1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #include <linux/blk-mq.h> 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-tag.h" 30 31 static DEFINE_MUTEX(all_q_mutex); 32 static LIST_HEAD(all_q_list); 33 34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 35 36 /* 37 * Check if any of the ctx's have pending work in this hardware queue 38 */ 39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 40 { 41 unsigned int i; 42 43 for (i = 0; i < hctx->ctx_map.map_size; i++) 44 if (hctx->ctx_map.map[i].word) 45 return true; 46 47 return false; 48 } 49 50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 54 } 55 56 #define CTX_TO_BIT(hctx, ctx) \ 57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 58 59 /* 60 * Mark this ctx as having pending work in this hardware queue 61 */ 62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 66 67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 69 } 70 71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 75 76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 77 } 78 79 static int blk_mq_queue_enter(struct request_queue *q) 80 { 81 int ret; 82 83 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 84 smp_wmb(); 85 86 /* we have problems freezing the queue if it's initializing */ 87 if (!blk_queue_dying(q) && 88 (!blk_queue_bypass(q) || !blk_queue_init_done(q))) 89 return 0; 90 91 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 92 93 spin_lock_irq(q->queue_lock); 94 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq, 95 !blk_queue_bypass(q) || blk_queue_dying(q), 96 *q->queue_lock); 97 /* inc usage with lock hold to avoid freeze_queue runs here */ 98 if (!ret && !blk_queue_dying(q)) 99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 100 else if (blk_queue_dying(q)) 101 ret = -ENODEV; 102 spin_unlock_irq(q->queue_lock); 103 104 return ret; 105 } 106 107 static void blk_mq_queue_exit(struct request_queue *q) 108 { 109 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 110 } 111 112 static void __blk_mq_drain_queue(struct request_queue *q) 113 { 114 while (true) { 115 s64 count; 116 117 spin_lock_irq(q->queue_lock); 118 count = percpu_counter_sum(&q->mq_usage_counter); 119 spin_unlock_irq(q->queue_lock); 120 121 if (count == 0) 122 break; 123 blk_mq_run_queues(q, false); 124 msleep(10); 125 } 126 } 127 128 /* 129 * Guarantee no request is in use, so we can change any data structure of 130 * the queue afterward. 131 */ 132 static void blk_mq_freeze_queue(struct request_queue *q) 133 { 134 bool drain; 135 136 spin_lock_irq(q->queue_lock); 137 drain = !q->bypass_depth++; 138 queue_flag_set(QUEUE_FLAG_BYPASS, q); 139 spin_unlock_irq(q->queue_lock); 140 141 if (drain) 142 __blk_mq_drain_queue(q); 143 } 144 145 void blk_mq_drain_queue(struct request_queue *q) 146 { 147 __blk_mq_drain_queue(q); 148 } 149 150 static void blk_mq_unfreeze_queue(struct request_queue *q) 151 { 152 bool wake = false; 153 154 spin_lock_irq(q->queue_lock); 155 if (!--q->bypass_depth) { 156 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 157 wake = true; 158 } 159 WARN_ON_ONCE(q->bypass_depth < 0); 160 spin_unlock_irq(q->queue_lock); 161 if (wake) 162 wake_up_all(&q->mq_freeze_wq); 163 } 164 165 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 166 { 167 return blk_mq_has_free_tags(hctx->tags); 168 } 169 EXPORT_SYMBOL(blk_mq_can_queue); 170 171 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 172 struct request *rq, unsigned int rw_flags) 173 { 174 if (blk_queue_io_stat(q)) 175 rw_flags |= REQ_IO_STAT; 176 177 INIT_LIST_HEAD(&rq->queuelist); 178 /* csd/requeue_work/fifo_time is initialized before use */ 179 rq->q = q; 180 rq->mq_ctx = ctx; 181 rq->cmd_flags |= rw_flags; 182 /* do not touch atomic flags, it needs atomic ops against the timer */ 183 rq->cpu = -1; 184 INIT_HLIST_NODE(&rq->hash); 185 RB_CLEAR_NODE(&rq->rb_node); 186 rq->rq_disk = NULL; 187 rq->part = NULL; 188 rq->start_time = jiffies; 189 #ifdef CONFIG_BLK_CGROUP 190 rq->rl = NULL; 191 set_start_time_ns(rq); 192 rq->io_start_time_ns = 0; 193 #endif 194 rq->nr_phys_segments = 0; 195 #if defined(CONFIG_BLK_DEV_INTEGRITY) 196 rq->nr_integrity_segments = 0; 197 #endif 198 rq->special = NULL; 199 /* tag was already set */ 200 rq->errors = 0; 201 202 rq->extra_len = 0; 203 rq->sense_len = 0; 204 rq->resid_len = 0; 205 rq->sense = NULL; 206 207 INIT_LIST_HEAD(&rq->timeout_list); 208 rq->timeout = 0; 209 210 rq->end_io = NULL; 211 rq->end_io_data = NULL; 212 rq->next_rq = NULL; 213 214 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 215 } 216 217 static struct request * 218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 219 { 220 struct request *rq; 221 unsigned int tag; 222 223 tag = blk_mq_get_tag(data); 224 if (tag != BLK_MQ_TAG_FAIL) { 225 rq = data->hctx->tags->rqs[tag]; 226 227 rq->cmd_flags = 0; 228 if (blk_mq_tag_busy(data->hctx)) { 229 rq->cmd_flags = REQ_MQ_INFLIGHT; 230 atomic_inc(&data->hctx->nr_active); 231 } 232 233 rq->tag = tag; 234 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 235 return rq; 236 } 237 238 return NULL; 239 } 240 241 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 242 bool reserved) 243 { 244 struct blk_mq_ctx *ctx; 245 struct blk_mq_hw_ctx *hctx; 246 struct request *rq; 247 struct blk_mq_alloc_data alloc_data; 248 249 if (blk_mq_queue_enter(q)) 250 return NULL; 251 252 ctx = blk_mq_get_ctx(q); 253 hctx = q->mq_ops->map_queue(q, ctx->cpu); 254 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 255 reserved, ctx, hctx); 256 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 if (!rq && (gfp & __GFP_WAIT)) { 259 __blk_mq_run_hw_queue(hctx); 260 blk_mq_put_ctx(ctx); 261 262 ctx = blk_mq_get_ctx(q); 263 hctx = q->mq_ops->map_queue(q, ctx->cpu); 264 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 265 hctx); 266 rq = __blk_mq_alloc_request(&alloc_data, rw); 267 ctx = alloc_data.ctx; 268 } 269 blk_mq_put_ctx(ctx); 270 return rq; 271 } 272 EXPORT_SYMBOL(blk_mq_alloc_request); 273 274 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 275 struct blk_mq_ctx *ctx, struct request *rq) 276 { 277 const int tag = rq->tag; 278 struct request_queue *q = rq->q; 279 280 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 281 atomic_dec(&hctx->nr_active); 282 283 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 284 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 285 blk_mq_queue_exit(q); 286 } 287 288 void blk_mq_free_request(struct request *rq) 289 { 290 struct blk_mq_ctx *ctx = rq->mq_ctx; 291 struct blk_mq_hw_ctx *hctx; 292 struct request_queue *q = rq->q; 293 294 ctx->rq_completed[rq_is_sync(rq)]++; 295 296 hctx = q->mq_ops->map_queue(q, ctx->cpu); 297 __blk_mq_free_request(hctx, ctx, rq); 298 } 299 300 /* 301 * Clone all relevant state from a request that has been put on hold in 302 * the flush state machine into the preallocated flush request that hangs 303 * off the request queue. 304 * 305 * For a driver the flush request should be invisible, that's why we are 306 * impersonating the original request here. 307 */ 308 void blk_mq_clone_flush_request(struct request *flush_rq, 309 struct request *orig_rq) 310 { 311 struct blk_mq_hw_ctx *hctx = 312 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); 313 314 flush_rq->mq_ctx = orig_rq->mq_ctx; 315 flush_rq->tag = orig_rq->tag; 316 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), 317 hctx->cmd_size); 318 } 319 320 inline void __blk_mq_end_io(struct request *rq, int error) 321 { 322 blk_account_io_done(rq); 323 324 if (rq->end_io) { 325 rq->end_io(rq, error); 326 } else { 327 if (unlikely(blk_bidi_rq(rq))) 328 blk_mq_free_request(rq->next_rq); 329 blk_mq_free_request(rq); 330 } 331 } 332 EXPORT_SYMBOL(__blk_mq_end_io); 333 334 void blk_mq_end_io(struct request *rq, int error) 335 { 336 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 337 BUG(); 338 __blk_mq_end_io(rq, error); 339 } 340 EXPORT_SYMBOL(blk_mq_end_io); 341 342 static void __blk_mq_complete_request_remote(void *data) 343 { 344 struct request *rq = data; 345 346 rq->q->softirq_done_fn(rq); 347 } 348 349 static void blk_mq_ipi_complete_request(struct request *rq) 350 { 351 struct blk_mq_ctx *ctx = rq->mq_ctx; 352 bool shared = false; 353 int cpu; 354 355 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 356 rq->q->softirq_done_fn(rq); 357 return; 358 } 359 360 cpu = get_cpu(); 361 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 362 shared = cpus_share_cache(cpu, ctx->cpu); 363 364 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 365 rq->csd.func = __blk_mq_complete_request_remote; 366 rq->csd.info = rq; 367 rq->csd.flags = 0; 368 smp_call_function_single_async(ctx->cpu, &rq->csd); 369 } else { 370 rq->q->softirq_done_fn(rq); 371 } 372 put_cpu(); 373 } 374 375 void __blk_mq_complete_request(struct request *rq) 376 { 377 struct request_queue *q = rq->q; 378 379 if (!q->softirq_done_fn) 380 blk_mq_end_io(rq, rq->errors); 381 else 382 blk_mq_ipi_complete_request(rq); 383 } 384 385 /** 386 * blk_mq_complete_request - end I/O on a request 387 * @rq: the request being processed 388 * 389 * Description: 390 * Ends all I/O on a request. It does not handle partial completions. 391 * The actual completion happens out-of-order, through a IPI handler. 392 **/ 393 void blk_mq_complete_request(struct request *rq) 394 { 395 struct request_queue *q = rq->q; 396 397 if (unlikely(blk_should_fake_timeout(q))) 398 return; 399 if (!blk_mark_rq_complete(rq)) 400 __blk_mq_complete_request(rq); 401 } 402 EXPORT_SYMBOL(blk_mq_complete_request); 403 404 static void blk_mq_start_request(struct request *rq, bool last) 405 { 406 struct request_queue *q = rq->q; 407 408 trace_block_rq_issue(q, rq); 409 410 rq->resid_len = blk_rq_bytes(rq); 411 if (unlikely(blk_bidi_rq(rq))) 412 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 413 414 blk_add_timer(rq); 415 416 /* 417 * Mark us as started and clear complete. Complete might have been 418 * set if requeue raced with timeout, which then marked it as 419 * complete. So be sure to clear complete again when we start 420 * the request, otherwise we'll ignore the completion event. 421 */ 422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 426 427 if (q->dma_drain_size && blk_rq_bytes(rq)) { 428 /* 429 * Make sure space for the drain appears. We know we can do 430 * this because max_hw_segments has been adjusted to be one 431 * fewer than the device can handle. 432 */ 433 rq->nr_phys_segments++; 434 } 435 436 /* 437 * Flag the last request in the series so that drivers know when IO 438 * should be kicked off, if they don't do it on a per-request basis. 439 * 440 * Note: the flag isn't the only condition drivers should do kick off. 441 * If drive is busy, the last request might not have the bit set. 442 */ 443 if (last) 444 rq->cmd_flags |= REQ_END; 445 } 446 447 static void __blk_mq_requeue_request(struct request *rq) 448 { 449 struct request_queue *q = rq->q; 450 451 trace_block_rq_requeue(q, rq); 452 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 453 454 rq->cmd_flags &= ~REQ_END; 455 456 if (q->dma_drain_size && blk_rq_bytes(rq)) 457 rq->nr_phys_segments--; 458 } 459 460 void blk_mq_requeue_request(struct request *rq) 461 { 462 __blk_mq_requeue_request(rq); 463 blk_clear_rq_complete(rq); 464 465 BUG_ON(blk_queued_rq(rq)); 466 blk_mq_add_to_requeue_list(rq, true); 467 } 468 EXPORT_SYMBOL(blk_mq_requeue_request); 469 470 static void blk_mq_requeue_work(struct work_struct *work) 471 { 472 struct request_queue *q = 473 container_of(work, struct request_queue, requeue_work); 474 LIST_HEAD(rq_list); 475 struct request *rq, *next; 476 unsigned long flags; 477 478 spin_lock_irqsave(&q->requeue_lock, flags); 479 list_splice_init(&q->requeue_list, &rq_list); 480 spin_unlock_irqrestore(&q->requeue_lock, flags); 481 482 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 483 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 484 continue; 485 486 rq->cmd_flags &= ~REQ_SOFTBARRIER; 487 list_del_init(&rq->queuelist); 488 blk_mq_insert_request(rq, true, false, false); 489 } 490 491 while (!list_empty(&rq_list)) { 492 rq = list_entry(rq_list.next, struct request, queuelist); 493 list_del_init(&rq->queuelist); 494 blk_mq_insert_request(rq, false, false, false); 495 } 496 497 blk_mq_run_queues(q, false); 498 } 499 500 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 501 { 502 struct request_queue *q = rq->q; 503 unsigned long flags; 504 505 /* 506 * We abuse this flag that is otherwise used by the I/O scheduler to 507 * request head insertation from the workqueue. 508 */ 509 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 510 511 spin_lock_irqsave(&q->requeue_lock, flags); 512 if (at_head) { 513 rq->cmd_flags |= REQ_SOFTBARRIER; 514 list_add(&rq->queuelist, &q->requeue_list); 515 } else { 516 list_add_tail(&rq->queuelist, &q->requeue_list); 517 } 518 spin_unlock_irqrestore(&q->requeue_lock, flags); 519 } 520 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 521 522 void blk_mq_kick_requeue_list(struct request_queue *q) 523 { 524 kblockd_schedule_work(&q->requeue_work); 525 } 526 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 527 528 static inline bool is_flush_request(struct request *rq, unsigned int tag) 529 { 530 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 531 rq->q->flush_rq->tag == tag); 532 } 533 534 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 535 { 536 struct request *rq = tags->rqs[tag]; 537 538 if (!is_flush_request(rq, tag)) 539 return rq; 540 541 return rq->q->flush_rq; 542 } 543 EXPORT_SYMBOL(blk_mq_tag_to_rq); 544 545 struct blk_mq_timeout_data { 546 struct blk_mq_hw_ctx *hctx; 547 unsigned long *next; 548 unsigned int *next_set; 549 }; 550 551 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) 552 { 553 struct blk_mq_timeout_data *data = __data; 554 struct blk_mq_hw_ctx *hctx = data->hctx; 555 unsigned int tag; 556 557 /* It may not be in flight yet (this is where 558 * the REQ_ATOMIC_STARTED flag comes in). The requests are 559 * statically allocated, so we know it's always safe to access the 560 * memory associated with a bit offset into ->rqs[]. 561 */ 562 tag = 0; 563 do { 564 struct request *rq; 565 566 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); 567 if (tag >= hctx->tags->nr_tags) 568 break; 569 570 rq = blk_mq_tag_to_rq(hctx->tags, tag++); 571 if (rq->q != hctx->queue) 572 continue; 573 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 574 continue; 575 576 blk_rq_check_expired(rq, data->next, data->next_set); 577 } while (1); 578 } 579 580 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, 581 unsigned long *next, 582 unsigned int *next_set) 583 { 584 struct blk_mq_timeout_data data = { 585 .hctx = hctx, 586 .next = next, 587 .next_set = next_set, 588 }; 589 590 /* 591 * Ask the tagging code to iterate busy requests, so we can 592 * check them for timeout. 593 */ 594 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); 595 } 596 597 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) 598 { 599 struct request_queue *q = rq->q; 600 601 /* 602 * We know that complete is set at this point. If STARTED isn't set 603 * anymore, then the request isn't active and the "timeout" should 604 * just be ignored. This can happen due to the bitflag ordering. 605 * Timeout first checks if STARTED is set, and if it is, assumes 606 * the request is active. But if we race with completion, then 607 * we both flags will get cleared. So check here again, and ignore 608 * a timeout event with a request that isn't active. 609 */ 610 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 611 return BLK_EH_NOT_HANDLED; 612 613 if (!q->mq_ops->timeout) 614 return BLK_EH_RESET_TIMER; 615 616 return q->mq_ops->timeout(rq); 617 } 618 619 static void blk_mq_rq_timer(unsigned long data) 620 { 621 struct request_queue *q = (struct request_queue *) data; 622 struct blk_mq_hw_ctx *hctx; 623 unsigned long next = 0; 624 int i, next_set = 0; 625 626 queue_for_each_hw_ctx(q, hctx, i) { 627 /* 628 * If not software queues are currently mapped to this 629 * hardware queue, there's nothing to check 630 */ 631 if (!hctx->nr_ctx || !hctx->tags) 632 continue; 633 634 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); 635 } 636 637 if (next_set) { 638 next = blk_rq_timeout(round_jiffies_up(next)); 639 mod_timer(&q->timeout, next); 640 } else { 641 queue_for_each_hw_ctx(q, hctx, i) 642 blk_mq_tag_idle(hctx); 643 } 644 } 645 646 /* 647 * Reverse check our software queue for entries that we could potentially 648 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 649 * too much time checking for merges. 650 */ 651 static bool blk_mq_attempt_merge(struct request_queue *q, 652 struct blk_mq_ctx *ctx, struct bio *bio) 653 { 654 struct request *rq; 655 int checked = 8; 656 657 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 658 int el_ret; 659 660 if (!checked--) 661 break; 662 663 if (!blk_rq_merge_ok(rq, bio)) 664 continue; 665 666 el_ret = blk_try_merge(rq, bio); 667 if (el_ret == ELEVATOR_BACK_MERGE) { 668 if (bio_attempt_back_merge(q, rq, bio)) { 669 ctx->rq_merged++; 670 return true; 671 } 672 break; 673 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 674 if (bio_attempt_front_merge(q, rq, bio)) { 675 ctx->rq_merged++; 676 return true; 677 } 678 break; 679 } 680 } 681 682 return false; 683 } 684 685 /* 686 * Process software queues that have been marked busy, splicing them 687 * to the for-dispatch 688 */ 689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 690 { 691 struct blk_mq_ctx *ctx; 692 int i; 693 694 for (i = 0; i < hctx->ctx_map.map_size; i++) { 695 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 696 unsigned int off, bit; 697 698 if (!bm->word) 699 continue; 700 701 bit = 0; 702 off = i * hctx->ctx_map.bits_per_word; 703 do { 704 bit = find_next_bit(&bm->word, bm->depth, bit); 705 if (bit >= bm->depth) 706 break; 707 708 ctx = hctx->ctxs[bit + off]; 709 clear_bit(bit, &bm->word); 710 spin_lock(&ctx->lock); 711 list_splice_tail_init(&ctx->rq_list, list); 712 spin_unlock(&ctx->lock); 713 714 bit++; 715 } while (1); 716 } 717 } 718 719 /* 720 * Run this hardware queue, pulling any software queues mapped to it in. 721 * Note that this function currently has various problems around ordering 722 * of IO. In particular, we'd like FIFO behaviour on handling existing 723 * items on the hctx->dispatch list. Ignore that for now. 724 */ 725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 726 { 727 struct request_queue *q = hctx->queue; 728 struct request *rq; 729 LIST_HEAD(rq_list); 730 int queued; 731 732 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 733 734 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 735 return; 736 737 hctx->run++; 738 739 /* 740 * Touch any software queue that has pending entries. 741 */ 742 flush_busy_ctxs(hctx, &rq_list); 743 744 /* 745 * If we have previous entries on our dispatch list, grab them 746 * and stuff them at the front for more fair dispatch. 747 */ 748 if (!list_empty_careful(&hctx->dispatch)) { 749 spin_lock(&hctx->lock); 750 if (!list_empty(&hctx->dispatch)) 751 list_splice_init(&hctx->dispatch, &rq_list); 752 spin_unlock(&hctx->lock); 753 } 754 755 /* 756 * Now process all the entries, sending them to the driver. 757 */ 758 queued = 0; 759 while (!list_empty(&rq_list)) { 760 int ret; 761 762 rq = list_first_entry(&rq_list, struct request, queuelist); 763 list_del_init(&rq->queuelist); 764 765 blk_mq_start_request(rq, list_empty(&rq_list)); 766 767 ret = q->mq_ops->queue_rq(hctx, rq); 768 switch (ret) { 769 case BLK_MQ_RQ_QUEUE_OK: 770 queued++; 771 continue; 772 case BLK_MQ_RQ_QUEUE_BUSY: 773 list_add(&rq->queuelist, &rq_list); 774 __blk_mq_requeue_request(rq); 775 break; 776 default: 777 pr_err("blk-mq: bad return on queue: %d\n", ret); 778 case BLK_MQ_RQ_QUEUE_ERROR: 779 rq->errors = -EIO; 780 blk_mq_end_io(rq, rq->errors); 781 break; 782 } 783 784 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 785 break; 786 } 787 788 if (!queued) 789 hctx->dispatched[0]++; 790 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 791 hctx->dispatched[ilog2(queued) + 1]++; 792 793 /* 794 * Any items that need requeuing? Stuff them into hctx->dispatch, 795 * that is where we will continue on next queue run. 796 */ 797 if (!list_empty(&rq_list)) { 798 spin_lock(&hctx->lock); 799 list_splice(&rq_list, &hctx->dispatch); 800 spin_unlock(&hctx->lock); 801 } 802 } 803 804 /* 805 * It'd be great if the workqueue API had a way to pass 806 * in a mask and had some smarts for more clever placement. 807 * For now we just round-robin here, switching for every 808 * BLK_MQ_CPU_WORK_BATCH queued items. 809 */ 810 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 811 { 812 int cpu = hctx->next_cpu; 813 814 if (--hctx->next_cpu_batch <= 0) { 815 int next_cpu; 816 817 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 818 if (next_cpu >= nr_cpu_ids) 819 next_cpu = cpumask_first(hctx->cpumask); 820 821 hctx->next_cpu = next_cpu; 822 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 823 } 824 825 return cpu; 826 } 827 828 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 829 { 830 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 831 return; 832 833 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 834 __blk_mq_run_hw_queue(hctx); 835 else if (hctx->queue->nr_hw_queues == 1) 836 kblockd_schedule_delayed_work(&hctx->run_work, 0); 837 else { 838 unsigned int cpu; 839 840 cpu = blk_mq_hctx_next_cpu(hctx); 841 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 842 } 843 } 844 845 void blk_mq_run_queues(struct request_queue *q, bool async) 846 { 847 struct blk_mq_hw_ctx *hctx; 848 int i; 849 850 queue_for_each_hw_ctx(q, hctx, i) { 851 if ((!blk_mq_hctx_has_pending(hctx) && 852 list_empty_careful(&hctx->dispatch)) || 853 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 854 continue; 855 856 preempt_disable(); 857 blk_mq_run_hw_queue(hctx, async); 858 preempt_enable(); 859 } 860 } 861 EXPORT_SYMBOL(blk_mq_run_queues); 862 863 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 864 { 865 cancel_delayed_work(&hctx->run_work); 866 cancel_delayed_work(&hctx->delay_work); 867 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 868 } 869 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 870 871 void blk_mq_stop_hw_queues(struct request_queue *q) 872 { 873 struct blk_mq_hw_ctx *hctx; 874 int i; 875 876 queue_for_each_hw_ctx(q, hctx, i) 877 blk_mq_stop_hw_queue(hctx); 878 } 879 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 880 881 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 882 { 883 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 884 885 preempt_disable(); 886 __blk_mq_run_hw_queue(hctx); 887 preempt_enable(); 888 } 889 EXPORT_SYMBOL(blk_mq_start_hw_queue); 890 891 void blk_mq_start_hw_queues(struct request_queue *q) 892 { 893 struct blk_mq_hw_ctx *hctx; 894 int i; 895 896 queue_for_each_hw_ctx(q, hctx, i) 897 blk_mq_start_hw_queue(hctx); 898 } 899 EXPORT_SYMBOL(blk_mq_start_hw_queues); 900 901 902 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 903 { 904 struct blk_mq_hw_ctx *hctx; 905 int i; 906 907 queue_for_each_hw_ctx(q, hctx, i) { 908 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 909 continue; 910 911 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 912 preempt_disable(); 913 blk_mq_run_hw_queue(hctx, async); 914 preempt_enable(); 915 } 916 } 917 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 918 919 static void blk_mq_run_work_fn(struct work_struct *work) 920 { 921 struct blk_mq_hw_ctx *hctx; 922 923 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 924 925 __blk_mq_run_hw_queue(hctx); 926 } 927 928 static void blk_mq_delay_work_fn(struct work_struct *work) 929 { 930 struct blk_mq_hw_ctx *hctx; 931 932 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 933 934 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 935 __blk_mq_run_hw_queue(hctx); 936 } 937 938 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 939 { 940 unsigned long tmo = msecs_to_jiffies(msecs); 941 942 if (hctx->queue->nr_hw_queues == 1) 943 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 944 else { 945 unsigned int cpu; 946 947 cpu = blk_mq_hctx_next_cpu(hctx); 948 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 949 } 950 } 951 EXPORT_SYMBOL(blk_mq_delay_queue); 952 953 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 954 struct request *rq, bool at_head) 955 { 956 struct blk_mq_ctx *ctx = rq->mq_ctx; 957 958 trace_block_rq_insert(hctx->queue, rq); 959 960 if (at_head) 961 list_add(&rq->queuelist, &ctx->rq_list); 962 else 963 list_add_tail(&rq->queuelist, &ctx->rq_list); 964 965 blk_mq_hctx_mark_pending(hctx, ctx); 966 } 967 968 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 969 bool async) 970 { 971 struct request_queue *q = rq->q; 972 struct blk_mq_hw_ctx *hctx; 973 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 974 975 current_ctx = blk_mq_get_ctx(q); 976 if (!cpu_online(ctx->cpu)) 977 rq->mq_ctx = ctx = current_ctx; 978 979 hctx = q->mq_ops->map_queue(q, ctx->cpu); 980 981 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && 982 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { 983 blk_insert_flush(rq); 984 } else { 985 spin_lock(&ctx->lock); 986 __blk_mq_insert_request(hctx, rq, at_head); 987 spin_unlock(&ctx->lock); 988 } 989 990 if (run_queue) 991 blk_mq_run_hw_queue(hctx, async); 992 993 blk_mq_put_ctx(current_ctx); 994 } 995 996 static void blk_mq_insert_requests(struct request_queue *q, 997 struct blk_mq_ctx *ctx, 998 struct list_head *list, 999 int depth, 1000 bool from_schedule) 1001 1002 { 1003 struct blk_mq_hw_ctx *hctx; 1004 struct blk_mq_ctx *current_ctx; 1005 1006 trace_block_unplug(q, depth, !from_schedule); 1007 1008 current_ctx = blk_mq_get_ctx(q); 1009 1010 if (!cpu_online(ctx->cpu)) 1011 ctx = current_ctx; 1012 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1013 1014 /* 1015 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1016 * offline now 1017 */ 1018 spin_lock(&ctx->lock); 1019 while (!list_empty(list)) { 1020 struct request *rq; 1021 1022 rq = list_first_entry(list, struct request, queuelist); 1023 list_del_init(&rq->queuelist); 1024 rq->mq_ctx = ctx; 1025 __blk_mq_insert_request(hctx, rq, false); 1026 } 1027 spin_unlock(&ctx->lock); 1028 1029 blk_mq_run_hw_queue(hctx, from_schedule); 1030 blk_mq_put_ctx(current_ctx); 1031 } 1032 1033 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1034 { 1035 struct request *rqa = container_of(a, struct request, queuelist); 1036 struct request *rqb = container_of(b, struct request, queuelist); 1037 1038 return !(rqa->mq_ctx < rqb->mq_ctx || 1039 (rqa->mq_ctx == rqb->mq_ctx && 1040 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1041 } 1042 1043 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1044 { 1045 struct blk_mq_ctx *this_ctx; 1046 struct request_queue *this_q; 1047 struct request *rq; 1048 LIST_HEAD(list); 1049 LIST_HEAD(ctx_list); 1050 unsigned int depth; 1051 1052 list_splice_init(&plug->mq_list, &list); 1053 1054 list_sort(NULL, &list, plug_ctx_cmp); 1055 1056 this_q = NULL; 1057 this_ctx = NULL; 1058 depth = 0; 1059 1060 while (!list_empty(&list)) { 1061 rq = list_entry_rq(list.next); 1062 list_del_init(&rq->queuelist); 1063 BUG_ON(!rq->q); 1064 if (rq->mq_ctx != this_ctx) { 1065 if (this_ctx) { 1066 blk_mq_insert_requests(this_q, this_ctx, 1067 &ctx_list, depth, 1068 from_schedule); 1069 } 1070 1071 this_ctx = rq->mq_ctx; 1072 this_q = rq->q; 1073 depth = 0; 1074 } 1075 1076 depth++; 1077 list_add_tail(&rq->queuelist, &ctx_list); 1078 } 1079 1080 /* 1081 * If 'this_ctx' is set, we know we have entries to complete 1082 * on 'ctx_list'. Do those. 1083 */ 1084 if (this_ctx) { 1085 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1086 from_schedule); 1087 } 1088 } 1089 1090 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1091 { 1092 init_request_from_bio(rq, bio); 1093 1094 if (blk_do_io_stat(rq)) 1095 blk_account_io_start(rq, 1); 1096 } 1097 1098 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1099 struct blk_mq_ctx *ctx, 1100 struct request *rq, struct bio *bio) 1101 { 1102 struct request_queue *q = hctx->queue; 1103 1104 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { 1105 blk_mq_bio_to_request(rq, bio); 1106 spin_lock(&ctx->lock); 1107 insert_rq: 1108 __blk_mq_insert_request(hctx, rq, false); 1109 spin_unlock(&ctx->lock); 1110 return false; 1111 } else { 1112 spin_lock(&ctx->lock); 1113 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1114 blk_mq_bio_to_request(rq, bio); 1115 goto insert_rq; 1116 } 1117 1118 spin_unlock(&ctx->lock); 1119 __blk_mq_free_request(hctx, ctx, rq); 1120 return true; 1121 } 1122 } 1123 1124 struct blk_map_ctx { 1125 struct blk_mq_hw_ctx *hctx; 1126 struct blk_mq_ctx *ctx; 1127 }; 1128 1129 static struct request *blk_mq_map_request(struct request_queue *q, 1130 struct bio *bio, 1131 struct blk_map_ctx *data) 1132 { 1133 struct blk_mq_hw_ctx *hctx; 1134 struct blk_mq_ctx *ctx; 1135 struct request *rq; 1136 int rw = bio_data_dir(bio); 1137 struct blk_mq_alloc_data alloc_data; 1138 1139 if (unlikely(blk_mq_queue_enter(q))) { 1140 bio_endio(bio, -EIO); 1141 return NULL; 1142 } 1143 1144 ctx = blk_mq_get_ctx(q); 1145 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1146 1147 if (rw_is_sync(bio->bi_rw)) 1148 rw |= REQ_SYNC; 1149 1150 trace_block_getrq(q, bio, rw); 1151 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1152 hctx); 1153 rq = __blk_mq_alloc_request(&alloc_data, rw); 1154 if (unlikely(!rq)) { 1155 __blk_mq_run_hw_queue(hctx); 1156 blk_mq_put_ctx(ctx); 1157 trace_block_sleeprq(q, bio, rw); 1158 1159 ctx = blk_mq_get_ctx(q); 1160 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1161 blk_mq_set_alloc_data(&alloc_data, q, 1162 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1163 rq = __blk_mq_alloc_request(&alloc_data, rw); 1164 ctx = alloc_data.ctx; 1165 hctx = alloc_data.hctx; 1166 } 1167 1168 hctx->queued++; 1169 data->hctx = hctx; 1170 data->ctx = ctx; 1171 return rq; 1172 } 1173 1174 /* 1175 * Multiple hardware queue variant. This will not use per-process plugs, 1176 * but will attempt to bypass the hctx queueing if we can go straight to 1177 * hardware for SYNC IO. 1178 */ 1179 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1180 { 1181 const int is_sync = rw_is_sync(bio->bi_rw); 1182 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1183 struct blk_map_ctx data; 1184 struct request *rq; 1185 1186 blk_queue_bounce(q, &bio); 1187 1188 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1189 bio_endio(bio, -EIO); 1190 return; 1191 } 1192 1193 rq = blk_mq_map_request(q, bio, &data); 1194 if (unlikely(!rq)) 1195 return; 1196 1197 if (unlikely(is_flush_fua)) { 1198 blk_mq_bio_to_request(rq, bio); 1199 blk_insert_flush(rq); 1200 goto run_queue; 1201 } 1202 1203 if (is_sync) { 1204 int ret; 1205 1206 blk_mq_bio_to_request(rq, bio); 1207 blk_mq_start_request(rq, true); 1208 1209 /* 1210 * For OK queue, we are done. For error, kill it. Any other 1211 * error (busy), just add it to our list as we previously 1212 * would have done 1213 */ 1214 ret = q->mq_ops->queue_rq(data.hctx, rq); 1215 if (ret == BLK_MQ_RQ_QUEUE_OK) 1216 goto done; 1217 else { 1218 __blk_mq_requeue_request(rq); 1219 1220 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1221 rq->errors = -EIO; 1222 blk_mq_end_io(rq, rq->errors); 1223 goto done; 1224 } 1225 } 1226 } 1227 1228 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1229 /* 1230 * For a SYNC request, send it to the hardware immediately. For 1231 * an ASYNC request, just ensure that we run it later on. The 1232 * latter allows for merging opportunities and more efficient 1233 * dispatching. 1234 */ 1235 run_queue: 1236 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1237 } 1238 done: 1239 blk_mq_put_ctx(data.ctx); 1240 } 1241 1242 /* 1243 * Single hardware queue variant. This will attempt to use any per-process 1244 * plug for merging and IO deferral. 1245 */ 1246 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1247 { 1248 const int is_sync = rw_is_sync(bio->bi_rw); 1249 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1250 unsigned int use_plug, request_count = 0; 1251 struct blk_map_ctx data; 1252 struct request *rq; 1253 1254 /* 1255 * If we have multiple hardware queues, just go directly to 1256 * one of those for sync IO. 1257 */ 1258 use_plug = !is_flush_fua && !is_sync; 1259 1260 blk_queue_bounce(q, &bio); 1261 1262 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1263 bio_endio(bio, -EIO); 1264 return; 1265 } 1266 1267 if (use_plug && !blk_queue_nomerges(q) && 1268 blk_attempt_plug_merge(q, bio, &request_count)) 1269 return; 1270 1271 rq = blk_mq_map_request(q, bio, &data); 1272 if (unlikely(!rq)) 1273 return; 1274 1275 if (unlikely(is_flush_fua)) { 1276 blk_mq_bio_to_request(rq, bio); 1277 blk_insert_flush(rq); 1278 goto run_queue; 1279 } 1280 1281 /* 1282 * A task plug currently exists. Since this is completely lockless, 1283 * utilize that to temporarily store requests until the task is 1284 * either done or scheduled away. 1285 */ 1286 if (use_plug) { 1287 struct blk_plug *plug = current->plug; 1288 1289 if (plug) { 1290 blk_mq_bio_to_request(rq, bio); 1291 if (list_empty(&plug->mq_list)) 1292 trace_block_plug(q); 1293 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1294 blk_flush_plug_list(plug, false); 1295 trace_block_plug(q); 1296 } 1297 list_add_tail(&rq->queuelist, &plug->mq_list); 1298 blk_mq_put_ctx(data.ctx); 1299 return; 1300 } 1301 } 1302 1303 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1304 /* 1305 * For a SYNC request, send it to the hardware immediately. For 1306 * an ASYNC request, just ensure that we run it later on. The 1307 * latter allows for merging opportunities and more efficient 1308 * dispatching. 1309 */ 1310 run_queue: 1311 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1312 } 1313 1314 blk_mq_put_ctx(data.ctx); 1315 } 1316 1317 /* 1318 * Default mapping to a software queue, since we use one per CPU. 1319 */ 1320 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1321 { 1322 return q->queue_hw_ctx[q->mq_map[cpu]]; 1323 } 1324 EXPORT_SYMBOL(blk_mq_map_queue); 1325 1326 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1327 struct blk_mq_tags *tags, unsigned int hctx_idx) 1328 { 1329 struct page *page; 1330 1331 if (tags->rqs && set->ops->exit_request) { 1332 int i; 1333 1334 for (i = 0; i < tags->nr_tags; i++) { 1335 if (!tags->rqs[i]) 1336 continue; 1337 set->ops->exit_request(set->driver_data, tags->rqs[i], 1338 hctx_idx, i); 1339 } 1340 } 1341 1342 while (!list_empty(&tags->page_list)) { 1343 page = list_first_entry(&tags->page_list, struct page, lru); 1344 list_del_init(&page->lru); 1345 __free_pages(page, page->private); 1346 } 1347 1348 kfree(tags->rqs); 1349 1350 blk_mq_free_tags(tags); 1351 } 1352 1353 static size_t order_to_size(unsigned int order) 1354 { 1355 return (size_t)PAGE_SIZE << order; 1356 } 1357 1358 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1359 unsigned int hctx_idx) 1360 { 1361 struct blk_mq_tags *tags; 1362 unsigned int i, j, entries_per_page, max_order = 4; 1363 size_t rq_size, left; 1364 1365 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1366 set->numa_node); 1367 if (!tags) 1368 return NULL; 1369 1370 INIT_LIST_HEAD(&tags->page_list); 1371 1372 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *), 1373 GFP_KERNEL, set->numa_node); 1374 if (!tags->rqs) { 1375 blk_mq_free_tags(tags); 1376 return NULL; 1377 } 1378 1379 /* 1380 * rq_size is the size of the request plus driver payload, rounded 1381 * to the cacheline size 1382 */ 1383 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1384 cache_line_size()); 1385 left = rq_size * set->queue_depth; 1386 1387 for (i = 0; i < set->queue_depth; ) { 1388 int this_order = max_order; 1389 struct page *page; 1390 int to_do; 1391 void *p; 1392 1393 while (left < order_to_size(this_order - 1) && this_order) 1394 this_order--; 1395 1396 do { 1397 page = alloc_pages_node(set->numa_node, GFP_KERNEL, 1398 this_order); 1399 if (page) 1400 break; 1401 if (!this_order--) 1402 break; 1403 if (order_to_size(this_order) < rq_size) 1404 break; 1405 } while (1); 1406 1407 if (!page) 1408 goto fail; 1409 1410 page->private = this_order; 1411 list_add_tail(&page->lru, &tags->page_list); 1412 1413 p = page_address(page); 1414 entries_per_page = order_to_size(this_order) / rq_size; 1415 to_do = min(entries_per_page, set->queue_depth - i); 1416 left -= to_do * rq_size; 1417 for (j = 0; j < to_do; j++) { 1418 tags->rqs[i] = p; 1419 if (set->ops->init_request) { 1420 if (set->ops->init_request(set->driver_data, 1421 tags->rqs[i], hctx_idx, i, 1422 set->numa_node)) 1423 goto fail; 1424 } 1425 1426 p += rq_size; 1427 i++; 1428 } 1429 } 1430 1431 return tags; 1432 1433 fail: 1434 pr_warn("%s: failed to allocate requests\n", __func__); 1435 blk_mq_free_rq_map(set, tags, hctx_idx); 1436 return NULL; 1437 } 1438 1439 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1440 { 1441 kfree(bitmap->map); 1442 } 1443 1444 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1445 { 1446 unsigned int bpw = 8, total, num_maps, i; 1447 1448 bitmap->bits_per_word = bpw; 1449 1450 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1451 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1452 GFP_KERNEL, node); 1453 if (!bitmap->map) 1454 return -ENOMEM; 1455 1456 bitmap->map_size = num_maps; 1457 1458 total = nr_cpu_ids; 1459 for (i = 0; i < num_maps; i++) { 1460 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1461 total -= bitmap->map[i].depth; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1468 { 1469 struct request_queue *q = hctx->queue; 1470 struct blk_mq_ctx *ctx; 1471 LIST_HEAD(tmp); 1472 1473 /* 1474 * Move ctx entries to new CPU, if this one is going away. 1475 */ 1476 ctx = __blk_mq_get_ctx(q, cpu); 1477 1478 spin_lock(&ctx->lock); 1479 if (!list_empty(&ctx->rq_list)) { 1480 list_splice_init(&ctx->rq_list, &tmp); 1481 blk_mq_hctx_clear_pending(hctx, ctx); 1482 } 1483 spin_unlock(&ctx->lock); 1484 1485 if (list_empty(&tmp)) 1486 return NOTIFY_OK; 1487 1488 ctx = blk_mq_get_ctx(q); 1489 spin_lock(&ctx->lock); 1490 1491 while (!list_empty(&tmp)) { 1492 struct request *rq; 1493 1494 rq = list_first_entry(&tmp, struct request, queuelist); 1495 rq->mq_ctx = ctx; 1496 list_move_tail(&rq->queuelist, &ctx->rq_list); 1497 } 1498 1499 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1500 blk_mq_hctx_mark_pending(hctx, ctx); 1501 1502 spin_unlock(&ctx->lock); 1503 1504 blk_mq_run_hw_queue(hctx, true); 1505 blk_mq_put_ctx(ctx); 1506 return NOTIFY_OK; 1507 } 1508 1509 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1510 { 1511 struct request_queue *q = hctx->queue; 1512 struct blk_mq_tag_set *set = q->tag_set; 1513 1514 if (set->tags[hctx->queue_num]) 1515 return NOTIFY_OK; 1516 1517 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1518 if (!set->tags[hctx->queue_num]) 1519 return NOTIFY_STOP; 1520 1521 hctx->tags = set->tags[hctx->queue_num]; 1522 return NOTIFY_OK; 1523 } 1524 1525 static int blk_mq_hctx_notify(void *data, unsigned long action, 1526 unsigned int cpu) 1527 { 1528 struct blk_mq_hw_ctx *hctx = data; 1529 1530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1531 return blk_mq_hctx_cpu_offline(hctx, cpu); 1532 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1533 return blk_mq_hctx_cpu_online(hctx, cpu); 1534 1535 return NOTIFY_OK; 1536 } 1537 1538 static void blk_mq_exit_hw_queues(struct request_queue *q, 1539 struct blk_mq_tag_set *set, int nr_queue) 1540 { 1541 struct blk_mq_hw_ctx *hctx; 1542 unsigned int i; 1543 1544 queue_for_each_hw_ctx(q, hctx, i) { 1545 if (i == nr_queue) 1546 break; 1547 1548 blk_mq_tag_idle(hctx); 1549 1550 if (set->ops->exit_hctx) 1551 set->ops->exit_hctx(hctx, i); 1552 1553 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1554 kfree(hctx->ctxs); 1555 blk_mq_free_bitmap(&hctx->ctx_map); 1556 } 1557 1558 } 1559 1560 static void blk_mq_free_hw_queues(struct request_queue *q, 1561 struct blk_mq_tag_set *set) 1562 { 1563 struct blk_mq_hw_ctx *hctx; 1564 unsigned int i; 1565 1566 queue_for_each_hw_ctx(q, hctx, i) { 1567 free_cpumask_var(hctx->cpumask); 1568 kfree(hctx); 1569 } 1570 } 1571 1572 static int blk_mq_init_hw_queues(struct request_queue *q, 1573 struct blk_mq_tag_set *set) 1574 { 1575 struct blk_mq_hw_ctx *hctx; 1576 unsigned int i; 1577 1578 /* 1579 * Initialize hardware queues 1580 */ 1581 queue_for_each_hw_ctx(q, hctx, i) { 1582 int node; 1583 1584 node = hctx->numa_node; 1585 if (node == NUMA_NO_NODE) 1586 node = hctx->numa_node = set->numa_node; 1587 1588 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1589 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1590 spin_lock_init(&hctx->lock); 1591 INIT_LIST_HEAD(&hctx->dispatch); 1592 hctx->queue = q; 1593 hctx->queue_num = i; 1594 hctx->flags = set->flags; 1595 hctx->cmd_size = set->cmd_size; 1596 1597 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1598 blk_mq_hctx_notify, hctx); 1599 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1600 1601 hctx->tags = set->tags[i]; 1602 1603 /* 1604 * Allocate space for all possible cpus to avoid allocation in 1605 * runtime 1606 */ 1607 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1608 GFP_KERNEL, node); 1609 if (!hctx->ctxs) 1610 break; 1611 1612 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1613 break; 1614 1615 hctx->nr_ctx = 0; 1616 1617 if (set->ops->init_hctx && 1618 set->ops->init_hctx(hctx, set->driver_data, i)) 1619 break; 1620 } 1621 1622 if (i == q->nr_hw_queues) 1623 return 0; 1624 1625 /* 1626 * Init failed 1627 */ 1628 blk_mq_exit_hw_queues(q, set, i); 1629 1630 return 1; 1631 } 1632 1633 static void blk_mq_init_cpu_queues(struct request_queue *q, 1634 unsigned int nr_hw_queues) 1635 { 1636 unsigned int i; 1637 1638 for_each_possible_cpu(i) { 1639 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1640 struct blk_mq_hw_ctx *hctx; 1641 1642 memset(__ctx, 0, sizeof(*__ctx)); 1643 __ctx->cpu = i; 1644 spin_lock_init(&__ctx->lock); 1645 INIT_LIST_HEAD(&__ctx->rq_list); 1646 __ctx->queue = q; 1647 1648 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1649 if (!cpu_online(i)) 1650 continue; 1651 1652 hctx = q->mq_ops->map_queue(q, i); 1653 cpumask_set_cpu(i, hctx->cpumask); 1654 hctx->nr_ctx++; 1655 1656 /* 1657 * Set local node, IFF we have more than one hw queue. If 1658 * not, we remain on the home node of the device 1659 */ 1660 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1661 hctx->numa_node = cpu_to_node(i); 1662 } 1663 } 1664 1665 static void blk_mq_map_swqueue(struct request_queue *q) 1666 { 1667 unsigned int i; 1668 struct blk_mq_hw_ctx *hctx; 1669 struct blk_mq_ctx *ctx; 1670 1671 queue_for_each_hw_ctx(q, hctx, i) { 1672 cpumask_clear(hctx->cpumask); 1673 hctx->nr_ctx = 0; 1674 } 1675 1676 /* 1677 * Map software to hardware queues 1678 */ 1679 queue_for_each_ctx(q, ctx, i) { 1680 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1681 if (!cpu_online(i)) 1682 continue; 1683 1684 hctx = q->mq_ops->map_queue(q, i); 1685 cpumask_set_cpu(i, hctx->cpumask); 1686 ctx->index_hw = hctx->nr_ctx; 1687 hctx->ctxs[hctx->nr_ctx++] = ctx; 1688 } 1689 1690 queue_for_each_hw_ctx(q, hctx, i) { 1691 /* 1692 * If not software queues are mapped to this hardware queue, 1693 * disable it and free the request entries 1694 */ 1695 if (!hctx->nr_ctx) { 1696 struct blk_mq_tag_set *set = q->tag_set; 1697 1698 if (set->tags[i]) { 1699 blk_mq_free_rq_map(set, set->tags[i], i); 1700 set->tags[i] = NULL; 1701 hctx->tags = NULL; 1702 } 1703 continue; 1704 } 1705 1706 /* 1707 * Initialize batch roundrobin counts 1708 */ 1709 hctx->next_cpu = cpumask_first(hctx->cpumask); 1710 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1711 } 1712 } 1713 1714 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1715 { 1716 struct blk_mq_hw_ctx *hctx; 1717 struct request_queue *q; 1718 bool shared; 1719 int i; 1720 1721 if (set->tag_list.next == set->tag_list.prev) 1722 shared = false; 1723 else 1724 shared = true; 1725 1726 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1727 blk_mq_freeze_queue(q); 1728 1729 queue_for_each_hw_ctx(q, hctx, i) { 1730 if (shared) 1731 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1732 else 1733 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1734 } 1735 blk_mq_unfreeze_queue(q); 1736 } 1737 } 1738 1739 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1740 { 1741 struct blk_mq_tag_set *set = q->tag_set; 1742 1743 blk_mq_freeze_queue(q); 1744 1745 mutex_lock(&set->tag_list_lock); 1746 list_del_init(&q->tag_set_list); 1747 blk_mq_update_tag_set_depth(set); 1748 mutex_unlock(&set->tag_list_lock); 1749 1750 blk_mq_unfreeze_queue(q); 1751 } 1752 1753 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1754 struct request_queue *q) 1755 { 1756 q->tag_set = set; 1757 1758 mutex_lock(&set->tag_list_lock); 1759 list_add_tail(&q->tag_set_list, &set->tag_list); 1760 blk_mq_update_tag_set_depth(set); 1761 mutex_unlock(&set->tag_list_lock); 1762 } 1763 1764 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1765 { 1766 struct blk_mq_hw_ctx **hctxs; 1767 struct blk_mq_ctx __percpu *ctx; 1768 struct request_queue *q; 1769 unsigned int *map; 1770 int i; 1771 1772 ctx = alloc_percpu(struct blk_mq_ctx); 1773 if (!ctx) 1774 return ERR_PTR(-ENOMEM); 1775 1776 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1777 set->numa_node); 1778 1779 if (!hctxs) 1780 goto err_percpu; 1781 1782 map = blk_mq_make_queue_map(set); 1783 if (!map) 1784 goto err_map; 1785 1786 for (i = 0; i < set->nr_hw_queues; i++) { 1787 int node = blk_mq_hw_queue_to_node(map, i); 1788 1789 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1790 GFP_KERNEL, node); 1791 if (!hctxs[i]) 1792 goto err_hctxs; 1793 1794 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) 1795 goto err_hctxs; 1796 1797 atomic_set(&hctxs[i]->nr_active, 0); 1798 hctxs[i]->numa_node = node; 1799 hctxs[i]->queue_num = i; 1800 } 1801 1802 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1803 if (!q) 1804 goto err_hctxs; 1805 1806 if (percpu_counter_init(&q->mq_usage_counter, 0)) 1807 goto err_map; 1808 1809 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1810 blk_queue_rq_timeout(q, 30000); 1811 1812 q->nr_queues = nr_cpu_ids; 1813 q->nr_hw_queues = set->nr_hw_queues; 1814 q->mq_map = map; 1815 1816 q->queue_ctx = ctx; 1817 q->queue_hw_ctx = hctxs; 1818 1819 q->mq_ops = set->ops; 1820 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1821 1822 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1823 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1824 1825 q->sg_reserved_size = INT_MAX; 1826 1827 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1828 INIT_LIST_HEAD(&q->requeue_list); 1829 spin_lock_init(&q->requeue_lock); 1830 1831 if (q->nr_hw_queues > 1) 1832 blk_queue_make_request(q, blk_mq_make_request); 1833 else 1834 blk_queue_make_request(q, blk_sq_make_request); 1835 1836 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); 1837 if (set->timeout) 1838 blk_queue_rq_timeout(q, set->timeout); 1839 1840 /* 1841 * Do this after blk_queue_make_request() overrides it... 1842 */ 1843 q->nr_requests = set->queue_depth; 1844 1845 if (set->ops->complete) 1846 blk_queue_softirq_done(q, set->ops->complete); 1847 1848 blk_mq_init_flush(q); 1849 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1850 1851 q->flush_rq = kzalloc(round_up(sizeof(struct request) + 1852 set->cmd_size, cache_line_size()), 1853 GFP_KERNEL); 1854 if (!q->flush_rq) 1855 goto err_hw; 1856 1857 if (blk_mq_init_hw_queues(q, set)) 1858 goto err_flush_rq; 1859 1860 mutex_lock(&all_q_mutex); 1861 list_add_tail(&q->all_q_node, &all_q_list); 1862 mutex_unlock(&all_q_mutex); 1863 1864 blk_mq_add_queue_tag_set(set, q); 1865 1866 blk_mq_map_swqueue(q); 1867 1868 return q; 1869 1870 err_flush_rq: 1871 kfree(q->flush_rq); 1872 err_hw: 1873 blk_cleanup_queue(q); 1874 err_hctxs: 1875 kfree(map); 1876 for (i = 0; i < set->nr_hw_queues; i++) { 1877 if (!hctxs[i]) 1878 break; 1879 free_cpumask_var(hctxs[i]->cpumask); 1880 kfree(hctxs[i]); 1881 } 1882 err_map: 1883 kfree(hctxs); 1884 err_percpu: 1885 free_percpu(ctx); 1886 return ERR_PTR(-ENOMEM); 1887 } 1888 EXPORT_SYMBOL(blk_mq_init_queue); 1889 1890 void blk_mq_free_queue(struct request_queue *q) 1891 { 1892 struct blk_mq_tag_set *set = q->tag_set; 1893 1894 blk_mq_del_queue_tag_set(q); 1895 1896 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1897 blk_mq_free_hw_queues(q, set); 1898 1899 percpu_counter_destroy(&q->mq_usage_counter); 1900 1901 free_percpu(q->queue_ctx); 1902 kfree(q->queue_hw_ctx); 1903 kfree(q->mq_map); 1904 1905 q->queue_ctx = NULL; 1906 q->queue_hw_ctx = NULL; 1907 q->mq_map = NULL; 1908 1909 mutex_lock(&all_q_mutex); 1910 list_del_init(&q->all_q_node); 1911 mutex_unlock(&all_q_mutex); 1912 } 1913 1914 /* Basically redo blk_mq_init_queue with queue frozen */ 1915 static void blk_mq_queue_reinit(struct request_queue *q) 1916 { 1917 blk_mq_freeze_queue(q); 1918 1919 blk_mq_sysfs_unregister(q); 1920 1921 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1922 1923 /* 1924 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1925 * we should change hctx numa_node according to new topology (this 1926 * involves free and re-allocate memory, worthy doing?) 1927 */ 1928 1929 blk_mq_map_swqueue(q); 1930 1931 blk_mq_sysfs_register(q); 1932 1933 blk_mq_unfreeze_queue(q); 1934 } 1935 1936 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1937 unsigned long action, void *hcpu) 1938 { 1939 struct request_queue *q; 1940 1941 /* 1942 * Before new mappings are established, hotadded cpu might already 1943 * start handling requests. This doesn't break anything as we map 1944 * offline CPUs to first hardware queue. We will re-init the queue 1945 * below to get optimal settings. 1946 */ 1947 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1948 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1949 return NOTIFY_OK; 1950 1951 mutex_lock(&all_q_mutex); 1952 list_for_each_entry(q, &all_q_list, all_q_node) 1953 blk_mq_queue_reinit(q); 1954 mutex_unlock(&all_q_mutex); 1955 return NOTIFY_OK; 1956 } 1957 1958 /* 1959 * Alloc a tag set to be associated with one or more request queues. 1960 * May fail with EINVAL for various error conditions. May adjust the 1961 * requested depth down, if if it too large. In that case, the set 1962 * value will be stored in set->queue_depth. 1963 */ 1964 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 1965 { 1966 int i; 1967 1968 if (!set->nr_hw_queues) 1969 return -EINVAL; 1970 if (!set->queue_depth) 1971 return -EINVAL; 1972 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 1973 return -EINVAL; 1974 1975 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 1976 return -EINVAL; 1977 1978 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 1979 pr_info("blk-mq: reduced tag depth to %u\n", 1980 BLK_MQ_MAX_DEPTH); 1981 set->queue_depth = BLK_MQ_MAX_DEPTH; 1982 } 1983 1984 set->tags = kmalloc_node(set->nr_hw_queues * 1985 sizeof(struct blk_mq_tags *), 1986 GFP_KERNEL, set->numa_node); 1987 if (!set->tags) 1988 goto out; 1989 1990 for (i = 0; i < set->nr_hw_queues; i++) { 1991 set->tags[i] = blk_mq_init_rq_map(set, i); 1992 if (!set->tags[i]) 1993 goto out_unwind; 1994 } 1995 1996 mutex_init(&set->tag_list_lock); 1997 INIT_LIST_HEAD(&set->tag_list); 1998 1999 return 0; 2000 2001 out_unwind: 2002 while (--i >= 0) 2003 blk_mq_free_rq_map(set, set->tags[i], i); 2004 out: 2005 return -ENOMEM; 2006 } 2007 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2008 2009 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2010 { 2011 int i; 2012 2013 for (i = 0; i < set->nr_hw_queues; i++) { 2014 if (set->tags[i]) 2015 blk_mq_free_rq_map(set, set->tags[i], i); 2016 } 2017 2018 kfree(set->tags); 2019 } 2020 EXPORT_SYMBOL(blk_mq_free_tag_set); 2021 2022 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2023 { 2024 struct blk_mq_tag_set *set = q->tag_set; 2025 struct blk_mq_hw_ctx *hctx; 2026 int i, ret; 2027 2028 if (!set || nr > set->queue_depth) 2029 return -EINVAL; 2030 2031 ret = 0; 2032 queue_for_each_hw_ctx(q, hctx, i) { 2033 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2034 if (ret) 2035 break; 2036 } 2037 2038 if (!ret) 2039 q->nr_requests = nr; 2040 2041 return ret; 2042 } 2043 2044 void blk_mq_disable_hotplug(void) 2045 { 2046 mutex_lock(&all_q_mutex); 2047 } 2048 2049 void blk_mq_enable_hotplug(void) 2050 { 2051 mutex_unlock(&all_q_mutex); 2052 } 2053 2054 static int __init blk_mq_init(void) 2055 { 2056 blk_mq_cpu_init(); 2057 2058 /* Must be called after percpu_counter_hotcpu_callback() */ 2059 hotcpu_notifier(blk_mq_queue_reinit_notify, -10); 2060 2061 return 0; 2062 } 2063 subsys_initcall(blk_mq_init); 2064