479 { 1480 int srcu_idx; 1481 bool need_run; 1482 1483 /* 1484 * When queue is quiesced, we may be switching io scheduler, or 1485 * updating nr_hw_queues, or other things, and we can't run queue 1486 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1487 * 1488 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1489 * quiesced. 1490 */ 1491 hctx_lock(hctx, &srcu_idx); 1492 need_run = !blk_queue_quiesced(hctx->queue) && 1493 blk_mq_hctx_has_pending(hctx); 1494 hctx_unlock(hctx, srcu_idx); 1495 1496 if (need_run) { 1497 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1498 return true; 1499 } 1500 1501 return false; 1502 } 1503 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1504 1505 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1506 { 1507 struct blk_mq_hw_ctx *hctx; 1508 int i; 1509 1510 queue_for_each_hw_ctx(q, hctx, i) { 1511 if (blk_mq_hctx_stopped(hctx)) 1512 continue; 1513 1514 blk_mq_run_hw_queue(hctx, async); 1515 } 1516 } 1517 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1518 1519 /** 1520 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1521 * @q: request queue. 1522 * 1523 * The caller is responsible for serializing this function against 1524 * blk_mq_{start,stop}_hw_queue(). 1525 */ 1526 bool blk_mq_queue_stopped(struct request_queue *q) 1527 { 1528 struct blk_mq_hw_ctx *hctx; 1529 int i; 1530 1531 queue_for_each_hw_ctx(q, hctx, i) 1532 if (blk_mq_hctx_stopped(hctx)) 1533 return true; 1534 1535 return false; 1536 } 1537 EXPORT_SYMBOL(blk_mq_queue_stopped); 1538 1539 /* 1540 * This function is often used for pausing .queue_rq() by driver when 1541 * there isn't enough resource or some conditions aren't satisfied, and 1542 * BLK_STS_RESOURCE is usually returned. 1543 * 1544 * We do not guarantee that dispatch can be drained or blocked 1545 * after blk_mq_stop_hw_queue() returns. Please use 1546 * blk_mq_quiesce_queue() for that requirement. 1547 */ 1548 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1549 { 1550 cancel_delayed_work(&hctx->run_work); 1551 1552 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1553 } 1554 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1555 1556 /* 1557 * This function is often used for pausing .queue_rq() by driver when 1558 * there isn't enough resource or some conditions aren't satisfied, and 1559 * BLK_STS_RESOURCE is usually returned. 1560 * 1561 * We do not guarantee that dispatch can be drained or blocked 1562 * after blk_mq_stop_hw_queues() returns. Please use 1563 * blk_mq_quiesce_queue() for that requirement. 1564 */ 1565 void blk_mq_stop_hw_queues(struct request_queue *q) 1566 { 1567 struct blk_mq_hw_ctx *hctx; 1568 int i; 1569 1570 queue_for_each_hw_ctx(q, hctx, i) 1571 blk_mq_stop_hw_queue(hctx); 1572 } 1573 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1574 1575 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1576 { 1577 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1578 1579 blk_mq_run_hw_queue(hctx, false); 1580 } 1581 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1582 1583 void blk_mq_start_hw_queues(struct request_queue *q) 1584 { 1585 struct blk_mq_hw_ctx *hctx; 1586 int i; 1587 1588 queue_for_each_hw_ctx(q, hctx, i) 1589 blk_mq_start_hw_queue(hctx); 1590 } 1591 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1592 1593 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1594 { 1595 if (!blk_mq_hctx_stopped(hctx)) 1596 return; 1597 1598 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1599 blk_mq_run_hw_queue(hctx, async); 1600 } 1601 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1602 1603 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1604 { 1605 struct blk_mq_hw_ctx *hctx; 1606 int i; 1607 1608 queue_for_each_hw_ctx(q, hctx, i) 1609 blk_mq_start_stopped_hw_queue(hctx, async); 1610 } 1611 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1612 1613 static void blk_mq_run_work_fn(struct work_struct *work) 1614 { 1615 struct blk_mq_hw_ctx *hctx; 1616 1617 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1618 1619 /* 1620 * If we are stopped, don't run the queue. 1621 */ 1622 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1623 return; 1624 1625 __blk_mq_run_hw_queue(hctx); 1626 } 1627 1628 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1629 struct request *rq, 1630 bool at_head) 1631 { 1632 struct blk_mq_ctx *ctx = rq->mq_ctx; 1633 enum hctx_type type = hctx->type; 1634 1635 lockdep_assert_held(&ctx->lock); 1636 1637 trace_block_rq_insert(hctx->queue, rq); 1638 1639 if (at_head) 1640 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1641 else 1642 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1643 } 1644 1645 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1646 bool at_head) 1647 { 1648 struct blk_mq_ctx *ctx = rq->mq_ctx; 1649 1650 lockdep_assert_held(&ctx->lock); 1651 1652 __blk_mq_insert_req_list(hctx, rq, at_head); 1653 blk_mq_hctx_mark_pending(hctx, ctx); 1654 } 1655 1656 /* 1657 * Should only be used carefully, when the caller knows we want to 1658 * bypass a potential IO scheduler on the target device. 1659 */ 1660 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1661 { 1662 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1663 1664 spin_lock(&hctx->lock); 1665 list_add_tail(&rq->queuelist, &hctx->dispatch); 1666 spin_unlock(&hctx->lock); 1667 1668 if (run_queue) 1669 blk_mq_run_hw_queue(hctx, false); 1670 } 1671 1672 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1673 struct list_head *list) 1674 1675 { 1676 struct request *rq; 1677 enum hctx_type type = hctx->type; 1678 1679 /* 1680 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1681 * offline now 1682 */ 1683 list_for_each_entry(rq, list, queuelist) { 1684 BUG_ON(rq->mq_ctx != ctx); 1685 trace_block_rq_insert(hctx->queue, rq); 1686 } 1687 1688 spin_lock(&ctx->lock); 1689 list_splice_tail_init(list, &ctx->rq_lists[type]); 1690 blk_mq_hctx_mark_pending(hctx, ctx); 1691 spin_unlock(&ctx->lock); 1692 } 1693 1694 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1695 { 1696 struct request *rqa = container_of(a, struct request, queuelist); 1697 struct request *rqb = container_of(b, struct request, queuelist); 1698 1699 if (rqa->mq_ctx < rqb->mq_ctx) 1700 return -1; 1701 else if (rqa->mq_ctx > rqb->mq_ctx) 1702 return 1; 1703 else if (rqa->mq_hctx < rqb->mq_hctx) 1704 return -1; 1705 else if (rqa->mq_hctx > rqb->mq_hctx) 1706 return 1; 1707 1708 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1709 } 1710 1711 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1712 { 1713 struct blk_mq_hw_ctx *this_hctx; 1714 struct blk_mq_ctx *this_ctx; 1715 struct request_queue *this_q; 1716 struct request *rq; 1717 LIST_HEAD(list); 1718 LIST_HEAD(rq_list); 1719 unsigned int depth; 1720 1721 list_splice_init(&plug->mq_list, &list); 1722 1723 if (plug->rq_count > 2 && plug->multiple_queues) 1724 list_sort(NULL, &list, plug_rq_cmp); 1725 1726 plug->rq_count = 0; 1727 1728 this_q = NULL; 1729 this_hctx = NULL; 1730 this_ctx = NULL; 1731 depth = 0; 1732 1733 while (!list_empty(&list)) { 1734 rq = list_entry_rq(list.next); 1735 list_del_init(&rq->queuelist); 1736 BUG_ON(!rq->q); 1737 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1738 if (this_hctx) { 1739 trace_block_unplug(this_q, depth, !from_schedule); 1740 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1741 &rq_list, 1742 from_schedule); 1743 } 1744 1745 this_q = rq->q; 1746 this_ctx = rq->mq_ctx; 1747 this_hctx = rq->mq_hctx; 1748 depth = 0; 1749 } 1750 1751 depth++; 1752 list_add_tail(&rq->queuelist, &rq_list); 1753 } 1754 1755 /* 1756 * If 'this_hctx' is set, we know we have entries to complete 1757 * on 'rq_list'. Do those. 1758 */ 1759 if (this_hctx) { 1760 trace_block_unplug(this_q, depth, !from_schedule); 1761 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1762 from_schedule); 1763 } 1764 } 1765 1766 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1767 { 1768 blk_init_request_from_bio(rq, bio); 1769 1770 blk_account_io_start(rq, true); 1771 } 1772 1773 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1774 struct request *rq, 1775 blk_qc_t *cookie, bool last) 1776 { 1777 struct request_queue *q = rq->q; 1778 struct blk_mq_queue_data bd = { 1779 .rq = rq, 1780 .last = last, 1781 }; 1782 blk_qc_t new_cookie; 1783 blk_status_t ret; 1784 1785 new_cookie = request_to_qc_t(hctx, rq); 1786 1787 /* 1788 * For OK queue, we are done. For error, caller may kill it. 1789 * Any other error (busy), just add it to our list as we 1790 * previously would have done. 1791 */ 1792 ret = q->mq_ops->queue_rq(hctx, &bd); 1793 switch (ret) { 1794 case BLK_STS_OK: 1795 blk_mq_update_dispatch_busy(hctx, false); 1796 *cookie = new_cookie; 1797 break; 1798 case BLK_STS_RESOURCE: 1799 case BLK_STS_DEV_RESOURCE: 1800 blk_mq_update_dispatch_busy(hctx, true); 1801 __blk_mq_requeue_request(rq); 1802 break; 1803 default: 1804 blk_mq_update_dispatch_busy(hctx, false); 1805 *cookie = BLK_QC_T_NONE; 1806 break; 1807 } 1808 1809 return ret; 1810 } 1811 1812 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1813 struct request *rq, 1814 blk_qc_t *cookie, 1815 bool bypass_insert, bool last) 1816 { 1817 struct request_queue *q = rq->q; 1818 bool run_queue = true; 1819 1820 /* 1821 * RCU or SRCU read lock is needed before checking quiesced flag. 1822 * 1823 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1824 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1825 * and avoid driver to try to dispatch again. 1826 */ 1827 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1828 run_queue = false; 1829 bypass_insert = false; 1830 goto insert; 1831 } 1832 1833 if (q->elevator && !bypass_insert) 1834 goto insert; 1835 1836 if (!blk_mq_get_dispatch_budget(hctx)) 1837 goto insert; 1838 1839 if (!blk_mq_get_driver_tag(rq)) { 1840 blk_mq_put_dispatch_budget(hctx); 1841 goto insert; 1842 } 1843 1844 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1845 insert: 1846 if (bypass_insert) 1847 return BLK_STS_RESOURCE; 1848 1849 blk_mq_request_bypass_insert(rq, run_queue); 1850 return BLK_STS_OK; 1851 } 1852 1853 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1854 struct request *rq, blk_qc_t *cookie) 1855 { 1856 blk_status_t ret; 1857 int srcu_idx; 1858 1859 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1860 1861 hctx_lock(hctx, &srcu_idx); 1862 1863 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1864 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1865 blk_mq_request_bypass_insert(rq, true); 1866 else if (ret != BLK_STS_OK) 1867 blk_mq_end_request(rq, ret); 1868 1869 hctx_unlock(hctx, srcu_idx); 1870 } 1871 1872 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1873 { 1874 blk_status_t ret; 1875 int srcu_idx; 1876 blk_qc_t unused_cookie; 1877 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1878 1879 hctx_lock(hctx, &srcu_idx); 1880 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1881 hctx_unlock(hctx, srcu_idx); 1882 1883 return ret; 1884 } 1885 1886 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1887 struct list_head *list) 1888 { 1889 while (!list_empty(list)) { 1890 blk_status_t ret; 1891 struct request *rq = list_first_entry(list, struct request, 1892 queuelist); 1893 1894 list_del_init(&rq->queuelist); 1895 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1896 if (ret != BLK_STS_OK) { 1897 if (ret == BLK_STS_RESOURCE || 1898 ret == BLK_STS_DEV_RESOURCE) { 1899 blk_mq_request_bypass_insert(rq, 1900 list_empty(list)); 1901 break; 1902 } 1903 blk_mq_end_request(rq, ret); 1904 } 1905 } 1906 1907 /* 1908 * If we didn't flush the entire list, we could have told 1909 * the driver there was more coming, but that turned out to 1910 * be a lie. 1911 */ 1912 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1913 hctx->queue->mq_ops->commit_rqs(hctx); 1914 } 1915 1916 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1917 { 1918 list_add_tail(&rq->queuelist, &plug->mq_list); 1919 plug->rq_count++; 1920 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1921 struct request *tmp; 1922 1923 tmp = list_first_entry(&plug->mq_list, struct request, 1924 queuelist); 1925 if (tmp->q != rq->q) 1926 plug->multiple_queues = true; 1927 } 1928 } 1929 1930 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1931 { 1932 const int is_sync = op_is_sync(bio->bi_opf); 1933 const int is_flush_fua = op_is_flush(bio->bi_opf); 1934 struct blk_mq_alloc_data data = { .flags = 0}; 1935 struct request *rq; 1936 struct blk_plug *plug; 1937 struct request *same_queue_rq = NULL; 1938 blk_qc_t cookie; 1939 1940 blk_queue_bounce(q, &bio); 1941 1942 blk_queue_split(q, &bio); 1943 1944 if (!bio_integrity_prep(bio)) 1945 return BLK_QC_T_NONE; 1946 1947 if (!is_flush_fua && !blk_queue_nomerges(q) && 1948 blk_attempt_plug_merge(q, bio, &same_queue_rq)) 1949 return BLK_QC_T_NONE; 1950 1951 if (blk_mq_sched_bio_merge(q, bio)) 1952 return BLK_QC_T_NONE; 1953 1954 rq_qos_throttle(q, bio); 1955 1956 data.cmd_flags = bio->bi_opf; 1957 rq = blk_mq_get_request(q, bio, &data); 1958 if (unlikely(!rq)) { 1959 rq_qos_cleanup(q, bio); 1960 if (bio->bi_opf & REQ_NOWAIT) 1961 bio_wouldblock_error(bio); 1962 return BLK_QC_T_NONE; 1963 } 1964 1965 trace_block_getrq(q, bio, bio->bi_opf); 1966 1967 rq_qos_track(q, rq, bio); 1968 1969 cookie = request_to_qc_t(data.hctx, rq); 1970 1971 plug = current->plug; 1972 if (unlikely(is_flush_fua)) { 1973 blk_mq_put_ctx(data.ctx); 1974 blk_mq_bio_to_request(rq, bio); 1975 1976 /* bypass scheduler for flush rq */ 1977 blk_insert_flush(rq); 1978 blk_mq_run_hw_queue(data.hctx, true); 1979 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1980 /* 1981 * Use plugging if we have a ->commit_rqs() hook as well, as 1982 * we know the driver uses bd->last in a smart fashion. 1983 */ 1984 unsigned int request_count = plug->rq_count; 1985 struct request *last = NULL; 1986 1987 blk_mq_put_ctx(data.ctx); 1988 blk_mq_bio_to_request(rq, bio); 1989 1990 if (!request_count) 1991 trace_block_plug(q); 1992 else 1993 last = list_entry_rq(plug->mq_list.prev); 1994 1995 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1996 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1997 blk_flush_plug_list(plug, false); 1998 trace_block_plug(q); 1999 } 2000 2001 blk_add_rq_to_plug(plug, rq); 2002 } else if (plug && !blk_queue_nomerges(q)) { 2003 blk_mq_bio_to_request(rq, bio); 2004 2005 /* 2006 * We do limited plugging. If the bio can be merged, do that. 2007 * Otherwise the existing request in the plug list will be 2008 * issued. So the plug list will have one request at most 2009 * The plug list might get flushed before this. If that happens, 2010 * the plug list is empty, and same_queue_rq is invalid. 2011 */ 2012 if (list_empty(&plug->mq_list)) 2013 same_queue_rq = NULL; 2014 if (same_queue_rq) { 2015 list_del_init(&same_queue_rq->queuelist); 2016 plug->rq_count--; 2017 } 2018 blk_add_rq_to_plug(plug, rq); 2019 trace_block_plug(q); 2020 2021 blk_mq_put_ctx(data.ctx); 2022 2023 if (same_queue_rq) { 2024 data.hctx = same_queue_rq->mq_hctx; 2025 trace_block_unplug(q, 1, true); 2026 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2027 &cookie); 2028 } 2029 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2030 !data.hctx->dispatch_busy)) { 2031 blk_mq_put_ctx(data.ctx); 2032 blk_mq_bio_to_request(rq, bio); 2033 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2034 } else { 2035 blk_mq_put_ctx(data.ctx); 2036 blk_mq_bio_to_request(rq, bio); 2037 blk_mq_sched_insert_request(rq, false, true, true); 2038 } 2039 2040 return cookie; 2041 } 2042 2043 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2044 unsigned int hctx_idx) 2045 { 2046 struct page *page; 2047 2048 if (tags->rqs && set->ops->exit_request) { 2049 int i; 2050 2051 for (i = 0; i < tags->nr_tags; i++) { 2052 struct request *rq = tags->static_rqs[i]; 2053 2054 if (!rq) 2055 continue; 2056 set->ops->exit_request(set, rq, hctx_idx); 2057 tags->static_rqs[i] = NULL; 2058 } 2059 } 2060 2061 while (!list_empty(&tags->page_list)) { 2062 page = list_first_entry(&tags->page_list, struct page, lru); 2063 list_del_init(&page->lru); 2064 /* 2065 * Remove kmemleak object previously allocated in 2066 * blk_mq_alloc_rqs(). 2067 */ 2068 kmemleak_free(page_address(page)); 2069 __free_pages(page, page->private); 2070 } 2071 } 2072 2073 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2074 { 2075 kfree(tags->rqs); 2076 tags->rqs = NULL; 2077 kfree(tags->static_rqs); 2078 tags->static_rqs = NULL; 2079 2080 blk_mq_free_tags(tags); 2081 } 2082 2083 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2084 unsigned int hctx_idx, 2085 unsigned int nr_tags, 2086 unsigned int reserved_tags) 2087 { 2088 struct blk_mq_tags *tags; 2089 int node; 2090 2091 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2092 if (node == NUMA_NO_NODE) 2093 node = set->numa_node; 2094 2095 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2096 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2097 if (!tags) 2098 return NULL; 2099 2100 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2101 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2102 node); 2103 if (!tags->rqs) { 2104 blk_mq_free_tags(tags); 2105 return NULL; 2106 } 2107 2108 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2109 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2110 node); 2111 if (!tags->static_rqs) { 2112 kfree(tags->rqs); 2113 blk_mq_free_tags(tags); 2114 return NULL; 2115 } 2116 2117 return tags; 2118 } 2119 2120 static size_t order_to_size(unsigned int order) 2121 { 2122 return (size_t)PAGE_SIZE << order; 2123 } 2124 2125 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2126 unsigned int hctx_idx, int node) 2127 { 2128 int ret; 2129 2130 if (set->ops->init_request) { 2131 ret = set->ops->init_request(set, rq, hctx_idx, node); 2132 if (ret) 2133 return ret; 2134 } 2135 2136 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2137 return 0; 2138 } 2139 2140 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2141 unsigned int hctx_idx, unsigned int depth) 2142 { 2143 unsigned int i, j, entries_per_page, max_order = 4; 2144 size_t rq_size, left; 2145 int node; 2146 2147 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2148 if (node == NUMA_NO_NODE) 2149 node = set->numa_node; 2150 2151 INIT_LIST_HEAD(&tags->page_list); 2152 2153 /* 2154 * rq_size is the size of the request plus driver payload, rounded 2155 * to the cacheline size 2156 */ 2157 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2158 cache_line_size()); 2159 left = rq_size * depth; 2160 2161 for (i = 0; i < depth; ) { 2162 int this_order = max_order; 2163 struct page *page; 2164 int to_do; 2165 void *p; 2166 2167 while (this_order && left < order_to_size(this_order - 1)) 2168 this_order--; 2169 2170 do { 2171 page = alloc_pages_node(node, 2172 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2173 this_order); 2174 if (page) 2175 break; 2176 if (!this_order--) 2177 break; 2178 if (order_to_size(this_order) < rq_size) 2179 break; 2180 } while (1); 2181 2182 if (!page) 2183 goto fail; 2184 2185 page->private = this_order; 2186 list_add_tail(&page->lru, &tags->page_list); 2187 2188 p = page_address(page); 2189 /* 2190 * Allow kmemleak to scan these pages as they contain pointers 2191 * to additional allocations like via ops->init_request(). 2192 */ 2193 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2194 entries_per_page = order_to_size(this_order) / rq_size; 2195 to_do = min(entries_per_page, depth - i); 2196 left -= to_do * rq_size; 2197 for (j = 0; j < to_do; j++) { 2198 struct request *rq = p; 2199 2200 tags->static_rqs[i] = rq; 2201 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2202 tags->static_rqs[i] = NULL; 2203 goto fail; 2204 } 2205 2206 p += rq_size; 2207 i++; 2208 } 2209 } 2210 return 0; 2211 2212 fail: 2213 blk_mq_free_rqs(set, tags, hctx_idx); 2214 return -ENOMEM; 2215 } 2216 2217 /* 2218 * 'cpu' is going away. splice any existing rq_list entries from this 2219 * software queue to the hw queue dispatch list, and ensure that it 2220 * gets run. 2221 */ 2222 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2223 { 2224 struct blk_mq_hw_ctx *hctx; 2225 struct blk_mq_ctx *ctx; 2226 LIST_HEAD(tmp); 2227 enum hctx_type type; 2228 2229 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2230 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2231 type = hctx->type; 2232 2233 spin_lock(&ctx->lock); 2234 if (!list_empty(&ctx->rq_lists[type])) { 2235 list_splice_init(&ctx->rq_lists[type], &tmp); 2236 blk_mq_hctx_clear_pending(hctx, ctx); 2237 } 2238 spin_unlock(&ctx->lock); 2239 2240 if (list_empty(&tmp)) 2241 return 0; 2242 2243 spin_lock(&hctx->lock); 2244 list_splice_tail_init(&tmp, &hctx->dispatch); 2245 spin_unlock(&hctx->lock); 2246 2247 blk_mq_run_hw_queue(hctx, true); 2248 return 0; 2249 } 2250 2251 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2252 { 2253 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2254 &hctx->cpuhp_dead); 2255 } 2256 2257 /* hctx->ctxs will be freed in queue's release handler */ 2258 static void blk_mq_exit_hctx(struct request_queue *q, 2259 struct blk_mq_tag_set *set, 2260 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2261 { 2262 if (blk_mq_hw_queue_mapped(hctx)) 2263 blk_mq_tag_idle(hctx); 2264 2265 if (set->ops->exit_request) 2266 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2267 2268 if (set->ops->exit_hctx) 2269 set->ops->exit_hctx(hctx, hctx_idx); 2270 2271 blk_mq_remove_cpuhp(hctx); 2272 2273 spin_lock(&q->unused_hctx_lock); 2274 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2275 spin_unlock(&q->unused_hctx_lock); 2276 } 2277 2278 static void blk_mq_exit_hw_queues(struct request_queue *q, 2279 struct blk_mq_tag_set *set, int nr_queue) 2280 { 2281 struct blk_mq_hw_ctx *hctx; 2282 unsigned int i; 2283 2284 queue_for_each_hw_ctx(q, hctx, i) { 2285 if (i == nr_queue) 2286 break; 2287 blk_mq_debugfs_unregister_hctx(hctx); 2288 blk_mq_exit_hctx(q, set, hctx, i); 2289 } 2290 } 2291 2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2293 { 2294 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2295 2296 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2297 __alignof__(struct blk_mq_hw_ctx)) != 2298 sizeof(struct blk_mq_hw_ctx)); 2299 2300 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2301 hw_ctx_size += sizeof(struct srcu_struct); 2302 2303 return hw_ctx_size; 2304 } 2305 2306 static int blk_mq_init_hctx(struct request_queue *q, 2307 struct blk_mq_tag_set *set, 2308 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2309 { 2310 hctx->queue_num = hctx_idx; 2311 2312 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2313 2314 hctx->tags = set->tags[hctx_idx]; 2315 2316 if (set->ops->init_hctx && 2317 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2318 goto unregister_cpu_notifier; 2319 2320 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2321 hctx->numa_node)) 2322 goto exit_hctx; 2323 return 0; 2324 2325 exit_hctx: 2326 if (set->ops->exit_hctx) 2327 set->ops->exit_hctx(hctx, hctx_idx); 2328 unregister_cpu_notifier: 2329 blk_mq_remove_cpuhp(hctx); 2330 return -1; 2331 } 2332 2333 static struct blk_mq_hw_ctx * 2334 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2335 int node) 2336 { 2337 struct blk_mq_hw_ctx *hctx; 2338 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2339 2340 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2341 if (!hctx) 2342 goto fail_alloc_hctx; 2343 2344 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2345 goto free_hctx; 2346 2347 atomic_set(&hctx->nr_active, 0); 2348 if (node == NUMA_NO_NODE) 2349 node = set->numa_node; 2350 hctx->numa_node = node; 2351 2352 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2353 spin_lock_init(&hctx->lock); 2354 INIT_LIST_HEAD(&hctx->dispatch); 2355 hctx->queue = q; 2356 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2357 2358 INIT_LIST_HEAD(&hctx->hctx_list); 2359 2360 /* 2361 * Allocate space for all possible cpus to avoid allocation at 2362 * runtime 2363 */ 2364 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2365 gfp, node); 2366 if (!hctx->ctxs) 2367 goto free_cpumask; 2368 2369 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2370 gfp, node)) 2371 goto free_ctxs; 2372 hctx->nr_ctx = 0; 2373 2374 spin_lock_init(&hctx->dispatch_wait_lock); 2375 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2376 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2377 2378 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2379 gfp); 2380 if (!hctx->fq) 2381 goto free_bitmap; 2382 2383 if (hctx->flags & BLK_MQ_F_BLOCKING) 2384 init_srcu_struct(hctx->srcu); 2385 blk_mq_hctx_kobj_init(hctx); 2386 2387 return hctx; 2388 2389 free_bitmap: 2390 sbitmap_free(&hctx->ctx_map); 2391 free_ctxs: 2392 kfree(hctx->ctxs); 2393 free_cpumask: 2394 free_cpumask_var(hctx->cpumask); 2395 free_hctx: 2396 kfree(hctx); 2397 fail_alloc_hctx: 2398 return NULL; 2399 } 2400 2401 static void blk_mq_init_cpu_queues(struct request_queue *q, 2402 unsigned int nr_hw_queues) 2403 { 2404 struct blk_mq_tag_set *set = q->tag_set; 2405 unsigned int i, j; 2406 2407 for_each_possible_cpu(i) { 2408 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2409 struct blk_mq_hw_ctx *hctx; 2410 int k; 2411 2412 __ctx->cpu = i; 2413 spin_lock_init(&__ctx->lock); 2414 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2415 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2416 2417 __ctx->queue = q; 2418 2419 /* 2420 * Set local node, IFF we have more than one hw queue. If 2421 * not, we remain on the home node of the device 2422 */ 2423 for (j = 0; j < set->nr_maps; j++) { 2424 hctx = blk_mq_map_queue_type(q, j, i); 2425 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2426 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2427 } 2428 } 2429 } 2430 2431 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2432 { 2433 int ret = 0; 2434 2435 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2436 set->queue_depth, set->reserved_tags); 2437 if (!set->tags[hctx_idx]) 2438 return false; 2439 2440 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2441 set->queue_depth); 2442 if (!ret) 2443 return true; 2444 2445 blk_mq_free_rq_map(set->tags[hctx_idx]); 2446 set->tags[hctx_idx] = NULL; 2447 return false; 2448 } 2449 2450 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2451 unsigned int hctx_idx) 2452 { 2453 if (set->tags && set->tags[hctx_idx]) { 2454 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2455 blk_mq_free_rq_map(set->tags[hctx_idx]); 2456 set->tags[hctx_idx] = NULL; 2457 } 2458 } 2459 2460 static void blk_mq_map_swqueue(struct request_queue *q) 2461 { 2462 unsigned int i, j, hctx_idx; 2463 struct blk_mq_hw_ctx *hctx; 2464 struct blk_mq_ctx *ctx; 2465 struct blk_mq_tag_set *set = q->tag_set; 2466 2467 /* 2468 * Avoid others reading imcomplete hctx->cpumask through sysfs 2469 */ 2470 mutex_lock(&q->sysfs_lock); 2471 2472 queue_for_each_hw_ctx(q, hctx, i) { 2473 cpumask_clear(hctx->cpumask); 2474 hctx->nr_ctx = 0; 2475 hctx->dispatch_from = NULL; 2476 } 2477 2478 /* 2479 * Map software to hardware queues. 2480 * 2481 * If the cpu isn't present, the cpu is mapped to first hctx. 2482 */ 2483 for_each_possible_cpu(i) { 2484 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2485 /* unmapped hw queue can be remapped after CPU topo changed */ 2486 if (!set->tags[hctx_idx] && 2487 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2488 /* 2489 * If tags initialization fail for some hctx, 2490 * that hctx won't be brought online. In this 2491 * case, remap the current ctx to hctx[0] which 2492 * is guaranteed to always have tags allocated 2493 */ 2494 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2495 } 2496 2497 ctx = per_cpu_ptr(q->queue_ctx, i); 2498 for (j = 0; j < set->nr_maps; j++) { 2499 if (!set->map[j].nr_queues) { 2500 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2501 HCTX_TYPE_DEFAULT, i); 2502 continue; 2503 } 2504 2505 hctx = blk_mq_map_queue_type(q, j, i); 2506 ctx->hctxs[j] = hctx; 2507 /* 2508 * If the CPU is already set in the mask, then we've 2509 * mapped this one already. This can happen if 2510 * devices share queues across queue maps. 2511 */ 2512 if (cpumask_test_cpu(i, hctx->cpumask)) 2513 continue; 2514 2515 cpumask_set_cpu(i, hctx->cpumask); 2516 hctx->type = j; 2517 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2518 hctx->ctxs[hctx->nr_ctx++] = ctx; 2519 2520 /* 2521 * If the nr_ctx type overflows, we have exceeded the 2522 * amount of sw queues we can support. 2523 */ 2524 BUG_ON(!hctx->nr_ctx); 2525 } 2526 2527 for (; j < HCTX_MAX_TYPES; j++) 2528 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2529 HCTX_TYPE_DEFAULT, i); 2530 } 2531 2532 mutex_unlock(&q->sysfs_lock); 2533 2534 queue_for_each_hw_ctx(q, hctx, i) { 2535 /* 2536 * If no software queues are mapped to this hardware queue, 2537 * disable it and free the request entries. 2538 */ 2539 if (!hctx->nr_ctx) { 2540 /* Never unmap queue 0. We need it as a 2541 * fallback in case of a new remap fails 2542 * allocation 2543 */ 2544 if (i && set->tags[i]) 2545 blk_mq_free_map_and_requests(set, i); 2546 2547 hctx->tags = NULL; 2548 continue; 2549 } 2550 2551 hctx->tags = set->tags[i]; 2552 WARN_ON(!hctx->tags); 2553 2554 /* 2555 * Set the map size to the number of mapped software queues. 2556 * This is more accurate and more efficient than looping 2557 * over all possibly mapped software queues. 2558 */ 2559 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2560 2561 /* 2562 * Initialize batch roundrobin counts 2563 */ 2564 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2565 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2566 } 2567 } 2568 2569 /* 2570 * Caller needs to ensure that we're either frozen/quiesced, or that 2571 * the queue isn't live yet. 2572 */ 2573 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2574 { 2575 struct blk_mq_hw_ctx *hctx; 2576 int i; 2577 2578 queue_for_each_hw_ctx(q, hctx, i) { 2579 if (shared) 2580 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2581 else 2582 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2583 } 2584 } 2585 2586 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2587 bool shared) 2588 { 2589 struct request_queue *q; 2590 2591 lockdep_assert_held(&set->tag_list_lock); 2592 2593 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2594 blk_mq_freeze_queue(q); 2595 queue_set_hctx_shared(q, shared); 2596 blk_mq_unfreeze_queue(q); 2597 } 2598 } 2599 2600 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2601 { 2602 struct blk_mq_tag_set *set = q->tag_set; 2603 2604 mutex_lock(&set->tag_list_lock); 2605 list_del_rcu(&q->tag_set_list); 2606 if (list_is_singular(&set->tag_list)) { 2607 /* just transitioned to unshared */ 2608 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2609 /* update existing queue */ 2610 blk_mq_update_tag_set_depth(set, false); 2611 } 2612 mutex_unlock(&set->tag_list_lock); 2613 INIT_LIST_HEAD(&q->tag_set_list); 2614 } 2615 2616 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2617 struct request_queue *q) 2618 { 2619 mutex_lock(&set->tag_list_lock); 2620 2621 /* 2622 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2623 */ 2624 if (!list_empty(&set->tag_list) && 2625 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2626 set->flags |= BLK_MQ_F_TAG_SHARED; 2627 /* update existing queue */ 2628 blk_mq_update_tag_set_depth(set, true); 2629 } 2630 if (set->flags & BLK_MQ_F_TAG_SHARED) 2631 queue_set_hctx_shared(q, true); 2632 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2633 2634 mutex_unlock(&set->tag_list_lock); 2635 } 2636 2637 /* All allocations will be freed in release handler of q->mq_kobj */ 2638 static int blk_mq_alloc_ctxs(struct request_queue *q) 2639 { 2640 struct blk_mq_ctxs *ctxs; 2641 int cpu; 2642 2643 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2644 if (!ctxs) 2645 return -ENOMEM; 2646 2647 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2648 if (!ctxs->queue_ctx) 2649 goto fail; 2650 2651 for_each_possible_cpu(cpu) { 2652 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2653 ctx->ctxs = ctxs; 2654 } 2655 2656 q->mq_kobj = &ctxs->kobj; 2657 q->queue_ctx = ctxs->queue_ctx; 2658 2659 return 0; 2660 fail: 2661 kfree(ctxs); 2662 return -ENOMEM; 2663 } 2664 2665 /* 2666 * It is the actual release handler for mq, but we do it from 2667 * request queue's release handler for avoiding use-after-free 2668 * and headache because q->mq_kobj shouldn't have been introduced, 2669 * but we can't group ctx/kctx kobj without it. 2670 */ 2671 void blk_mq_release(struct request_queue *q) 2672 { 2673 struct blk_mq_hw_ctx *hctx, *next; 2674 int i; 2675 2676 cancel_delayed_work_sync(&q->requeue_work); 2677 2678 queue_for_each_hw_ctx(q, hctx, i) 2679 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2680 2681 /* all hctx are in .unused_hctx_list now */ 2682 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2683 list_del_init(&hctx->hctx_list); 2684 kobject_put(&hctx->kobj); 2685 } 2686 2687 kfree(q->queue_hw_ctx); 2688 2689 /* 2690 * release .mq_kobj and sw queue's kobject now because 2691 * both share lifetime with request queue. 2692 */ 2693 blk_mq_sysfs_deinit(q); 2694 } 2695 2696 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2697 { 2698 struct request_queue *uninit_q, *q; 2699 2700 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2701 if (!uninit_q) 2702 return ERR_PTR(-ENOMEM); 2703 2704 q = blk_mq_init_allocated_queue(set, uninit_q); 2705 if (IS_ERR(q)) 2706 blk_cleanup_queue(uninit_q); 2707 2708 return q; 2709 } 2710 EXPORT_SYMBOL(blk_mq_init_queue); 2711 2712 /* 2713 * Helper for setting up a queue with mq ops, given queue depth, and 2714 * the passed in mq ops flags. 2715 */ 2716 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2717 const struct blk_mq_ops *ops, 2718 unsigned int queue_depth, 2719 unsigned int set_flags) 2720 { 2721 struct request_queue *q; 2722 int ret; 2723 2724 memset(set, 0, sizeof(*set)); 2725 set->ops = ops; 2726 set->nr_hw_queues = 1; 2727 set->nr_maps = 1; 2728 set->queue_depth = queue_depth; 2729 set->numa_node = NUMA_NO_NODE; 2730 set->flags = set_flags; 2731 2732 ret = blk_mq_alloc_tag_set(set); 2733 if (ret) 2734 return ERR_PTR(ret); 2735 2736 q = blk_mq_init_queue(set); 2737 if (IS_ERR(q)) { 2738 blk_mq_free_tag_set(set); 2739 return q; 2740 } 2741 2742 return q; 2743 } 2744 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2745 2746 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2747 struct blk_mq_tag_set *set, struct request_queue *q, 2748 int hctx_idx, int node) 2749 { 2750 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2751 2752 /* reuse dead hctx first */ 2753 spin_lock(&q->unused_hctx_lock); 2754 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2755 if (tmp->numa_node == node) { 2756 hctx = tmp; 2757 break; 2758 } 2759 } 2760 if (hctx) 2761 list_del_init(&hctx->hctx_list); 2762 spin_unlock(&q->unused_hctx_lock); 2763 2764 if (!hctx) 2765 hctx = blk_mq_alloc_hctx(q, set, node); 2766 if (!hctx) 2767 goto fail; 2768 2769 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2770 goto free_hctx; 2771 2772 return hctx; 2773 2774 free_hctx: 2775 kobject_put(&hctx->kobj); 2776 fail: 2777 return NULL; 2778 } 2779 2780 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2781 struct request_queue *q) 2782 { 2783 int i, j, end; 2784 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2785 2786 /* protect against switching io scheduler */ 2787 mutex_lock(&q->sysfs_lock); 2788 for (i = 0; i < set->nr_hw_queues; i++) { 2789 int node; 2790 struct blk_mq_hw_ctx *hctx; 2791 2792 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2793 /* 2794 * If the hw queue has been mapped to another numa node, 2795 * we need to realloc the hctx. If allocation fails, fallback 2796 * to use the previous one. 2797 */ 2798 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2799 continue; 2800 2801 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2802 if (hctx) { 2803 if (hctxs[i]) 2804 blk_mq_exit_hctx(q, set, hctxs[i], i); 2805 hctxs[i] = hctx; 2806 } else { 2807 if (hctxs[i]) 2808 pr_warn("Allocate new hctx on node %d fails,\ 2809 fallback to previous one on node %d\n", 2810 node, hctxs[i]->numa_node); 2811 else 2812 break; 2813 } 2814 } 2815 /* 2816 * Increasing nr_hw_queues fails. Free the newly allocated 2817 * hctxs and keep the previous q->nr_hw_queues. 2818 */ 2819 if (i != set->nr_hw_queues) { 2820 j = q->nr_hw_queues; 2821 end = i; 2822 } else { 2823 j = i; 2824 end = q->nr_hw_queues; 2825 q->nr_hw_queues = set->nr_hw_queues; 2826 } 2827 2828 for (; j < end; j++) { 2829 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2830 2831 if (hctx) { 2832 if (hctx->tags) 2833 blk_mq_free_map_and_requests(set, j); 2834 blk_mq_exit_hctx(q, set, hctx, j); 2835 hctxs[j] = NULL; 2836 } 2837 } 2838 mutex_unlock(&q->sysfs_lock); 2839 } 2840 2841 /* 2842 * Maximum number of hardware queues we support. For single sets, we'll never 2843 * have more than the CPUs (software queues). For multiple sets, the tag_set 2844 * user may have set ->nr_hw_queues larger. 2845 */ 2846 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2847 { 2848 if (set->nr_maps == 1) 2849 return nr_cpu_ids; 2850 2851 return max(set->nr_hw_queues, nr_cpu_ids); 2852 } 2853 2854 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2855 struct request_queue *q) 2856 { 2857 /* mark the queue as mq asap */ 2858 q->mq_ops = set->ops; 2859 2860 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2861 blk_mq_poll_stats_bkt, 2862 BLK_MQ_POLL_STATS_BKTS, q); 2863 if (!q->poll_cb) 2864 goto err_exit; 2865 2866 if (blk_mq_alloc_ctxs(q)) 2867 goto err_exit; 2868 2869 /* init q->mq_kobj and sw queues' kobjects */ 2870 blk_mq_sysfs_init(q); 2871 2872 q->nr_queues = nr_hw_queues(set); 2873 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2874 GFP_KERNEL, set->numa_node); 2875 if (!q->queue_hw_ctx) 2876 goto err_sys_init; 2877 2878 INIT_LIST_HEAD(&q->unused_hctx_list); 2879 spin_lock_init(&q->unused_hctx_lock); 2880 2881 blk_mq_realloc_hw_ctxs(set, q); 2882 if (!q->nr_hw_queues) 2883 goto err_hctxs; 2884 2885 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2886 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2887 2888 q->tag_set = set; 2889 2890 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2891 if (set->nr_maps > HCTX_TYPE_POLL && 2892 set->map[HCTX_TYPE_POLL].nr_queues) 2893 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2894 2895 q->sg_reserved_size = INT_MAX; 2896 2897 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2898 INIT_LIST_HEAD(&q->requeue_list); 2899 spin_lock_init(&q->requeue_lock); 2900 2901 blk_queue_make_request(q, blk_mq_make_request); 2902 2903 /* 2904 * Do this after blk_queue_make_request() overrides it... 2905 */ 2906 q->nr_requests = set->queue_depth; 2907 2908 /* 2909 * Default to classic polling 2910 */ 2911 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2912 2913 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2914 blk_mq_add_queue_tag_set(set, q); 2915 blk_mq_map_swqueue(q); 2916 2917 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2918 int ret; 2919 2920 ret = elevator_init_mq(q); 2921 if (ret) 2922 return ERR_PTR(ret); 2923 } 2924 2925 return q; 2926 2927 err_hctxs: 2928 kfree(q->queue_hw_ctx); 2929 err_sys_init: 2930 blk_mq_sysfs_deinit(q); 2931 err_exit: 2932 q->mq_ops = NULL; 2933 return ERR_PTR(-ENOMEM); 2934 } 2935 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2936 2937 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2938 void blk_mq_exit_queue(struct request_queue *q) 2939 { 2940 struct blk_mq_tag_set *set = q->tag_set; 2941 2942 blk_mq_del_queue_tag_set(q); 2943 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2944 } 2945 2946 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2947 { 2948 int i; 2949 2950 for (i = 0; i < set->nr_hw_queues; i++) 2951 if (!__blk_mq_alloc_rq_map(set, i)) 2952 goto out_unwind; 2953 2954 return 0; 2955 2956 out_unwind: 2957 while (--i >= 0) 2958 blk_mq_free_rq_map(set->tags[i]); 2959 2960 return -ENOMEM; 2961 } 2962 2963 /* 2964 * Allocate the request maps associated with this tag_set. Note that this 2965 * may reduce the depth asked for, if memory is tight. set->queue_depth 2966 * will be updated to reflect the allocated depth. 2967 */ 2968 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2969 { 2970 unsigned int depth; 2971 int err; 2972 2973 depth = set->queue_depth; 2974 do { 2975 err = __blk_mq_alloc_rq_maps(set); 2976 if (!err) 2977 break; 2978 2979 set->queue_depth >>= 1; 2980 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2981 err = -ENOMEM; 2982 break; 2983 } 2984 } while (set->queue_depth); 2985 2986 if (!set->queue_depth || err) { 2987 pr_err("blk-mq: failed to allocate request map\n"); 2988 return -ENOMEM; 2989 } 2990 2991 if (depth != set->queue_depth) 2992 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2993 depth, set->queue_depth); 2994 2995 return 0; 2996 } 2997 2998 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2999 { 3000 if (set->ops->map_queues && !is_kdump_kernel()) { 3001 int i; 3002 3003 /* 3004 * transport .map_queues is usually done in the following 3005 * way: 3006 * 3007 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3008 * mask = get_cpu_mask(queue) 3009 * for_each_cpu(cpu, mask) 3010 * set->map[x].mq_map[cpu] = queue; 3011 * } 3012 * 3013 * When we need to remap, the table has to be cleared for 3014 * killing stale mapping since one CPU may not be mapped 3015 * to any hw queue. 3016 */ 3017 for (i = 0; i < set->nr_maps; i++) 3018 blk_mq_clear_mq_map(&set->map[i]); 3019 3020 return set->ops->map_queues(set); 3021 } else { 3022 BUG_ON(set->nr_maps > 1); 3023 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3024 } 3025 } 3026 3027 /* 3028 * Alloc a tag set to be associated with one or more request queues. 3029 * May fail with EINVAL for various error conditions. May adjust the 3030 * requested depth down, if it's too large. In that case, the set 3031 * value will be stored in set->queue_depth. 3032 */ 3033 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3034 { 3035 int i, ret; 3036 3037 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3038 3039 if (!set->nr_hw_queues) 3040 return -EINVAL; 3041 if (!set->queue_depth) 3042 return -EINVAL; 3043 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3044 return -EINVAL; 3045 3046 if (!set->ops->queue_rq) 3047 return -EINVAL; 3048 3049 if (!set->ops->get_budget ^ !set->ops->put_budget) 3050 return -EINVAL; 3051 3052 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3053 pr_info("blk-mq: reduced tag depth to %u\n", 3054 BLK_MQ_MAX_DEPTH); 3055 set->queue_depth = BLK_MQ_MAX_DEPTH; 3056 } 3057 3058 if (!set->nr_maps) 3059 set->nr_maps = 1; 3060 else if (set->nr_maps > HCTX_MAX_TYPES) 3061 return -EINVAL; 3062 3063 /* 3064 * If a crashdump is active, then we are potentially in a very 3065 * memory constrained environment. Limit us to 1 queue and 3066 * 64 tags to prevent using too much memory. 3067 */ 3068 if (is_kdump_kernel()) { 3069 set->nr_hw_queues = 1; 3070 set->nr_maps = 1; 3071 set->queue_depth = min(64U, set->queue_depth); 3072 } 3073 /* 3074 * There is no use for more h/w queues than cpus if we just have 3075 * a single map 3076 */ 3077 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3078 set->nr_hw_queues = nr_cpu_ids; 3079 3080 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3081 GFP_KERNEL, set->numa_node); 3082 if (!set->tags) 3083 return -ENOMEM; 3084 3085 ret = -ENOMEM; 3086 for (i = 0; i < set->nr_maps; i++) { 3087 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3088 sizeof(set->map[i].mq_map[0]), 3089 GFP_KERNEL, set->numa_node); 3090 if (!set->map[i].mq_map) 3091 goto out_free_mq_map; 3092 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3093 } 3094 3095 ret = blk_mq_update_queue_map(set); 3096 if (ret) 3097 goto out_free_mq_map; 3098 3099 ret = blk_mq_alloc_rq_maps(set); 3100 if (ret) 3101 goto out_free_mq_map; 3102 3103 mutex_init(&set->tag_list_lock); 3104 INIT_LIST_HEAD(&set->tag_list); 3105 3106 return 0; 3107 3108 out_free_mq_map: 3109 for (i = 0; i < set->nr_maps; i++) { 3110 kfree(set->map[i].mq_map); 3111 set->map[i].mq_map = NULL; 3112 } 3113 kfree(set->tags); 3114 set->tags = NULL; 3115 return ret; 3116 } 3117 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3118 3119 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3120 { 3121 int i, j; 3122 3123 for (i = 0; i < nr_hw_queues(set); i++) 3124 blk_mq_free_map_and_requests(set, i); 3125 3126 for (j = 0; j < set->nr_maps; j++) { 3127 kfree(set->map[j].mq_map); 3128 set->map[j].mq_map = NULL; 3129 } 3130 3131 kfree(set->tags); 3132 set->tags = NULL; 3133 } 3134 EXPORT_SYMBOL(blk_mq_free_tag_set); 3135 3136 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3137 { 3138 struct blk_mq_tag_set *set = q->tag_set; 3139 struct blk_mq_hw_ctx *hctx; 3140 int i, ret; 3141 3142 if (!set) 3143 return -EINVAL; 3144 3145 if (q->nr_requests == nr) 3146 return 0; 3147 3148 blk_mq_freeze_queue(q); 3149 blk_mq_quiesce_queue(q); 3150 3151 ret = 0; 3152 queue_for_each_hw_ctx(q, hctx, i) { 3153 if (!hctx->tags) 3154 continue; 3155 /* 3156 * If we're using an MQ scheduler, just update the scheduler 3157 * queue depth. This is similar to what the old code would do. 3158 */ 3159 if (!hctx->sched_tags) { 3160 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3161 false); 3162 } else { 3163 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3164 nr, true); 3165 } 3166 if (ret) 3167 break; 3168 if (q->elevator && q->elevator->type->ops.depth_updated) 3169 q->elevator->type->ops.depth_updated(hctx); 3170 } 3171 3172 if (!ret) 3173 q->nr_requests = nr; 3174 3175 blk_mq_unquiesce_queue(q); 3176 blk_mq_unfreeze_queue(q); 3177 3178 return ret; 3179 } 3180 3181 /* 3182 * request_queue and elevator_type pair. 3183 * It is just used by __blk_mq_update_nr_hw_queues to cache 3184 * the elevator_type associated with a request_queue. 3185 */ 3186 struct blk_mq_qe_pair { 3187 struct list_head node; 3188 struct request_queue *q; 3189 struct elevator_type *type; 3190 }; 3191 3192 /* 3193 * Cache the elevator_type in qe pair list and switch the 3194 * io scheduler to 'none' 3195 */ 3196 static bool blk_mq_elv_switch_none(struct list_head *head, 3197 struct request_queue *q) 3198 { 3199 struct blk_mq_qe_pair *qe; 3200 3201 if (!q->elevator) 3202 return true; 3203 3204 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3205 if (!qe) 3206 return false; 3207 3208 INIT_LIST_HEAD(&qe->node); 3209 qe->q = q; 3210 qe->type = q->elevator->type; 3211 list_add(&qe->node, head); 3212 3213 mutex_lock(&q->sysfs_lock); 3214 /* 3215 * After elevator_switch_mq, the previous elevator_queue will be 3216 * released by elevator_release. The reference of the io scheduler 3217 * module get by elevator_get will also be put. So we need to get 3218 * a reference of the io scheduler module here to prevent it to be 3219 * removed. 3220 */ 3221 __module_get(qe->type->elevator_owner); 3222 elevator_switch_mq(q, NULL); 3223 mutex_unlock(&q->sysfs_lock); 3224 3225 return true; 3226 } 3227 3228 static void blk_mq_elv_switch_back(struct list_head *head, 3229 struct request_queue *q) 3230 { 3231 struct blk_mq_qe_pair *qe; 3232 struct elevator_type *t = NULL; 3233 3234 list_for_each_entry(qe, head, node) 3235 if (qe->q == q) { 3236 t = qe->type; 3237 break; 3238 } 3239 3240 if (!t) 3241 return; 3242 3243 list_del(&qe->node); 3244 kfree(qe); 3245 3246 mutex_lock(&q->sysfs_lock); 3247 elevator_switch_mq(q, t); 3248 mutex_unlock(&q->sysfs_lock); 3249 } 3250 3251 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3252 int nr_hw_queues) 3253 { 3254 struct request_queue *q; 3255 LIST_HEAD(head); 3256 int prev_nr_hw_queues; 3257 3258 lockdep_assert_held(&set->tag_list_lock); 3259 3260 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3261 nr_hw_queues = nr_cpu_ids; 3262 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3263 return; 3264 3265 list_for_each_entry(q, &set->tag_list, tag_set_list) 3266 blk_mq_freeze_queue(q); 3267 /* 3268 * Sync with blk_mq_queue_tag_busy_iter. 3269 */ 3270 synchronize_rcu(); 3271 /* 3272 * Switch IO scheduler to 'none', cleaning up the data associated 3273 * with the previous scheduler. We will switch back once we are done 3274 * updating the new sw to hw queue mappings. 3275 */ 3276 list_for_each_entry(q, &set->tag_list, tag_set_list) 3277 if (!blk_mq_elv_switch_none(&head, q)) 3278 goto switch_back; 3279 3280 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3281 blk_mq_debugfs_unregister_hctxs(q); 3282 blk_mq_sysfs_unregister(q); 3283 } 3284 3285 prev_nr_hw_queues = set->nr_hw_queues; 3286 set->nr_hw_queues = nr_hw_queues; 3287 blk_mq_update_queue_map(set); 3288 fallback: 3289 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3290 blk_mq_realloc_hw_ctxs(set, q); 3291 if (q->nr_hw_queues != set->nr_hw_queues) { 3292 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3293 nr_hw_queues, prev_nr_hw_queues); 3294 set->nr_hw_queues = prev_nr_hw_queues; 3295 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3296 goto fallback; 3297 } 3298 blk_mq_map_swqueue(q); 3299 } 3300 3301 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3302 blk_mq_sysfs_register(q); 3303 blk_mq_debugfs_register_hctxs(q); 3304 } 3305 3306 switch_back: 3307 list_for_each_entry(q, &set->tag_list, tag_set_list) 3308 blk_mq_elv_switch_back(&head, q); 3309 3310 list_for_each_entry(q, &set->tag_list, tag_set_list) 3311 blk_mq_unfreeze_queue(q); 3312 } 3313 3314 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3315 { 3316 mutex_lock(&set->tag_list_lock); 3317 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3318 mutex_unlock(&set->tag_list_lock); 3319 } 3320 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3321 3322 /* Enable polling stats and return whether they were already enabled. */ 3323 static bool blk_poll_stats_enable(struct request_queue *q) 3324 { 3325 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3326 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3327 return true; 3328 blk_stat_add_callback(q, q->poll_cb); 3329 return false; 3330 } 3331 3332 static void blk_mq_poll_stats_start(struct request_queue *q) 3333 { 3334 /* 3335 * We don't arm the callback if polling stats are not enabled or the 3336 * callback is already active. 3337 */ 3338 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3339 blk_stat_is_active(q->poll_cb)) 3340 return; 3341 3342 blk_stat_activate_msecs(q->poll_cb, 100); 3343 } 3344 3345 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3346 { 3347 struct request_queue *q = cb->data; 3348 int bucket; 3349 3350 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3351 if (cb->stat[bucket].nr_samples) 3352 q->poll_stat[bucket] = cb->stat[bucket]; 3353 } 3354 } 3355 3356 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3357 struct blk_mq_hw_ctx *hctx, 3358 struct request *rq) 3359 { 3360 unsigned long ret = 0; 3361 int bucket; 3362 3363 /* 3364 * If stats collection isn't on, don't sleep but turn it on for 3365 * future users 3366 */ 3367 if (!blk_poll_stats_enable(q)) 3368 return 0; 3369 3370 /* 3371 * As an optimistic guess, use half of the mean service time 3372 * for this type of request. We can (and should) make this smarter. 3373 * For instance, if the completion latencies are tight, we can 3374 * get closer than just half the mean. This is especially 3375 * important on devices where the completion latencies are longer 3376 * than ~10 usec. We do use the stats for the relevant IO size 3377 * if available which does lead to better estimates. 3378 */ 3379 bucket = blk_mq_poll_stats_bkt(rq); 3380 if (bucket < 0) 3381 return ret; 3382 3383 if (q->poll_stat[bucket].nr_samples) 3384 ret = (q->poll_stat[bucket].mean + 1) / 2; 3385 3386 return ret; 3387 } 3388 3389 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3390 struct blk_mq_hw_ctx *hctx, 3391 struct request *rq) 3392 { 3393 struct hrtimer_sleeper hs; 3394 enum hrtimer_mode mode; 3395 unsigned int nsecs; 3396 ktime_t kt; 3397 3398 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3399 return false; 3400 3401 /* 3402 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3403 * 3404 * 0: use half of prev avg 3405 * >0: use this specific value 3406 */ 3407 if (q->poll_nsec > 0) 3408 nsecs = q->poll_nsec; 3409 else 3410 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3411 3412 if (!nsecs) 3413 return false; 3414 3415 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3416 3417 /* 3418 * This will be replaced with the stats tracking code, using 3419 * 'avg_completion_time / 2' as the pre-sleep target. 3420 */ 3421 kt = nsecs; 3422 3423 mode = HRTIMER_MODE_REL; 3424 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3425 hrtimer_set_expires(&hs.timer, kt); 3426 3427 hrtimer_init_sleeper(&hs, current); 3428 do { 3429 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3430 break; 3431 set_current_state(TASK_UNINTERRUPTIBLE); 3432 hrtimer_start_expires(&hs.timer, mode); 3433 if (hs.task) 3434 io_schedule(); 3435 hrtimer_cancel(&hs.timer); 3436 mode = HRTIMER_MODE_ABS; 3437 } while (hs.task && !signal_pending(current)); 3438 3439 __set_current_state(TASK_RUNNING); 3440 destroy_hrtimer_on_stack(&hs.timer); 3441 return true; 3442 } 3443 3444 static bool blk_mq_poll_hybrid(struct request_queue *q, 3445 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3446 { 3447 struct request *rq; 3448 3449 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3450 return false; 3451 3452 if (!blk_qc_t_is_internal(cookie)) 3453 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3454 else { 3455 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3456 /* 3457 * With scheduling, if the request has completed, we'll 3458 * get a NULL return here, as we clear the sched tag when 3459 * that happens. The request still remains valid, like always, 3460 * so we should be safe with just the NULL check. 3461 */ 3462 if (!rq) 3463 return false; 3464 } 3465 3466 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3467 } 3468 3469 /** 3470 * blk_poll - poll for IO completions 3471 * @q: the queue 3472 * @cookie: cookie passed back at IO submission time 3473 * @spin: whether to spin for completions 3474 * 3475 * Description: 3476 * Poll for completions on the passed in queue. Returns number of 3477 * completed entries found. If @spin is true, then blk_poll will continue 3478 * looping until at least one completion is found, unless the task is 3479 * otherwise marked running (or we need to reschedule). 3480 */ 3481 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3482 { 3483 struct blk_mq_hw_ctx *hctx; 3484 long state; 3485 3486 if (!blk_qc_t_valid(cookie) || 3487 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3488 return 0; 3489 3490 if (current->plug) 3491 blk_flush_plug_list(current->plug, false); 3492 3493 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3494 3495 /* 3496 * If we sleep, have the caller restart the poll loop to reset 3497 * the state. Like for the other success return cases, the 3498 * caller is responsible for checking if the IO completed. If 3499 * the IO isn't complete, we'll get called again and will go 3500 * straight to the busy poll loop. 3501 */ 3502 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3503 return 1; 3504 3505 hctx->poll_considered++; 3506 3507 state = current->state; 3508 do { 3509 int ret; 3510 3511 hctx->poll_invoked++; 3512 3513 ret = q->mq_ops->poll(hctx); 3514 if (ret > 0) { 3515 hctx->poll_success++; 3516 __set_current_state(TASK_RUNNING); 3517 return ret; 3518 } 3519 3520 if (signal_pending_state(state, current)) 3521 __set_current_state(TASK_RUNNING); 3522 3523 if (current->state == TASK_RUNNING) 3524 return 1; 3525 if (ret < 0 || !spin) 3526 break; 3527 cpu_relax(); 3528 } while (!need_resched()); 3529 3530 __set_current_state(TASK_RUNNING); 3531 return 0; 3532 } 3533 EXPORT_SYMBOL_GPL(blk_poll); 3534 3535 unsigned int blk_mq_rq_cpu(struct request *rq) 3536 { 3537 return rq->mq_ctx->cpu; 3538 } 3539 EXPORT_SYMBOL(blk_mq_rq_cpu); 3540 3541 static int __init blk_mq_init(void) 3542 { 3543 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3544 blk_mq_hctx_notify_dead); 3545 return 0; 3546 } 3547 subsys_initcall(blk_mq_init); 3548