1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #include <linux/blk-mq.h> 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-tag.h" 30 31 static DEFINE_MUTEX(all_q_mutex); 32 static LIST_HEAD(all_q_list); 33 34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 35 36 /* 37 * Check if any of the ctx's have pending work in this hardware queue 38 */ 39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 40 { 41 unsigned int i; 42 43 for (i = 0; i < hctx->ctx_map.map_size; i++) 44 if (hctx->ctx_map.map[i].word) 45 return true; 46 47 return false; 48 } 49 50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 54 } 55 56 #define CTX_TO_BIT(hctx, ctx) \ 57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 58 59 /* 60 * Mark this ctx as having pending work in this hardware queue 61 */ 62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 66 67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 69 } 70 71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 75 76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 77 } 78 79 static int blk_mq_queue_enter(struct request_queue *q) 80 { 81 while (true) { 82 int ret; 83 84 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 85 return 0; 86 87 ret = wait_event_interruptible(q->mq_freeze_wq, 88 !q->mq_freeze_depth || blk_queue_dying(q)); 89 if (blk_queue_dying(q)) 90 return -ENODEV; 91 if (ret) 92 return ret; 93 } 94 } 95 96 static void blk_mq_queue_exit(struct request_queue *q) 97 { 98 percpu_ref_put(&q->mq_usage_counter); 99 } 100 101 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 102 { 103 struct request_queue *q = 104 container_of(ref, struct request_queue, mq_usage_counter); 105 106 wake_up_all(&q->mq_freeze_wq); 107 } 108 109 /* 110 * Guarantee no request is in use, so we can change any data structure of 111 * the queue afterward. 112 */ 113 void blk_mq_freeze_queue(struct request_queue *q) 114 { 115 spin_lock_irq(q->queue_lock); 116 q->mq_freeze_depth++; 117 spin_unlock_irq(q->queue_lock); 118 119 percpu_ref_kill(&q->mq_usage_counter); 120 blk_mq_run_queues(q, false); 121 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 122 } 123 124 static void blk_mq_unfreeze_queue(struct request_queue *q) 125 { 126 bool wake = false; 127 128 spin_lock_irq(q->queue_lock); 129 wake = !--q->mq_freeze_depth; 130 WARN_ON_ONCE(q->mq_freeze_depth < 0); 131 spin_unlock_irq(q->queue_lock); 132 if (wake) { 133 percpu_ref_reinit(&q->mq_usage_counter); 134 wake_up_all(&q->mq_freeze_wq); 135 } 136 } 137 138 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 139 { 140 return blk_mq_has_free_tags(hctx->tags); 141 } 142 EXPORT_SYMBOL(blk_mq_can_queue); 143 144 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 145 struct request *rq, unsigned int rw_flags) 146 { 147 if (blk_queue_io_stat(q)) 148 rw_flags |= REQ_IO_STAT; 149 150 INIT_LIST_HEAD(&rq->queuelist); 151 /* csd/requeue_work/fifo_time is initialized before use */ 152 rq->q = q; 153 rq->mq_ctx = ctx; 154 rq->cmd_flags |= rw_flags; 155 /* do not touch atomic flags, it needs atomic ops against the timer */ 156 rq->cpu = -1; 157 INIT_HLIST_NODE(&rq->hash); 158 RB_CLEAR_NODE(&rq->rb_node); 159 rq->rq_disk = NULL; 160 rq->part = NULL; 161 rq->start_time = jiffies; 162 #ifdef CONFIG_BLK_CGROUP 163 rq->rl = NULL; 164 set_start_time_ns(rq); 165 rq->io_start_time_ns = 0; 166 #endif 167 rq->nr_phys_segments = 0; 168 #if defined(CONFIG_BLK_DEV_INTEGRITY) 169 rq->nr_integrity_segments = 0; 170 #endif 171 rq->special = NULL; 172 /* tag was already set */ 173 rq->errors = 0; 174 175 rq->extra_len = 0; 176 rq->sense_len = 0; 177 rq->resid_len = 0; 178 rq->sense = NULL; 179 180 INIT_LIST_HEAD(&rq->timeout_list); 181 rq->timeout = 0; 182 183 rq->end_io = NULL; 184 rq->end_io_data = NULL; 185 rq->next_rq = NULL; 186 187 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 188 } 189 190 static struct request * 191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 192 { 193 struct request *rq; 194 unsigned int tag; 195 196 tag = blk_mq_get_tag(data); 197 if (tag != BLK_MQ_TAG_FAIL) { 198 rq = data->hctx->tags->rqs[tag]; 199 200 rq->cmd_flags = 0; 201 if (blk_mq_tag_busy(data->hctx)) { 202 rq->cmd_flags = REQ_MQ_INFLIGHT; 203 atomic_inc(&data->hctx->nr_active); 204 } 205 206 rq->tag = tag; 207 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 208 return rq; 209 } 210 211 return NULL; 212 } 213 214 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 215 bool reserved) 216 { 217 struct blk_mq_ctx *ctx; 218 struct blk_mq_hw_ctx *hctx; 219 struct request *rq; 220 struct blk_mq_alloc_data alloc_data; 221 222 if (blk_mq_queue_enter(q)) 223 return NULL; 224 225 ctx = blk_mq_get_ctx(q); 226 hctx = q->mq_ops->map_queue(q, ctx->cpu); 227 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 228 reserved, ctx, hctx); 229 230 rq = __blk_mq_alloc_request(&alloc_data, rw); 231 if (!rq && (gfp & __GFP_WAIT)) { 232 __blk_mq_run_hw_queue(hctx); 233 blk_mq_put_ctx(ctx); 234 235 ctx = blk_mq_get_ctx(q); 236 hctx = q->mq_ops->map_queue(q, ctx->cpu); 237 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 238 hctx); 239 rq = __blk_mq_alloc_request(&alloc_data, rw); 240 ctx = alloc_data.ctx; 241 } 242 blk_mq_put_ctx(ctx); 243 return rq; 244 } 245 EXPORT_SYMBOL(blk_mq_alloc_request); 246 247 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 248 struct blk_mq_ctx *ctx, struct request *rq) 249 { 250 const int tag = rq->tag; 251 struct request_queue *q = rq->q; 252 253 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 254 atomic_dec(&hctx->nr_active); 255 256 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 257 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 258 blk_mq_queue_exit(q); 259 } 260 261 void blk_mq_free_request(struct request *rq) 262 { 263 struct blk_mq_ctx *ctx = rq->mq_ctx; 264 struct blk_mq_hw_ctx *hctx; 265 struct request_queue *q = rq->q; 266 267 ctx->rq_completed[rq_is_sync(rq)]++; 268 269 hctx = q->mq_ops->map_queue(q, ctx->cpu); 270 __blk_mq_free_request(hctx, ctx, rq); 271 } 272 273 /* 274 * Clone all relevant state from a request that has been put on hold in 275 * the flush state machine into the preallocated flush request that hangs 276 * off the request queue. 277 * 278 * For a driver the flush request should be invisible, that's why we are 279 * impersonating the original request here. 280 */ 281 void blk_mq_clone_flush_request(struct request *flush_rq, 282 struct request *orig_rq) 283 { 284 struct blk_mq_hw_ctx *hctx = 285 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); 286 287 flush_rq->mq_ctx = orig_rq->mq_ctx; 288 flush_rq->tag = orig_rq->tag; 289 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), 290 hctx->cmd_size); 291 } 292 293 inline void __blk_mq_end_io(struct request *rq, int error) 294 { 295 blk_account_io_done(rq); 296 297 if (rq->end_io) { 298 rq->end_io(rq, error); 299 } else { 300 if (unlikely(blk_bidi_rq(rq))) 301 blk_mq_free_request(rq->next_rq); 302 blk_mq_free_request(rq); 303 } 304 } 305 EXPORT_SYMBOL(__blk_mq_end_io); 306 307 void blk_mq_end_io(struct request *rq, int error) 308 { 309 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 310 BUG(); 311 __blk_mq_end_io(rq, error); 312 } 313 EXPORT_SYMBOL(blk_mq_end_io); 314 315 static void __blk_mq_complete_request_remote(void *data) 316 { 317 struct request *rq = data; 318 319 rq->q->softirq_done_fn(rq); 320 } 321 322 static void blk_mq_ipi_complete_request(struct request *rq) 323 { 324 struct blk_mq_ctx *ctx = rq->mq_ctx; 325 bool shared = false; 326 int cpu; 327 328 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 329 rq->q->softirq_done_fn(rq); 330 return; 331 } 332 333 cpu = get_cpu(); 334 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 335 shared = cpus_share_cache(cpu, ctx->cpu); 336 337 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 338 rq->csd.func = __blk_mq_complete_request_remote; 339 rq->csd.info = rq; 340 rq->csd.flags = 0; 341 smp_call_function_single_async(ctx->cpu, &rq->csd); 342 } else { 343 rq->q->softirq_done_fn(rq); 344 } 345 put_cpu(); 346 } 347 348 void __blk_mq_complete_request(struct request *rq) 349 { 350 struct request_queue *q = rq->q; 351 352 if (!q->softirq_done_fn) 353 blk_mq_end_io(rq, rq->errors); 354 else 355 blk_mq_ipi_complete_request(rq); 356 } 357 358 /** 359 * blk_mq_complete_request - end I/O on a request 360 * @rq: the request being processed 361 * 362 * Description: 363 * Ends all I/O on a request. It does not handle partial completions. 364 * The actual completion happens out-of-order, through a IPI handler. 365 **/ 366 void blk_mq_complete_request(struct request *rq) 367 { 368 struct request_queue *q = rq->q; 369 370 if (unlikely(blk_should_fake_timeout(q))) 371 return; 372 if (!blk_mark_rq_complete(rq)) 373 __blk_mq_complete_request(rq); 374 } 375 EXPORT_SYMBOL(blk_mq_complete_request); 376 377 static void blk_mq_start_request(struct request *rq, bool last) 378 { 379 struct request_queue *q = rq->q; 380 381 trace_block_rq_issue(q, rq); 382 383 rq->resid_len = blk_rq_bytes(rq); 384 if (unlikely(blk_bidi_rq(rq))) 385 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 386 387 blk_add_timer(rq); 388 389 /* 390 * Mark us as started and clear complete. Complete might have been 391 * set if requeue raced with timeout, which then marked it as 392 * complete. So be sure to clear complete again when we start 393 * the request, otherwise we'll ignore the completion event. 394 */ 395 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 396 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 397 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 398 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 399 400 if (q->dma_drain_size && blk_rq_bytes(rq)) { 401 /* 402 * Make sure space for the drain appears. We know we can do 403 * this because max_hw_segments has been adjusted to be one 404 * fewer than the device can handle. 405 */ 406 rq->nr_phys_segments++; 407 } 408 409 /* 410 * Flag the last request in the series so that drivers know when IO 411 * should be kicked off, if they don't do it on a per-request basis. 412 * 413 * Note: the flag isn't the only condition drivers should do kick off. 414 * If drive is busy, the last request might not have the bit set. 415 */ 416 if (last) 417 rq->cmd_flags |= REQ_END; 418 } 419 420 static void __blk_mq_requeue_request(struct request *rq) 421 { 422 struct request_queue *q = rq->q; 423 424 trace_block_rq_requeue(q, rq); 425 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 426 427 rq->cmd_flags &= ~REQ_END; 428 429 if (q->dma_drain_size && blk_rq_bytes(rq)) 430 rq->nr_phys_segments--; 431 } 432 433 void blk_mq_requeue_request(struct request *rq) 434 { 435 __blk_mq_requeue_request(rq); 436 blk_clear_rq_complete(rq); 437 438 BUG_ON(blk_queued_rq(rq)); 439 blk_mq_add_to_requeue_list(rq, true); 440 } 441 EXPORT_SYMBOL(blk_mq_requeue_request); 442 443 static void blk_mq_requeue_work(struct work_struct *work) 444 { 445 struct request_queue *q = 446 container_of(work, struct request_queue, requeue_work); 447 LIST_HEAD(rq_list); 448 struct request *rq, *next; 449 unsigned long flags; 450 451 spin_lock_irqsave(&q->requeue_lock, flags); 452 list_splice_init(&q->requeue_list, &rq_list); 453 spin_unlock_irqrestore(&q->requeue_lock, flags); 454 455 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 456 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 457 continue; 458 459 rq->cmd_flags &= ~REQ_SOFTBARRIER; 460 list_del_init(&rq->queuelist); 461 blk_mq_insert_request(rq, true, false, false); 462 } 463 464 while (!list_empty(&rq_list)) { 465 rq = list_entry(rq_list.next, struct request, queuelist); 466 list_del_init(&rq->queuelist); 467 blk_mq_insert_request(rq, false, false, false); 468 } 469 470 blk_mq_run_queues(q, false); 471 } 472 473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 474 { 475 struct request_queue *q = rq->q; 476 unsigned long flags; 477 478 /* 479 * We abuse this flag that is otherwise used by the I/O scheduler to 480 * request head insertation from the workqueue. 481 */ 482 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 483 484 spin_lock_irqsave(&q->requeue_lock, flags); 485 if (at_head) { 486 rq->cmd_flags |= REQ_SOFTBARRIER; 487 list_add(&rq->queuelist, &q->requeue_list); 488 } else { 489 list_add_tail(&rq->queuelist, &q->requeue_list); 490 } 491 spin_unlock_irqrestore(&q->requeue_lock, flags); 492 } 493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 494 495 void blk_mq_kick_requeue_list(struct request_queue *q) 496 { 497 kblockd_schedule_work(&q->requeue_work); 498 } 499 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 500 501 static inline bool is_flush_request(struct request *rq, unsigned int tag) 502 { 503 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 504 rq->q->flush_rq->tag == tag); 505 } 506 507 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 508 { 509 struct request *rq = tags->rqs[tag]; 510 511 if (!is_flush_request(rq, tag)) 512 return rq; 513 514 return rq->q->flush_rq; 515 } 516 EXPORT_SYMBOL(blk_mq_tag_to_rq); 517 518 struct blk_mq_timeout_data { 519 struct blk_mq_hw_ctx *hctx; 520 unsigned long *next; 521 unsigned int *next_set; 522 }; 523 524 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) 525 { 526 struct blk_mq_timeout_data *data = __data; 527 struct blk_mq_hw_ctx *hctx = data->hctx; 528 unsigned int tag; 529 530 /* It may not be in flight yet (this is where 531 * the REQ_ATOMIC_STARTED flag comes in). The requests are 532 * statically allocated, so we know it's always safe to access the 533 * memory associated with a bit offset into ->rqs[]. 534 */ 535 tag = 0; 536 do { 537 struct request *rq; 538 539 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); 540 if (tag >= hctx->tags->nr_tags) 541 break; 542 543 rq = blk_mq_tag_to_rq(hctx->tags, tag++); 544 if (rq->q != hctx->queue) 545 continue; 546 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 547 continue; 548 549 blk_rq_check_expired(rq, data->next, data->next_set); 550 } while (1); 551 } 552 553 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, 554 unsigned long *next, 555 unsigned int *next_set) 556 { 557 struct blk_mq_timeout_data data = { 558 .hctx = hctx, 559 .next = next, 560 .next_set = next_set, 561 }; 562 563 /* 564 * Ask the tagging code to iterate busy requests, so we can 565 * check them for timeout. 566 */ 567 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); 568 } 569 570 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) 571 { 572 struct request_queue *q = rq->q; 573 574 /* 575 * We know that complete is set at this point. If STARTED isn't set 576 * anymore, then the request isn't active and the "timeout" should 577 * just be ignored. This can happen due to the bitflag ordering. 578 * Timeout first checks if STARTED is set, and if it is, assumes 579 * the request is active. But if we race with completion, then 580 * we both flags will get cleared. So check here again, and ignore 581 * a timeout event with a request that isn't active. 582 */ 583 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 584 return BLK_EH_NOT_HANDLED; 585 586 if (!q->mq_ops->timeout) 587 return BLK_EH_RESET_TIMER; 588 589 return q->mq_ops->timeout(rq); 590 } 591 592 static void blk_mq_rq_timer(unsigned long data) 593 { 594 struct request_queue *q = (struct request_queue *) data; 595 struct blk_mq_hw_ctx *hctx; 596 unsigned long next = 0; 597 int i, next_set = 0; 598 599 queue_for_each_hw_ctx(q, hctx, i) { 600 /* 601 * If not software queues are currently mapped to this 602 * hardware queue, there's nothing to check 603 */ 604 if (!hctx->nr_ctx || !hctx->tags) 605 continue; 606 607 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); 608 } 609 610 if (next_set) { 611 next = blk_rq_timeout(round_jiffies_up(next)); 612 mod_timer(&q->timeout, next); 613 } else { 614 queue_for_each_hw_ctx(q, hctx, i) 615 blk_mq_tag_idle(hctx); 616 } 617 } 618 619 /* 620 * Reverse check our software queue for entries that we could potentially 621 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 622 * too much time checking for merges. 623 */ 624 static bool blk_mq_attempt_merge(struct request_queue *q, 625 struct blk_mq_ctx *ctx, struct bio *bio) 626 { 627 struct request *rq; 628 int checked = 8; 629 630 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 631 int el_ret; 632 633 if (!checked--) 634 break; 635 636 if (!blk_rq_merge_ok(rq, bio)) 637 continue; 638 639 el_ret = blk_try_merge(rq, bio); 640 if (el_ret == ELEVATOR_BACK_MERGE) { 641 if (bio_attempt_back_merge(q, rq, bio)) { 642 ctx->rq_merged++; 643 return true; 644 } 645 break; 646 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 647 if (bio_attempt_front_merge(q, rq, bio)) { 648 ctx->rq_merged++; 649 return true; 650 } 651 break; 652 } 653 } 654 655 return false; 656 } 657 658 /* 659 * Process software queues that have been marked busy, splicing them 660 * to the for-dispatch 661 */ 662 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 663 { 664 struct blk_mq_ctx *ctx; 665 int i; 666 667 for (i = 0; i < hctx->ctx_map.map_size; i++) { 668 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 669 unsigned int off, bit; 670 671 if (!bm->word) 672 continue; 673 674 bit = 0; 675 off = i * hctx->ctx_map.bits_per_word; 676 do { 677 bit = find_next_bit(&bm->word, bm->depth, bit); 678 if (bit >= bm->depth) 679 break; 680 681 ctx = hctx->ctxs[bit + off]; 682 clear_bit(bit, &bm->word); 683 spin_lock(&ctx->lock); 684 list_splice_tail_init(&ctx->rq_list, list); 685 spin_unlock(&ctx->lock); 686 687 bit++; 688 } while (1); 689 } 690 } 691 692 /* 693 * Run this hardware queue, pulling any software queues mapped to it in. 694 * Note that this function currently has various problems around ordering 695 * of IO. In particular, we'd like FIFO behaviour on handling existing 696 * items on the hctx->dispatch list. Ignore that for now. 697 */ 698 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 699 { 700 struct request_queue *q = hctx->queue; 701 struct request *rq; 702 LIST_HEAD(rq_list); 703 int queued; 704 705 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 706 707 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 708 return; 709 710 hctx->run++; 711 712 /* 713 * Touch any software queue that has pending entries. 714 */ 715 flush_busy_ctxs(hctx, &rq_list); 716 717 /* 718 * If we have previous entries on our dispatch list, grab them 719 * and stuff them at the front for more fair dispatch. 720 */ 721 if (!list_empty_careful(&hctx->dispatch)) { 722 spin_lock(&hctx->lock); 723 if (!list_empty(&hctx->dispatch)) 724 list_splice_init(&hctx->dispatch, &rq_list); 725 spin_unlock(&hctx->lock); 726 } 727 728 /* 729 * Now process all the entries, sending them to the driver. 730 */ 731 queued = 0; 732 while (!list_empty(&rq_list)) { 733 int ret; 734 735 rq = list_first_entry(&rq_list, struct request, queuelist); 736 list_del_init(&rq->queuelist); 737 738 blk_mq_start_request(rq, list_empty(&rq_list)); 739 740 ret = q->mq_ops->queue_rq(hctx, rq); 741 switch (ret) { 742 case BLK_MQ_RQ_QUEUE_OK: 743 queued++; 744 continue; 745 case BLK_MQ_RQ_QUEUE_BUSY: 746 list_add(&rq->queuelist, &rq_list); 747 __blk_mq_requeue_request(rq); 748 break; 749 default: 750 pr_err("blk-mq: bad return on queue: %d\n", ret); 751 case BLK_MQ_RQ_QUEUE_ERROR: 752 rq->errors = -EIO; 753 blk_mq_end_io(rq, rq->errors); 754 break; 755 } 756 757 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 758 break; 759 } 760 761 if (!queued) 762 hctx->dispatched[0]++; 763 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 764 hctx->dispatched[ilog2(queued) + 1]++; 765 766 /* 767 * Any items that need requeuing? Stuff them into hctx->dispatch, 768 * that is where we will continue on next queue run. 769 */ 770 if (!list_empty(&rq_list)) { 771 spin_lock(&hctx->lock); 772 list_splice(&rq_list, &hctx->dispatch); 773 spin_unlock(&hctx->lock); 774 } 775 } 776 777 /* 778 * It'd be great if the workqueue API had a way to pass 779 * in a mask and had some smarts for more clever placement. 780 * For now we just round-robin here, switching for every 781 * BLK_MQ_CPU_WORK_BATCH queued items. 782 */ 783 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 784 { 785 int cpu = hctx->next_cpu; 786 787 if (--hctx->next_cpu_batch <= 0) { 788 int next_cpu; 789 790 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 791 if (next_cpu >= nr_cpu_ids) 792 next_cpu = cpumask_first(hctx->cpumask); 793 794 hctx->next_cpu = next_cpu; 795 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 796 } 797 798 return cpu; 799 } 800 801 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 802 { 803 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 804 return; 805 806 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 807 __blk_mq_run_hw_queue(hctx); 808 else if (hctx->queue->nr_hw_queues == 1) 809 kblockd_schedule_delayed_work(&hctx->run_work, 0); 810 else { 811 unsigned int cpu; 812 813 cpu = blk_mq_hctx_next_cpu(hctx); 814 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 815 } 816 } 817 818 void blk_mq_run_queues(struct request_queue *q, bool async) 819 { 820 struct blk_mq_hw_ctx *hctx; 821 int i; 822 823 queue_for_each_hw_ctx(q, hctx, i) { 824 if ((!blk_mq_hctx_has_pending(hctx) && 825 list_empty_careful(&hctx->dispatch)) || 826 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 827 continue; 828 829 preempt_disable(); 830 blk_mq_run_hw_queue(hctx, async); 831 preempt_enable(); 832 } 833 } 834 EXPORT_SYMBOL(blk_mq_run_queues); 835 836 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 837 { 838 cancel_delayed_work(&hctx->run_work); 839 cancel_delayed_work(&hctx->delay_work); 840 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 841 } 842 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 843 844 void blk_mq_stop_hw_queues(struct request_queue *q) 845 { 846 struct blk_mq_hw_ctx *hctx; 847 int i; 848 849 queue_for_each_hw_ctx(q, hctx, i) 850 blk_mq_stop_hw_queue(hctx); 851 } 852 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 853 854 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 855 { 856 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 857 858 preempt_disable(); 859 blk_mq_run_hw_queue(hctx, false); 860 preempt_enable(); 861 } 862 EXPORT_SYMBOL(blk_mq_start_hw_queue); 863 864 void blk_mq_start_hw_queues(struct request_queue *q) 865 { 866 struct blk_mq_hw_ctx *hctx; 867 int i; 868 869 queue_for_each_hw_ctx(q, hctx, i) 870 blk_mq_start_hw_queue(hctx); 871 } 872 EXPORT_SYMBOL(blk_mq_start_hw_queues); 873 874 875 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 876 { 877 struct blk_mq_hw_ctx *hctx; 878 int i; 879 880 queue_for_each_hw_ctx(q, hctx, i) { 881 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 882 continue; 883 884 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 885 preempt_disable(); 886 blk_mq_run_hw_queue(hctx, async); 887 preempt_enable(); 888 } 889 } 890 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 891 892 static void blk_mq_run_work_fn(struct work_struct *work) 893 { 894 struct blk_mq_hw_ctx *hctx; 895 896 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 897 898 __blk_mq_run_hw_queue(hctx); 899 } 900 901 static void blk_mq_delay_work_fn(struct work_struct *work) 902 { 903 struct blk_mq_hw_ctx *hctx; 904 905 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 906 907 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 908 __blk_mq_run_hw_queue(hctx); 909 } 910 911 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 912 { 913 unsigned long tmo = msecs_to_jiffies(msecs); 914 915 if (hctx->queue->nr_hw_queues == 1) 916 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 917 else { 918 unsigned int cpu; 919 920 cpu = blk_mq_hctx_next_cpu(hctx); 921 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 922 } 923 } 924 EXPORT_SYMBOL(blk_mq_delay_queue); 925 926 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 927 struct request *rq, bool at_head) 928 { 929 struct blk_mq_ctx *ctx = rq->mq_ctx; 930 931 trace_block_rq_insert(hctx->queue, rq); 932 933 if (at_head) 934 list_add(&rq->queuelist, &ctx->rq_list); 935 else 936 list_add_tail(&rq->queuelist, &ctx->rq_list); 937 938 blk_mq_hctx_mark_pending(hctx, ctx); 939 } 940 941 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 942 bool async) 943 { 944 struct request_queue *q = rq->q; 945 struct blk_mq_hw_ctx *hctx; 946 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 947 948 current_ctx = blk_mq_get_ctx(q); 949 if (!cpu_online(ctx->cpu)) 950 rq->mq_ctx = ctx = current_ctx; 951 952 hctx = q->mq_ops->map_queue(q, ctx->cpu); 953 954 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && 955 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { 956 blk_insert_flush(rq); 957 } else { 958 spin_lock(&ctx->lock); 959 __blk_mq_insert_request(hctx, rq, at_head); 960 spin_unlock(&ctx->lock); 961 } 962 963 if (run_queue) 964 blk_mq_run_hw_queue(hctx, async); 965 966 blk_mq_put_ctx(current_ctx); 967 } 968 969 static void blk_mq_insert_requests(struct request_queue *q, 970 struct blk_mq_ctx *ctx, 971 struct list_head *list, 972 int depth, 973 bool from_schedule) 974 975 { 976 struct blk_mq_hw_ctx *hctx; 977 struct blk_mq_ctx *current_ctx; 978 979 trace_block_unplug(q, depth, !from_schedule); 980 981 current_ctx = blk_mq_get_ctx(q); 982 983 if (!cpu_online(ctx->cpu)) 984 ctx = current_ctx; 985 hctx = q->mq_ops->map_queue(q, ctx->cpu); 986 987 /* 988 * preemption doesn't flush plug list, so it's possible ctx->cpu is 989 * offline now 990 */ 991 spin_lock(&ctx->lock); 992 while (!list_empty(list)) { 993 struct request *rq; 994 995 rq = list_first_entry(list, struct request, queuelist); 996 list_del_init(&rq->queuelist); 997 rq->mq_ctx = ctx; 998 __blk_mq_insert_request(hctx, rq, false); 999 } 1000 spin_unlock(&ctx->lock); 1001 1002 blk_mq_run_hw_queue(hctx, from_schedule); 1003 blk_mq_put_ctx(current_ctx); 1004 } 1005 1006 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1007 { 1008 struct request *rqa = container_of(a, struct request, queuelist); 1009 struct request *rqb = container_of(b, struct request, queuelist); 1010 1011 return !(rqa->mq_ctx < rqb->mq_ctx || 1012 (rqa->mq_ctx == rqb->mq_ctx && 1013 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1014 } 1015 1016 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1017 { 1018 struct blk_mq_ctx *this_ctx; 1019 struct request_queue *this_q; 1020 struct request *rq; 1021 LIST_HEAD(list); 1022 LIST_HEAD(ctx_list); 1023 unsigned int depth; 1024 1025 list_splice_init(&plug->mq_list, &list); 1026 1027 list_sort(NULL, &list, plug_ctx_cmp); 1028 1029 this_q = NULL; 1030 this_ctx = NULL; 1031 depth = 0; 1032 1033 while (!list_empty(&list)) { 1034 rq = list_entry_rq(list.next); 1035 list_del_init(&rq->queuelist); 1036 BUG_ON(!rq->q); 1037 if (rq->mq_ctx != this_ctx) { 1038 if (this_ctx) { 1039 blk_mq_insert_requests(this_q, this_ctx, 1040 &ctx_list, depth, 1041 from_schedule); 1042 } 1043 1044 this_ctx = rq->mq_ctx; 1045 this_q = rq->q; 1046 depth = 0; 1047 } 1048 1049 depth++; 1050 list_add_tail(&rq->queuelist, &ctx_list); 1051 } 1052 1053 /* 1054 * If 'this_ctx' is set, we know we have entries to complete 1055 * on 'ctx_list'. Do those. 1056 */ 1057 if (this_ctx) { 1058 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1059 from_schedule); 1060 } 1061 } 1062 1063 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1064 { 1065 init_request_from_bio(rq, bio); 1066 1067 if (blk_do_io_stat(rq)) 1068 blk_account_io_start(rq, 1); 1069 } 1070 1071 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1072 struct blk_mq_ctx *ctx, 1073 struct request *rq, struct bio *bio) 1074 { 1075 struct request_queue *q = hctx->queue; 1076 1077 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { 1078 blk_mq_bio_to_request(rq, bio); 1079 spin_lock(&ctx->lock); 1080 insert_rq: 1081 __blk_mq_insert_request(hctx, rq, false); 1082 spin_unlock(&ctx->lock); 1083 return false; 1084 } else { 1085 spin_lock(&ctx->lock); 1086 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1087 blk_mq_bio_to_request(rq, bio); 1088 goto insert_rq; 1089 } 1090 1091 spin_unlock(&ctx->lock); 1092 __blk_mq_free_request(hctx, ctx, rq); 1093 return true; 1094 } 1095 } 1096 1097 struct blk_map_ctx { 1098 struct blk_mq_hw_ctx *hctx; 1099 struct blk_mq_ctx *ctx; 1100 }; 1101 1102 static struct request *blk_mq_map_request(struct request_queue *q, 1103 struct bio *bio, 1104 struct blk_map_ctx *data) 1105 { 1106 struct blk_mq_hw_ctx *hctx; 1107 struct blk_mq_ctx *ctx; 1108 struct request *rq; 1109 int rw = bio_data_dir(bio); 1110 struct blk_mq_alloc_data alloc_data; 1111 1112 if (unlikely(blk_mq_queue_enter(q))) { 1113 bio_endio(bio, -EIO); 1114 return NULL; 1115 } 1116 1117 ctx = blk_mq_get_ctx(q); 1118 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1119 1120 if (rw_is_sync(bio->bi_rw)) 1121 rw |= REQ_SYNC; 1122 1123 trace_block_getrq(q, bio, rw); 1124 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1125 hctx); 1126 rq = __blk_mq_alloc_request(&alloc_data, rw); 1127 if (unlikely(!rq)) { 1128 __blk_mq_run_hw_queue(hctx); 1129 blk_mq_put_ctx(ctx); 1130 trace_block_sleeprq(q, bio, rw); 1131 1132 ctx = blk_mq_get_ctx(q); 1133 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1134 blk_mq_set_alloc_data(&alloc_data, q, 1135 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1136 rq = __blk_mq_alloc_request(&alloc_data, rw); 1137 ctx = alloc_data.ctx; 1138 hctx = alloc_data.hctx; 1139 } 1140 1141 hctx->queued++; 1142 data->hctx = hctx; 1143 data->ctx = ctx; 1144 return rq; 1145 } 1146 1147 /* 1148 * Multiple hardware queue variant. This will not use per-process plugs, 1149 * but will attempt to bypass the hctx queueing if we can go straight to 1150 * hardware for SYNC IO. 1151 */ 1152 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1153 { 1154 const int is_sync = rw_is_sync(bio->bi_rw); 1155 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1156 struct blk_map_ctx data; 1157 struct request *rq; 1158 1159 blk_queue_bounce(q, &bio); 1160 1161 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1162 bio_endio(bio, -EIO); 1163 return; 1164 } 1165 1166 rq = blk_mq_map_request(q, bio, &data); 1167 if (unlikely(!rq)) 1168 return; 1169 1170 if (unlikely(is_flush_fua)) { 1171 blk_mq_bio_to_request(rq, bio); 1172 blk_insert_flush(rq); 1173 goto run_queue; 1174 } 1175 1176 if (is_sync) { 1177 int ret; 1178 1179 blk_mq_bio_to_request(rq, bio); 1180 blk_mq_start_request(rq, true); 1181 1182 /* 1183 * For OK queue, we are done. For error, kill it. Any other 1184 * error (busy), just add it to our list as we previously 1185 * would have done 1186 */ 1187 ret = q->mq_ops->queue_rq(data.hctx, rq); 1188 if (ret == BLK_MQ_RQ_QUEUE_OK) 1189 goto done; 1190 else { 1191 __blk_mq_requeue_request(rq); 1192 1193 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1194 rq->errors = -EIO; 1195 blk_mq_end_io(rq, rq->errors); 1196 goto done; 1197 } 1198 } 1199 } 1200 1201 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1202 /* 1203 * For a SYNC request, send it to the hardware immediately. For 1204 * an ASYNC request, just ensure that we run it later on. The 1205 * latter allows for merging opportunities and more efficient 1206 * dispatching. 1207 */ 1208 run_queue: 1209 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1210 } 1211 done: 1212 blk_mq_put_ctx(data.ctx); 1213 } 1214 1215 /* 1216 * Single hardware queue variant. This will attempt to use any per-process 1217 * plug for merging and IO deferral. 1218 */ 1219 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1220 { 1221 const int is_sync = rw_is_sync(bio->bi_rw); 1222 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1223 unsigned int use_plug, request_count = 0; 1224 struct blk_map_ctx data; 1225 struct request *rq; 1226 1227 /* 1228 * If we have multiple hardware queues, just go directly to 1229 * one of those for sync IO. 1230 */ 1231 use_plug = !is_flush_fua && !is_sync; 1232 1233 blk_queue_bounce(q, &bio); 1234 1235 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1236 bio_endio(bio, -EIO); 1237 return; 1238 } 1239 1240 if (use_plug && !blk_queue_nomerges(q) && 1241 blk_attempt_plug_merge(q, bio, &request_count)) 1242 return; 1243 1244 rq = blk_mq_map_request(q, bio, &data); 1245 if (unlikely(!rq)) 1246 return; 1247 1248 if (unlikely(is_flush_fua)) { 1249 blk_mq_bio_to_request(rq, bio); 1250 blk_insert_flush(rq); 1251 goto run_queue; 1252 } 1253 1254 /* 1255 * A task plug currently exists. Since this is completely lockless, 1256 * utilize that to temporarily store requests until the task is 1257 * either done or scheduled away. 1258 */ 1259 if (use_plug) { 1260 struct blk_plug *plug = current->plug; 1261 1262 if (plug) { 1263 blk_mq_bio_to_request(rq, bio); 1264 if (list_empty(&plug->mq_list)) 1265 trace_block_plug(q); 1266 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1267 blk_flush_plug_list(plug, false); 1268 trace_block_plug(q); 1269 } 1270 list_add_tail(&rq->queuelist, &plug->mq_list); 1271 blk_mq_put_ctx(data.ctx); 1272 return; 1273 } 1274 } 1275 1276 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1277 /* 1278 * For a SYNC request, send it to the hardware immediately. For 1279 * an ASYNC request, just ensure that we run it later on. The 1280 * latter allows for merging opportunities and more efficient 1281 * dispatching. 1282 */ 1283 run_queue: 1284 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1285 } 1286 1287 blk_mq_put_ctx(data.ctx); 1288 } 1289 1290 /* 1291 * Default mapping to a software queue, since we use one per CPU. 1292 */ 1293 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1294 { 1295 return q->queue_hw_ctx[q->mq_map[cpu]]; 1296 } 1297 EXPORT_SYMBOL(blk_mq_map_queue); 1298 1299 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1300 struct blk_mq_tags *tags, unsigned int hctx_idx) 1301 { 1302 struct page *page; 1303 1304 if (tags->rqs && set->ops->exit_request) { 1305 int i; 1306 1307 for (i = 0; i < tags->nr_tags; i++) { 1308 if (!tags->rqs[i]) 1309 continue; 1310 set->ops->exit_request(set->driver_data, tags->rqs[i], 1311 hctx_idx, i); 1312 } 1313 } 1314 1315 while (!list_empty(&tags->page_list)) { 1316 page = list_first_entry(&tags->page_list, struct page, lru); 1317 list_del_init(&page->lru); 1318 __free_pages(page, page->private); 1319 } 1320 1321 kfree(tags->rqs); 1322 1323 blk_mq_free_tags(tags); 1324 } 1325 1326 static size_t order_to_size(unsigned int order) 1327 { 1328 return (size_t)PAGE_SIZE << order; 1329 } 1330 1331 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1332 unsigned int hctx_idx) 1333 { 1334 struct blk_mq_tags *tags; 1335 unsigned int i, j, entries_per_page, max_order = 4; 1336 size_t rq_size, left; 1337 1338 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1339 set->numa_node); 1340 if (!tags) 1341 return NULL; 1342 1343 INIT_LIST_HEAD(&tags->page_list); 1344 1345 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *), 1346 GFP_KERNEL, set->numa_node); 1347 if (!tags->rqs) { 1348 blk_mq_free_tags(tags); 1349 return NULL; 1350 } 1351 1352 /* 1353 * rq_size is the size of the request plus driver payload, rounded 1354 * to the cacheline size 1355 */ 1356 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1357 cache_line_size()); 1358 left = rq_size * set->queue_depth; 1359 1360 for (i = 0; i < set->queue_depth; ) { 1361 int this_order = max_order; 1362 struct page *page; 1363 int to_do; 1364 void *p; 1365 1366 while (left < order_to_size(this_order - 1) && this_order) 1367 this_order--; 1368 1369 do { 1370 page = alloc_pages_node(set->numa_node, GFP_KERNEL, 1371 this_order); 1372 if (page) 1373 break; 1374 if (!this_order--) 1375 break; 1376 if (order_to_size(this_order) < rq_size) 1377 break; 1378 } while (1); 1379 1380 if (!page) 1381 goto fail; 1382 1383 page->private = this_order; 1384 list_add_tail(&page->lru, &tags->page_list); 1385 1386 p = page_address(page); 1387 entries_per_page = order_to_size(this_order) / rq_size; 1388 to_do = min(entries_per_page, set->queue_depth - i); 1389 left -= to_do * rq_size; 1390 for (j = 0; j < to_do; j++) { 1391 tags->rqs[i] = p; 1392 if (set->ops->init_request) { 1393 if (set->ops->init_request(set->driver_data, 1394 tags->rqs[i], hctx_idx, i, 1395 set->numa_node)) 1396 goto fail; 1397 } 1398 1399 p += rq_size; 1400 i++; 1401 } 1402 } 1403 1404 return tags; 1405 1406 fail: 1407 pr_warn("%s: failed to allocate requests\n", __func__); 1408 blk_mq_free_rq_map(set, tags, hctx_idx); 1409 return NULL; 1410 } 1411 1412 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1413 { 1414 kfree(bitmap->map); 1415 } 1416 1417 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1418 { 1419 unsigned int bpw = 8, total, num_maps, i; 1420 1421 bitmap->bits_per_word = bpw; 1422 1423 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1424 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1425 GFP_KERNEL, node); 1426 if (!bitmap->map) 1427 return -ENOMEM; 1428 1429 bitmap->map_size = num_maps; 1430 1431 total = nr_cpu_ids; 1432 for (i = 0; i < num_maps; i++) { 1433 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1434 total -= bitmap->map[i].depth; 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1441 { 1442 struct request_queue *q = hctx->queue; 1443 struct blk_mq_ctx *ctx; 1444 LIST_HEAD(tmp); 1445 1446 /* 1447 * Move ctx entries to new CPU, if this one is going away. 1448 */ 1449 ctx = __blk_mq_get_ctx(q, cpu); 1450 1451 spin_lock(&ctx->lock); 1452 if (!list_empty(&ctx->rq_list)) { 1453 list_splice_init(&ctx->rq_list, &tmp); 1454 blk_mq_hctx_clear_pending(hctx, ctx); 1455 } 1456 spin_unlock(&ctx->lock); 1457 1458 if (list_empty(&tmp)) 1459 return NOTIFY_OK; 1460 1461 ctx = blk_mq_get_ctx(q); 1462 spin_lock(&ctx->lock); 1463 1464 while (!list_empty(&tmp)) { 1465 struct request *rq; 1466 1467 rq = list_first_entry(&tmp, struct request, queuelist); 1468 rq->mq_ctx = ctx; 1469 list_move_tail(&rq->queuelist, &ctx->rq_list); 1470 } 1471 1472 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1473 blk_mq_hctx_mark_pending(hctx, ctx); 1474 1475 spin_unlock(&ctx->lock); 1476 1477 blk_mq_run_hw_queue(hctx, true); 1478 blk_mq_put_ctx(ctx); 1479 return NOTIFY_OK; 1480 } 1481 1482 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1483 { 1484 struct request_queue *q = hctx->queue; 1485 struct blk_mq_tag_set *set = q->tag_set; 1486 1487 if (set->tags[hctx->queue_num]) 1488 return NOTIFY_OK; 1489 1490 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1491 if (!set->tags[hctx->queue_num]) 1492 return NOTIFY_STOP; 1493 1494 hctx->tags = set->tags[hctx->queue_num]; 1495 return NOTIFY_OK; 1496 } 1497 1498 static int blk_mq_hctx_notify(void *data, unsigned long action, 1499 unsigned int cpu) 1500 { 1501 struct blk_mq_hw_ctx *hctx = data; 1502 1503 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1504 return blk_mq_hctx_cpu_offline(hctx, cpu); 1505 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1506 return blk_mq_hctx_cpu_online(hctx, cpu); 1507 1508 return NOTIFY_OK; 1509 } 1510 1511 static void blk_mq_exit_hw_queues(struct request_queue *q, 1512 struct blk_mq_tag_set *set, int nr_queue) 1513 { 1514 struct blk_mq_hw_ctx *hctx; 1515 unsigned int i; 1516 1517 queue_for_each_hw_ctx(q, hctx, i) { 1518 if (i == nr_queue) 1519 break; 1520 1521 blk_mq_tag_idle(hctx); 1522 1523 if (set->ops->exit_hctx) 1524 set->ops->exit_hctx(hctx, i); 1525 1526 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1527 kfree(hctx->ctxs); 1528 blk_mq_free_bitmap(&hctx->ctx_map); 1529 } 1530 1531 } 1532 1533 static void blk_mq_free_hw_queues(struct request_queue *q, 1534 struct blk_mq_tag_set *set) 1535 { 1536 struct blk_mq_hw_ctx *hctx; 1537 unsigned int i; 1538 1539 queue_for_each_hw_ctx(q, hctx, i) { 1540 free_cpumask_var(hctx->cpumask); 1541 kfree(hctx); 1542 } 1543 } 1544 1545 static int blk_mq_init_hw_queues(struct request_queue *q, 1546 struct blk_mq_tag_set *set) 1547 { 1548 struct blk_mq_hw_ctx *hctx; 1549 unsigned int i; 1550 1551 /* 1552 * Initialize hardware queues 1553 */ 1554 queue_for_each_hw_ctx(q, hctx, i) { 1555 int node; 1556 1557 node = hctx->numa_node; 1558 if (node == NUMA_NO_NODE) 1559 node = hctx->numa_node = set->numa_node; 1560 1561 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1562 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1563 spin_lock_init(&hctx->lock); 1564 INIT_LIST_HEAD(&hctx->dispatch); 1565 hctx->queue = q; 1566 hctx->queue_num = i; 1567 hctx->flags = set->flags; 1568 hctx->cmd_size = set->cmd_size; 1569 1570 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1571 blk_mq_hctx_notify, hctx); 1572 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1573 1574 hctx->tags = set->tags[i]; 1575 1576 /* 1577 * Allocate space for all possible cpus to avoid allocation in 1578 * runtime 1579 */ 1580 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1581 GFP_KERNEL, node); 1582 if (!hctx->ctxs) 1583 break; 1584 1585 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1586 break; 1587 1588 hctx->nr_ctx = 0; 1589 1590 if (set->ops->init_hctx && 1591 set->ops->init_hctx(hctx, set->driver_data, i)) 1592 break; 1593 } 1594 1595 if (i == q->nr_hw_queues) 1596 return 0; 1597 1598 /* 1599 * Init failed 1600 */ 1601 blk_mq_exit_hw_queues(q, set, i); 1602 1603 return 1; 1604 } 1605 1606 static void blk_mq_init_cpu_queues(struct request_queue *q, 1607 unsigned int nr_hw_queues) 1608 { 1609 unsigned int i; 1610 1611 for_each_possible_cpu(i) { 1612 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1613 struct blk_mq_hw_ctx *hctx; 1614 1615 memset(__ctx, 0, sizeof(*__ctx)); 1616 __ctx->cpu = i; 1617 spin_lock_init(&__ctx->lock); 1618 INIT_LIST_HEAD(&__ctx->rq_list); 1619 __ctx->queue = q; 1620 1621 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1622 if (!cpu_online(i)) 1623 continue; 1624 1625 hctx = q->mq_ops->map_queue(q, i); 1626 cpumask_set_cpu(i, hctx->cpumask); 1627 hctx->nr_ctx++; 1628 1629 /* 1630 * Set local node, IFF we have more than one hw queue. If 1631 * not, we remain on the home node of the device 1632 */ 1633 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1634 hctx->numa_node = cpu_to_node(i); 1635 } 1636 } 1637 1638 static void blk_mq_map_swqueue(struct request_queue *q) 1639 { 1640 unsigned int i; 1641 struct blk_mq_hw_ctx *hctx; 1642 struct blk_mq_ctx *ctx; 1643 1644 queue_for_each_hw_ctx(q, hctx, i) { 1645 cpumask_clear(hctx->cpumask); 1646 hctx->nr_ctx = 0; 1647 } 1648 1649 /* 1650 * Map software to hardware queues 1651 */ 1652 queue_for_each_ctx(q, ctx, i) { 1653 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1654 if (!cpu_online(i)) 1655 continue; 1656 1657 hctx = q->mq_ops->map_queue(q, i); 1658 cpumask_set_cpu(i, hctx->cpumask); 1659 ctx->index_hw = hctx->nr_ctx; 1660 hctx->ctxs[hctx->nr_ctx++] = ctx; 1661 } 1662 1663 queue_for_each_hw_ctx(q, hctx, i) { 1664 /* 1665 * If not software queues are mapped to this hardware queue, 1666 * disable it and free the request entries 1667 */ 1668 if (!hctx->nr_ctx) { 1669 struct blk_mq_tag_set *set = q->tag_set; 1670 1671 if (set->tags[i]) { 1672 blk_mq_free_rq_map(set, set->tags[i], i); 1673 set->tags[i] = NULL; 1674 hctx->tags = NULL; 1675 } 1676 continue; 1677 } 1678 1679 /* 1680 * Initialize batch roundrobin counts 1681 */ 1682 hctx->next_cpu = cpumask_first(hctx->cpumask); 1683 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1684 } 1685 } 1686 1687 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1688 { 1689 struct blk_mq_hw_ctx *hctx; 1690 struct request_queue *q; 1691 bool shared; 1692 int i; 1693 1694 if (set->tag_list.next == set->tag_list.prev) 1695 shared = false; 1696 else 1697 shared = true; 1698 1699 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1700 blk_mq_freeze_queue(q); 1701 1702 queue_for_each_hw_ctx(q, hctx, i) { 1703 if (shared) 1704 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1705 else 1706 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1707 } 1708 blk_mq_unfreeze_queue(q); 1709 } 1710 } 1711 1712 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1713 { 1714 struct blk_mq_tag_set *set = q->tag_set; 1715 1716 blk_mq_freeze_queue(q); 1717 1718 mutex_lock(&set->tag_list_lock); 1719 list_del_init(&q->tag_set_list); 1720 blk_mq_update_tag_set_depth(set); 1721 mutex_unlock(&set->tag_list_lock); 1722 1723 blk_mq_unfreeze_queue(q); 1724 } 1725 1726 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1727 struct request_queue *q) 1728 { 1729 q->tag_set = set; 1730 1731 mutex_lock(&set->tag_list_lock); 1732 list_add_tail(&q->tag_set_list, &set->tag_list); 1733 blk_mq_update_tag_set_depth(set); 1734 mutex_unlock(&set->tag_list_lock); 1735 } 1736 1737 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1738 { 1739 struct blk_mq_hw_ctx **hctxs; 1740 struct blk_mq_ctx __percpu *ctx; 1741 struct request_queue *q; 1742 unsigned int *map; 1743 int i; 1744 1745 ctx = alloc_percpu(struct blk_mq_ctx); 1746 if (!ctx) 1747 return ERR_PTR(-ENOMEM); 1748 1749 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1750 set->numa_node); 1751 1752 if (!hctxs) 1753 goto err_percpu; 1754 1755 map = blk_mq_make_queue_map(set); 1756 if (!map) 1757 goto err_map; 1758 1759 for (i = 0; i < set->nr_hw_queues; i++) { 1760 int node = blk_mq_hw_queue_to_node(map, i); 1761 1762 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1763 GFP_KERNEL, node); 1764 if (!hctxs[i]) 1765 goto err_hctxs; 1766 1767 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) 1768 goto err_hctxs; 1769 1770 atomic_set(&hctxs[i]->nr_active, 0); 1771 hctxs[i]->numa_node = node; 1772 hctxs[i]->queue_num = i; 1773 } 1774 1775 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1776 if (!q) 1777 goto err_hctxs; 1778 1779 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release)) 1780 goto err_map; 1781 1782 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1783 blk_queue_rq_timeout(q, 30000); 1784 1785 q->nr_queues = nr_cpu_ids; 1786 q->nr_hw_queues = set->nr_hw_queues; 1787 q->mq_map = map; 1788 1789 q->queue_ctx = ctx; 1790 q->queue_hw_ctx = hctxs; 1791 1792 q->mq_ops = set->ops; 1793 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1794 1795 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1796 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1797 1798 q->sg_reserved_size = INT_MAX; 1799 1800 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1801 INIT_LIST_HEAD(&q->requeue_list); 1802 spin_lock_init(&q->requeue_lock); 1803 1804 if (q->nr_hw_queues > 1) 1805 blk_queue_make_request(q, blk_mq_make_request); 1806 else 1807 blk_queue_make_request(q, blk_sq_make_request); 1808 1809 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); 1810 if (set->timeout) 1811 blk_queue_rq_timeout(q, set->timeout); 1812 1813 /* 1814 * Do this after blk_queue_make_request() overrides it... 1815 */ 1816 q->nr_requests = set->queue_depth; 1817 1818 if (set->ops->complete) 1819 blk_queue_softirq_done(q, set->ops->complete); 1820 1821 blk_mq_init_flush(q); 1822 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1823 1824 q->flush_rq = kzalloc(round_up(sizeof(struct request) + 1825 set->cmd_size, cache_line_size()), 1826 GFP_KERNEL); 1827 if (!q->flush_rq) 1828 goto err_hw; 1829 1830 if (blk_mq_init_hw_queues(q, set)) 1831 goto err_flush_rq; 1832 1833 mutex_lock(&all_q_mutex); 1834 list_add_tail(&q->all_q_node, &all_q_list); 1835 mutex_unlock(&all_q_mutex); 1836 1837 blk_mq_add_queue_tag_set(set, q); 1838 1839 blk_mq_map_swqueue(q); 1840 1841 return q; 1842 1843 err_flush_rq: 1844 kfree(q->flush_rq); 1845 err_hw: 1846 blk_cleanup_queue(q); 1847 err_hctxs: 1848 kfree(map); 1849 for (i = 0; i < set->nr_hw_queues; i++) { 1850 if (!hctxs[i]) 1851 break; 1852 free_cpumask_var(hctxs[i]->cpumask); 1853 kfree(hctxs[i]); 1854 } 1855 err_map: 1856 kfree(hctxs); 1857 err_percpu: 1858 free_percpu(ctx); 1859 return ERR_PTR(-ENOMEM); 1860 } 1861 EXPORT_SYMBOL(blk_mq_init_queue); 1862 1863 void blk_mq_free_queue(struct request_queue *q) 1864 { 1865 struct blk_mq_tag_set *set = q->tag_set; 1866 1867 blk_mq_del_queue_tag_set(q); 1868 1869 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1870 blk_mq_free_hw_queues(q, set); 1871 1872 percpu_ref_exit(&q->mq_usage_counter); 1873 1874 free_percpu(q->queue_ctx); 1875 kfree(q->queue_hw_ctx); 1876 kfree(q->mq_map); 1877 1878 q->queue_ctx = NULL; 1879 q->queue_hw_ctx = NULL; 1880 q->mq_map = NULL; 1881 1882 mutex_lock(&all_q_mutex); 1883 list_del_init(&q->all_q_node); 1884 mutex_unlock(&all_q_mutex); 1885 } 1886 1887 /* Basically redo blk_mq_init_queue with queue frozen */ 1888 static void blk_mq_queue_reinit(struct request_queue *q) 1889 { 1890 blk_mq_freeze_queue(q); 1891 1892 blk_mq_sysfs_unregister(q); 1893 1894 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1895 1896 /* 1897 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1898 * we should change hctx numa_node according to new topology (this 1899 * involves free and re-allocate memory, worthy doing?) 1900 */ 1901 1902 blk_mq_map_swqueue(q); 1903 1904 blk_mq_sysfs_register(q); 1905 1906 blk_mq_unfreeze_queue(q); 1907 } 1908 1909 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1910 unsigned long action, void *hcpu) 1911 { 1912 struct request_queue *q; 1913 1914 /* 1915 * Before new mappings are established, hotadded cpu might already 1916 * start handling requests. This doesn't break anything as we map 1917 * offline CPUs to first hardware queue. We will re-init the queue 1918 * below to get optimal settings. 1919 */ 1920 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1921 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1922 return NOTIFY_OK; 1923 1924 mutex_lock(&all_q_mutex); 1925 list_for_each_entry(q, &all_q_list, all_q_node) 1926 blk_mq_queue_reinit(q); 1927 mutex_unlock(&all_q_mutex); 1928 return NOTIFY_OK; 1929 } 1930 1931 /* 1932 * Alloc a tag set to be associated with one or more request queues. 1933 * May fail with EINVAL for various error conditions. May adjust the 1934 * requested depth down, if if it too large. In that case, the set 1935 * value will be stored in set->queue_depth. 1936 */ 1937 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 1938 { 1939 int i; 1940 1941 if (!set->nr_hw_queues) 1942 return -EINVAL; 1943 if (!set->queue_depth) 1944 return -EINVAL; 1945 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 1946 return -EINVAL; 1947 1948 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 1949 return -EINVAL; 1950 1951 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 1952 pr_info("blk-mq: reduced tag depth to %u\n", 1953 BLK_MQ_MAX_DEPTH); 1954 set->queue_depth = BLK_MQ_MAX_DEPTH; 1955 } 1956 1957 set->tags = kmalloc_node(set->nr_hw_queues * 1958 sizeof(struct blk_mq_tags *), 1959 GFP_KERNEL, set->numa_node); 1960 if (!set->tags) 1961 goto out; 1962 1963 for (i = 0; i < set->nr_hw_queues; i++) { 1964 set->tags[i] = blk_mq_init_rq_map(set, i); 1965 if (!set->tags[i]) 1966 goto out_unwind; 1967 } 1968 1969 mutex_init(&set->tag_list_lock); 1970 INIT_LIST_HEAD(&set->tag_list); 1971 1972 return 0; 1973 1974 out_unwind: 1975 while (--i >= 0) 1976 blk_mq_free_rq_map(set, set->tags[i], i); 1977 out: 1978 return -ENOMEM; 1979 } 1980 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 1981 1982 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 1983 { 1984 int i; 1985 1986 for (i = 0; i < set->nr_hw_queues; i++) { 1987 if (set->tags[i]) 1988 blk_mq_free_rq_map(set, set->tags[i], i); 1989 } 1990 1991 kfree(set->tags); 1992 } 1993 EXPORT_SYMBOL(blk_mq_free_tag_set); 1994 1995 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 1996 { 1997 struct blk_mq_tag_set *set = q->tag_set; 1998 struct blk_mq_hw_ctx *hctx; 1999 int i, ret; 2000 2001 if (!set || nr > set->queue_depth) 2002 return -EINVAL; 2003 2004 ret = 0; 2005 queue_for_each_hw_ctx(q, hctx, i) { 2006 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2007 if (ret) 2008 break; 2009 } 2010 2011 if (!ret) 2012 q->nr_requests = nr; 2013 2014 return ret; 2015 } 2016 2017 void blk_mq_disable_hotplug(void) 2018 { 2019 mutex_lock(&all_q_mutex); 2020 } 2021 2022 void blk_mq_enable_hotplug(void) 2023 { 2024 mutex_unlock(&all_q_mutex); 2025 } 2026 2027 static int __init blk_mq_init(void) 2028 { 2029 blk_mq_cpu_init(); 2030 2031 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2032 2033 return 0; 2034 } 2035 subsys_initcall(blk_mq_init); 2036