1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct hd_struct *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if (rq->part == mi->part) 109 mi->inflight[rq_data_dir(rq)]++; 110 111 return true; 112 } 113 114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 120 return mi.inflight[0] + mi.inflight[1]; 121 } 122 123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 124 unsigned int inflight[2]) 125 { 126 struct mq_inflight mi = { .part = part }; 127 128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 129 inflight[0] = mi.inflight[0]; 130 inflight[1] = mi.inflight[1]; 131 } 132 133 void blk_freeze_queue_start(struct request_queue *q) 134 { 135 mutex_lock(&q->mq_freeze_lock); 136 if (++q->mq_freeze_depth == 1) { 137 percpu_ref_kill(&q->q_usage_counter); 138 mutex_unlock(&q->mq_freeze_lock); 139 if (queue_is_mq(q)) 140 blk_mq_run_hw_queues(q, false); 141 } else { 142 mutex_unlock(&q->mq_freeze_lock); 143 } 144 } 145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 146 147 void blk_mq_freeze_queue_wait(struct request_queue *q) 148 { 149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 152 153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 154 unsigned long timeout) 155 { 156 return wait_event_timeout(q->mq_freeze_wq, 157 percpu_ref_is_zero(&q->q_usage_counter), 158 timeout); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 161 162 /* 163 * Guarantee no request is in use, so we can change any data structure of 164 * the queue afterward. 165 */ 166 void blk_freeze_queue(struct request_queue *q) 167 { 168 /* 169 * In the !blk_mq case we are only calling this to kill the 170 * q_usage_counter, otherwise this increases the freeze depth 171 * and waits for it to return to zero. For this reason there is 172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 173 * exported to drivers as the only user for unfreeze is blk_mq. 174 */ 175 blk_freeze_queue_start(q); 176 blk_mq_freeze_queue_wait(q); 177 } 178 179 void blk_mq_freeze_queue(struct request_queue *q) 180 { 181 /* 182 * ...just an alias to keep freeze and unfreeze actions balanced 183 * in the blk_mq_* namespace 184 */ 185 blk_freeze_queue(q); 186 } 187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 188 189 void blk_mq_unfreeze_queue(struct request_queue *q) 190 { 191 mutex_lock(&q->mq_freeze_lock); 192 q->mq_freeze_depth--; 193 WARN_ON_ONCE(q->mq_freeze_depth < 0); 194 if (!q->mq_freeze_depth) { 195 percpu_ref_resurrect(&q->q_usage_counter); 196 wake_up_all(&q->mq_freeze_wq); 197 } 198 mutex_unlock(&q->mq_freeze_lock); 199 } 200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 201 202 /* 203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 204 * mpt3sas driver such that this function can be removed. 205 */ 206 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 207 { 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 209 } 210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 211 212 /** 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 214 * @q: request queue. 215 * 216 * Note: this function does not prevent that the struct request end_io() 217 * callback function is invoked. Once this function is returned, we make 218 * sure no dispatch can happen until the queue is unquiesced via 219 * blk_mq_unquiesce_queue(). 220 */ 221 void blk_mq_quiesce_queue(struct request_queue *q) 222 { 223 struct blk_mq_hw_ctx *hctx; 224 unsigned int i; 225 bool rcu = false; 226 227 blk_mq_quiesce_queue_nowait(q); 228 229 queue_for_each_hw_ctx(q, hctx, i) { 230 if (hctx->flags & BLK_MQ_F_BLOCKING) 231 synchronize_srcu(hctx->srcu); 232 else 233 rcu = true; 234 } 235 if (rcu) 236 synchronize_rcu(); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 239 240 /* 241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 242 * @q: request queue. 243 * 244 * This function recovers queue into the state before quiescing 245 * which is done by blk_mq_quiesce_queue. 246 */ 247 void blk_mq_unquiesce_queue(struct request_queue *q) 248 { 249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 250 251 /* dispatch requests which are inserted during quiescing */ 252 blk_mq_run_hw_queues(q, true); 253 } 254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 255 256 void blk_mq_wake_waiters(struct request_queue *q) 257 { 258 struct blk_mq_hw_ctx *hctx; 259 unsigned int i; 260 261 queue_for_each_hw_ctx(q, hctx, i) 262 if (blk_mq_hw_queue_mapped(hctx)) 263 blk_mq_tag_wakeup_all(hctx->tags, true); 264 } 265 266 /* 267 * Only need start/end time stamping if we have iostat or 268 * blk stats enabled, or using an IO scheduler. 269 */ 270 static inline bool blk_mq_need_time_stamp(struct request *rq) 271 { 272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 273 } 274 275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 276 unsigned int tag, u64 alloc_time_ns) 277 { 278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 279 struct request *rq = tags->static_rqs[tag]; 280 281 if (data->q->elevator) { 282 rq->tag = BLK_MQ_NO_TAG; 283 rq->internal_tag = tag; 284 } else { 285 rq->tag = tag; 286 rq->internal_tag = BLK_MQ_NO_TAG; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->mq_hctx = data->hctx; 293 rq->rq_flags = 0; 294 rq->cmd_flags = data->cmd_flags; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 305 rq->alloc_time_ns = alloc_time_ns; 306 #endif 307 if (blk_mq_need_time_stamp(rq)) 308 rq->start_time_ns = ktime_get_ns(); 309 else 310 rq->start_time_ns = 0; 311 rq->io_start_time_ns = 0; 312 rq->stats_sectors = 0; 313 rq->nr_phys_segments = 0; 314 #if defined(CONFIG_BLK_DEV_INTEGRITY) 315 rq->nr_integrity_segments = 0; 316 #endif 317 blk_crypto_rq_set_defaults(rq); 318 /* tag was already set */ 319 WRITE_ONCE(rq->deadline, 0); 320 321 rq->timeout = 0; 322 323 rq->end_io = NULL; 324 rq->end_io_data = NULL; 325 326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 327 refcount_set(&rq->ref, 1); 328 329 if (!op_is_flush(data->cmd_flags)) { 330 struct elevator_queue *e = data->q->elevator; 331 332 rq->elv.icq = NULL; 333 if (e && e->type->ops.prepare_request) { 334 if (e->type->icq_cache) 335 blk_mq_sched_assign_ioc(rq); 336 337 e->type->ops.prepare_request(rq); 338 rq->rq_flags |= RQF_ELVPRIV; 339 } 340 } 341 342 data->hctx->queued++; 343 return rq; 344 } 345 346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 347 { 348 struct request_queue *q = data->q; 349 struct elevator_queue *e = q->elevator; 350 u64 alloc_time_ns = 0; 351 unsigned int tag; 352 353 /* alloc_time includes depth and tag waits */ 354 if (blk_queue_rq_alloc_time(q)) 355 alloc_time_ns = ktime_get_ns(); 356 357 if (data->cmd_flags & REQ_NOWAIT) 358 data->flags |= BLK_MQ_REQ_NOWAIT; 359 360 if (e) { 361 /* 362 * Flush requests are special and go directly to the 363 * dispatch list. Don't include reserved tags in the 364 * limiting, as it isn't useful. 365 */ 366 if (!op_is_flush(data->cmd_flags) && 367 e->type->ops.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.limit_depth(data->cmd_flags, data); 370 } 371 372 retry: 373 data->ctx = blk_mq_get_ctx(q); 374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 375 if (!e) 376 blk_mq_tag_busy(data->hctx); 377 378 /* 379 * Waiting allocations only fail because of an inactive hctx. In that 380 * case just retry the hctx assignment and tag allocation as CPU hotplug 381 * should have migrated us to an online CPU by now. 382 */ 383 tag = blk_mq_get_tag(data); 384 if (tag == BLK_MQ_NO_TAG) { 385 if (data->flags & BLK_MQ_REQ_NOWAIT) 386 return NULL; 387 388 /* 389 * Give up the CPU and sleep for a random short time to ensure 390 * that thread using a realtime scheduling class are migrated 391 * off the CPU, and thus off the hctx that is going away. 392 */ 393 msleep(3); 394 goto retry; 395 } 396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 397 } 398 399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 400 blk_mq_req_flags_t flags) 401 { 402 struct blk_mq_alloc_data data = { 403 .q = q, 404 .flags = flags, 405 .cmd_flags = op, 406 }; 407 struct request *rq; 408 int ret; 409 410 ret = blk_queue_enter(q, flags); 411 if (ret) 412 return ERR_PTR(ret); 413 414 rq = __blk_mq_alloc_request(&data); 415 if (!rq) 416 goto out_queue_exit; 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 out_queue_exit: 422 blk_queue_exit(q); 423 return ERR_PTR(-EWOULDBLOCK); 424 } 425 EXPORT_SYMBOL(blk_mq_alloc_request); 426 427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 429 { 430 struct blk_mq_alloc_data data = { 431 .q = q, 432 .flags = flags, 433 .cmd_flags = op, 434 }; 435 u64 alloc_time_ns = 0; 436 unsigned int cpu; 437 unsigned int tag; 438 int ret; 439 440 /* alloc_time includes depth and tag waits */ 441 if (blk_queue_rq_alloc_time(q)) 442 alloc_time_ns = ktime_get_ns(); 443 444 /* 445 * If the tag allocator sleeps we could get an allocation for a 446 * different hardware context. No need to complicate the low level 447 * allocator for this for the rare use case of a command tied to 448 * a specific queue. 449 */ 450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 451 return ERR_PTR(-EINVAL); 452 453 if (hctx_idx >= q->nr_hw_queues) 454 return ERR_PTR(-EIO); 455 456 ret = blk_queue_enter(q, flags); 457 if (ret) 458 return ERR_PTR(ret); 459 460 /* 461 * Check if the hardware context is actually mapped to anything. 462 * If not tell the caller that it should skip this queue. 463 */ 464 ret = -EXDEV; 465 data.hctx = q->queue_hw_ctx[hctx_idx]; 466 if (!blk_mq_hw_queue_mapped(data.hctx)) 467 goto out_queue_exit; 468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 469 data.ctx = __blk_mq_get_ctx(q, cpu); 470 471 if (!q->elevator) 472 blk_mq_tag_busy(data.hctx); 473 474 ret = -EWOULDBLOCK; 475 tag = blk_mq_get_tag(&data); 476 if (tag == BLK_MQ_NO_TAG) 477 goto out_queue_exit; 478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 479 480 out_queue_exit: 481 blk_queue_exit(q); 482 return ERR_PTR(ret); 483 } 484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 485 486 static void __blk_mq_free_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 struct blk_mq_ctx *ctx = rq->mq_ctx; 490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 491 const int sched_tag = rq->internal_tag; 492 493 blk_crypto_free_request(rq); 494 blk_pm_mark_last_busy(rq); 495 rq->mq_hctx = NULL; 496 if (rq->tag != BLK_MQ_NO_TAG) 497 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 498 if (sched_tag != BLK_MQ_NO_TAG) 499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 500 blk_mq_sched_restart(hctx); 501 blk_queue_exit(q); 502 } 503 504 void blk_mq_free_request(struct request *rq) 505 { 506 struct request_queue *q = rq->q; 507 struct elevator_queue *e = q->elevator; 508 struct blk_mq_ctx *ctx = rq->mq_ctx; 509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 510 511 if (rq->rq_flags & RQF_ELVPRIV) { 512 if (e && e->type->ops.finish_request) 513 e->type->ops.finish_request(rq); 514 if (rq->elv.icq) { 515 put_io_context(rq->elv.icq->ioc); 516 rq->elv.icq = NULL; 517 } 518 } 519 520 ctx->rq_completed[rq_is_sync(rq)]++; 521 if (rq->rq_flags & RQF_MQ_INFLIGHT) 522 atomic_dec(&hctx->nr_active); 523 524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 525 laptop_io_completion(q->backing_dev_info); 526 527 rq_qos_done(q, rq); 528 529 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 530 if (refcount_dec_and_test(&rq->ref)) 531 __blk_mq_free_request(rq); 532 } 533 EXPORT_SYMBOL_GPL(blk_mq_free_request); 534 535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 536 { 537 u64 now = 0; 538 539 if (blk_mq_need_time_stamp(rq)) 540 now = ktime_get_ns(); 541 542 if (rq->rq_flags & RQF_STATS) { 543 blk_mq_poll_stats_start(rq->q); 544 blk_stat_add(rq, now); 545 } 546 547 blk_mq_sched_completed_request(rq, now); 548 549 blk_account_io_done(rq, now); 550 551 if (rq->end_io) { 552 rq_qos_done(rq->q, rq); 553 rq->end_io(rq, error); 554 } else { 555 blk_mq_free_request(rq); 556 } 557 } 558 EXPORT_SYMBOL(__blk_mq_end_request); 559 560 void blk_mq_end_request(struct request *rq, blk_status_t error) 561 { 562 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 563 BUG(); 564 __blk_mq_end_request(rq, error); 565 } 566 EXPORT_SYMBOL(blk_mq_end_request); 567 568 /* 569 * Softirq action handler - move entries to local list and loop over them 570 * while passing them to the queue registered handler. 571 */ 572 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 573 { 574 struct list_head *cpu_list, local_list; 575 576 local_irq_disable(); 577 cpu_list = this_cpu_ptr(&blk_cpu_done); 578 list_replace_init(cpu_list, &local_list); 579 local_irq_enable(); 580 581 while (!list_empty(&local_list)) { 582 struct request *rq; 583 584 rq = list_entry(local_list.next, struct request, ipi_list); 585 list_del_init(&rq->ipi_list); 586 rq->q->mq_ops->complete(rq); 587 } 588 } 589 590 static void blk_mq_trigger_softirq(struct request *rq) 591 { 592 struct list_head *list; 593 unsigned long flags; 594 595 local_irq_save(flags); 596 list = this_cpu_ptr(&blk_cpu_done); 597 list_add_tail(&rq->ipi_list, list); 598 599 /* 600 * If the list only contains our just added request, signal a raise of 601 * the softirq. If there are already entries there, someone already 602 * raised the irq but it hasn't run yet. 603 */ 604 if (list->next == &rq->ipi_list) 605 raise_softirq_irqoff(BLOCK_SOFTIRQ); 606 local_irq_restore(flags); 607 } 608 609 static int blk_softirq_cpu_dead(unsigned int cpu) 610 { 611 /* 612 * If a CPU goes away, splice its entries to the current CPU 613 * and trigger a run of the softirq 614 */ 615 local_irq_disable(); 616 list_splice_init(&per_cpu(blk_cpu_done, cpu), 617 this_cpu_ptr(&blk_cpu_done)); 618 raise_softirq_irqoff(BLOCK_SOFTIRQ); 619 local_irq_enable(); 620 621 return 0; 622 } 623 624 625 static void __blk_mq_complete_request_remote(void *data) 626 { 627 struct request *rq = data; 628 629 /* 630 * For most of single queue controllers, there is only one irq vector 631 * for handling I/O completion, and the only irq's affinity is set 632 * to all possible CPUs. On most of ARCHs, this affinity means the irq 633 * is handled on one specific CPU. 634 * 635 * So complete I/O requests in softirq context in case of single queue 636 * devices to avoid degrading I/O performance due to irqsoff latency. 637 */ 638 if (rq->q->nr_hw_queues == 1) 639 blk_mq_trigger_softirq(rq); 640 else 641 rq->q->mq_ops->complete(rq); 642 } 643 644 static inline bool blk_mq_complete_need_ipi(struct request *rq) 645 { 646 int cpu = raw_smp_processor_id(); 647 648 if (!IS_ENABLED(CONFIG_SMP) || 649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 650 return false; 651 652 /* same CPU or cache domain? Complete locally */ 653 if (cpu == rq->mq_ctx->cpu || 654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 655 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 656 return false; 657 658 /* don't try to IPI to an offline CPU */ 659 return cpu_online(rq->mq_ctx->cpu); 660 } 661 662 bool blk_mq_complete_request_remote(struct request *rq) 663 { 664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 665 666 /* 667 * For a polled request, always complete locallly, it's pointless 668 * to redirect the completion. 669 */ 670 if (rq->cmd_flags & REQ_HIPRI) 671 return false; 672 673 if (blk_mq_complete_need_ipi(rq)) { 674 rq->csd.func = __blk_mq_complete_request_remote; 675 rq->csd.info = rq; 676 rq->csd.flags = 0; 677 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); 678 } else { 679 if (rq->q->nr_hw_queues > 1) 680 return false; 681 blk_mq_trigger_softirq(rq); 682 } 683 684 return true; 685 } 686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 687 688 /** 689 * blk_mq_complete_request - end I/O on a request 690 * @rq: the request being processed 691 * 692 * Description: 693 * Complete a request by scheduling the ->complete_rq operation. 694 **/ 695 void blk_mq_complete_request(struct request *rq) 696 { 697 if (!blk_mq_complete_request_remote(rq)) 698 rq->q->mq_ops->complete(rq); 699 } 700 EXPORT_SYMBOL(blk_mq_complete_request); 701 702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 703 __releases(hctx->srcu) 704 { 705 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 706 rcu_read_unlock(); 707 else 708 srcu_read_unlock(hctx->srcu, srcu_idx); 709 } 710 711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 712 __acquires(hctx->srcu) 713 { 714 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 715 /* shut up gcc false positive */ 716 *srcu_idx = 0; 717 rcu_read_lock(); 718 } else 719 *srcu_idx = srcu_read_lock(hctx->srcu); 720 } 721 722 /** 723 * blk_mq_start_request - Start processing a request 724 * @rq: Pointer to request to be started 725 * 726 * Function used by device drivers to notify the block layer that a request 727 * is going to be processed now, so blk layer can do proper initializations 728 * such as starting the timeout timer. 729 */ 730 void blk_mq_start_request(struct request *rq) 731 { 732 struct request_queue *q = rq->q; 733 734 trace_block_rq_issue(q, rq); 735 736 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 737 rq->io_start_time_ns = ktime_get_ns(); 738 rq->stats_sectors = blk_rq_sectors(rq); 739 rq->rq_flags |= RQF_STATS; 740 rq_qos_issue(q, rq); 741 } 742 743 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 744 745 blk_add_timer(rq); 746 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 747 748 #ifdef CONFIG_BLK_DEV_INTEGRITY 749 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 750 q->integrity.profile->prepare_fn(rq); 751 #endif 752 } 753 EXPORT_SYMBOL(blk_mq_start_request); 754 755 static void __blk_mq_requeue_request(struct request *rq) 756 { 757 struct request_queue *q = rq->q; 758 759 blk_mq_put_driver_tag(rq); 760 761 trace_block_rq_requeue(q, rq); 762 rq_qos_requeue(q, rq); 763 764 if (blk_mq_request_started(rq)) { 765 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 766 rq->rq_flags &= ~RQF_TIMED_OUT; 767 } 768 } 769 770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 771 { 772 __blk_mq_requeue_request(rq); 773 774 /* this request will be re-inserted to io scheduler queue */ 775 blk_mq_sched_requeue_request(rq); 776 777 BUG_ON(!list_empty(&rq->queuelist)); 778 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 779 } 780 EXPORT_SYMBOL(blk_mq_requeue_request); 781 782 static void blk_mq_requeue_work(struct work_struct *work) 783 { 784 struct request_queue *q = 785 container_of(work, struct request_queue, requeue_work.work); 786 LIST_HEAD(rq_list); 787 struct request *rq, *next; 788 789 spin_lock_irq(&q->requeue_lock); 790 list_splice_init(&q->requeue_list, &rq_list); 791 spin_unlock_irq(&q->requeue_lock); 792 793 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 794 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 795 continue; 796 797 rq->rq_flags &= ~RQF_SOFTBARRIER; 798 list_del_init(&rq->queuelist); 799 /* 800 * If RQF_DONTPREP, rq has contained some driver specific 801 * data, so insert it to hctx dispatch list to avoid any 802 * merge. 803 */ 804 if (rq->rq_flags & RQF_DONTPREP) 805 blk_mq_request_bypass_insert(rq, false, false); 806 else 807 blk_mq_sched_insert_request(rq, true, false, false); 808 } 809 810 while (!list_empty(&rq_list)) { 811 rq = list_entry(rq_list.next, struct request, queuelist); 812 list_del_init(&rq->queuelist); 813 blk_mq_sched_insert_request(rq, false, false, false); 814 } 815 816 blk_mq_run_hw_queues(q, false); 817 } 818 819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 820 bool kick_requeue_list) 821 { 822 struct request_queue *q = rq->q; 823 unsigned long flags; 824 825 /* 826 * We abuse this flag that is otherwise used by the I/O scheduler to 827 * request head insertion from the workqueue. 828 */ 829 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 830 831 spin_lock_irqsave(&q->requeue_lock, flags); 832 if (at_head) { 833 rq->rq_flags |= RQF_SOFTBARRIER; 834 list_add(&rq->queuelist, &q->requeue_list); 835 } else { 836 list_add_tail(&rq->queuelist, &q->requeue_list); 837 } 838 spin_unlock_irqrestore(&q->requeue_lock, flags); 839 840 if (kick_requeue_list) 841 blk_mq_kick_requeue_list(q); 842 } 843 844 void blk_mq_kick_requeue_list(struct request_queue *q) 845 { 846 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 847 } 848 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 849 850 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 851 unsigned long msecs) 852 { 853 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 854 msecs_to_jiffies(msecs)); 855 } 856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 857 858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 859 { 860 if (tag < tags->nr_tags) { 861 prefetch(tags->rqs[tag]); 862 return tags->rqs[tag]; 863 } 864 865 return NULL; 866 } 867 EXPORT_SYMBOL(blk_mq_tag_to_rq); 868 869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 870 void *priv, bool reserved) 871 { 872 /* 873 * If we find a request that isn't idle and the queue matches, 874 * we know the queue is busy. Return false to stop the iteration. 875 */ 876 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 877 bool *busy = priv; 878 879 *busy = true; 880 return false; 881 } 882 883 return true; 884 } 885 886 bool blk_mq_queue_inflight(struct request_queue *q) 887 { 888 bool busy = false; 889 890 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 891 return busy; 892 } 893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 894 895 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 896 { 897 req->rq_flags |= RQF_TIMED_OUT; 898 if (req->q->mq_ops->timeout) { 899 enum blk_eh_timer_return ret; 900 901 ret = req->q->mq_ops->timeout(req, reserved); 902 if (ret == BLK_EH_DONE) 903 return; 904 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 905 } 906 907 blk_add_timer(req); 908 } 909 910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 911 { 912 unsigned long deadline; 913 914 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 915 return false; 916 if (rq->rq_flags & RQF_TIMED_OUT) 917 return false; 918 919 deadline = READ_ONCE(rq->deadline); 920 if (time_after_eq(jiffies, deadline)) 921 return true; 922 923 if (*next == 0) 924 *next = deadline; 925 else if (time_after(*next, deadline)) 926 *next = deadline; 927 return false; 928 } 929 930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 931 struct request *rq, void *priv, bool reserved) 932 { 933 unsigned long *next = priv; 934 935 /* 936 * Just do a quick check if it is expired before locking the request in 937 * so we're not unnecessarilly synchronizing across CPUs. 938 */ 939 if (!blk_mq_req_expired(rq, next)) 940 return true; 941 942 /* 943 * We have reason to believe the request may be expired. Take a 944 * reference on the request to lock this request lifetime into its 945 * currently allocated context to prevent it from being reallocated in 946 * the event the completion by-passes this timeout handler. 947 * 948 * If the reference was already released, then the driver beat the 949 * timeout handler to posting a natural completion. 950 */ 951 if (!refcount_inc_not_zero(&rq->ref)) 952 return true; 953 954 /* 955 * The request is now locked and cannot be reallocated underneath the 956 * timeout handler's processing. Re-verify this exact request is truly 957 * expired; if it is not expired, then the request was completed and 958 * reallocated as a new request. 959 */ 960 if (blk_mq_req_expired(rq, next)) 961 blk_mq_rq_timed_out(rq, reserved); 962 963 if (is_flush_rq(rq, hctx)) 964 rq->end_io(rq, 0); 965 else if (refcount_dec_and_test(&rq->ref)) 966 __blk_mq_free_request(rq); 967 968 return true; 969 } 970 971 static void blk_mq_timeout_work(struct work_struct *work) 972 { 973 struct request_queue *q = 974 container_of(work, struct request_queue, timeout_work); 975 unsigned long next = 0; 976 struct blk_mq_hw_ctx *hctx; 977 int i; 978 979 /* A deadlock might occur if a request is stuck requiring a 980 * timeout at the same time a queue freeze is waiting 981 * completion, since the timeout code would not be able to 982 * acquire the queue reference here. 983 * 984 * That's why we don't use blk_queue_enter here; instead, we use 985 * percpu_ref_tryget directly, because we need to be able to 986 * obtain a reference even in the short window between the queue 987 * starting to freeze, by dropping the first reference in 988 * blk_freeze_queue_start, and the moment the last request is 989 * consumed, marked by the instant q_usage_counter reaches 990 * zero. 991 */ 992 if (!percpu_ref_tryget(&q->q_usage_counter)) 993 return; 994 995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 996 997 if (next != 0) { 998 mod_timer(&q->timeout, next); 999 } else { 1000 /* 1001 * Request timeouts are handled as a forward rolling timer. If 1002 * we end up here it means that no requests are pending and 1003 * also that no request has been pending for a while. Mark 1004 * each hctx as idle. 1005 */ 1006 queue_for_each_hw_ctx(q, hctx, i) { 1007 /* the hctx may be unmapped, so check it here */ 1008 if (blk_mq_hw_queue_mapped(hctx)) 1009 blk_mq_tag_idle(hctx); 1010 } 1011 } 1012 blk_queue_exit(q); 1013 } 1014 1015 struct flush_busy_ctx_data { 1016 struct blk_mq_hw_ctx *hctx; 1017 struct list_head *list; 1018 }; 1019 1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1021 { 1022 struct flush_busy_ctx_data *flush_data = data; 1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1025 enum hctx_type type = hctx->type; 1026 1027 spin_lock(&ctx->lock); 1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1029 sbitmap_clear_bit(sb, bitnr); 1030 spin_unlock(&ctx->lock); 1031 return true; 1032 } 1033 1034 /* 1035 * Process software queues that have been marked busy, splicing them 1036 * to the for-dispatch 1037 */ 1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1039 { 1040 struct flush_busy_ctx_data data = { 1041 .hctx = hctx, 1042 .list = list, 1043 }; 1044 1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1046 } 1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1048 1049 struct dispatch_rq_data { 1050 struct blk_mq_hw_ctx *hctx; 1051 struct request *rq; 1052 }; 1053 1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1055 void *data) 1056 { 1057 struct dispatch_rq_data *dispatch_data = data; 1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1060 enum hctx_type type = hctx->type; 1061 1062 spin_lock(&ctx->lock); 1063 if (!list_empty(&ctx->rq_lists[type])) { 1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1065 list_del_init(&dispatch_data->rq->queuelist); 1066 if (list_empty(&ctx->rq_lists[type])) 1067 sbitmap_clear_bit(sb, bitnr); 1068 } 1069 spin_unlock(&ctx->lock); 1070 1071 return !dispatch_data->rq; 1072 } 1073 1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1075 struct blk_mq_ctx *start) 1076 { 1077 unsigned off = start ? start->index_hw[hctx->type] : 0; 1078 struct dispatch_rq_data data = { 1079 .hctx = hctx, 1080 .rq = NULL, 1081 }; 1082 1083 __sbitmap_for_each_set(&hctx->ctx_map, off, 1084 dispatch_rq_from_ctx, &data); 1085 1086 return data.rq; 1087 } 1088 1089 static inline unsigned int queued_to_index(unsigned int queued) 1090 { 1091 if (!queued) 1092 return 0; 1093 1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1095 } 1096 1097 static bool __blk_mq_get_driver_tag(struct request *rq) 1098 { 1099 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1101 int tag; 1102 1103 blk_mq_tag_busy(rq->mq_hctx); 1104 1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1106 bt = &rq->mq_hctx->tags->breserved_tags; 1107 tag_offset = 0; 1108 } 1109 1110 if (!hctx_may_queue(rq->mq_hctx, bt)) 1111 return false; 1112 tag = __sbitmap_queue_get(bt); 1113 if (tag == BLK_MQ_NO_TAG) 1114 return false; 1115 1116 rq->tag = tag + tag_offset; 1117 return true; 1118 } 1119 1120 static bool blk_mq_get_driver_tag(struct request *rq) 1121 { 1122 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1123 1124 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1125 return false; 1126 1127 if ((hctx->flags & BLK_MQ_F_TAG_SHARED) && 1128 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1129 rq->rq_flags |= RQF_MQ_INFLIGHT; 1130 atomic_inc(&hctx->nr_active); 1131 } 1132 hctx->tags->rqs[rq->tag] = rq; 1133 return true; 1134 } 1135 1136 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1137 int flags, void *key) 1138 { 1139 struct blk_mq_hw_ctx *hctx; 1140 1141 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1142 1143 spin_lock(&hctx->dispatch_wait_lock); 1144 if (!list_empty(&wait->entry)) { 1145 struct sbitmap_queue *sbq; 1146 1147 list_del_init(&wait->entry); 1148 sbq = &hctx->tags->bitmap_tags; 1149 atomic_dec(&sbq->ws_active); 1150 } 1151 spin_unlock(&hctx->dispatch_wait_lock); 1152 1153 blk_mq_run_hw_queue(hctx, true); 1154 return 1; 1155 } 1156 1157 /* 1158 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1159 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1160 * restart. For both cases, take care to check the condition again after 1161 * marking us as waiting. 1162 */ 1163 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1164 struct request *rq) 1165 { 1166 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1167 struct wait_queue_head *wq; 1168 wait_queue_entry_t *wait; 1169 bool ret; 1170 1171 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1172 blk_mq_sched_mark_restart_hctx(hctx); 1173 1174 /* 1175 * It's possible that a tag was freed in the window between the 1176 * allocation failure and adding the hardware queue to the wait 1177 * queue. 1178 * 1179 * Don't clear RESTART here, someone else could have set it. 1180 * At most this will cost an extra queue run. 1181 */ 1182 return blk_mq_get_driver_tag(rq); 1183 } 1184 1185 wait = &hctx->dispatch_wait; 1186 if (!list_empty_careful(&wait->entry)) 1187 return false; 1188 1189 wq = &bt_wait_ptr(sbq, hctx)->wait; 1190 1191 spin_lock_irq(&wq->lock); 1192 spin_lock(&hctx->dispatch_wait_lock); 1193 if (!list_empty(&wait->entry)) { 1194 spin_unlock(&hctx->dispatch_wait_lock); 1195 spin_unlock_irq(&wq->lock); 1196 return false; 1197 } 1198 1199 atomic_inc(&sbq->ws_active); 1200 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1201 __add_wait_queue(wq, wait); 1202 1203 /* 1204 * It's possible that a tag was freed in the window between the 1205 * allocation failure and adding the hardware queue to the wait 1206 * queue. 1207 */ 1208 ret = blk_mq_get_driver_tag(rq); 1209 if (!ret) { 1210 spin_unlock(&hctx->dispatch_wait_lock); 1211 spin_unlock_irq(&wq->lock); 1212 return false; 1213 } 1214 1215 /* 1216 * We got a tag, remove ourselves from the wait queue to ensure 1217 * someone else gets the wakeup. 1218 */ 1219 list_del_init(&wait->entry); 1220 atomic_dec(&sbq->ws_active); 1221 spin_unlock(&hctx->dispatch_wait_lock); 1222 spin_unlock_irq(&wq->lock); 1223 1224 return true; 1225 } 1226 1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1229 /* 1230 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1231 * - EWMA is one simple way to compute running average value 1232 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1233 * - take 4 as factor for avoiding to get too small(0) result, and this 1234 * factor doesn't matter because EWMA decreases exponentially 1235 */ 1236 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1237 { 1238 unsigned int ewma; 1239 1240 if (hctx->queue->elevator) 1241 return; 1242 1243 ewma = hctx->dispatch_busy; 1244 1245 if (!ewma && !busy) 1246 return; 1247 1248 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1249 if (busy) 1250 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1251 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1252 1253 hctx->dispatch_busy = ewma; 1254 } 1255 1256 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1257 1258 static void blk_mq_handle_dev_resource(struct request *rq, 1259 struct list_head *list) 1260 { 1261 struct request *next = 1262 list_first_entry_or_null(list, struct request, queuelist); 1263 1264 /* 1265 * If an I/O scheduler has been configured and we got a driver tag for 1266 * the next request already, free it. 1267 */ 1268 if (next) 1269 blk_mq_put_driver_tag(next); 1270 1271 list_add(&rq->queuelist, list); 1272 __blk_mq_requeue_request(rq); 1273 } 1274 1275 static void blk_mq_handle_zone_resource(struct request *rq, 1276 struct list_head *zone_list) 1277 { 1278 /* 1279 * If we end up here it is because we cannot dispatch a request to a 1280 * specific zone due to LLD level zone-write locking or other zone 1281 * related resource not being available. In this case, set the request 1282 * aside in zone_list for retrying it later. 1283 */ 1284 list_add(&rq->queuelist, zone_list); 1285 __blk_mq_requeue_request(rq); 1286 } 1287 1288 enum prep_dispatch { 1289 PREP_DISPATCH_OK, 1290 PREP_DISPATCH_NO_TAG, 1291 PREP_DISPATCH_NO_BUDGET, 1292 }; 1293 1294 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1295 bool need_budget) 1296 { 1297 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1298 1299 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) { 1300 blk_mq_put_driver_tag(rq); 1301 return PREP_DISPATCH_NO_BUDGET; 1302 } 1303 1304 if (!blk_mq_get_driver_tag(rq)) { 1305 /* 1306 * The initial allocation attempt failed, so we need to 1307 * rerun the hardware queue when a tag is freed. The 1308 * waitqueue takes care of that. If the queue is run 1309 * before we add this entry back on the dispatch list, 1310 * we'll re-run it below. 1311 */ 1312 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1313 /* 1314 * All budgets not got from this function will be put 1315 * together during handling partial dispatch 1316 */ 1317 if (need_budget) 1318 blk_mq_put_dispatch_budget(rq->q); 1319 return PREP_DISPATCH_NO_TAG; 1320 } 1321 } 1322 1323 return PREP_DISPATCH_OK; 1324 } 1325 1326 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1327 static void blk_mq_release_budgets(struct request_queue *q, 1328 unsigned int nr_budgets) 1329 { 1330 int i; 1331 1332 for (i = 0; i < nr_budgets; i++) 1333 blk_mq_put_dispatch_budget(q); 1334 } 1335 1336 /* 1337 * Returns true if we did some work AND can potentially do more. 1338 */ 1339 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1340 unsigned int nr_budgets) 1341 { 1342 enum prep_dispatch prep; 1343 struct request_queue *q = hctx->queue; 1344 struct request *rq, *nxt; 1345 int errors, queued; 1346 blk_status_t ret = BLK_STS_OK; 1347 LIST_HEAD(zone_list); 1348 1349 if (list_empty(list)) 1350 return false; 1351 1352 /* 1353 * Now process all the entries, sending them to the driver. 1354 */ 1355 errors = queued = 0; 1356 do { 1357 struct blk_mq_queue_data bd; 1358 1359 rq = list_first_entry(list, struct request, queuelist); 1360 1361 WARN_ON_ONCE(hctx != rq->mq_hctx); 1362 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1363 if (prep != PREP_DISPATCH_OK) 1364 break; 1365 1366 list_del_init(&rq->queuelist); 1367 1368 bd.rq = rq; 1369 1370 /* 1371 * Flag last if we have no more requests, or if we have more 1372 * but can't assign a driver tag to it. 1373 */ 1374 if (list_empty(list)) 1375 bd.last = true; 1376 else { 1377 nxt = list_first_entry(list, struct request, queuelist); 1378 bd.last = !blk_mq_get_driver_tag(nxt); 1379 } 1380 1381 /* 1382 * once the request is queued to lld, no need to cover the 1383 * budget any more 1384 */ 1385 if (nr_budgets) 1386 nr_budgets--; 1387 ret = q->mq_ops->queue_rq(hctx, &bd); 1388 switch (ret) { 1389 case BLK_STS_OK: 1390 queued++; 1391 break; 1392 case BLK_STS_RESOURCE: 1393 case BLK_STS_DEV_RESOURCE: 1394 blk_mq_handle_dev_resource(rq, list); 1395 goto out; 1396 case BLK_STS_ZONE_RESOURCE: 1397 /* 1398 * Move the request to zone_list and keep going through 1399 * the dispatch list to find more requests the drive can 1400 * accept. 1401 */ 1402 blk_mq_handle_zone_resource(rq, &zone_list); 1403 break; 1404 default: 1405 errors++; 1406 blk_mq_end_request(rq, BLK_STS_IOERR); 1407 } 1408 } while (!list_empty(list)); 1409 out: 1410 if (!list_empty(&zone_list)) 1411 list_splice_tail_init(&zone_list, list); 1412 1413 hctx->dispatched[queued_to_index(queued)]++; 1414 1415 /* 1416 * Any items that need requeuing? Stuff them into hctx->dispatch, 1417 * that is where we will continue on next queue run. 1418 */ 1419 if (!list_empty(list)) { 1420 bool needs_restart; 1421 /* For non-shared tags, the RESTART check will suffice */ 1422 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1423 (hctx->flags & BLK_MQ_F_TAG_SHARED); 1424 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1425 1426 blk_mq_release_budgets(q, nr_budgets); 1427 1428 /* 1429 * If we didn't flush the entire list, we could have told 1430 * the driver there was more coming, but that turned out to 1431 * be a lie. 1432 */ 1433 if (q->mq_ops->commit_rqs && queued) 1434 q->mq_ops->commit_rqs(hctx); 1435 1436 spin_lock(&hctx->lock); 1437 list_splice_tail_init(list, &hctx->dispatch); 1438 spin_unlock(&hctx->lock); 1439 1440 /* 1441 * Order adding requests to hctx->dispatch and checking 1442 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1443 * in blk_mq_sched_restart(). Avoid restart code path to 1444 * miss the new added requests to hctx->dispatch, meantime 1445 * SCHED_RESTART is observed here. 1446 */ 1447 smp_mb(); 1448 1449 /* 1450 * If SCHED_RESTART was set by the caller of this function and 1451 * it is no longer set that means that it was cleared by another 1452 * thread and hence that a queue rerun is needed. 1453 * 1454 * If 'no_tag' is set, that means that we failed getting 1455 * a driver tag with an I/O scheduler attached. If our dispatch 1456 * waitqueue is no longer active, ensure that we run the queue 1457 * AFTER adding our entries back to the list. 1458 * 1459 * If no I/O scheduler has been configured it is possible that 1460 * the hardware queue got stopped and restarted before requests 1461 * were pushed back onto the dispatch list. Rerun the queue to 1462 * avoid starvation. Notes: 1463 * - blk_mq_run_hw_queue() checks whether or not a queue has 1464 * been stopped before rerunning a queue. 1465 * - Some but not all block drivers stop a queue before 1466 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1467 * and dm-rq. 1468 * 1469 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1470 * bit is set, run queue after a delay to avoid IO stalls 1471 * that could otherwise occur if the queue is idle. We'll do 1472 * similar if we couldn't get budget and SCHED_RESTART is set. 1473 */ 1474 needs_restart = blk_mq_sched_needs_restart(hctx); 1475 if (!needs_restart || 1476 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1477 blk_mq_run_hw_queue(hctx, true); 1478 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1479 no_budget_avail)) 1480 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1481 1482 blk_mq_update_dispatch_busy(hctx, true); 1483 return false; 1484 } else 1485 blk_mq_update_dispatch_busy(hctx, false); 1486 1487 return (queued + errors) != 0; 1488 } 1489 1490 /** 1491 * __blk_mq_run_hw_queue - Run a hardware queue. 1492 * @hctx: Pointer to the hardware queue to run. 1493 * 1494 * Send pending requests to the hardware. 1495 */ 1496 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1497 { 1498 int srcu_idx; 1499 1500 /* 1501 * We should be running this queue from one of the CPUs that 1502 * are mapped to it. 1503 * 1504 * There are at least two related races now between setting 1505 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1506 * __blk_mq_run_hw_queue(): 1507 * 1508 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1509 * but later it becomes online, then this warning is harmless 1510 * at all 1511 * 1512 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1513 * but later it becomes offline, then the warning can't be 1514 * triggered, and we depend on blk-mq timeout handler to 1515 * handle dispatched requests to this hctx 1516 */ 1517 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1518 cpu_online(hctx->next_cpu)) { 1519 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1520 raw_smp_processor_id(), 1521 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1522 dump_stack(); 1523 } 1524 1525 /* 1526 * We can't run the queue inline with ints disabled. Ensure that 1527 * we catch bad users of this early. 1528 */ 1529 WARN_ON_ONCE(in_interrupt()); 1530 1531 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1532 1533 hctx_lock(hctx, &srcu_idx); 1534 blk_mq_sched_dispatch_requests(hctx); 1535 hctx_unlock(hctx, srcu_idx); 1536 } 1537 1538 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1539 { 1540 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1541 1542 if (cpu >= nr_cpu_ids) 1543 cpu = cpumask_first(hctx->cpumask); 1544 return cpu; 1545 } 1546 1547 /* 1548 * It'd be great if the workqueue API had a way to pass 1549 * in a mask and had some smarts for more clever placement. 1550 * For now we just round-robin here, switching for every 1551 * BLK_MQ_CPU_WORK_BATCH queued items. 1552 */ 1553 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1554 { 1555 bool tried = false; 1556 int next_cpu = hctx->next_cpu; 1557 1558 if (hctx->queue->nr_hw_queues == 1) 1559 return WORK_CPU_UNBOUND; 1560 1561 if (--hctx->next_cpu_batch <= 0) { 1562 select_cpu: 1563 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1564 cpu_online_mask); 1565 if (next_cpu >= nr_cpu_ids) 1566 next_cpu = blk_mq_first_mapped_cpu(hctx); 1567 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1568 } 1569 1570 /* 1571 * Do unbound schedule if we can't find a online CPU for this hctx, 1572 * and it should only happen in the path of handling CPU DEAD. 1573 */ 1574 if (!cpu_online(next_cpu)) { 1575 if (!tried) { 1576 tried = true; 1577 goto select_cpu; 1578 } 1579 1580 /* 1581 * Make sure to re-select CPU next time once after CPUs 1582 * in hctx->cpumask become online again. 1583 */ 1584 hctx->next_cpu = next_cpu; 1585 hctx->next_cpu_batch = 1; 1586 return WORK_CPU_UNBOUND; 1587 } 1588 1589 hctx->next_cpu = next_cpu; 1590 return next_cpu; 1591 } 1592 1593 /** 1594 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1595 * @hctx: Pointer to the hardware queue to run. 1596 * @async: If we want to run the queue asynchronously. 1597 * @msecs: Microseconds of delay to wait before running the queue. 1598 * 1599 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1600 * with a delay of @msecs. 1601 */ 1602 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1603 unsigned long msecs) 1604 { 1605 if (unlikely(blk_mq_hctx_stopped(hctx))) 1606 return; 1607 1608 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1609 int cpu = get_cpu(); 1610 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1611 __blk_mq_run_hw_queue(hctx); 1612 put_cpu(); 1613 return; 1614 } 1615 1616 put_cpu(); 1617 } 1618 1619 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1620 msecs_to_jiffies(msecs)); 1621 } 1622 1623 /** 1624 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1625 * @hctx: Pointer to the hardware queue to run. 1626 * @msecs: Microseconds of delay to wait before running the queue. 1627 * 1628 * Run a hardware queue asynchronously with a delay of @msecs. 1629 */ 1630 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1631 { 1632 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1633 } 1634 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1635 1636 /** 1637 * blk_mq_run_hw_queue - Start to run a hardware queue. 1638 * @hctx: Pointer to the hardware queue to run. 1639 * @async: If we want to run the queue asynchronously. 1640 * 1641 * Check if the request queue is not in a quiesced state and if there are 1642 * pending requests to be sent. If this is true, run the queue to send requests 1643 * to hardware. 1644 */ 1645 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1646 { 1647 int srcu_idx; 1648 bool need_run; 1649 1650 /* 1651 * When queue is quiesced, we may be switching io scheduler, or 1652 * updating nr_hw_queues, or other things, and we can't run queue 1653 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1654 * 1655 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1656 * quiesced. 1657 */ 1658 hctx_lock(hctx, &srcu_idx); 1659 need_run = !blk_queue_quiesced(hctx->queue) && 1660 blk_mq_hctx_has_pending(hctx); 1661 hctx_unlock(hctx, srcu_idx); 1662 1663 if (need_run) 1664 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1665 } 1666 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1667 1668 /** 1669 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1670 * @q: Pointer to the request queue to run. 1671 * @async: If we want to run the queue asynchronously. 1672 */ 1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1674 { 1675 struct blk_mq_hw_ctx *hctx; 1676 int i; 1677 1678 queue_for_each_hw_ctx(q, hctx, i) { 1679 if (blk_mq_hctx_stopped(hctx)) 1680 continue; 1681 1682 blk_mq_run_hw_queue(hctx, async); 1683 } 1684 } 1685 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1686 1687 /** 1688 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1689 * @q: Pointer to the request queue to run. 1690 * @msecs: Microseconds of delay to wait before running the queues. 1691 */ 1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1693 { 1694 struct blk_mq_hw_ctx *hctx; 1695 int i; 1696 1697 queue_for_each_hw_ctx(q, hctx, i) { 1698 if (blk_mq_hctx_stopped(hctx)) 1699 continue; 1700 1701 blk_mq_delay_run_hw_queue(hctx, msecs); 1702 } 1703 } 1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1705 1706 /** 1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1708 * @q: request queue. 1709 * 1710 * The caller is responsible for serializing this function against 1711 * blk_mq_{start,stop}_hw_queue(). 1712 */ 1713 bool blk_mq_queue_stopped(struct request_queue *q) 1714 { 1715 struct blk_mq_hw_ctx *hctx; 1716 int i; 1717 1718 queue_for_each_hw_ctx(q, hctx, i) 1719 if (blk_mq_hctx_stopped(hctx)) 1720 return true; 1721 1722 return false; 1723 } 1724 EXPORT_SYMBOL(blk_mq_queue_stopped); 1725 1726 /* 1727 * This function is often used for pausing .queue_rq() by driver when 1728 * there isn't enough resource or some conditions aren't satisfied, and 1729 * BLK_STS_RESOURCE is usually returned. 1730 * 1731 * We do not guarantee that dispatch can be drained or blocked 1732 * after blk_mq_stop_hw_queue() returns. Please use 1733 * blk_mq_quiesce_queue() for that requirement. 1734 */ 1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1736 { 1737 cancel_delayed_work(&hctx->run_work); 1738 1739 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1740 } 1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1742 1743 /* 1744 * This function is often used for pausing .queue_rq() by driver when 1745 * there isn't enough resource or some conditions aren't satisfied, and 1746 * BLK_STS_RESOURCE is usually returned. 1747 * 1748 * We do not guarantee that dispatch can be drained or blocked 1749 * after blk_mq_stop_hw_queues() returns. Please use 1750 * blk_mq_quiesce_queue() for that requirement. 1751 */ 1752 void blk_mq_stop_hw_queues(struct request_queue *q) 1753 { 1754 struct blk_mq_hw_ctx *hctx; 1755 int i; 1756 1757 queue_for_each_hw_ctx(q, hctx, i) 1758 blk_mq_stop_hw_queue(hctx); 1759 } 1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1761 1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1763 { 1764 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1765 1766 blk_mq_run_hw_queue(hctx, false); 1767 } 1768 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1769 1770 void blk_mq_start_hw_queues(struct request_queue *q) 1771 { 1772 struct blk_mq_hw_ctx *hctx; 1773 int i; 1774 1775 queue_for_each_hw_ctx(q, hctx, i) 1776 blk_mq_start_hw_queue(hctx); 1777 } 1778 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1779 1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1781 { 1782 if (!blk_mq_hctx_stopped(hctx)) 1783 return; 1784 1785 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1786 blk_mq_run_hw_queue(hctx, async); 1787 } 1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1789 1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1791 { 1792 struct blk_mq_hw_ctx *hctx; 1793 int i; 1794 1795 queue_for_each_hw_ctx(q, hctx, i) 1796 blk_mq_start_stopped_hw_queue(hctx, async); 1797 } 1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1799 1800 static void blk_mq_run_work_fn(struct work_struct *work) 1801 { 1802 struct blk_mq_hw_ctx *hctx; 1803 1804 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1805 1806 /* 1807 * If we are stopped, don't run the queue. 1808 */ 1809 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1810 return; 1811 1812 __blk_mq_run_hw_queue(hctx); 1813 } 1814 1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1816 struct request *rq, 1817 bool at_head) 1818 { 1819 struct blk_mq_ctx *ctx = rq->mq_ctx; 1820 enum hctx_type type = hctx->type; 1821 1822 lockdep_assert_held(&ctx->lock); 1823 1824 trace_block_rq_insert(hctx->queue, rq); 1825 1826 if (at_head) 1827 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1828 else 1829 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1830 } 1831 1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1833 bool at_head) 1834 { 1835 struct blk_mq_ctx *ctx = rq->mq_ctx; 1836 1837 lockdep_assert_held(&ctx->lock); 1838 1839 __blk_mq_insert_req_list(hctx, rq, at_head); 1840 blk_mq_hctx_mark_pending(hctx, ctx); 1841 } 1842 1843 /** 1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1845 * @rq: Pointer to request to be inserted. 1846 * @at_head: true if the request should be inserted at the head of the list. 1847 * @run_queue: If we should run the hardware queue after inserting the request. 1848 * 1849 * Should only be used carefully, when the caller knows we want to 1850 * bypass a potential IO scheduler on the target device. 1851 */ 1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1853 bool run_queue) 1854 { 1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1856 1857 spin_lock(&hctx->lock); 1858 if (at_head) 1859 list_add(&rq->queuelist, &hctx->dispatch); 1860 else 1861 list_add_tail(&rq->queuelist, &hctx->dispatch); 1862 spin_unlock(&hctx->lock); 1863 1864 if (run_queue) 1865 blk_mq_run_hw_queue(hctx, false); 1866 } 1867 1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1869 struct list_head *list) 1870 1871 { 1872 struct request *rq; 1873 enum hctx_type type = hctx->type; 1874 1875 /* 1876 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1877 * offline now 1878 */ 1879 list_for_each_entry(rq, list, queuelist) { 1880 BUG_ON(rq->mq_ctx != ctx); 1881 trace_block_rq_insert(hctx->queue, rq); 1882 } 1883 1884 spin_lock(&ctx->lock); 1885 list_splice_tail_init(list, &ctx->rq_lists[type]); 1886 blk_mq_hctx_mark_pending(hctx, ctx); 1887 spin_unlock(&ctx->lock); 1888 } 1889 1890 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1891 { 1892 struct request *rqa = container_of(a, struct request, queuelist); 1893 struct request *rqb = container_of(b, struct request, queuelist); 1894 1895 if (rqa->mq_ctx != rqb->mq_ctx) 1896 return rqa->mq_ctx > rqb->mq_ctx; 1897 if (rqa->mq_hctx != rqb->mq_hctx) 1898 return rqa->mq_hctx > rqb->mq_hctx; 1899 1900 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1901 } 1902 1903 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1904 { 1905 LIST_HEAD(list); 1906 1907 if (list_empty(&plug->mq_list)) 1908 return; 1909 list_splice_init(&plug->mq_list, &list); 1910 1911 if (plug->rq_count > 2 && plug->multiple_queues) 1912 list_sort(NULL, &list, plug_rq_cmp); 1913 1914 plug->rq_count = 0; 1915 1916 do { 1917 struct list_head rq_list; 1918 struct request *rq, *head_rq = list_entry_rq(list.next); 1919 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1920 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1921 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1922 unsigned int depth = 1; 1923 1924 list_for_each_continue(pos, &list) { 1925 rq = list_entry_rq(pos); 1926 BUG_ON(!rq->q); 1927 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1928 break; 1929 depth++; 1930 } 1931 1932 list_cut_before(&rq_list, &list, pos); 1933 trace_block_unplug(head_rq->q, depth, !from_schedule); 1934 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1935 from_schedule); 1936 } while(!list_empty(&list)); 1937 } 1938 1939 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1940 unsigned int nr_segs) 1941 { 1942 if (bio->bi_opf & REQ_RAHEAD) 1943 rq->cmd_flags |= REQ_FAILFAST_MASK; 1944 1945 rq->__sector = bio->bi_iter.bi_sector; 1946 rq->write_hint = bio->bi_write_hint; 1947 blk_rq_bio_prep(rq, bio, nr_segs); 1948 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1949 1950 blk_account_io_start(rq); 1951 } 1952 1953 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1954 struct request *rq, 1955 blk_qc_t *cookie, bool last) 1956 { 1957 struct request_queue *q = rq->q; 1958 struct blk_mq_queue_data bd = { 1959 .rq = rq, 1960 .last = last, 1961 }; 1962 blk_qc_t new_cookie; 1963 blk_status_t ret; 1964 1965 new_cookie = request_to_qc_t(hctx, rq); 1966 1967 /* 1968 * For OK queue, we are done. For error, caller may kill it. 1969 * Any other error (busy), just add it to our list as we 1970 * previously would have done. 1971 */ 1972 ret = q->mq_ops->queue_rq(hctx, &bd); 1973 switch (ret) { 1974 case BLK_STS_OK: 1975 blk_mq_update_dispatch_busy(hctx, false); 1976 *cookie = new_cookie; 1977 break; 1978 case BLK_STS_RESOURCE: 1979 case BLK_STS_DEV_RESOURCE: 1980 blk_mq_update_dispatch_busy(hctx, true); 1981 __blk_mq_requeue_request(rq); 1982 break; 1983 default: 1984 blk_mq_update_dispatch_busy(hctx, false); 1985 *cookie = BLK_QC_T_NONE; 1986 break; 1987 } 1988 1989 return ret; 1990 } 1991 1992 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1993 struct request *rq, 1994 blk_qc_t *cookie, 1995 bool bypass_insert, bool last) 1996 { 1997 struct request_queue *q = rq->q; 1998 bool run_queue = true; 1999 2000 /* 2001 * RCU or SRCU read lock is needed before checking quiesced flag. 2002 * 2003 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2004 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2005 * and avoid driver to try to dispatch again. 2006 */ 2007 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2008 run_queue = false; 2009 bypass_insert = false; 2010 goto insert; 2011 } 2012 2013 if (q->elevator && !bypass_insert) 2014 goto insert; 2015 2016 if (!blk_mq_get_dispatch_budget(q)) 2017 goto insert; 2018 2019 if (!blk_mq_get_driver_tag(rq)) { 2020 blk_mq_put_dispatch_budget(q); 2021 goto insert; 2022 } 2023 2024 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2025 insert: 2026 if (bypass_insert) 2027 return BLK_STS_RESOURCE; 2028 2029 blk_mq_sched_insert_request(rq, false, run_queue, false); 2030 2031 return BLK_STS_OK; 2032 } 2033 2034 /** 2035 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2036 * @hctx: Pointer of the associated hardware queue. 2037 * @rq: Pointer to request to be sent. 2038 * @cookie: Request queue cookie. 2039 * 2040 * If the device has enough resources to accept a new request now, send the 2041 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2042 * we can try send it another time in the future. Requests inserted at this 2043 * queue have higher priority. 2044 */ 2045 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2046 struct request *rq, blk_qc_t *cookie) 2047 { 2048 blk_status_t ret; 2049 int srcu_idx; 2050 2051 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2052 2053 hctx_lock(hctx, &srcu_idx); 2054 2055 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2056 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2057 blk_mq_request_bypass_insert(rq, false, true); 2058 else if (ret != BLK_STS_OK) 2059 blk_mq_end_request(rq, ret); 2060 2061 hctx_unlock(hctx, srcu_idx); 2062 } 2063 2064 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2065 { 2066 blk_status_t ret; 2067 int srcu_idx; 2068 blk_qc_t unused_cookie; 2069 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2070 2071 hctx_lock(hctx, &srcu_idx); 2072 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2073 hctx_unlock(hctx, srcu_idx); 2074 2075 return ret; 2076 } 2077 2078 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2079 struct list_head *list) 2080 { 2081 int queued = 0; 2082 2083 while (!list_empty(list)) { 2084 blk_status_t ret; 2085 struct request *rq = list_first_entry(list, struct request, 2086 queuelist); 2087 2088 list_del_init(&rq->queuelist); 2089 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2090 if (ret != BLK_STS_OK) { 2091 if (ret == BLK_STS_RESOURCE || 2092 ret == BLK_STS_DEV_RESOURCE) { 2093 blk_mq_request_bypass_insert(rq, false, 2094 list_empty(list)); 2095 break; 2096 } 2097 blk_mq_end_request(rq, ret); 2098 } else 2099 queued++; 2100 } 2101 2102 /* 2103 * If we didn't flush the entire list, we could have told 2104 * the driver there was more coming, but that turned out to 2105 * be a lie. 2106 */ 2107 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 2108 hctx->queue->mq_ops->commit_rqs(hctx); 2109 } 2110 2111 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2112 { 2113 list_add_tail(&rq->queuelist, &plug->mq_list); 2114 plug->rq_count++; 2115 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2116 struct request *tmp; 2117 2118 tmp = list_first_entry(&plug->mq_list, struct request, 2119 queuelist); 2120 if (tmp->q != rq->q) 2121 plug->multiple_queues = true; 2122 } 2123 } 2124 2125 /** 2126 * blk_mq_submit_bio - Create and send a request to block device. 2127 * @bio: Bio pointer. 2128 * 2129 * Builds up a request structure from @q and @bio and send to the device. The 2130 * request may not be queued directly to hardware if: 2131 * * This request can be merged with another one 2132 * * We want to place request at plug queue for possible future merging 2133 * * There is an IO scheduler active at this queue 2134 * 2135 * It will not queue the request if there is an error with the bio, or at the 2136 * request creation. 2137 * 2138 * Returns: Request queue cookie. 2139 */ 2140 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2141 { 2142 struct request_queue *q = bio->bi_disk->queue; 2143 const int is_sync = op_is_sync(bio->bi_opf); 2144 const int is_flush_fua = op_is_flush(bio->bi_opf); 2145 struct blk_mq_alloc_data data = { 2146 .q = q, 2147 }; 2148 struct request *rq; 2149 struct blk_plug *plug; 2150 struct request *same_queue_rq = NULL; 2151 unsigned int nr_segs; 2152 blk_qc_t cookie; 2153 blk_status_t ret; 2154 2155 blk_queue_bounce(q, &bio); 2156 __blk_queue_split(&bio, &nr_segs); 2157 2158 if (!bio_integrity_prep(bio)) 2159 goto queue_exit; 2160 2161 if (!is_flush_fua && !blk_queue_nomerges(q) && 2162 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2163 goto queue_exit; 2164 2165 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2166 goto queue_exit; 2167 2168 rq_qos_throttle(q, bio); 2169 2170 data.cmd_flags = bio->bi_opf; 2171 rq = __blk_mq_alloc_request(&data); 2172 if (unlikely(!rq)) { 2173 rq_qos_cleanup(q, bio); 2174 if (bio->bi_opf & REQ_NOWAIT) 2175 bio_wouldblock_error(bio); 2176 goto queue_exit; 2177 } 2178 2179 trace_block_getrq(q, bio, bio->bi_opf); 2180 2181 rq_qos_track(q, rq, bio); 2182 2183 cookie = request_to_qc_t(data.hctx, rq); 2184 2185 blk_mq_bio_to_request(rq, bio, nr_segs); 2186 2187 ret = blk_crypto_init_request(rq); 2188 if (ret != BLK_STS_OK) { 2189 bio->bi_status = ret; 2190 bio_endio(bio); 2191 blk_mq_free_request(rq); 2192 return BLK_QC_T_NONE; 2193 } 2194 2195 plug = blk_mq_plug(q, bio); 2196 if (unlikely(is_flush_fua)) { 2197 /* Bypass scheduler for flush requests */ 2198 blk_insert_flush(rq); 2199 blk_mq_run_hw_queue(data.hctx, true); 2200 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2201 !blk_queue_nonrot(q))) { 2202 /* 2203 * Use plugging if we have a ->commit_rqs() hook as well, as 2204 * we know the driver uses bd->last in a smart fashion. 2205 * 2206 * Use normal plugging if this disk is slow HDD, as sequential 2207 * IO may benefit a lot from plug merging. 2208 */ 2209 unsigned int request_count = plug->rq_count; 2210 struct request *last = NULL; 2211 2212 if (!request_count) 2213 trace_block_plug(q); 2214 else 2215 last = list_entry_rq(plug->mq_list.prev); 2216 2217 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2218 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2219 blk_flush_plug_list(plug, false); 2220 trace_block_plug(q); 2221 } 2222 2223 blk_add_rq_to_plug(plug, rq); 2224 } else if (q->elevator) { 2225 /* Insert the request at the IO scheduler queue */ 2226 blk_mq_sched_insert_request(rq, false, true, true); 2227 } else if (plug && !blk_queue_nomerges(q)) { 2228 /* 2229 * We do limited plugging. If the bio can be merged, do that. 2230 * Otherwise the existing request in the plug list will be 2231 * issued. So the plug list will have one request at most 2232 * The plug list might get flushed before this. If that happens, 2233 * the plug list is empty, and same_queue_rq is invalid. 2234 */ 2235 if (list_empty(&plug->mq_list)) 2236 same_queue_rq = NULL; 2237 if (same_queue_rq) { 2238 list_del_init(&same_queue_rq->queuelist); 2239 plug->rq_count--; 2240 } 2241 blk_add_rq_to_plug(plug, rq); 2242 trace_block_plug(q); 2243 2244 if (same_queue_rq) { 2245 data.hctx = same_queue_rq->mq_hctx; 2246 trace_block_unplug(q, 1, true); 2247 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2248 &cookie); 2249 } 2250 } else if ((q->nr_hw_queues > 1 && is_sync) || 2251 !data.hctx->dispatch_busy) { 2252 /* 2253 * There is no scheduler and we can try to send directly 2254 * to the hardware. 2255 */ 2256 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2257 } else { 2258 /* Default case. */ 2259 blk_mq_sched_insert_request(rq, false, true, true); 2260 } 2261 2262 return cookie; 2263 queue_exit: 2264 blk_queue_exit(q); 2265 return BLK_QC_T_NONE; 2266 } 2267 EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */ 2268 2269 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2270 unsigned int hctx_idx) 2271 { 2272 struct page *page; 2273 2274 if (tags->rqs && set->ops->exit_request) { 2275 int i; 2276 2277 for (i = 0; i < tags->nr_tags; i++) { 2278 struct request *rq = tags->static_rqs[i]; 2279 2280 if (!rq) 2281 continue; 2282 set->ops->exit_request(set, rq, hctx_idx); 2283 tags->static_rqs[i] = NULL; 2284 } 2285 } 2286 2287 while (!list_empty(&tags->page_list)) { 2288 page = list_first_entry(&tags->page_list, struct page, lru); 2289 list_del_init(&page->lru); 2290 /* 2291 * Remove kmemleak object previously allocated in 2292 * blk_mq_alloc_rqs(). 2293 */ 2294 kmemleak_free(page_address(page)); 2295 __free_pages(page, page->private); 2296 } 2297 } 2298 2299 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2300 { 2301 kfree(tags->rqs); 2302 tags->rqs = NULL; 2303 kfree(tags->static_rqs); 2304 tags->static_rqs = NULL; 2305 2306 blk_mq_free_tags(tags); 2307 } 2308 2309 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2310 unsigned int hctx_idx, 2311 unsigned int nr_tags, 2312 unsigned int reserved_tags) 2313 { 2314 struct blk_mq_tags *tags; 2315 int node; 2316 2317 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2318 if (node == NUMA_NO_NODE) 2319 node = set->numa_node; 2320 2321 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2322 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2323 if (!tags) 2324 return NULL; 2325 2326 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2327 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2328 node); 2329 if (!tags->rqs) { 2330 blk_mq_free_tags(tags); 2331 return NULL; 2332 } 2333 2334 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2335 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2336 node); 2337 if (!tags->static_rqs) { 2338 kfree(tags->rqs); 2339 blk_mq_free_tags(tags); 2340 return NULL; 2341 } 2342 2343 return tags; 2344 } 2345 2346 static size_t order_to_size(unsigned int order) 2347 { 2348 return (size_t)PAGE_SIZE << order; 2349 } 2350 2351 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2352 unsigned int hctx_idx, int node) 2353 { 2354 int ret; 2355 2356 if (set->ops->init_request) { 2357 ret = set->ops->init_request(set, rq, hctx_idx, node); 2358 if (ret) 2359 return ret; 2360 } 2361 2362 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2363 return 0; 2364 } 2365 2366 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2367 unsigned int hctx_idx, unsigned int depth) 2368 { 2369 unsigned int i, j, entries_per_page, max_order = 4; 2370 size_t rq_size, left; 2371 int node; 2372 2373 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2374 if (node == NUMA_NO_NODE) 2375 node = set->numa_node; 2376 2377 INIT_LIST_HEAD(&tags->page_list); 2378 2379 /* 2380 * rq_size is the size of the request plus driver payload, rounded 2381 * to the cacheline size 2382 */ 2383 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2384 cache_line_size()); 2385 left = rq_size * depth; 2386 2387 for (i = 0; i < depth; ) { 2388 int this_order = max_order; 2389 struct page *page; 2390 int to_do; 2391 void *p; 2392 2393 while (this_order && left < order_to_size(this_order - 1)) 2394 this_order--; 2395 2396 do { 2397 page = alloc_pages_node(node, 2398 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2399 this_order); 2400 if (page) 2401 break; 2402 if (!this_order--) 2403 break; 2404 if (order_to_size(this_order) < rq_size) 2405 break; 2406 } while (1); 2407 2408 if (!page) 2409 goto fail; 2410 2411 page->private = this_order; 2412 list_add_tail(&page->lru, &tags->page_list); 2413 2414 p = page_address(page); 2415 /* 2416 * Allow kmemleak to scan these pages as they contain pointers 2417 * to additional allocations like via ops->init_request(). 2418 */ 2419 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2420 entries_per_page = order_to_size(this_order) / rq_size; 2421 to_do = min(entries_per_page, depth - i); 2422 left -= to_do * rq_size; 2423 for (j = 0; j < to_do; j++) { 2424 struct request *rq = p; 2425 2426 tags->static_rqs[i] = rq; 2427 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2428 tags->static_rqs[i] = NULL; 2429 goto fail; 2430 } 2431 2432 p += rq_size; 2433 i++; 2434 } 2435 } 2436 return 0; 2437 2438 fail: 2439 blk_mq_free_rqs(set, tags, hctx_idx); 2440 return -ENOMEM; 2441 } 2442 2443 struct rq_iter_data { 2444 struct blk_mq_hw_ctx *hctx; 2445 bool has_rq; 2446 }; 2447 2448 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2449 { 2450 struct rq_iter_data *iter_data = data; 2451 2452 if (rq->mq_hctx != iter_data->hctx) 2453 return true; 2454 iter_data->has_rq = true; 2455 return false; 2456 } 2457 2458 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2459 { 2460 struct blk_mq_tags *tags = hctx->sched_tags ? 2461 hctx->sched_tags : hctx->tags; 2462 struct rq_iter_data data = { 2463 .hctx = hctx, 2464 }; 2465 2466 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2467 return data.has_rq; 2468 } 2469 2470 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2471 struct blk_mq_hw_ctx *hctx) 2472 { 2473 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2474 return false; 2475 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2476 return false; 2477 return true; 2478 } 2479 2480 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2481 { 2482 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2483 struct blk_mq_hw_ctx, cpuhp_online); 2484 2485 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2486 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2487 return 0; 2488 2489 /* 2490 * Prevent new request from being allocated on the current hctx. 2491 * 2492 * The smp_mb__after_atomic() Pairs with the implied barrier in 2493 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2494 * seen once we return from the tag allocator. 2495 */ 2496 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2497 smp_mb__after_atomic(); 2498 2499 /* 2500 * Try to grab a reference to the queue and wait for any outstanding 2501 * requests. If we could not grab a reference the queue has been 2502 * frozen and there are no requests. 2503 */ 2504 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2505 while (blk_mq_hctx_has_requests(hctx)) 2506 msleep(5); 2507 percpu_ref_put(&hctx->queue->q_usage_counter); 2508 } 2509 2510 return 0; 2511 } 2512 2513 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2514 { 2515 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2516 struct blk_mq_hw_ctx, cpuhp_online); 2517 2518 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2519 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2520 return 0; 2521 } 2522 2523 /* 2524 * 'cpu' is going away. splice any existing rq_list entries from this 2525 * software queue to the hw queue dispatch list, and ensure that it 2526 * gets run. 2527 */ 2528 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2529 { 2530 struct blk_mq_hw_ctx *hctx; 2531 struct blk_mq_ctx *ctx; 2532 LIST_HEAD(tmp); 2533 enum hctx_type type; 2534 2535 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2536 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2537 return 0; 2538 2539 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2540 type = hctx->type; 2541 2542 spin_lock(&ctx->lock); 2543 if (!list_empty(&ctx->rq_lists[type])) { 2544 list_splice_init(&ctx->rq_lists[type], &tmp); 2545 blk_mq_hctx_clear_pending(hctx, ctx); 2546 } 2547 spin_unlock(&ctx->lock); 2548 2549 if (list_empty(&tmp)) 2550 return 0; 2551 2552 spin_lock(&hctx->lock); 2553 list_splice_tail_init(&tmp, &hctx->dispatch); 2554 spin_unlock(&hctx->lock); 2555 2556 blk_mq_run_hw_queue(hctx, true); 2557 return 0; 2558 } 2559 2560 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2561 { 2562 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2563 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2564 &hctx->cpuhp_online); 2565 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2566 &hctx->cpuhp_dead); 2567 } 2568 2569 /* hctx->ctxs will be freed in queue's release handler */ 2570 static void blk_mq_exit_hctx(struct request_queue *q, 2571 struct blk_mq_tag_set *set, 2572 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2573 { 2574 if (blk_mq_hw_queue_mapped(hctx)) 2575 blk_mq_tag_idle(hctx); 2576 2577 if (set->ops->exit_request) 2578 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2579 2580 if (set->ops->exit_hctx) 2581 set->ops->exit_hctx(hctx, hctx_idx); 2582 2583 blk_mq_remove_cpuhp(hctx); 2584 2585 spin_lock(&q->unused_hctx_lock); 2586 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2587 spin_unlock(&q->unused_hctx_lock); 2588 } 2589 2590 static void blk_mq_exit_hw_queues(struct request_queue *q, 2591 struct blk_mq_tag_set *set, int nr_queue) 2592 { 2593 struct blk_mq_hw_ctx *hctx; 2594 unsigned int i; 2595 2596 queue_for_each_hw_ctx(q, hctx, i) { 2597 if (i == nr_queue) 2598 break; 2599 blk_mq_debugfs_unregister_hctx(hctx); 2600 blk_mq_exit_hctx(q, set, hctx, i); 2601 } 2602 } 2603 2604 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2605 { 2606 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2607 2608 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2609 __alignof__(struct blk_mq_hw_ctx)) != 2610 sizeof(struct blk_mq_hw_ctx)); 2611 2612 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2613 hw_ctx_size += sizeof(struct srcu_struct); 2614 2615 return hw_ctx_size; 2616 } 2617 2618 static int blk_mq_init_hctx(struct request_queue *q, 2619 struct blk_mq_tag_set *set, 2620 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2621 { 2622 hctx->queue_num = hctx_idx; 2623 2624 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2625 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2626 &hctx->cpuhp_online); 2627 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2628 2629 hctx->tags = set->tags[hctx_idx]; 2630 2631 if (set->ops->init_hctx && 2632 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2633 goto unregister_cpu_notifier; 2634 2635 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2636 hctx->numa_node)) 2637 goto exit_hctx; 2638 return 0; 2639 2640 exit_hctx: 2641 if (set->ops->exit_hctx) 2642 set->ops->exit_hctx(hctx, hctx_idx); 2643 unregister_cpu_notifier: 2644 blk_mq_remove_cpuhp(hctx); 2645 return -1; 2646 } 2647 2648 static struct blk_mq_hw_ctx * 2649 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2650 int node) 2651 { 2652 struct blk_mq_hw_ctx *hctx; 2653 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2654 2655 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2656 if (!hctx) 2657 goto fail_alloc_hctx; 2658 2659 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2660 goto free_hctx; 2661 2662 atomic_set(&hctx->nr_active, 0); 2663 if (node == NUMA_NO_NODE) 2664 node = set->numa_node; 2665 hctx->numa_node = node; 2666 2667 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2668 spin_lock_init(&hctx->lock); 2669 INIT_LIST_HEAD(&hctx->dispatch); 2670 hctx->queue = q; 2671 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2672 2673 INIT_LIST_HEAD(&hctx->hctx_list); 2674 2675 /* 2676 * Allocate space for all possible cpus to avoid allocation at 2677 * runtime 2678 */ 2679 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2680 gfp, node); 2681 if (!hctx->ctxs) 2682 goto free_cpumask; 2683 2684 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2685 gfp, node)) 2686 goto free_ctxs; 2687 hctx->nr_ctx = 0; 2688 2689 spin_lock_init(&hctx->dispatch_wait_lock); 2690 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2691 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2692 2693 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2694 if (!hctx->fq) 2695 goto free_bitmap; 2696 2697 if (hctx->flags & BLK_MQ_F_BLOCKING) 2698 init_srcu_struct(hctx->srcu); 2699 blk_mq_hctx_kobj_init(hctx); 2700 2701 return hctx; 2702 2703 free_bitmap: 2704 sbitmap_free(&hctx->ctx_map); 2705 free_ctxs: 2706 kfree(hctx->ctxs); 2707 free_cpumask: 2708 free_cpumask_var(hctx->cpumask); 2709 free_hctx: 2710 kfree(hctx); 2711 fail_alloc_hctx: 2712 return NULL; 2713 } 2714 2715 static void blk_mq_init_cpu_queues(struct request_queue *q, 2716 unsigned int nr_hw_queues) 2717 { 2718 struct blk_mq_tag_set *set = q->tag_set; 2719 unsigned int i, j; 2720 2721 for_each_possible_cpu(i) { 2722 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2723 struct blk_mq_hw_ctx *hctx; 2724 int k; 2725 2726 __ctx->cpu = i; 2727 spin_lock_init(&__ctx->lock); 2728 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2729 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2730 2731 __ctx->queue = q; 2732 2733 /* 2734 * Set local node, IFF we have more than one hw queue. If 2735 * not, we remain on the home node of the device 2736 */ 2737 for (j = 0; j < set->nr_maps; j++) { 2738 hctx = blk_mq_map_queue_type(q, j, i); 2739 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2740 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2741 } 2742 } 2743 } 2744 2745 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2746 int hctx_idx) 2747 { 2748 int ret = 0; 2749 2750 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2751 set->queue_depth, set->reserved_tags); 2752 if (!set->tags[hctx_idx]) 2753 return false; 2754 2755 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2756 set->queue_depth); 2757 if (!ret) 2758 return true; 2759 2760 blk_mq_free_rq_map(set->tags[hctx_idx]); 2761 set->tags[hctx_idx] = NULL; 2762 return false; 2763 } 2764 2765 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2766 unsigned int hctx_idx) 2767 { 2768 if (set->tags && set->tags[hctx_idx]) { 2769 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2770 blk_mq_free_rq_map(set->tags[hctx_idx]); 2771 set->tags[hctx_idx] = NULL; 2772 } 2773 } 2774 2775 static void blk_mq_map_swqueue(struct request_queue *q) 2776 { 2777 unsigned int i, j, hctx_idx; 2778 struct blk_mq_hw_ctx *hctx; 2779 struct blk_mq_ctx *ctx; 2780 struct blk_mq_tag_set *set = q->tag_set; 2781 2782 queue_for_each_hw_ctx(q, hctx, i) { 2783 cpumask_clear(hctx->cpumask); 2784 hctx->nr_ctx = 0; 2785 hctx->dispatch_from = NULL; 2786 } 2787 2788 /* 2789 * Map software to hardware queues. 2790 * 2791 * If the cpu isn't present, the cpu is mapped to first hctx. 2792 */ 2793 for_each_possible_cpu(i) { 2794 2795 ctx = per_cpu_ptr(q->queue_ctx, i); 2796 for (j = 0; j < set->nr_maps; j++) { 2797 if (!set->map[j].nr_queues) { 2798 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2799 HCTX_TYPE_DEFAULT, i); 2800 continue; 2801 } 2802 hctx_idx = set->map[j].mq_map[i]; 2803 /* unmapped hw queue can be remapped after CPU topo changed */ 2804 if (!set->tags[hctx_idx] && 2805 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2806 /* 2807 * If tags initialization fail for some hctx, 2808 * that hctx won't be brought online. In this 2809 * case, remap the current ctx to hctx[0] which 2810 * is guaranteed to always have tags allocated 2811 */ 2812 set->map[j].mq_map[i] = 0; 2813 } 2814 2815 hctx = blk_mq_map_queue_type(q, j, i); 2816 ctx->hctxs[j] = hctx; 2817 /* 2818 * If the CPU is already set in the mask, then we've 2819 * mapped this one already. This can happen if 2820 * devices share queues across queue maps. 2821 */ 2822 if (cpumask_test_cpu(i, hctx->cpumask)) 2823 continue; 2824 2825 cpumask_set_cpu(i, hctx->cpumask); 2826 hctx->type = j; 2827 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2828 hctx->ctxs[hctx->nr_ctx++] = ctx; 2829 2830 /* 2831 * If the nr_ctx type overflows, we have exceeded the 2832 * amount of sw queues we can support. 2833 */ 2834 BUG_ON(!hctx->nr_ctx); 2835 } 2836 2837 for (; j < HCTX_MAX_TYPES; j++) 2838 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2839 HCTX_TYPE_DEFAULT, i); 2840 } 2841 2842 queue_for_each_hw_ctx(q, hctx, i) { 2843 /* 2844 * If no software queues are mapped to this hardware queue, 2845 * disable it and free the request entries. 2846 */ 2847 if (!hctx->nr_ctx) { 2848 /* Never unmap queue 0. We need it as a 2849 * fallback in case of a new remap fails 2850 * allocation 2851 */ 2852 if (i && set->tags[i]) 2853 blk_mq_free_map_and_requests(set, i); 2854 2855 hctx->tags = NULL; 2856 continue; 2857 } 2858 2859 hctx->tags = set->tags[i]; 2860 WARN_ON(!hctx->tags); 2861 2862 /* 2863 * Set the map size to the number of mapped software queues. 2864 * This is more accurate and more efficient than looping 2865 * over all possibly mapped software queues. 2866 */ 2867 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2868 2869 /* 2870 * Initialize batch roundrobin counts 2871 */ 2872 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2873 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2874 } 2875 } 2876 2877 /* 2878 * Caller needs to ensure that we're either frozen/quiesced, or that 2879 * the queue isn't live yet. 2880 */ 2881 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2882 { 2883 struct blk_mq_hw_ctx *hctx; 2884 int i; 2885 2886 queue_for_each_hw_ctx(q, hctx, i) { 2887 if (shared) 2888 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2889 else 2890 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2891 } 2892 } 2893 2894 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2895 bool shared) 2896 { 2897 struct request_queue *q; 2898 2899 lockdep_assert_held(&set->tag_list_lock); 2900 2901 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2902 blk_mq_freeze_queue(q); 2903 queue_set_hctx_shared(q, shared); 2904 blk_mq_unfreeze_queue(q); 2905 } 2906 } 2907 2908 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2909 { 2910 struct blk_mq_tag_set *set = q->tag_set; 2911 2912 mutex_lock(&set->tag_list_lock); 2913 list_del(&q->tag_set_list); 2914 if (list_is_singular(&set->tag_list)) { 2915 /* just transitioned to unshared */ 2916 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2917 /* update existing queue */ 2918 blk_mq_update_tag_set_depth(set, false); 2919 } 2920 mutex_unlock(&set->tag_list_lock); 2921 INIT_LIST_HEAD(&q->tag_set_list); 2922 } 2923 2924 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2925 struct request_queue *q) 2926 { 2927 mutex_lock(&set->tag_list_lock); 2928 2929 /* 2930 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2931 */ 2932 if (!list_empty(&set->tag_list) && 2933 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2934 set->flags |= BLK_MQ_F_TAG_SHARED; 2935 /* update existing queue */ 2936 blk_mq_update_tag_set_depth(set, true); 2937 } 2938 if (set->flags & BLK_MQ_F_TAG_SHARED) 2939 queue_set_hctx_shared(q, true); 2940 list_add_tail(&q->tag_set_list, &set->tag_list); 2941 2942 mutex_unlock(&set->tag_list_lock); 2943 } 2944 2945 /* All allocations will be freed in release handler of q->mq_kobj */ 2946 static int blk_mq_alloc_ctxs(struct request_queue *q) 2947 { 2948 struct blk_mq_ctxs *ctxs; 2949 int cpu; 2950 2951 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2952 if (!ctxs) 2953 return -ENOMEM; 2954 2955 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2956 if (!ctxs->queue_ctx) 2957 goto fail; 2958 2959 for_each_possible_cpu(cpu) { 2960 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2961 ctx->ctxs = ctxs; 2962 } 2963 2964 q->mq_kobj = &ctxs->kobj; 2965 q->queue_ctx = ctxs->queue_ctx; 2966 2967 return 0; 2968 fail: 2969 kfree(ctxs); 2970 return -ENOMEM; 2971 } 2972 2973 /* 2974 * It is the actual release handler for mq, but we do it from 2975 * request queue's release handler for avoiding use-after-free 2976 * and headache because q->mq_kobj shouldn't have been introduced, 2977 * but we can't group ctx/kctx kobj without it. 2978 */ 2979 void blk_mq_release(struct request_queue *q) 2980 { 2981 struct blk_mq_hw_ctx *hctx, *next; 2982 int i; 2983 2984 queue_for_each_hw_ctx(q, hctx, i) 2985 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2986 2987 /* all hctx are in .unused_hctx_list now */ 2988 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2989 list_del_init(&hctx->hctx_list); 2990 kobject_put(&hctx->kobj); 2991 } 2992 2993 kfree(q->queue_hw_ctx); 2994 2995 /* 2996 * release .mq_kobj and sw queue's kobject now because 2997 * both share lifetime with request queue. 2998 */ 2999 blk_mq_sysfs_deinit(q); 3000 } 3001 3002 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3003 void *queuedata) 3004 { 3005 struct request_queue *uninit_q, *q; 3006 3007 uninit_q = blk_alloc_queue(set->numa_node); 3008 if (!uninit_q) 3009 return ERR_PTR(-ENOMEM); 3010 uninit_q->queuedata = queuedata; 3011 3012 /* 3013 * Initialize the queue without an elevator. device_add_disk() will do 3014 * the initialization. 3015 */ 3016 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3017 if (IS_ERR(q)) 3018 blk_cleanup_queue(uninit_q); 3019 3020 return q; 3021 } 3022 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3023 3024 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3025 { 3026 return blk_mq_init_queue_data(set, NULL); 3027 } 3028 EXPORT_SYMBOL(blk_mq_init_queue); 3029 3030 /* 3031 * Helper for setting up a queue with mq ops, given queue depth, and 3032 * the passed in mq ops flags. 3033 */ 3034 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3035 const struct blk_mq_ops *ops, 3036 unsigned int queue_depth, 3037 unsigned int set_flags) 3038 { 3039 struct request_queue *q; 3040 int ret; 3041 3042 memset(set, 0, sizeof(*set)); 3043 set->ops = ops; 3044 set->nr_hw_queues = 1; 3045 set->nr_maps = 1; 3046 set->queue_depth = queue_depth; 3047 set->numa_node = NUMA_NO_NODE; 3048 set->flags = set_flags; 3049 3050 ret = blk_mq_alloc_tag_set(set); 3051 if (ret) 3052 return ERR_PTR(ret); 3053 3054 q = blk_mq_init_queue(set); 3055 if (IS_ERR(q)) { 3056 blk_mq_free_tag_set(set); 3057 return q; 3058 } 3059 3060 return q; 3061 } 3062 EXPORT_SYMBOL(blk_mq_init_sq_queue); 3063 3064 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3065 struct blk_mq_tag_set *set, struct request_queue *q, 3066 int hctx_idx, int node) 3067 { 3068 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3069 3070 /* reuse dead hctx first */ 3071 spin_lock(&q->unused_hctx_lock); 3072 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3073 if (tmp->numa_node == node) { 3074 hctx = tmp; 3075 break; 3076 } 3077 } 3078 if (hctx) 3079 list_del_init(&hctx->hctx_list); 3080 spin_unlock(&q->unused_hctx_lock); 3081 3082 if (!hctx) 3083 hctx = blk_mq_alloc_hctx(q, set, node); 3084 if (!hctx) 3085 goto fail; 3086 3087 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3088 goto free_hctx; 3089 3090 return hctx; 3091 3092 free_hctx: 3093 kobject_put(&hctx->kobj); 3094 fail: 3095 return NULL; 3096 } 3097 3098 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3099 struct request_queue *q) 3100 { 3101 int i, j, end; 3102 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3103 3104 if (q->nr_hw_queues < set->nr_hw_queues) { 3105 struct blk_mq_hw_ctx **new_hctxs; 3106 3107 new_hctxs = kcalloc_node(set->nr_hw_queues, 3108 sizeof(*new_hctxs), GFP_KERNEL, 3109 set->numa_node); 3110 if (!new_hctxs) 3111 return; 3112 if (hctxs) 3113 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3114 sizeof(*hctxs)); 3115 q->queue_hw_ctx = new_hctxs; 3116 kfree(hctxs); 3117 hctxs = new_hctxs; 3118 } 3119 3120 /* protect against switching io scheduler */ 3121 mutex_lock(&q->sysfs_lock); 3122 for (i = 0; i < set->nr_hw_queues; i++) { 3123 int node; 3124 struct blk_mq_hw_ctx *hctx; 3125 3126 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3127 /* 3128 * If the hw queue has been mapped to another numa node, 3129 * we need to realloc the hctx. If allocation fails, fallback 3130 * to use the previous one. 3131 */ 3132 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3133 continue; 3134 3135 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3136 if (hctx) { 3137 if (hctxs[i]) 3138 blk_mq_exit_hctx(q, set, hctxs[i], i); 3139 hctxs[i] = hctx; 3140 } else { 3141 if (hctxs[i]) 3142 pr_warn("Allocate new hctx on node %d fails,\ 3143 fallback to previous one on node %d\n", 3144 node, hctxs[i]->numa_node); 3145 else 3146 break; 3147 } 3148 } 3149 /* 3150 * Increasing nr_hw_queues fails. Free the newly allocated 3151 * hctxs and keep the previous q->nr_hw_queues. 3152 */ 3153 if (i != set->nr_hw_queues) { 3154 j = q->nr_hw_queues; 3155 end = i; 3156 } else { 3157 j = i; 3158 end = q->nr_hw_queues; 3159 q->nr_hw_queues = set->nr_hw_queues; 3160 } 3161 3162 for (; j < end; j++) { 3163 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3164 3165 if (hctx) { 3166 if (hctx->tags) 3167 blk_mq_free_map_and_requests(set, j); 3168 blk_mq_exit_hctx(q, set, hctx, j); 3169 hctxs[j] = NULL; 3170 } 3171 } 3172 mutex_unlock(&q->sysfs_lock); 3173 } 3174 3175 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3176 struct request_queue *q, 3177 bool elevator_init) 3178 { 3179 /* mark the queue as mq asap */ 3180 q->mq_ops = set->ops; 3181 3182 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3183 blk_mq_poll_stats_bkt, 3184 BLK_MQ_POLL_STATS_BKTS, q); 3185 if (!q->poll_cb) 3186 goto err_exit; 3187 3188 if (blk_mq_alloc_ctxs(q)) 3189 goto err_poll; 3190 3191 /* init q->mq_kobj and sw queues' kobjects */ 3192 blk_mq_sysfs_init(q); 3193 3194 INIT_LIST_HEAD(&q->unused_hctx_list); 3195 spin_lock_init(&q->unused_hctx_lock); 3196 3197 blk_mq_realloc_hw_ctxs(set, q); 3198 if (!q->nr_hw_queues) 3199 goto err_hctxs; 3200 3201 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3202 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3203 3204 q->tag_set = set; 3205 3206 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3207 if (set->nr_maps > HCTX_TYPE_POLL && 3208 set->map[HCTX_TYPE_POLL].nr_queues) 3209 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3210 3211 q->sg_reserved_size = INT_MAX; 3212 3213 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3214 INIT_LIST_HEAD(&q->requeue_list); 3215 spin_lock_init(&q->requeue_lock); 3216 3217 q->nr_requests = set->queue_depth; 3218 3219 /* 3220 * Default to classic polling 3221 */ 3222 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3223 3224 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3225 blk_mq_add_queue_tag_set(set, q); 3226 blk_mq_map_swqueue(q); 3227 3228 if (elevator_init) 3229 elevator_init_mq(q); 3230 3231 return q; 3232 3233 err_hctxs: 3234 kfree(q->queue_hw_ctx); 3235 q->nr_hw_queues = 0; 3236 blk_mq_sysfs_deinit(q); 3237 err_poll: 3238 blk_stat_free_callback(q->poll_cb); 3239 q->poll_cb = NULL; 3240 err_exit: 3241 q->mq_ops = NULL; 3242 return ERR_PTR(-ENOMEM); 3243 } 3244 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3245 3246 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3247 void blk_mq_exit_queue(struct request_queue *q) 3248 { 3249 struct blk_mq_tag_set *set = q->tag_set; 3250 3251 blk_mq_del_queue_tag_set(q); 3252 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3253 } 3254 3255 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3256 { 3257 int i; 3258 3259 for (i = 0; i < set->nr_hw_queues; i++) 3260 if (!__blk_mq_alloc_map_and_request(set, i)) 3261 goto out_unwind; 3262 3263 return 0; 3264 3265 out_unwind: 3266 while (--i >= 0) 3267 blk_mq_free_map_and_requests(set, i); 3268 3269 return -ENOMEM; 3270 } 3271 3272 /* 3273 * Allocate the request maps associated with this tag_set. Note that this 3274 * may reduce the depth asked for, if memory is tight. set->queue_depth 3275 * will be updated to reflect the allocated depth. 3276 */ 3277 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3278 { 3279 unsigned int depth; 3280 int err; 3281 3282 depth = set->queue_depth; 3283 do { 3284 err = __blk_mq_alloc_rq_maps(set); 3285 if (!err) 3286 break; 3287 3288 set->queue_depth >>= 1; 3289 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3290 err = -ENOMEM; 3291 break; 3292 } 3293 } while (set->queue_depth); 3294 3295 if (!set->queue_depth || err) { 3296 pr_err("blk-mq: failed to allocate request map\n"); 3297 return -ENOMEM; 3298 } 3299 3300 if (depth != set->queue_depth) 3301 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3302 depth, set->queue_depth); 3303 3304 return 0; 3305 } 3306 3307 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3308 { 3309 /* 3310 * blk_mq_map_queues() and multiple .map_queues() implementations 3311 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3312 * number of hardware queues. 3313 */ 3314 if (set->nr_maps == 1) 3315 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3316 3317 if (set->ops->map_queues && !is_kdump_kernel()) { 3318 int i; 3319 3320 /* 3321 * transport .map_queues is usually done in the following 3322 * way: 3323 * 3324 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3325 * mask = get_cpu_mask(queue) 3326 * for_each_cpu(cpu, mask) 3327 * set->map[x].mq_map[cpu] = queue; 3328 * } 3329 * 3330 * When we need to remap, the table has to be cleared for 3331 * killing stale mapping since one CPU may not be mapped 3332 * to any hw queue. 3333 */ 3334 for (i = 0; i < set->nr_maps; i++) 3335 blk_mq_clear_mq_map(&set->map[i]); 3336 3337 return set->ops->map_queues(set); 3338 } else { 3339 BUG_ON(set->nr_maps > 1); 3340 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3341 } 3342 } 3343 3344 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3345 int cur_nr_hw_queues, int new_nr_hw_queues) 3346 { 3347 struct blk_mq_tags **new_tags; 3348 3349 if (cur_nr_hw_queues >= new_nr_hw_queues) 3350 return 0; 3351 3352 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3353 GFP_KERNEL, set->numa_node); 3354 if (!new_tags) 3355 return -ENOMEM; 3356 3357 if (set->tags) 3358 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3359 sizeof(*set->tags)); 3360 kfree(set->tags); 3361 set->tags = new_tags; 3362 set->nr_hw_queues = new_nr_hw_queues; 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * Alloc a tag set to be associated with one or more request queues. 3369 * May fail with EINVAL for various error conditions. May adjust the 3370 * requested depth down, if it's too large. In that case, the set 3371 * value will be stored in set->queue_depth. 3372 */ 3373 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3374 { 3375 int i, ret; 3376 3377 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3378 3379 if (!set->nr_hw_queues) 3380 return -EINVAL; 3381 if (!set->queue_depth) 3382 return -EINVAL; 3383 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3384 return -EINVAL; 3385 3386 if (!set->ops->queue_rq) 3387 return -EINVAL; 3388 3389 if (!set->ops->get_budget ^ !set->ops->put_budget) 3390 return -EINVAL; 3391 3392 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3393 pr_info("blk-mq: reduced tag depth to %u\n", 3394 BLK_MQ_MAX_DEPTH); 3395 set->queue_depth = BLK_MQ_MAX_DEPTH; 3396 } 3397 3398 if (!set->nr_maps) 3399 set->nr_maps = 1; 3400 else if (set->nr_maps > HCTX_MAX_TYPES) 3401 return -EINVAL; 3402 3403 /* 3404 * If a crashdump is active, then we are potentially in a very 3405 * memory constrained environment. Limit us to 1 queue and 3406 * 64 tags to prevent using too much memory. 3407 */ 3408 if (is_kdump_kernel()) { 3409 set->nr_hw_queues = 1; 3410 set->nr_maps = 1; 3411 set->queue_depth = min(64U, set->queue_depth); 3412 } 3413 /* 3414 * There is no use for more h/w queues than cpus if we just have 3415 * a single map 3416 */ 3417 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3418 set->nr_hw_queues = nr_cpu_ids; 3419 3420 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3421 return -ENOMEM; 3422 3423 ret = -ENOMEM; 3424 for (i = 0; i < set->nr_maps; i++) { 3425 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3426 sizeof(set->map[i].mq_map[0]), 3427 GFP_KERNEL, set->numa_node); 3428 if (!set->map[i].mq_map) 3429 goto out_free_mq_map; 3430 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3431 } 3432 3433 ret = blk_mq_update_queue_map(set); 3434 if (ret) 3435 goto out_free_mq_map; 3436 3437 ret = blk_mq_alloc_map_and_requests(set); 3438 if (ret) 3439 goto out_free_mq_map; 3440 3441 mutex_init(&set->tag_list_lock); 3442 INIT_LIST_HEAD(&set->tag_list); 3443 3444 return 0; 3445 3446 out_free_mq_map: 3447 for (i = 0; i < set->nr_maps; i++) { 3448 kfree(set->map[i].mq_map); 3449 set->map[i].mq_map = NULL; 3450 } 3451 kfree(set->tags); 3452 set->tags = NULL; 3453 return ret; 3454 } 3455 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3456 3457 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3458 { 3459 int i, j; 3460 3461 for (i = 0; i < set->nr_hw_queues; i++) 3462 blk_mq_free_map_and_requests(set, i); 3463 3464 for (j = 0; j < set->nr_maps; j++) { 3465 kfree(set->map[j].mq_map); 3466 set->map[j].mq_map = NULL; 3467 } 3468 3469 kfree(set->tags); 3470 set->tags = NULL; 3471 } 3472 EXPORT_SYMBOL(blk_mq_free_tag_set); 3473 3474 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3475 { 3476 struct blk_mq_tag_set *set = q->tag_set; 3477 struct blk_mq_hw_ctx *hctx; 3478 int i, ret; 3479 3480 if (!set) 3481 return -EINVAL; 3482 3483 if (q->nr_requests == nr) 3484 return 0; 3485 3486 blk_mq_freeze_queue(q); 3487 blk_mq_quiesce_queue(q); 3488 3489 ret = 0; 3490 queue_for_each_hw_ctx(q, hctx, i) { 3491 if (!hctx->tags) 3492 continue; 3493 /* 3494 * If we're using an MQ scheduler, just update the scheduler 3495 * queue depth. This is similar to what the old code would do. 3496 */ 3497 if (!hctx->sched_tags) { 3498 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3499 false); 3500 } else { 3501 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3502 nr, true); 3503 } 3504 if (ret) 3505 break; 3506 if (q->elevator && q->elevator->type->ops.depth_updated) 3507 q->elevator->type->ops.depth_updated(hctx); 3508 } 3509 3510 if (!ret) 3511 q->nr_requests = nr; 3512 3513 blk_mq_unquiesce_queue(q); 3514 blk_mq_unfreeze_queue(q); 3515 3516 return ret; 3517 } 3518 3519 /* 3520 * request_queue and elevator_type pair. 3521 * It is just used by __blk_mq_update_nr_hw_queues to cache 3522 * the elevator_type associated with a request_queue. 3523 */ 3524 struct blk_mq_qe_pair { 3525 struct list_head node; 3526 struct request_queue *q; 3527 struct elevator_type *type; 3528 }; 3529 3530 /* 3531 * Cache the elevator_type in qe pair list and switch the 3532 * io scheduler to 'none' 3533 */ 3534 static bool blk_mq_elv_switch_none(struct list_head *head, 3535 struct request_queue *q) 3536 { 3537 struct blk_mq_qe_pair *qe; 3538 3539 if (!q->elevator) 3540 return true; 3541 3542 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3543 if (!qe) 3544 return false; 3545 3546 INIT_LIST_HEAD(&qe->node); 3547 qe->q = q; 3548 qe->type = q->elevator->type; 3549 list_add(&qe->node, head); 3550 3551 mutex_lock(&q->sysfs_lock); 3552 /* 3553 * After elevator_switch_mq, the previous elevator_queue will be 3554 * released by elevator_release. The reference of the io scheduler 3555 * module get by elevator_get will also be put. So we need to get 3556 * a reference of the io scheduler module here to prevent it to be 3557 * removed. 3558 */ 3559 __module_get(qe->type->elevator_owner); 3560 elevator_switch_mq(q, NULL); 3561 mutex_unlock(&q->sysfs_lock); 3562 3563 return true; 3564 } 3565 3566 static void blk_mq_elv_switch_back(struct list_head *head, 3567 struct request_queue *q) 3568 { 3569 struct blk_mq_qe_pair *qe; 3570 struct elevator_type *t = NULL; 3571 3572 list_for_each_entry(qe, head, node) 3573 if (qe->q == q) { 3574 t = qe->type; 3575 break; 3576 } 3577 3578 if (!t) 3579 return; 3580 3581 list_del(&qe->node); 3582 kfree(qe); 3583 3584 mutex_lock(&q->sysfs_lock); 3585 elevator_switch_mq(q, t); 3586 mutex_unlock(&q->sysfs_lock); 3587 } 3588 3589 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3590 int nr_hw_queues) 3591 { 3592 struct request_queue *q; 3593 LIST_HEAD(head); 3594 int prev_nr_hw_queues; 3595 3596 lockdep_assert_held(&set->tag_list_lock); 3597 3598 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3599 nr_hw_queues = nr_cpu_ids; 3600 if (nr_hw_queues < 1) 3601 return; 3602 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3603 return; 3604 3605 list_for_each_entry(q, &set->tag_list, tag_set_list) 3606 blk_mq_freeze_queue(q); 3607 /* 3608 * Switch IO scheduler to 'none', cleaning up the data associated 3609 * with the previous scheduler. We will switch back once we are done 3610 * updating the new sw to hw queue mappings. 3611 */ 3612 list_for_each_entry(q, &set->tag_list, tag_set_list) 3613 if (!blk_mq_elv_switch_none(&head, q)) 3614 goto switch_back; 3615 3616 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3617 blk_mq_debugfs_unregister_hctxs(q); 3618 blk_mq_sysfs_unregister(q); 3619 } 3620 3621 prev_nr_hw_queues = set->nr_hw_queues; 3622 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3623 0) 3624 goto reregister; 3625 3626 set->nr_hw_queues = nr_hw_queues; 3627 fallback: 3628 blk_mq_update_queue_map(set); 3629 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3630 blk_mq_realloc_hw_ctxs(set, q); 3631 if (q->nr_hw_queues != set->nr_hw_queues) { 3632 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3633 nr_hw_queues, prev_nr_hw_queues); 3634 set->nr_hw_queues = prev_nr_hw_queues; 3635 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3636 goto fallback; 3637 } 3638 blk_mq_map_swqueue(q); 3639 } 3640 3641 reregister: 3642 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3643 blk_mq_sysfs_register(q); 3644 blk_mq_debugfs_register_hctxs(q); 3645 } 3646 3647 switch_back: 3648 list_for_each_entry(q, &set->tag_list, tag_set_list) 3649 blk_mq_elv_switch_back(&head, q); 3650 3651 list_for_each_entry(q, &set->tag_list, tag_set_list) 3652 blk_mq_unfreeze_queue(q); 3653 } 3654 3655 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3656 { 3657 mutex_lock(&set->tag_list_lock); 3658 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3659 mutex_unlock(&set->tag_list_lock); 3660 } 3661 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3662 3663 /* Enable polling stats and return whether they were already enabled. */ 3664 static bool blk_poll_stats_enable(struct request_queue *q) 3665 { 3666 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3667 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3668 return true; 3669 blk_stat_add_callback(q, q->poll_cb); 3670 return false; 3671 } 3672 3673 static void blk_mq_poll_stats_start(struct request_queue *q) 3674 { 3675 /* 3676 * We don't arm the callback if polling stats are not enabled or the 3677 * callback is already active. 3678 */ 3679 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3680 blk_stat_is_active(q->poll_cb)) 3681 return; 3682 3683 blk_stat_activate_msecs(q->poll_cb, 100); 3684 } 3685 3686 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3687 { 3688 struct request_queue *q = cb->data; 3689 int bucket; 3690 3691 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3692 if (cb->stat[bucket].nr_samples) 3693 q->poll_stat[bucket] = cb->stat[bucket]; 3694 } 3695 } 3696 3697 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3698 struct request *rq) 3699 { 3700 unsigned long ret = 0; 3701 int bucket; 3702 3703 /* 3704 * If stats collection isn't on, don't sleep but turn it on for 3705 * future users 3706 */ 3707 if (!blk_poll_stats_enable(q)) 3708 return 0; 3709 3710 /* 3711 * As an optimistic guess, use half of the mean service time 3712 * for this type of request. We can (and should) make this smarter. 3713 * For instance, if the completion latencies are tight, we can 3714 * get closer than just half the mean. This is especially 3715 * important on devices where the completion latencies are longer 3716 * than ~10 usec. We do use the stats for the relevant IO size 3717 * if available which does lead to better estimates. 3718 */ 3719 bucket = blk_mq_poll_stats_bkt(rq); 3720 if (bucket < 0) 3721 return ret; 3722 3723 if (q->poll_stat[bucket].nr_samples) 3724 ret = (q->poll_stat[bucket].mean + 1) / 2; 3725 3726 return ret; 3727 } 3728 3729 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3730 struct request *rq) 3731 { 3732 struct hrtimer_sleeper hs; 3733 enum hrtimer_mode mode; 3734 unsigned int nsecs; 3735 ktime_t kt; 3736 3737 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3738 return false; 3739 3740 /* 3741 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3742 * 3743 * 0: use half of prev avg 3744 * >0: use this specific value 3745 */ 3746 if (q->poll_nsec > 0) 3747 nsecs = q->poll_nsec; 3748 else 3749 nsecs = blk_mq_poll_nsecs(q, rq); 3750 3751 if (!nsecs) 3752 return false; 3753 3754 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3755 3756 /* 3757 * This will be replaced with the stats tracking code, using 3758 * 'avg_completion_time / 2' as the pre-sleep target. 3759 */ 3760 kt = nsecs; 3761 3762 mode = HRTIMER_MODE_REL; 3763 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3764 hrtimer_set_expires(&hs.timer, kt); 3765 3766 do { 3767 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3768 break; 3769 set_current_state(TASK_UNINTERRUPTIBLE); 3770 hrtimer_sleeper_start_expires(&hs, mode); 3771 if (hs.task) 3772 io_schedule(); 3773 hrtimer_cancel(&hs.timer); 3774 mode = HRTIMER_MODE_ABS; 3775 } while (hs.task && !signal_pending(current)); 3776 3777 __set_current_state(TASK_RUNNING); 3778 destroy_hrtimer_on_stack(&hs.timer); 3779 return true; 3780 } 3781 3782 static bool blk_mq_poll_hybrid(struct request_queue *q, 3783 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3784 { 3785 struct request *rq; 3786 3787 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3788 return false; 3789 3790 if (!blk_qc_t_is_internal(cookie)) 3791 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3792 else { 3793 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3794 /* 3795 * With scheduling, if the request has completed, we'll 3796 * get a NULL return here, as we clear the sched tag when 3797 * that happens. The request still remains valid, like always, 3798 * so we should be safe with just the NULL check. 3799 */ 3800 if (!rq) 3801 return false; 3802 } 3803 3804 return blk_mq_poll_hybrid_sleep(q, rq); 3805 } 3806 3807 /** 3808 * blk_poll - poll for IO completions 3809 * @q: the queue 3810 * @cookie: cookie passed back at IO submission time 3811 * @spin: whether to spin for completions 3812 * 3813 * Description: 3814 * Poll for completions on the passed in queue. Returns number of 3815 * completed entries found. If @spin is true, then blk_poll will continue 3816 * looping until at least one completion is found, unless the task is 3817 * otherwise marked running (or we need to reschedule). 3818 */ 3819 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3820 { 3821 struct blk_mq_hw_ctx *hctx; 3822 long state; 3823 3824 if (!blk_qc_t_valid(cookie) || 3825 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3826 return 0; 3827 3828 if (current->plug) 3829 blk_flush_plug_list(current->plug, false); 3830 3831 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3832 3833 /* 3834 * If we sleep, have the caller restart the poll loop to reset 3835 * the state. Like for the other success return cases, the 3836 * caller is responsible for checking if the IO completed. If 3837 * the IO isn't complete, we'll get called again and will go 3838 * straight to the busy poll loop. 3839 */ 3840 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3841 return 1; 3842 3843 hctx->poll_considered++; 3844 3845 state = current->state; 3846 do { 3847 int ret; 3848 3849 hctx->poll_invoked++; 3850 3851 ret = q->mq_ops->poll(hctx); 3852 if (ret > 0) { 3853 hctx->poll_success++; 3854 __set_current_state(TASK_RUNNING); 3855 return ret; 3856 } 3857 3858 if (signal_pending_state(state, current)) 3859 __set_current_state(TASK_RUNNING); 3860 3861 if (current->state == TASK_RUNNING) 3862 return 1; 3863 if (ret < 0 || !spin) 3864 break; 3865 cpu_relax(); 3866 } while (!need_resched()); 3867 3868 __set_current_state(TASK_RUNNING); 3869 return 0; 3870 } 3871 EXPORT_SYMBOL_GPL(blk_poll); 3872 3873 unsigned int blk_mq_rq_cpu(struct request *rq) 3874 { 3875 return rq->mq_ctx->cpu; 3876 } 3877 EXPORT_SYMBOL(blk_mq_rq_cpu); 3878 3879 static int __init blk_mq_init(void) 3880 { 3881 int i; 3882 3883 for_each_possible_cpu(i) 3884 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 3885 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 3886 3887 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 3888 "block/softirq:dead", NULL, 3889 blk_softirq_cpu_dead); 3890 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3891 blk_mq_hctx_notify_dead); 3892 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3893 blk_mq_hctx_notify_online, 3894 blk_mq_hctx_notify_offline); 3895 return 0; 3896 } 3897 subsys_initcall(blk_mq_init); 3898