xref: /openbmc/linux/block/blk-mq.c (revision 1d1997db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 	int ddir, sectors, bucket;
49 
50 	ddir = rq_data_dir(rq);
51 	sectors = blk_rq_stats_sectors(rq);
52 
53 	bucket = ddir + 2 * ilog2(sectors);
54 
55 	if (bucket < 0)
56 		return -1;
57 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59 
60 	return bucket;
61 }
62 
63 /*
64  * Check if any of the ctx, dispatch list or elevator
65  * have pending work in this hardware queue.
66  */
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 	return !list_empty_careful(&hctx->dispatch) ||
70 		sbitmap_any_bit_set(&hctx->ctx_map) ||
71 			blk_mq_sched_has_work(hctx);
72 }
73 
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 				     struct blk_mq_ctx *ctx)
79 {
80 	const int bit = ctx->index_hw[hctx->type];
81 
82 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 		sbitmap_set_bit(&hctx->ctx_map, bit);
84 }
85 
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 				      struct blk_mq_ctx *ctx)
88 {
89 	const int bit = ctx->index_hw[hctx->type];
90 
91 	sbitmap_clear_bit(&hctx->ctx_map, bit);
92 }
93 
94 struct mq_inflight {
95 	struct hd_struct *part;
96 	unsigned int inflight[2];
97 };
98 
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 				  struct request *rq, void *priv,
101 				  bool reserved)
102 {
103 	struct mq_inflight *mi = priv;
104 
105 	if (rq->part == mi->part)
106 		mi->inflight[rq_data_dir(rq)]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	struct mq_inflight mi = { .part = part };
114 
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 
117 	return mi.inflight[0] + mi.inflight[1];
118 }
119 
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 			 unsigned int inflight[2])
122 {
123 	struct mq_inflight mi = { .part = part };
124 
125 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 	inflight[0] = mi.inflight[0];
127 	inflight[1] = mi.inflight[1];
128 }
129 
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 	mutex_lock(&q->mq_freeze_lock);
133 	if (++q->mq_freeze_depth == 1) {
134 		percpu_ref_kill(&q->q_usage_counter);
135 		mutex_unlock(&q->mq_freeze_lock);
136 		if (queue_is_mq(q))
137 			blk_mq_run_hw_queues(q, false);
138 	} else {
139 		mutex_unlock(&q->mq_freeze_lock);
140 	}
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143 
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149 
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 				     unsigned long timeout)
152 {
153 	return wait_event_timeout(q->mq_freeze_wq,
154 					percpu_ref_is_zero(&q->q_usage_counter),
155 					timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158 
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 	/*
166 	 * In the !blk_mq case we are only calling this to kill the
167 	 * q_usage_counter, otherwise this increases the freeze depth
168 	 * and waits for it to return to zero.  For this reason there is
169 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 	 * exported to drivers as the only user for unfreeze is blk_mq.
171 	 */
172 	blk_freeze_queue_start(q);
173 	blk_mq_freeze_queue_wait(q);
174 }
175 
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * ...just an alias to keep freeze and unfreeze actions balanced
180 	 * in the blk_mq_* namespace
181 	 */
182 	blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185 
186 void blk_mq_unfreeze_queue(struct request_queue *q)
187 {
188 	mutex_lock(&q->mq_freeze_lock);
189 	q->mq_freeze_depth--;
190 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 	if (!q->mq_freeze_depth) {
192 		percpu_ref_resurrect(&q->q_usage_counter);
193 		wake_up_all(&q->mq_freeze_wq);
194 	}
195 	mutex_unlock(&q->mq_freeze_lock);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
206 }
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
208 
209 /**
210  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211  * @q: request queue.
212  *
213  * Note: this function does not prevent that the struct request end_io()
214  * callback function is invoked. Once this function is returned, we make
215  * sure no dispatch can happen until the queue is unquiesced via
216  * blk_mq_unquiesce_queue().
217  */
218 void blk_mq_quiesce_queue(struct request_queue *q)
219 {
220 	struct blk_mq_hw_ctx *hctx;
221 	unsigned int i;
222 	bool rcu = false;
223 
224 	blk_mq_quiesce_queue_nowait(q);
225 
226 	queue_for_each_hw_ctx(q, hctx, i) {
227 		if (hctx->flags & BLK_MQ_F_BLOCKING)
228 			synchronize_srcu(hctx->srcu);
229 		else
230 			rcu = true;
231 	}
232 	if (rcu)
233 		synchronize_rcu();
234 }
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
236 
237 /*
238  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239  * @q: request queue.
240  *
241  * This function recovers queue into the state before quiescing
242  * which is done by blk_mq_quiesce_queue.
243  */
244 void blk_mq_unquiesce_queue(struct request_queue *q)
245 {
246 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 
248 	/* dispatch requests which are inserted during quiescing */
249 	blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252 
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 	struct blk_mq_hw_ctx *hctx;
256 	unsigned int i;
257 
258 	queue_for_each_hw_ctx(q, hctx, i)
259 		if (blk_mq_hw_queue_mapped(hctx))
260 			blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262 
263 /*
264  * Only need start/end time stamping if we have iostat or
265  * blk stats enabled, or using an IO scheduler.
266  */
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
268 {
269 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
270 }
271 
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 		unsigned int tag, unsigned int op, u64 alloc_time_ns)
274 {
275 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 	struct request *rq = tags->static_rqs[tag];
277 	req_flags_t rq_flags = 0;
278 
279 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 		rq->tag = -1;
281 		rq->internal_tag = tag;
282 	} else {
283 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 			rq_flags = RQF_MQ_INFLIGHT;
285 			atomic_inc(&data->hctx->nr_active);
286 		}
287 		rq->tag = tag;
288 		rq->internal_tag = -1;
289 		data->hctx->tags->rqs[rq->tag] = rq;
290 	}
291 
292 	/* csd/requeue_work/fifo_time is initialized before use */
293 	rq->q = data->q;
294 	rq->mq_ctx = data->ctx;
295 	rq->mq_hctx = data->hctx;
296 	rq->rq_flags = rq_flags;
297 	rq->cmd_flags = op;
298 	if (data->flags & BLK_MQ_REQ_PREEMPT)
299 		rq->rq_flags |= RQF_PREEMPT;
300 	if (blk_queue_io_stat(data->q))
301 		rq->rq_flags |= RQF_IO_STAT;
302 	INIT_LIST_HEAD(&rq->queuelist);
303 	INIT_HLIST_NODE(&rq->hash);
304 	RB_CLEAR_NODE(&rq->rb_node);
305 	rq->rq_disk = NULL;
306 	rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 	rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 	if (blk_mq_need_time_stamp(rq))
311 		rq->start_time_ns = ktime_get_ns();
312 	else
313 		rq->start_time_ns = 0;
314 	rq->io_start_time_ns = 0;
315 	rq->stats_sectors = 0;
316 	rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 	rq->nr_integrity_segments = 0;
319 #endif
320 	/* tag was already set */
321 	rq->extra_len = 0;
322 	WRITE_ONCE(rq->deadline, 0);
323 
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 
329 	data->ctx->rq_dispatched[op_is_sync(op)]++;
330 	refcount_set(&rq->ref, 1);
331 	return rq;
332 }
333 
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 					  struct bio *bio,
336 					  struct blk_mq_alloc_data *data)
337 {
338 	struct elevator_queue *e = q->elevator;
339 	struct request *rq;
340 	unsigned int tag;
341 	bool clear_ctx_on_error = false;
342 	u64 alloc_time_ns = 0;
343 
344 	blk_queue_enter_live(q);
345 
346 	/* alloc_time includes depth and tag waits */
347 	if (blk_queue_rq_alloc_time(q))
348 		alloc_time_ns = ktime_get_ns();
349 
350 	data->q = q;
351 	if (likely(!data->ctx)) {
352 		data->ctx = blk_mq_get_ctx(q);
353 		clear_ctx_on_error = true;
354 	}
355 	if (likely(!data->hctx))
356 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 						data->ctx);
358 	if (data->cmd_flags & REQ_NOWAIT)
359 		data->flags |= BLK_MQ_REQ_NOWAIT;
360 
361 	if (e) {
362 		data->flags |= BLK_MQ_REQ_INTERNAL;
363 
364 		/*
365 		 * Flush requests are special and go directly to the
366 		 * dispatch list. Don't include reserved tags in the
367 		 * limiting, as it isn't useful.
368 		 */
369 		if (!op_is_flush(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	} else {
374 		blk_mq_tag_busy(data->hctx);
375 	}
376 
377 	tag = blk_mq_get_tag(data);
378 	if (tag == BLK_MQ_TAG_FAIL) {
379 		if (clear_ctx_on_error)
380 			data->ctx = NULL;
381 		blk_queue_exit(q);
382 		return NULL;
383 	}
384 
385 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 	if (!op_is_flush(data->cmd_flags)) {
387 		rq->elv.icq = NULL;
388 		if (e && e->type->ops.prepare_request) {
389 			if (e->type->icq_cache)
390 				blk_mq_sched_assign_ioc(rq);
391 
392 			e->type->ops.prepare_request(rq, bio);
393 			rq->rq_flags |= RQF_ELVPRIV;
394 		}
395 	}
396 	data->hctx->queued++;
397 	return rq;
398 }
399 
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 		blk_mq_req_flags_t flags)
402 {
403 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 	struct request *rq;
405 	int ret;
406 
407 	ret = blk_queue_enter(q, flags);
408 	if (ret)
409 		return ERR_PTR(ret);
410 
411 	rq = blk_mq_get_request(q, NULL, &alloc_data);
412 	blk_queue_exit(q);
413 
414 	if (!rq)
415 		return ERR_PTR(-EWOULDBLOCK);
416 
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 }
422 EXPORT_SYMBOL(blk_mq_alloc_request);
423 
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
426 {
427 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 	struct request *rq;
429 	unsigned int cpu;
430 	int ret;
431 
432 	/*
433 	 * If the tag allocator sleeps we could get an allocation for a
434 	 * different hardware context.  No need to complicate the low level
435 	 * allocator for this for the rare use case of a command tied to
436 	 * a specific queue.
437 	 */
438 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 		return ERR_PTR(-EINVAL);
440 
441 	if (hctx_idx >= q->nr_hw_queues)
442 		return ERR_PTR(-EIO);
443 
444 	ret = blk_queue_enter(q, flags);
445 	if (ret)
446 		return ERR_PTR(ret);
447 
448 	/*
449 	 * Check if the hardware context is actually mapped to anything.
450 	 * If not tell the caller that it should skip this queue.
451 	 */
452 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 		blk_queue_exit(q);
455 		return ERR_PTR(-EXDEV);
456 	}
457 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
459 
460 	rq = blk_mq_get_request(q, NULL, &alloc_data);
461 	blk_queue_exit(q);
462 
463 	if (!rq)
464 		return ERR_PTR(-EWOULDBLOCK);
465 
466 	return rq;
467 }
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469 
470 static void __blk_mq_free_request(struct request *rq)
471 {
472 	struct request_queue *q = rq->q;
473 	struct blk_mq_ctx *ctx = rq->mq_ctx;
474 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 	const int sched_tag = rq->internal_tag;
476 
477 	blk_pm_mark_last_busy(rq);
478 	rq->mq_hctx = NULL;
479 	if (rq->tag != -1)
480 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
481 	if (sched_tag != -1)
482 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
483 	blk_mq_sched_restart(hctx);
484 	blk_queue_exit(q);
485 }
486 
487 void blk_mq_free_request(struct request *rq)
488 {
489 	struct request_queue *q = rq->q;
490 	struct elevator_queue *e = q->elevator;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 
494 	if (rq->rq_flags & RQF_ELVPRIV) {
495 		if (e && e->type->ops.finish_request)
496 			e->type->ops.finish_request(rq);
497 		if (rq->elv.icq) {
498 			put_io_context(rq->elv.icq->ioc);
499 			rq->elv.icq = NULL;
500 		}
501 	}
502 
503 	ctx->rq_completed[rq_is_sync(rq)]++;
504 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 		atomic_dec(&hctx->nr_active);
506 
507 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 		laptop_io_completion(q->backing_dev_info);
509 
510 	rq_qos_done(q, rq);
511 
512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 	if (refcount_dec_and_test(&rq->ref))
514 		__blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517 
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 	u64 now = 0;
521 
522 	if (blk_mq_need_time_stamp(rq))
523 		now = ktime_get_ns();
524 
525 	if (rq->rq_flags & RQF_STATS) {
526 		blk_mq_poll_stats_start(rq->q);
527 		blk_stat_add(rq, now);
528 	}
529 
530 	if (rq->internal_tag != -1)
531 		blk_mq_sched_completed_request(rq, now);
532 
533 	blk_account_io_done(rq, now);
534 
535 	if (rq->end_io) {
536 		rq_qos_done(rq->q, rq);
537 		rq->end_io(rq, error);
538 	} else {
539 		blk_mq_free_request(rq);
540 	}
541 }
542 EXPORT_SYMBOL(__blk_mq_end_request);
543 
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
545 {
546 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 		BUG();
548 	__blk_mq_end_request(rq, error);
549 }
550 EXPORT_SYMBOL(blk_mq_end_request);
551 
552 static void __blk_mq_complete_request_remote(void *data)
553 {
554 	struct request *rq = data;
555 	struct request_queue *q = rq->q;
556 
557 	q->mq_ops->complete(rq);
558 }
559 
560 static void __blk_mq_complete_request(struct request *rq)
561 {
562 	struct blk_mq_ctx *ctx = rq->mq_ctx;
563 	struct request_queue *q = rq->q;
564 	bool shared = false;
565 	int cpu;
566 
567 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
568 	/*
569 	 * Most of single queue controllers, there is only one irq vector
570 	 * for handling IO completion, and the only irq's affinity is set
571 	 * as all possible CPUs. On most of ARCHs, this affinity means the
572 	 * irq is handled on one specific CPU.
573 	 *
574 	 * So complete IO reqeust in softirq context in case of single queue
575 	 * for not degrading IO performance by irqsoff latency.
576 	 */
577 	if (q->nr_hw_queues == 1) {
578 		__blk_complete_request(rq);
579 		return;
580 	}
581 
582 	/*
583 	 * For a polled request, always complete locallly, it's pointless
584 	 * to redirect the completion.
585 	 */
586 	if ((rq->cmd_flags & REQ_HIPRI) ||
587 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 		q->mq_ops->complete(rq);
589 		return;
590 	}
591 
592 	cpu = get_cpu();
593 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 		shared = cpus_share_cache(cpu, ctx->cpu);
595 
596 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 		rq->csd.func = __blk_mq_complete_request_remote;
598 		rq->csd.info = rq;
599 		rq->csd.flags = 0;
600 		smp_call_function_single_async(ctx->cpu, &rq->csd);
601 	} else {
602 		q->mq_ops->complete(rq);
603 	}
604 	put_cpu();
605 }
606 
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 	__releases(hctx->srcu)
609 {
610 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 		rcu_read_unlock();
612 	else
613 		srcu_read_unlock(hctx->srcu, srcu_idx);
614 }
615 
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 	__acquires(hctx->srcu)
618 {
619 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 		/* shut up gcc false positive */
621 		*srcu_idx = 0;
622 		rcu_read_lock();
623 	} else
624 		*srcu_idx = srcu_read_lock(hctx->srcu);
625 }
626 
627 /**
628  * blk_mq_complete_request - end I/O on a request
629  * @rq:		the request being processed
630  *
631  * Description:
632  *	Ends all I/O on a request. It does not handle partial completions.
633  *	The actual completion happens out-of-order, through a IPI handler.
634  **/
635 bool blk_mq_complete_request(struct request *rq)
636 {
637 	if (unlikely(blk_should_fake_timeout(rq->q)))
638 		return false;
639 	__blk_mq_complete_request(rq);
640 	return true;
641 }
642 EXPORT_SYMBOL(blk_mq_complete_request);
643 
644 void blk_mq_start_request(struct request *rq)
645 {
646 	struct request_queue *q = rq->q;
647 
648 	trace_block_rq_issue(q, rq);
649 
650 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
651 		rq->io_start_time_ns = ktime_get_ns();
652 		rq->stats_sectors = blk_rq_sectors(rq);
653 		rq->rq_flags |= RQF_STATS;
654 		rq_qos_issue(q, rq);
655 	}
656 
657 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
658 
659 	blk_add_timer(rq);
660 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
661 
662 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
663 		/*
664 		 * Make sure space for the drain appears.  We know we can do
665 		 * this because max_hw_segments has been adjusted to be one
666 		 * fewer than the device can handle.
667 		 */
668 		rq->nr_phys_segments++;
669 	}
670 
671 #ifdef CONFIG_BLK_DEV_INTEGRITY
672 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
673 		q->integrity.profile->prepare_fn(rq);
674 #endif
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677 
678 static void __blk_mq_requeue_request(struct request *rq)
679 {
680 	struct request_queue *q = rq->q;
681 
682 	blk_mq_put_driver_tag(rq);
683 
684 	trace_block_rq_requeue(q, rq);
685 	rq_qos_requeue(q, rq);
686 
687 	if (blk_mq_request_started(rq)) {
688 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
689 		rq->rq_flags &= ~RQF_TIMED_OUT;
690 		if (q->dma_drain_size && blk_rq_bytes(rq))
691 			rq->nr_phys_segments--;
692 	}
693 }
694 
695 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
696 {
697 	__blk_mq_requeue_request(rq);
698 
699 	/* this request will be re-inserted to io scheduler queue */
700 	blk_mq_sched_requeue_request(rq);
701 
702 	BUG_ON(!list_empty(&rq->queuelist));
703 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
704 }
705 EXPORT_SYMBOL(blk_mq_requeue_request);
706 
707 static void blk_mq_requeue_work(struct work_struct *work)
708 {
709 	struct request_queue *q =
710 		container_of(work, struct request_queue, requeue_work.work);
711 	LIST_HEAD(rq_list);
712 	struct request *rq, *next;
713 
714 	spin_lock_irq(&q->requeue_lock);
715 	list_splice_init(&q->requeue_list, &rq_list);
716 	spin_unlock_irq(&q->requeue_lock);
717 
718 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
719 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
720 			continue;
721 
722 		rq->rq_flags &= ~RQF_SOFTBARRIER;
723 		list_del_init(&rq->queuelist);
724 		/*
725 		 * If RQF_DONTPREP, rq has contained some driver specific
726 		 * data, so insert it to hctx dispatch list to avoid any
727 		 * merge.
728 		 */
729 		if (rq->rq_flags & RQF_DONTPREP)
730 			blk_mq_request_bypass_insert(rq, false);
731 		else
732 			blk_mq_sched_insert_request(rq, true, false, false);
733 	}
734 
735 	while (!list_empty(&rq_list)) {
736 		rq = list_entry(rq_list.next, struct request, queuelist);
737 		list_del_init(&rq->queuelist);
738 		blk_mq_sched_insert_request(rq, false, false, false);
739 	}
740 
741 	blk_mq_run_hw_queues(q, false);
742 }
743 
744 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
745 				bool kick_requeue_list)
746 {
747 	struct request_queue *q = rq->q;
748 	unsigned long flags;
749 
750 	/*
751 	 * We abuse this flag that is otherwise used by the I/O scheduler to
752 	 * request head insertion from the workqueue.
753 	 */
754 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
755 
756 	spin_lock_irqsave(&q->requeue_lock, flags);
757 	if (at_head) {
758 		rq->rq_flags |= RQF_SOFTBARRIER;
759 		list_add(&rq->queuelist, &q->requeue_list);
760 	} else {
761 		list_add_tail(&rq->queuelist, &q->requeue_list);
762 	}
763 	spin_unlock_irqrestore(&q->requeue_lock, flags);
764 
765 	if (kick_requeue_list)
766 		blk_mq_kick_requeue_list(q);
767 }
768 
769 void blk_mq_kick_requeue_list(struct request_queue *q)
770 {
771 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
772 }
773 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
774 
775 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
776 				    unsigned long msecs)
777 {
778 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
779 				    msecs_to_jiffies(msecs));
780 }
781 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
782 
783 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
784 {
785 	if (tag < tags->nr_tags) {
786 		prefetch(tags->rqs[tag]);
787 		return tags->rqs[tag];
788 	}
789 
790 	return NULL;
791 }
792 EXPORT_SYMBOL(blk_mq_tag_to_rq);
793 
794 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
795 			       void *priv, bool reserved)
796 {
797 	/*
798 	 * If we find a request that is inflight and the queue matches,
799 	 * we know the queue is busy. Return false to stop the iteration.
800 	 */
801 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
802 		bool *busy = priv;
803 
804 		*busy = true;
805 		return false;
806 	}
807 
808 	return true;
809 }
810 
811 bool blk_mq_queue_inflight(struct request_queue *q)
812 {
813 	bool busy = false;
814 
815 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
816 	return busy;
817 }
818 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
819 
820 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
821 {
822 	req->rq_flags |= RQF_TIMED_OUT;
823 	if (req->q->mq_ops->timeout) {
824 		enum blk_eh_timer_return ret;
825 
826 		ret = req->q->mq_ops->timeout(req, reserved);
827 		if (ret == BLK_EH_DONE)
828 			return;
829 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
830 	}
831 
832 	blk_add_timer(req);
833 }
834 
835 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
836 {
837 	unsigned long deadline;
838 
839 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
840 		return false;
841 	if (rq->rq_flags & RQF_TIMED_OUT)
842 		return false;
843 
844 	deadline = READ_ONCE(rq->deadline);
845 	if (time_after_eq(jiffies, deadline))
846 		return true;
847 
848 	if (*next == 0)
849 		*next = deadline;
850 	else if (time_after(*next, deadline))
851 		*next = deadline;
852 	return false;
853 }
854 
855 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
856 		struct request *rq, void *priv, bool reserved)
857 {
858 	unsigned long *next = priv;
859 
860 	/*
861 	 * Just do a quick check if it is expired before locking the request in
862 	 * so we're not unnecessarilly synchronizing across CPUs.
863 	 */
864 	if (!blk_mq_req_expired(rq, next))
865 		return true;
866 
867 	/*
868 	 * We have reason to believe the request may be expired. Take a
869 	 * reference on the request to lock this request lifetime into its
870 	 * currently allocated context to prevent it from being reallocated in
871 	 * the event the completion by-passes this timeout handler.
872 	 *
873 	 * If the reference was already released, then the driver beat the
874 	 * timeout handler to posting a natural completion.
875 	 */
876 	if (!refcount_inc_not_zero(&rq->ref))
877 		return true;
878 
879 	/*
880 	 * The request is now locked and cannot be reallocated underneath the
881 	 * timeout handler's processing. Re-verify this exact request is truly
882 	 * expired; if it is not expired, then the request was completed and
883 	 * reallocated as a new request.
884 	 */
885 	if (blk_mq_req_expired(rq, next))
886 		blk_mq_rq_timed_out(rq, reserved);
887 
888 	if (is_flush_rq(rq, hctx))
889 		rq->end_io(rq, 0);
890 	else if (refcount_dec_and_test(&rq->ref))
891 		__blk_mq_free_request(rq);
892 
893 	return true;
894 }
895 
896 static void blk_mq_timeout_work(struct work_struct *work)
897 {
898 	struct request_queue *q =
899 		container_of(work, struct request_queue, timeout_work);
900 	unsigned long next = 0;
901 	struct blk_mq_hw_ctx *hctx;
902 	int i;
903 
904 	/* A deadlock might occur if a request is stuck requiring a
905 	 * timeout at the same time a queue freeze is waiting
906 	 * completion, since the timeout code would not be able to
907 	 * acquire the queue reference here.
908 	 *
909 	 * That's why we don't use blk_queue_enter here; instead, we use
910 	 * percpu_ref_tryget directly, because we need to be able to
911 	 * obtain a reference even in the short window between the queue
912 	 * starting to freeze, by dropping the first reference in
913 	 * blk_freeze_queue_start, and the moment the last request is
914 	 * consumed, marked by the instant q_usage_counter reaches
915 	 * zero.
916 	 */
917 	if (!percpu_ref_tryget(&q->q_usage_counter))
918 		return;
919 
920 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
921 
922 	if (next != 0) {
923 		mod_timer(&q->timeout, next);
924 	} else {
925 		/*
926 		 * Request timeouts are handled as a forward rolling timer. If
927 		 * we end up here it means that no requests are pending and
928 		 * also that no request has been pending for a while. Mark
929 		 * each hctx as idle.
930 		 */
931 		queue_for_each_hw_ctx(q, hctx, i) {
932 			/* the hctx may be unmapped, so check it here */
933 			if (blk_mq_hw_queue_mapped(hctx))
934 				blk_mq_tag_idle(hctx);
935 		}
936 	}
937 	blk_queue_exit(q);
938 }
939 
940 struct flush_busy_ctx_data {
941 	struct blk_mq_hw_ctx *hctx;
942 	struct list_head *list;
943 };
944 
945 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
946 {
947 	struct flush_busy_ctx_data *flush_data = data;
948 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
949 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
950 	enum hctx_type type = hctx->type;
951 
952 	spin_lock(&ctx->lock);
953 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
954 	sbitmap_clear_bit(sb, bitnr);
955 	spin_unlock(&ctx->lock);
956 	return true;
957 }
958 
959 /*
960  * Process software queues that have been marked busy, splicing them
961  * to the for-dispatch
962  */
963 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
964 {
965 	struct flush_busy_ctx_data data = {
966 		.hctx = hctx,
967 		.list = list,
968 	};
969 
970 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
971 }
972 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
973 
974 struct dispatch_rq_data {
975 	struct blk_mq_hw_ctx *hctx;
976 	struct request *rq;
977 };
978 
979 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
980 		void *data)
981 {
982 	struct dispatch_rq_data *dispatch_data = data;
983 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
984 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
985 	enum hctx_type type = hctx->type;
986 
987 	spin_lock(&ctx->lock);
988 	if (!list_empty(&ctx->rq_lists[type])) {
989 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
990 		list_del_init(&dispatch_data->rq->queuelist);
991 		if (list_empty(&ctx->rq_lists[type]))
992 			sbitmap_clear_bit(sb, bitnr);
993 	}
994 	spin_unlock(&ctx->lock);
995 
996 	return !dispatch_data->rq;
997 }
998 
999 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1000 					struct blk_mq_ctx *start)
1001 {
1002 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1003 	struct dispatch_rq_data data = {
1004 		.hctx = hctx,
1005 		.rq   = NULL,
1006 	};
1007 
1008 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1009 			       dispatch_rq_from_ctx, &data);
1010 
1011 	return data.rq;
1012 }
1013 
1014 static inline unsigned int queued_to_index(unsigned int queued)
1015 {
1016 	if (!queued)
1017 		return 0;
1018 
1019 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1020 }
1021 
1022 bool blk_mq_get_driver_tag(struct request *rq)
1023 {
1024 	struct blk_mq_alloc_data data = {
1025 		.q = rq->q,
1026 		.hctx = rq->mq_hctx,
1027 		.flags = BLK_MQ_REQ_NOWAIT,
1028 		.cmd_flags = rq->cmd_flags,
1029 	};
1030 	bool shared;
1031 
1032 	if (rq->tag != -1)
1033 		return true;
1034 
1035 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1036 		data.flags |= BLK_MQ_REQ_RESERVED;
1037 
1038 	shared = blk_mq_tag_busy(data.hctx);
1039 	rq->tag = blk_mq_get_tag(&data);
1040 	if (rq->tag >= 0) {
1041 		if (shared) {
1042 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1043 			atomic_inc(&data.hctx->nr_active);
1044 		}
1045 		data.hctx->tags->rqs[rq->tag] = rq;
1046 	}
1047 
1048 	return rq->tag != -1;
1049 }
1050 
1051 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1052 				int flags, void *key)
1053 {
1054 	struct blk_mq_hw_ctx *hctx;
1055 
1056 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1057 
1058 	spin_lock(&hctx->dispatch_wait_lock);
1059 	if (!list_empty(&wait->entry)) {
1060 		struct sbitmap_queue *sbq;
1061 
1062 		list_del_init(&wait->entry);
1063 		sbq = &hctx->tags->bitmap_tags;
1064 		atomic_dec(&sbq->ws_active);
1065 	}
1066 	spin_unlock(&hctx->dispatch_wait_lock);
1067 
1068 	blk_mq_run_hw_queue(hctx, true);
1069 	return 1;
1070 }
1071 
1072 /*
1073  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1074  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1075  * restart. For both cases, take care to check the condition again after
1076  * marking us as waiting.
1077  */
1078 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1079 				 struct request *rq)
1080 {
1081 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1082 	struct wait_queue_head *wq;
1083 	wait_queue_entry_t *wait;
1084 	bool ret;
1085 
1086 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1087 		blk_mq_sched_mark_restart_hctx(hctx);
1088 
1089 		/*
1090 		 * It's possible that a tag was freed in the window between the
1091 		 * allocation failure and adding the hardware queue to the wait
1092 		 * queue.
1093 		 *
1094 		 * Don't clear RESTART here, someone else could have set it.
1095 		 * At most this will cost an extra queue run.
1096 		 */
1097 		return blk_mq_get_driver_tag(rq);
1098 	}
1099 
1100 	wait = &hctx->dispatch_wait;
1101 	if (!list_empty_careful(&wait->entry))
1102 		return false;
1103 
1104 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1105 
1106 	spin_lock_irq(&wq->lock);
1107 	spin_lock(&hctx->dispatch_wait_lock);
1108 	if (!list_empty(&wait->entry)) {
1109 		spin_unlock(&hctx->dispatch_wait_lock);
1110 		spin_unlock_irq(&wq->lock);
1111 		return false;
1112 	}
1113 
1114 	atomic_inc(&sbq->ws_active);
1115 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1116 	__add_wait_queue(wq, wait);
1117 
1118 	/*
1119 	 * It's possible that a tag was freed in the window between the
1120 	 * allocation failure and adding the hardware queue to the wait
1121 	 * queue.
1122 	 */
1123 	ret = blk_mq_get_driver_tag(rq);
1124 	if (!ret) {
1125 		spin_unlock(&hctx->dispatch_wait_lock);
1126 		spin_unlock_irq(&wq->lock);
1127 		return false;
1128 	}
1129 
1130 	/*
1131 	 * We got a tag, remove ourselves from the wait queue to ensure
1132 	 * someone else gets the wakeup.
1133 	 */
1134 	list_del_init(&wait->entry);
1135 	atomic_dec(&sbq->ws_active);
1136 	spin_unlock(&hctx->dispatch_wait_lock);
1137 	spin_unlock_irq(&wq->lock);
1138 
1139 	return true;
1140 }
1141 
1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1143 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1144 /*
1145  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1146  * - EWMA is one simple way to compute running average value
1147  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1148  * - take 4 as factor for avoiding to get too small(0) result, and this
1149  *   factor doesn't matter because EWMA decreases exponentially
1150  */
1151 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1152 {
1153 	unsigned int ewma;
1154 
1155 	if (hctx->queue->elevator)
1156 		return;
1157 
1158 	ewma = hctx->dispatch_busy;
1159 
1160 	if (!ewma && !busy)
1161 		return;
1162 
1163 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1164 	if (busy)
1165 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1166 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1167 
1168 	hctx->dispatch_busy = ewma;
1169 }
1170 
1171 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1172 
1173 /*
1174  * Returns true if we did some work AND can potentially do more.
1175  */
1176 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1177 			     bool got_budget)
1178 {
1179 	struct blk_mq_hw_ctx *hctx;
1180 	struct request *rq, *nxt;
1181 	bool no_tag = false;
1182 	int errors, queued;
1183 	blk_status_t ret = BLK_STS_OK;
1184 
1185 	if (list_empty(list))
1186 		return false;
1187 
1188 	WARN_ON(!list_is_singular(list) && got_budget);
1189 
1190 	/*
1191 	 * Now process all the entries, sending them to the driver.
1192 	 */
1193 	errors = queued = 0;
1194 	do {
1195 		struct blk_mq_queue_data bd;
1196 
1197 		rq = list_first_entry(list, struct request, queuelist);
1198 
1199 		hctx = rq->mq_hctx;
1200 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1201 			break;
1202 
1203 		if (!blk_mq_get_driver_tag(rq)) {
1204 			/*
1205 			 * The initial allocation attempt failed, so we need to
1206 			 * rerun the hardware queue when a tag is freed. The
1207 			 * waitqueue takes care of that. If the queue is run
1208 			 * before we add this entry back on the dispatch list,
1209 			 * we'll re-run it below.
1210 			 */
1211 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1212 				blk_mq_put_dispatch_budget(hctx);
1213 				/*
1214 				 * For non-shared tags, the RESTART check
1215 				 * will suffice.
1216 				 */
1217 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1218 					no_tag = true;
1219 				break;
1220 			}
1221 		}
1222 
1223 		list_del_init(&rq->queuelist);
1224 
1225 		bd.rq = rq;
1226 
1227 		/*
1228 		 * Flag last if we have no more requests, or if we have more
1229 		 * but can't assign a driver tag to it.
1230 		 */
1231 		if (list_empty(list))
1232 			bd.last = true;
1233 		else {
1234 			nxt = list_first_entry(list, struct request, queuelist);
1235 			bd.last = !blk_mq_get_driver_tag(nxt);
1236 		}
1237 
1238 		ret = q->mq_ops->queue_rq(hctx, &bd);
1239 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1240 			/*
1241 			 * If an I/O scheduler has been configured and we got a
1242 			 * driver tag for the next request already, free it
1243 			 * again.
1244 			 */
1245 			if (!list_empty(list)) {
1246 				nxt = list_first_entry(list, struct request, queuelist);
1247 				blk_mq_put_driver_tag(nxt);
1248 			}
1249 			list_add(&rq->queuelist, list);
1250 			__blk_mq_requeue_request(rq);
1251 			break;
1252 		}
1253 
1254 		if (unlikely(ret != BLK_STS_OK)) {
1255 			errors++;
1256 			blk_mq_end_request(rq, BLK_STS_IOERR);
1257 			continue;
1258 		}
1259 
1260 		queued++;
1261 	} while (!list_empty(list));
1262 
1263 	hctx->dispatched[queued_to_index(queued)]++;
1264 
1265 	/*
1266 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1267 	 * that is where we will continue on next queue run.
1268 	 */
1269 	if (!list_empty(list)) {
1270 		bool needs_restart;
1271 
1272 		/*
1273 		 * If we didn't flush the entire list, we could have told
1274 		 * the driver there was more coming, but that turned out to
1275 		 * be a lie.
1276 		 */
1277 		if (q->mq_ops->commit_rqs)
1278 			q->mq_ops->commit_rqs(hctx);
1279 
1280 		spin_lock(&hctx->lock);
1281 		list_splice_init(list, &hctx->dispatch);
1282 		spin_unlock(&hctx->lock);
1283 
1284 		/*
1285 		 * If SCHED_RESTART was set by the caller of this function and
1286 		 * it is no longer set that means that it was cleared by another
1287 		 * thread and hence that a queue rerun is needed.
1288 		 *
1289 		 * If 'no_tag' is set, that means that we failed getting
1290 		 * a driver tag with an I/O scheduler attached. If our dispatch
1291 		 * waitqueue is no longer active, ensure that we run the queue
1292 		 * AFTER adding our entries back to the list.
1293 		 *
1294 		 * If no I/O scheduler has been configured it is possible that
1295 		 * the hardware queue got stopped and restarted before requests
1296 		 * were pushed back onto the dispatch list. Rerun the queue to
1297 		 * avoid starvation. Notes:
1298 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1299 		 *   been stopped before rerunning a queue.
1300 		 * - Some but not all block drivers stop a queue before
1301 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302 		 *   and dm-rq.
1303 		 *
1304 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1305 		 * bit is set, run queue after a delay to avoid IO stalls
1306 		 * that could otherwise occur if the queue is idle.
1307 		 */
1308 		needs_restart = blk_mq_sched_needs_restart(hctx);
1309 		if (!needs_restart ||
1310 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311 			blk_mq_run_hw_queue(hctx, true);
1312 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1313 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1314 
1315 		blk_mq_update_dispatch_busy(hctx, true);
1316 		return false;
1317 	} else
1318 		blk_mq_update_dispatch_busy(hctx, false);
1319 
1320 	/*
1321 	 * If the host/device is unable to accept more work, inform the
1322 	 * caller of that.
1323 	 */
1324 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1325 		return false;
1326 
1327 	return (queued + errors) != 0;
1328 }
1329 
1330 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1331 {
1332 	int srcu_idx;
1333 
1334 	/*
1335 	 * We should be running this queue from one of the CPUs that
1336 	 * are mapped to it.
1337 	 *
1338 	 * There are at least two related races now between setting
1339 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1340 	 * __blk_mq_run_hw_queue():
1341 	 *
1342 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1343 	 *   but later it becomes online, then this warning is harmless
1344 	 *   at all
1345 	 *
1346 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1347 	 *   but later it becomes offline, then the warning can't be
1348 	 *   triggered, and we depend on blk-mq timeout handler to
1349 	 *   handle dispatched requests to this hctx
1350 	 */
1351 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1352 		cpu_online(hctx->next_cpu)) {
1353 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1354 			raw_smp_processor_id(),
1355 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1356 		dump_stack();
1357 	}
1358 
1359 	/*
1360 	 * We can't run the queue inline with ints disabled. Ensure that
1361 	 * we catch bad users of this early.
1362 	 */
1363 	WARN_ON_ONCE(in_interrupt());
1364 
1365 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1366 
1367 	hctx_lock(hctx, &srcu_idx);
1368 	blk_mq_sched_dispatch_requests(hctx);
1369 	hctx_unlock(hctx, srcu_idx);
1370 }
1371 
1372 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1373 {
1374 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1375 
1376 	if (cpu >= nr_cpu_ids)
1377 		cpu = cpumask_first(hctx->cpumask);
1378 	return cpu;
1379 }
1380 
1381 /*
1382  * It'd be great if the workqueue API had a way to pass
1383  * in a mask and had some smarts for more clever placement.
1384  * For now we just round-robin here, switching for every
1385  * BLK_MQ_CPU_WORK_BATCH queued items.
1386  */
1387 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1388 {
1389 	bool tried = false;
1390 	int next_cpu = hctx->next_cpu;
1391 
1392 	if (hctx->queue->nr_hw_queues == 1)
1393 		return WORK_CPU_UNBOUND;
1394 
1395 	if (--hctx->next_cpu_batch <= 0) {
1396 select_cpu:
1397 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1398 				cpu_online_mask);
1399 		if (next_cpu >= nr_cpu_ids)
1400 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1401 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1402 	}
1403 
1404 	/*
1405 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1406 	 * and it should only happen in the path of handling CPU DEAD.
1407 	 */
1408 	if (!cpu_online(next_cpu)) {
1409 		if (!tried) {
1410 			tried = true;
1411 			goto select_cpu;
1412 		}
1413 
1414 		/*
1415 		 * Make sure to re-select CPU next time once after CPUs
1416 		 * in hctx->cpumask become online again.
1417 		 */
1418 		hctx->next_cpu = next_cpu;
1419 		hctx->next_cpu_batch = 1;
1420 		return WORK_CPU_UNBOUND;
1421 	}
1422 
1423 	hctx->next_cpu = next_cpu;
1424 	return next_cpu;
1425 }
1426 
1427 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1428 					unsigned long msecs)
1429 {
1430 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1431 		return;
1432 
1433 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1434 		int cpu = get_cpu();
1435 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1436 			__blk_mq_run_hw_queue(hctx);
1437 			put_cpu();
1438 			return;
1439 		}
1440 
1441 		put_cpu();
1442 	}
1443 
1444 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1445 				    msecs_to_jiffies(msecs));
1446 }
1447 
1448 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1449 {
1450 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1451 }
1452 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1453 
1454 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1455 {
1456 	int srcu_idx;
1457 	bool need_run;
1458 
1459 	/*
1460 	 * When queue is quiesced, we may be switching io scheduler, or
1461 	 * updating nr_hw_queues, or other things, and we can't run queue
1462 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1463 	 *
1464 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1465 	 * quiesced.
1466 	 */
1467 	hctx_lock(hctx, &srcu_idx);
1468 	need_run = !blk_queue_quiesced(hctx->queue) &&
1469 		blk_mq_hctx_has_pending(hctx);
1470 	hctx_unlock(hctx, srcu_idx);
1471 
1472 	if (need_run)
1473 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1474 }
1475 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1476 
1477 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1478 {
1479 	struct blk_mq_hw_ctx *hctx;
1480 	int i;
1481 
1482 	queue_for_each_hw_ctx(q, hctx, i) {
1483 		if (blk_mq_hctx_stopped(hctx))
1484 			continue;
1485 
1486 		blk_mq_run_hw_queue(hctx, async);
1487 	}
1488 }
1489 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1490 
1491 /**
1492  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1493  * @q: request queue.
1494  *
1495  * The caller is responsible for serializing this function against
1496  * blk_mq_{start,stop}_hw_queue().
1497  */
1498 bool blk_mq_queue_stopped(struct request_queue *q)
1499 {
1500 	struct blk_mq_hw_ctx *hctx;
1501 	int i;
1502 
1503 	queue_for_each_hw_ctx(q, hctx, i)
1504 		if (blk_mq_hctx_stopped(hctx))
1505 			return true;
1506 
1507 	return false;
1508 }
1509 EXPORT_SYMBOL(blk_mq_queue_stopped);
1510 
1511 /*
1512  * This function is often used for pausing .queue_rq() by driver when
1513  * there isn't enough resource or some conditions aren't satisfied, and
1514  * BLK_STS_RESOURCE is usually returned.
1515  *
1516  * We do not guarantee that dispatch can be drained or blocked
1517  * after blk_mq_stop_hw_queue() returns. Please use
1518  * blk_mq_quiesce_queue() for that requirement.
1519  */
1520 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1521 {
1522 	cancel_delayed_work(&hctx->run_work);
1523 
1524 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1525 }
1526 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1527 
1528 /*
1529  * This function is often used for pausing .queue_rq() by driver when
1530  * there isn't enough resource or some conditions aren't satisfied, and
1531  * BLK_STS_RESOURCE is usually returned.
1532  *
1533  * We do not guarantee that dispatch can be drained or blocked
1534  * after blk_mq_stop_hw_queues() returns. Please use
1535  * blk_mq_quiesce_queue() for that requirement.
1536  */
1537 void blk_mq_stop_hw_queues(struct request_queue *q)
1538 {
1539 	struct blk_mq_hw_ctx *hctx;
1540 	int i;
1541 
1542 	queue_for_each_hw_ctx(q, hctx, i)
1543 		blk_mq_stop_hw_queue(hctx);
1544 }
1545 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1546 
1547 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1548 {
1549 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1550 
1551 	blk_mq_run_hw_queue(hctx, false);
1552 }
1553 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1554 
1555 void blk_mq_start_hw_queues(struct request_queue *q)
1556 {
1557 	struct blk_mq_hw_ctx *hctx;
1558 	int i;
1559 
1560 	queue_for_each_hw_ctx(q, hctx, i)
1561 		blk_mq_start_hw_queue(hctx);
1562 }
1563 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1564 
1565 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1566 {
1567 	if (!blk_mq_hctx_stopped(hctx))
1568 		return;
1569 
1570 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1571 	blk_mq_run_hw_queue(hctx, async);
1572 }
1573 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1574 
1575 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1576 {
1577 	struct blk_mq_hw_ctx *hctx;
1578 	int i;
1579 
1580 	queue_for_each_hw_ctx(q, hctx, i)
1581 		blk_mq_start_stopped_hw_queue(hctx, async);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1584 
1585 static void blk_mq_run_work_fn(struct work_struct *work)
1586 {
1587 	struct blk_mq_hw_ctx *hctx;
1588 
1589 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1590 
1591 	/*
1592 	 * If we are stopped, don't run the queue.
1593 	 */
1594 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1595 		return;
1596 
1597 	__blk_mq_run_hw_queue(hctx);
1598 }
1599 
1600 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1601 					    struct request *rq,
1602 					    bool at_head)
1603 {
1604 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1605 	enum hctx_type type = hctx->type;
1606 
1607 	lockdep_assert_held(&ctx->lock);
1608 
1609 	trace_block_rq_insert(hctx->queue, rq);
1610 
1611 	if (at_head)
1612 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1613 	else
1614 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1615 }
1616 
1617 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1618 			     bool at_head)
1619 {
1620 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1621 
1622 	lockdep_assert_held(&ctx->lock);
1623 
1624 	__blk_mq_insert_req_list(hctx, rq, at_head);
1625 	blk_mq_hctx_mark_pending(hctx, ctx);
1626 }
1627 
1628 /*
1629  * Should only be used carefully, when the caller knows we want to
1630  * bypass a potential IO scheduler on the target device.
1631  */
1632 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1633 {
1634 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1635 
1636 	spin_lock(&hctx->lock);
1637 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1638 	spin_unlock(&hctx->lock);
1639 
1640 	if (run_queue)
1641 		blk_mq_run_hw_queue(hctx, false);
1642 }
1643 
1644 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1645 			    struct list_head *list)
1646 
1647 {
1648 	struct request *rq;
1649 	enum hctx_type type = hctx->type;
1650 
1651 	/*
1652 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1653 	 * offline now
1654 	 */
1655 	list_for_each_entry(rq, list, queuelist) {
1656 		BUG_ON(rq->mq_ctx != ctx);
1657 		trace_block_rq_insert(hctx->queue, rq);
1658 	}
1659 
1660 	spin_lock(&ctx->lock);
1661 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1662 	blk_mq_hctx_mark_pending(hctx, ctx);
1663 	spin_unlock(&ctx->lock);
1664 }
1665 
1666 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1667 {
1668 	struct request *rqa = container_of(a, struct request, queuelist);
1669 	struct request *rqb = container_of(b, struct request, queuelist);
1670 
1671 	if (rqa->mq_ctx < rqb->mq_ctx)
1672 		return -1;
1673 	else if (rqa->mq_ctx > rqb->mq_ctx)
1674 		return 1;
1675 	else if (rqa->mq_hctx < rqb->mq_hctx)
1676 		return -1;
1677 	else if (rqa->mq_hctx > rqb->mq_hctx)
1678 		return 1;
1679 
1680 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1681 }
1682 
1683 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1684 {
1685 	struct blk_mq_hw_ctx *this_hctx;
1686 	struct blk_mq_ctx *this_ctx;
1687 	struct request_queue *this_q;
1688 	struct request *rq;
1689 	LIST_HEAD(list);
1690 	LIST_HEAD(rq_list);
1691 	unsigned int depth;
1692 
1693 	list_splice_init(&plug->mq_list, &list);
1694 
1695 	if (plug->rq_count > 2 && plug->multiple_queues)
1696 		list_sort(NULL, &list, plug_rq_cmp);
1697 
1698 	plug->rq_count = 0;
1699 
1700 	this_q = NULL;
1701 	this_hctx = NULL;
1702 	this_ctx = NULL;
1703 	depth = 0;
1704 
1705 	while (!list_empty(&list)) {
1706 		rq = list_entry_rq(list.next);
1707 		list_del_init(&rq->queuelist);
1708 		BUG_ON(!rq->q);
1709 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1710 			if (this_hctx) {
1711 				trace_block_unplug(this_q, depth, !from_schedule);
1712 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1713 								&rq_list,
1714 								from_schedule);
1715 			}
1716 
1717 			this_q = rq->q;
1718 			this_ctx = rq->mq_ctx;
1719 			this_hctx = rq->mq_hctx;
1720 			depth = 0;
1721 		}
1722 
1723 		depth++;
1724 		list_add_tail(&rq->queuelist, &rq_list);
1725 	}
1726 
1727 	/*
1728 	 * If 'this_hctx' is set, we know we have entries to complete
1729 	 * on 'rq_list'. Do those.
1730 	 */
1731 	if (this_hctx) {
1732 		trace_block_unplug(this_q, depth, !from_schedule);
1733 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1734 						from_schedule);
1735 	}
1736 }
1737 
1738 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1739 		unsigned int nr_segs)
1740 {
1741 	if (bio->bi_opf & REQ_RAHEAD)
1742 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1743 
1744 	rq->__sector = bio->bi_iter.bi_sector;
1745 	rq->write_hint = bio->bi_write_hint;
1746 	blk_rq_bio_prep(rq, bio, nr_segs);
1747 
1748 	blk_account_io_start(rq, true);
1749 }
1750 
1751 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1752 					    struct request *rq,
1753 					    blk_qc_t *cookie, bool last)
1754 {
1755 	struct request_queue *q = rq->q;
1756 	struct blk_mq_queue_data bd = {
1757 		.rq = rq,
1758 		.last = last,
1759 	};
1760 	blk_qc_t new_cookie;
1761 	blk_status_t ret;
1762 
1763 	new_cookie = request_to_qc_t(hctx, rq);
1764 
1765 	/*
1766 	 * For OK queue, we are done. For error, caller may kill it.
1767 	 * Any other error (busy), just add it to our list as we
1768 	 * previously would have done.
1769 	 */
1770 	ret = q->mq_ops->queue_rq(hctx, &bd);
1771 	switch (ret) {
1772 	case BLK_STS_OK:
1773 		blk_mq_update_dispatch_busy(hctx, false);
1774 		*cookie = new_cookie;
1775 		break;
1776 	case BLK_STS_RESOURCE:
1777 	case BLK_STS_DEV_RESOURCE:
1778 		blk_mq_update_dispatch_busy(hctx, true);
1779 		__blk_mq_requeue_request(rq);
1780 		break;
1781 	default:
1782 		blk_mq_update_dispatch_busy(hctx, false);
1783 		*cookie = BLK_QC_T_NONE;
1784 		break;
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1791 						struct request *rq,
1792 						blk_qc_t *cookie,
1793 						bool bypass_insert, bool last)
1794 {
1795 	struct request_queue *q = rq->q;
1796 	bool run_queue = true;
1797 
1798 	/*
1799 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1800 	 *
1801 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1802 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1803 	 * and avoid driver to try to dispatch again.
1804 	 */
1805 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1806 		run_queue = false;
1807 		bypass_insert = false;
1808 		goto insert;
1809 	}
1810 
1811 	if (q->elevator && !bypass_insert)
1812 		goto insert;
1813 
1814 	if (!blk_mq_get_dispatch_budget(hctx))
1815 		goto insert;
1816 
1817 	if (!blk_mq_get_driver_tag(rq)) {
1818 		blk_mq_put_dispatch_budget(hctx);
1819 		goto insert;
1820 	}
1821 
1822 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1823 insert:
1824 	if (bypass_insert)
1825 		return BLK_STS_RESOURCE;
1826 
1827 	blk_mq_request_bypass_insert(rq, run_queue);
1828 	return BLK_STS_OK;
1829 }
1830 
1831 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1832 		struct request *rq, blk_qc_t *cookie)
1833 {
1834 	blk_status_t ret;
1835 	int srcu_idx;
1836 
1837 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1838 
1839 	hctx_lock(hctx, &srcu_idx);
1840 
1841 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1842 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1843 		blk_mq_request_bypass_insert(rq, true);
1844 	else if (ret != BLK_STS_OK)
1845 		blk_mq_end_request(rq, ret);
1846 
1847 	hctx_unlock(hctx, srcu_idx);
1848 }
1849 
1850 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1851 {
1852 	blk_status_t ret;
1853 	int srcu_idx;
1854 	blk_qc_t unused_cookie;
1855 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 
1857 	hctx_lock(hctx, &srcu_idx);
1858 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1859 	hctx_unlock(hctx, srcu_idx);
1860 
1861 	return ret;
1862 }
1863 
1864 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1865 		struct list_head *list)
1866 {
1867 	while (!list_empty(list)) {
1868 		blk_status_t ret;
1869 		struct request *rq = list_first_entry(list, struct request,
1870 				queuelist);
1871 
1872 		list_del_init(&rq->queuelist);
1873 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1874 		if (ret != BLK_STS_OK) {
1875 			if (ret == BLK_STS_RESOURCE ||
1876 					ret == BLK_STS_DEV_RESOURCE) {
1877 				blk_mq_request_bypass_insert(rq,
1878 							list_empty(list));
1879 				break;
1880 			}
1881 			blk_mq_end_request(rq, ret);
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * If we didn't flush the entire list, we could have told
1887 	 * the driver there was more coming, but that turned out to
1888 	 * be a lie.
1889 	 */
1890 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1891 		hctx->queue->mq_ops->commit_rqs(hctx);
1892 }
1893 
1894 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1895 {
1896 	list_add_tail(&rq->queuelist, &plug->mq_list);
1897 	plug->rq_count++;
1898 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1899 		struct request *tmp;
1900 
1901 		tmp = list_first_entry(&plug->mq_list, struct request,
1902 						queuelist);
1903 		if (tmp->q != rq->q)
1904 			plug->multiple_queues = true;
1905 	}
1906 }
1907 
1908 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1909 {
1910 	const int is_sync = op_is_sync(bio->bi_opf);
1911 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1912 	struct blk_mq_alloc_data data = { .flags = 0};
1913 	struct request *rq;
1914 	struct blk_plug *plug;
1915 	struct request *same_queue_rq = NULL;
1916 	unsigned int nr_segs;
1917 	blk_qc_t cookie;
1918 
1919 	blk_queue_bounce(q, &bio);
1920 	__blk_queue_split(q, &bio, &nr_segs);
1921 
1922 	if (!bio_integrity_prep(bio))
1923 		return BLK_QC_T_NONE;
1924 
1925 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1926 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1927 		return BLK_QC_T_NONE;
1928 
1929 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1930 		return BLK_QC_T_NONE;
1931 
1932 	rq_qos_throttle(q, bio);
1933 
1934 	data.cmd_flags = bio->bi_opf;
1935 	rq = blk_mq_get_request(q, bio, &data);
1936 	if (unlikely(!rq)) {
1937 		rq_qos_cleanup(q, bio);
1938 		if (bio->bi_opf & REQ_NOWAIT)
1939 			bio_wouldblock_error(bio);
1940 		return BLK_QC_T_NONE;
1941 	}
1942 
1943 	trace_block_getrq(q, bio, bio->bi_opf);
1944 
1945 	rq_qos_track(q, rq, bio);
1946 
1947 	cookie = request_to_qc_t(data.hctx, rq);
1948 
1949 	blk_mq_bio_to_request(rq, bio, nr_segs);
1950 
1951 	plug = blk_mq_plug(q, bio);
1952 	if (unlikely(is_flush_fua)) {
1953 		/* bypass scheduler for flush rq */
1954 		blk_insert_flush(rq);
1955 		blk_mq_run_hw_queue(data.hctx, true);
1956 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1957 				!blk_queue_nonrot(q))) {
1958 		/*
1959 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1960 		 * we know the driver uses bd->last in a smart fashion.
1961 		 *
1962 		 * Use normal plugging if this disk is slow HDD, as sequential
1963 		 * IO may benefit a lot from plug merging.
1964 		 */
1965 		unsigned int request_count = plug->rq_count;
1966 		struct request *last = NULL;
1967 
1968 		if (!request_count)
1969 			trace_block_plug(q);
1970 		else
1971 			last = list_entry_rq(plug->mq_list.prev);
1972 
1973 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1974 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1975 			blk_flush_plug_list(plug, false);
1976 			trace_block_plug(q);
1977 		}
1978 
1979 		blk_add_rq_to_plug(plug, rq);
1980 	} else if (q->elevator) {
1981 		blk_mq_sched_insert_request(rq, false, true, true);
1982 	} else if (plug && !blk_queue_nomerges(q)) {
1983 		/*
1984 		 * We do limited plugging. If the bio can be merged, do that.
1985 		 * Otherwise the existing request in the plug list will be
1986 		 * issued. So the plug list will have one request at most
1987 		 * The plug list might get flushed before this. If that happens,
1988 		 * the plug list is empty, and same_queue_rq is invalid.
1989 		 */
1990 		if (list_empty(&plug->mq_list))
1991 			same_queue_rq = NULL;
1992 		if (same_queue_rq) {
1993 			list_del_init(&same_queue_rq->queuelist);
1994 			plug->rq_count--;
1995 		}
1996 		blk_add_rq_to_plug(plug, rq);
1997 		trace_block_plug(q);
1998 
1999 		if (same_queue_rq) {
2000 			data.hctx = same_queue_rq->mq_hctx;
2001 			trace_block_unplug(q, 1, true);
2002 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2003 					&cookie);
2004 		}
2005 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2006 			!data.hctx->dispatch_busy) {
2007 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2008 	} else {
2009 		blk_mq_sched_insert_request(rq, false, true, true);
2010 	}
2011 
2012 	return cookie;
2013 }
2014 
2015 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2016 		     unsigned int hctx_idx)
2017 {
2018 	struct page *page;
2019 
2020 	if (tags->rqs && set->ops->exit_request) {
2021 		int i;
2022 
2023 		for (i = 0; i < tags->nr_tags; i++) {
2024 			struct request *rq = tags->static_rqs[i];
2025 
2026 			if (!rq)
2027 				continue;
2028 			set->ops->exit_request(set, rq, hctx_idx);
2029 			tags->static_rqs[i] = NULL;
2030 		}
2031 	}
2032 
2033 	while (!list_empty(&tags->page_list)) {
2034 		page = list_first_entry(&tags->page_list, struct page, lru);
2035 		list_del_init(&page->lru);
2036 		/*
2037 		 * Remove kmemleak object previously allocated in
2038 		 * blk_mq_alloc_rqs().
2039 		 */
2040 		kmemleak_free(page_address(page));
2041 		__free_pages(page, page->private);
2042 	}
2043 }
2044 
2045 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2046 {
2047 	kfree(tags->rqs);
2048 	tags->rqs = NULL;
2049 	kfree(tags->static_rqs);
2050 	tags->static_rqs = NULL;
2051 
2052 	blk_mq_free_tags(tags);
2053 }
2054 
2055 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2056 					unsigned int hctx_idx,
2057 					unsigned int nr_tags,
2058 					unsigned int reserved_tags)
2059 {
2060 	struct blk_mq_tags *tags;
2061 	int node;
2062 
2063 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2064 	if (node == NUMA_NO_NODE)
2065 		node = set->numa_node;
2066 
2067 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2068 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2069 	if (!tags)
2070 		return NULL;
2071 
2072 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2073 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2074 				 node);
2075 	if (!tags->rqs) {
2076 		blk_mq_free_tags(tags);
2077 		return NULL;
2078 	}
2079 
2080 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2081 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2082 					node);
2083 	if (!tags->static_rqs) {
2084 		kfree(tags->rqs);
2085 		blk_mq_free_tags(tags);
2086 		return NULL;
2087 	}
2088 
2089 	return tags;
2090 }
2091 
2092 static size_t order_to_size(unsigned int order)
2093 {
2094 	return (size_t)PAGE_SIZE << order;
2095 }
2096 
2097 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2098 			       unsigned int hctx_idx, int node)
2099 {
2100 	int ret;
2101 
2102 	if (set->ops->init_request) {
2103 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2104 		if (ret)
2105 			return ret;
2106 	}
2107 
2108 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2109 	return 0;
2110 }
2111 
2112 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2113 		     unsigned int hctx_idx, unsigned int depth)
2114 {
2115 	unsigned int i, j, entries_per_page, max_order = 4;
2116 	size_t rq_size, left;
2117 	int node;
2118 
2119 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2120 	if (node == NUMA_NO_NODE)
2121 		node = set->numa_node;
2122 
2123 	INIT_LIST_HEAD(&tags->page_list);
2124 
2125 	/*
2126 	 * rq_size is the size of the request plus driver payload, rounded
2127 	 * to the cacheline size
2128 	 */
2129 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2130 				cache_line_size());
2131 	left = rq_size * depth;
2132 
2133 	for (i = 0; i < depth; ) {
2134 		int this_order = max_order;
2135 		struct page *page;
2136 		int to_do;
2137 		void *p;
2138 
2139 		while (this_order && left < order_to_size(this_order - 1))
2140 			this_order--;
2141 
2142 		do {
2143 			page = alloc_pages_node(node,
2144 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2145 				this_order);
2146 			if (page)
2147 				break;
2148 			if (!this_order--)
2149 				break;
2150 			if (order_to_size(this_order) < rq_size)
2151 				break;
2152 		} while (1);
2153 
2154 		if (!page)
2155 			goto fail;
2156 
2157 		page->private = this_order;
2158 		list_add_tail(&page->lru, &tags->page_list);
2159 
2160 		p = page_address(page);
2161 		/*
2162 		 * Allow kmemleak to scan these pages as they contain pointers
2163 		 * to additional allocations like via ops->init_request().
2164 		 */
2165 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2166 		entries_per_page = order_to_size(this_order) / rq_size;
2167 		to_do = min(entries_per_page, depth - i);
2168 		left -= to_do * rq_size;
2169 		for (j = 0; j < to_do; j++) {
2170 			struct request *rq = p;
2171 
2172 			tags->static_rqs[i] = rq;
2173 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2174 				tags->static_rqs[i] = NULL;
2175 				goto fail;
2176 			}
2177 
2178 			p += rq_size;
2179 			i++;
2180 		}
2181 	}
2182 	return 0;
2183 
2184 fail:
2185 	blk_mq_free_rqs(set, tags, hctx_idx);
2186 	return -ENOMEM;
2187 }
2188 
2189 /*
2190  * 'cpu' is going away. splice any existing rq_list entries from this
2191  * software queue to the hw queue dispatch list, and ensure that it
2192  * gets run.
2193  */
2194 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2195 {
2196 	struct blk_mq_hw_ctx *hctx;
2197 	struct blk_mq_ctx *ctx;
2198 	LIST_HEAD(tmp);
2199 	enum hctx_type type;
2200 
2201 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2202 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2203 	type = hctx->type;
2204 
2205 	spin_lock(&ctx->lock);
2206 	if (!list_empty(&ctx->rq_lists[type])) {
2207 		list_splice_init(&ctx->rq_lists[type], &tmp);
2208 		blk_mq_hctx_clear_pending(hctx, ctx);
2209 	}
2210 	spin_unlock(&ctx->lock);
2211 
2212 	if (list_empty(&tmp))
2213 		return 0;
2214 
2215 	spin_lock(&hctx->lock);
2216 	list_splice_tail_init(&tmp, &hctx->dispatch);
2217 	spin_unlock(&hctx->lock);
2218 
2219 	blk_mq_run_hw_queue(hctx, true);
2220 	return 0;
2221 }
2222 
2223 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2224 {
2225 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2226 					    &hctx->cpuhp_dead);
2227 }
2228 
2229 /* hctx->ctxs will be freed in queue's release handler */
2230 static void blk_mq_exit_hctx(struct request_queue *q,
2231 		struct blk_mq_tag_set *set,
2232 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2233 {
2234 	if (blk_mq_hw_queue_mapped(hctx))
2235 		blk_mq_tag_idle(hctx);
2236 
2237 	if (set->ops->exit_request)
2238 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2239 
2240 	if (set->ops->exit_hctx)
2241 		set->ops->exit_hctx(hctx, hctx_idx);
2242 
2243 	blk_mq_remove_cpuhp(hctx);
2244 
2245 	spin_lock(&q->unused_hctx_lock);
2246 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2247 	spin_unlock(&q->unused_hctx_lock);
2248 }
2249 
2250 static void blk_mq_exit_hw_queues(struct request_queue *q,
2251 		struct blk_mq_tag_set *set, int nr_queue)
2252 {
2253 	struct blk_mq_hw_ctx *hctx;
2254 	unsigned int i;
2255 
2256 	queue_for_each_hw_ctx(q, hctx, i) {
2257 		if (i == nr_queue)
2258 			break;
2259 		blk_mq_debugfs_unregister_hctx(hctx);
2260 		blk_mq_exit_hctx(q, set, hctx, i);
2261 	}
2262 }
2263 
2264 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2265 {
2266 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2267 
2268 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2269 			   __alignof__(struct blk_mq_hw_ctx)) !=
2270 		     sizeof(struct blk_mq_hw_ctx));
2271 
2272 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2273 		hw_ctx_size += sizeof(struct srcu_struct);
2274 
2275 	return hw_ctx_size;
2276 }
2277 
2278 static int blk_mq_init_hctx(struct request_queue *q,
2279 		struct blk_mq_tag_set *set,
2280 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2281 {
2282 	hctx->queue_num = hctx_idx;
2283 
2284 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2285 
2286 	hctx->tags = set->tags[hctx_idx];
2287 
2288 	if (set->ops->init_hctx &&
2289 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2290 		goto unregister_cpu_notifier;
2291 
2292 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2293 				hctx->numa_node))
2294 		goto exit_hctx;
2295 	return 0;
2296 
2297  exit_hctx:
2298 	if (set->ops->exit_hctx)
2299 		set->ops->exit_hctx(hctx, hctx_idx);
2300  unregister_cpu_notifier:
2301 	blk_mq_remove_cpuhp(hctx);
2302 	return -1;
2303 }
2304 
2305 static struct blk_mq_hw_ctx *
2306 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2307 		int node)
2308 {
2309 	struct blk_mq_hw_ctx *hctx;
2310 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2311 
2312 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2313 	if (!hctx)
2314 		goto fail_alloc_hctx;
2315 
2316 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2317 		goto free_hctx;
2318 
2319 	atomic_set(&hctx->nr_active, 0);
2320 	if (node == NUMA_NO_NODE)
2321 		node = set->numa_node;
2322 	hctx->numa_node = node;
2323 
2324 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2325 	spin_lock_init(&hctx->lock);
2326 	INIT_LIST_HEAD(&hctx->dispatch);
2327 	hctx->queue = q;
2328 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2329 
2330 	INIT_LIST_HEAD(&hctx->hctx_list);
2331 
2332 	/*
2333 	 * Allocate space for all possible cpus to avoid allocation at
2334 	 * runtime
2335 	 */
2336 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2337 			gfp, node);
2338 	if (!hctx->ctxs)
2339 		goto free_cpumask;
2340 
2341 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2342 				gfp, node))
2343 		goto free_ctxs;
2344 	hctx->nr_ctx = 0;
2345 
2346 	spin_lock_init(&hctx->dispatch_wait_lock);
2347 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2348 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2349 
2350 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2351 			gfp);
2352 	if (!hctx->fq)
2353 		goto free_bitmap;
2354 
2355 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2356 		init_srcu_struct(hctx->srcu);
2357 	blk_mq_hctx_kobj_init(hctx);
2358 
2359 	return hctx;
2360 
2361  free_bitmap:
2362 	sbitmap_free(&hctx->ctx_map);
2363  free_ctxs:
2364 	kfree(hctx->ctxs);
2365  free_cpumask:
2366 	free_cpumask_var(hctx->cpumask);
2367  free_hctx:
2368 	kfree(hctx);
2369  fail_alloc_hctx:
2370 	return NULL;
2371 }
2372 
2373 static void blk_mq_init_cpu_queues(struct request_queue *q,
2374 				   unsigned int nr_hw_queues)
2375 {
2376 	struct blk_mq_tag_set *set = q->tag_set;
2377 	unsigned int i, j;
2378 
2379 	for_each_possible_cpu(i) {
2380 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2381 		struct blk_mq_hw_ctx *hctx;
2382 		int k;
2383 
2384 		__ctx->cpu = i;
2385 		spin_lock_init(&__ctx->lock);
2386 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2387 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2388 
2389 		__ctx->queue = q;
2390 
2391 		/*
2392 		 * Set local node, IFF we have more than one hw queue. If
2393 		 * not, we remain on the home node of the device
2394 		 */
2395 		for (j = 0; j < set->nr_maps; j++) {
2396 			hctx = blk_mq_map_queue_type(q, j, i);
2397 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2398 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2399 		}
2400 	}
2401 }
2402 
2403 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2404 {
2405 	int ret = 0;
2406 
2407 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2408 					set->queue_depth, set->reserved_tags);
2409 	if (!set->tags[hctx_idx])
2410 		return false;
2411 
2412 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2413 				set->queue_depth);
2414 	if (!ret)
2415 		return true;
2416 
2417 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2418 	set->tags[hctx_idx] = NULL;
2419 	return false;
2420 }
2421 
2422 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2423 					 unsigned int hctx_idx)
2424 {
2425 	if (set->tags && set->tags[hctx_idx]) {
2426 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2427 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2428 		set->tags[hctx_idx] = NULL;
2429 	}
2430 }
2431 
2432 static void blk_mq_map_swqueue(struct request_queue *q)
2433 {
2434 	unsigned int i, j, hctx_idx;
2435 	struct blk_mq_hw_ctx *hctx;
2436 	struct blk_mq_ctx *ctx;
2437 	struct blk_mq_tag_set *set = q->tag_set;
2438 
2439 	queue_for_each_hw_ctx(q, hctx, i) {
2440 		cpumask_clear(hctx->cpumask);
2441 		hctx->nr_ctx = 0;
2442 		hctx->dispatch_from = NULL;
2443 	}
2444 
2445 	/*
2446 	 * Map software to hardware queues.
2447 	 *
2448 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2449 	 */
2450 	for_each_possible_cpu(i) {
2451 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2452 		/* unmapped hw queue can be remapped after CPU topo changed */
2453 		if (!set->tags[hctx_idx] &&
2454 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2455 			/*
2456 			 * If tags initialization fail for some hctx,
2457 			 * that hctx won't be brought online.  In this
2458 			 * case, remap the current ctx to hctx[0] which
2459 			 * is guaranteed to always have tags allocated
2460 			 */
2461 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2462 		}
2463 
2464 		ctx = per_cpu_ptr(q->queue_ctx, i);
2465 		for (j = 0; j < set->nr_maps; j++) {
2466 			if (!set->map[j].nr_queues) {
2467 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2468 						HCTX_TYPE_DEFAULT, i);
2469 				continue;
2470 			}
2471 
2472 			hctx = blk_mq_map_queue_type(q, j, i);
2473 			ctx->hctxs[j] = hctx;
2474 			/*
2475 			 * If the CPU is already set in the mask, then we've
2476 			 * mapped this one already. This can happen if
2477 			 * devices share queues across queue maps.
2478 			 */
2479 			if (cpumask_test_cpu(i, hctx->cpumask))
2480 				continue;
2481 
2482 			cpumask_set_cpu(i, hctx->cpumask);
2483 			hctx->type = j;
2484 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2485 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2486 
2487 			/*
2488 			 * If the nr_ctx type overflows, we have exceeded the
2489 			 * amount of sw queues we can support.
2490 			 */
2491 			BUG_ON(!hctx->nr_ctx);
2492 		}
2493 
2494 		for (; j < HCTX_MAX_TYPES; j++)
2495 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2496 					HCTX_TYPE_DEFAULT, i);
2497 	}
2498 
2499 	queue_for_each_hw_ctx(q, hctx, i) {
2500 		/*
2501 		 * If no software queues are mapped to this hardware queue,
2502 		 * disable it and free the request entries.
2503 		 */
2504 		if (!hctx->nr_ctx) {
2505 			/* Never unmap queue 0.  We need it as a
2506 			 * fallback in case of a new remap fails
2507 			 * allocation
2508 			 */
2509 			if (i && set->tags[i])
2510 				blk_mq_free_map_and_requests(set, i);
2511 
2512 			hctx->tags = NULL;
2513 			continue;
2514 		}
2515 
2516 		hctx->tags = set->tags[i];
2517 		WARN_ON(!hctx->tags);
2518 
2519 		/*
2520 		 * Set the map size to the number of mapped software queues.
2521 		 * This is more accurate and more efficient than looping
2522 		 * over all possibly mapped software queues.
2523 		 */
2524 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2525 
2526 		/*
2527 		 * Initialize batch roundrobin counts
2528 		 */
2529 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2530 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2531 	}
2532 }
2533 
2534 /*
2535  * Caller needs to ensure that we're either frozen/quiesced, or that
2536  * the queue isn't live yet.
2537  */
2538 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2539 {
2540 	struct blk_mq_hw_ctx *hctx;
2541 	int i;
2542 
2543 	queue_for_each_hw_ctx(q, hctx, i) {
2544 		if (shared)
2545 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2546 		else
2547 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2548 	}
2549 }
2550 
2551 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2552 					bool shared)
2553 {
2554 	struct request_queue *q;
2555 
2556 	lockdep_assert_held(&set->tag_list_lock);
2557 
2558 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2559 		blk_mq_freeze_queue(q);
2560 		queue_set_hctx_shared(q, shared);
2561 		blk_mq_unfreeze_queue(q);
2562 	}
2563 }
2564 
2565 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2566 {
2567 	struct blk_mq_tag_set *set = q->tag_set;
2568 
2569 	mutex_lock(&set->tag_list_lock);
2570 	list_del_rcu(&q->tag_set_list);
2571 	if (list_is_singular(&set->tag_list)) {
2572 		/* just transitioned to unshared */
2573 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2574 		/* update existing queue */
2575 		blk_mq_update_tag_set_depth(set, false);
2576 	}
2577 	mutex_unlock(&set->tag_list_lock);
2578 	INIT_LIST_HEAD(&q->tag_set_list);
2579 }
2580 
2581 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2582 				     struct request_queue *q)
2583 {
2584 	mutex_lock(&set->tag_list_lock);
2585 
2586 	/*
2587 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2588 	 */
2589 	if (!list_empty(&set->tag_list) &&
2590 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2591 		set->flags |= BLK_MQ_F_TAG_SHARED;
2592 		/* update existing queue */
2593 		blk_mq_update_tag_set_depth(set, true);
2594 	}
2595 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2596 		queue_set_hctx_shared(q, true);
2597 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2598 
2599 	mutex_unlock(&set->tag_list_lock);
2600 }
2601 
2602 /* All allocations will be freed in release handler of q->mq_kobj */
2603 static int blk_mq_alloc_ctxs(struct request_queue *q)
2604 {
2605 	struct blk_mq_ctxs *ctxs;
2606 	int cpu;
2607 
2608 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2609 	if (!ctxs)
2610 		return -ENOMEM;
2611 
2612 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2613 	if (!ctxs->queue_ctx)
2614 		goto fail;
2615 
2616 	for_each_possible_cpu(cpu) {
2617 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2618 		ctx->ctxs = ctxs;
2619 	}
2620 
2621 	q->mq_kobj = &ctxs->kobj;
2622 	q->queue_ctx = ctxs->queue_ctx;
2623 
2624 	return 0;
2625  fail:
2626 	kfree(ctxs);
2627 	return -ENOMEM;
2628 }
2629 
2630 /*
2631  * It is the actual release handler for mq, but we do it from
2632  * request queue's release handler for avoiding use-after-free
2633  * and headache because q->mq_kobj shouldn't have been introduced,
2634  * but we can't group ctx/kctx kobj without it.
2635  */
2636 void blk_mq_release(struct request_queue *q)
2637 {
2638 	struct blk_mq_hw_ctx *hctx, *next;
2639 	int i;
2640 
2641 	queue_for_each_hw_ctx(q, hctx, i)
2642 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2643 
2644 	/* all hctx are in .unused_hctx_list now */
2645 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2646 		list_del_init(&hctx->hctx_list);
2647 		kobject_put(&hctx->kobj);
2648 	}
2649 
2650 	kfree(q->queue_hw_ctx);
2651 
2652 	/*
2653 	 * release .mq_kobj and sw queue's kobject now because
2654 	 * both share lifetime with request queue.
2655 	 */
2656 	blk_mq_sysfs_deinit(q);
2657 }
2658 
2659 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2660 {
2661 	struct request_queue *uninit_q, *q;
2662 
2663 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2664 	if (!uninit_q)
2665 		return ERR_PTR(-ENOMEM);
2666 
2667 	/*
2668 	 * Initialize the queue without an elevator. device_add_disk() will do
2669 	 * the initialization.
2670 	 */
2671 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2672 	if (IS_ERR(q))
2673 		blk_cleanup_queue(uninit_q);
2674 
2675 	return q;
2676 }
2677 EXPORT_SYMBOL(blk_mq_init_queue);
2678 
2679 /*
2680  * Helper for setting up a queue with mq ops, given queue depth, and
2681  * the passed in mq ops flags.
2682  */
2683 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2684 					   const struct blk_mq_ops *ops,
2685 					   unsigned int queue_depth,
2686 					   unsigned int set_flags)
2687 {
2688 	struct request_queue *q;
2689 	int ret;
2690 
2691 	memset(set, 0, sizeof(*set));
2692 	set->ops = ops;
2693 	set->nr_hw_queues = 1;
2694 	set->nr_maps = 1;
2695 	set->queue_depth = queue_depth;
2696 	set->numa_node = NUMA_NO_NODE;
2697 	set->flags = set_flags;
2698 
2699 	ret = blk_mq_alloc_tag_set(set);
2700 	if (ret)
2701 		return ERR_PTR(ret);
2702 
2703 	q = blk_mq_init_queue(set);
2704 	if (IS_ERR(q)) {
2705 		blk_mq_free_tag_set(set);
2706 		return q;
2707 	}
2708 
2709 	return q;
2710 }
2711 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2712 
2713 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2714 		struct blk_mq_tag_set *set, struct request_queue *q,
2715 		int hctx_idx, int node)
2716 {
2717 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2718 
2719 	/* reuse dead hctx first */
2720 	spin_lock(&q->unused_hctx_lock);
2721 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2722 		if (tmp->numa_node == node) {
2723 			hctx = tmp;
2724 			break;
2725 		}
2726 	}
2727 	if (hctx)
2728 		list_del_init(&hctx->hctx_list);
2729 	spin_unlock(&q->unused_hctx_lock);
2730 
2731 	if (!hctx)
2732 		hctx = blk_mq_alloc_hctx(q, set, node);
2733 	if (!hctx)
2734 		goto fail;
2735 
2736 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2737 		goto free_hctx;
2738 
2739 	return hctx;
2740 
2741  free_hctx:
2742 	kobject_put(&hctx->kobj);
2743  fail:
2744 	return NULL;
2745 }
2746 
2747 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2748 						struct request_queue *q)
2749 {
2750 	int i, j, end;
2751 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2752 
2753 	if (q->nr_hw_queues < set->nr_hw_queues) {
2754 		struct blk_mq_hw_ctx **new_hctxs;
2755 
2756 		new_hctxs = kcalloc_node(set->nr_hw_queues,
2757 				       sizeof(*new_hctxs), GFP_KERNEL,
2758 				       set->numa_node);
2759 		if (!new_hctxs)
2760 			return;
2761 		if (hctxs)
2762 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2763 			       sizeof(*hctxs));
2764 		q->queue_hw_ctx = new_hctxs;
2765 		q->nr_hw_queues = set->nr_hw_queues;
2766 		kfree(hctxs);
2767 		hctxs = new_hctxs;
2768 	}
2769 
2770 	/* protect against switching io scheduler  */
2771 	mutex_lock(&q->sysfs_lock);
2772 	for (i = 0; i < set->nr_hw_queues; i++) {
2773 		int node;
2774 		struct blk_mq_hw_ctx *hctx;
2775 
2776 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2777 		/*
2778 		 * If the hw queue has been mapped to another numa node,
2779 		 * we need to realloc the hctx. If allocation fails, fallback
2780 		 * to use the previous one.
2781 		 */
2782 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2783 			continue;
2784 
2785 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2786 		if (hctx) {
2787 			if (hctxs[i])
2788 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2789 			hctxs[i] = hctx;
2790 		} else {
2791 			if (hctxs[i])
2792 				pr_warn("Allocate new hctx on node %d fails,\
2793 						fallback to previous one on node %d\n",
2794 						node, hctxs[i]->numa_node);
2795 			else
2796 				break;
2797 		}
2798 	}
2799 	/*
2800 	 * Increasing nr_hw_queues fails. Free the newly allocated
2801 	 * hctxs and keep the previous q->nr_hw_queues.
2802 	 */
2803 	if (i != set->nr_hw_queues) {
2804 		j = q->nr_hw_queues;
2805 		end = i;
2806 	} else {
2807 		j = i;
2808 		end = q->nr_hw_queues;
2809 		q->nr_hw_queues = set->nr_hw_queues;
2810 	}
2811 
2812 	for (; j < end; j++) {
2813 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2814 
2815 		if (hctx) {
2816 			if (hctx->tags)
2817 				blk_mq_free_map_and_requests(set, j);
2818 			blk_mq_exit_hctx(q, set, hctx, j);
2819 			hctxs[j] = NULL;
2820 		}
2821 	}
2822 	mutex_unlock(&q->sysfs_lock);
2823 }
2824 
2825 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2826 						  struct request_queue *q,
2827 						  bool elevator_init)
2828 {
2829 	/* mark the queue as mq asap */
2830 	q->mq_ops = set->ops;
2831 
2832 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2833 					     blk_mq_poll_stats_bkt,
2834 					     BLK_MQ_POLL_STATS_BKTS, q);
2835 	if (!q->poll_cb)
2836 		goto err_exit;
2837 
2838 	if (blk_mq_alloc_ctxs(q))
2839 		goto err_poll;
2840 
2841 	/* init q->mq_kobj and sw queues' kobjects */
2842 	blk_mq_sysfs_init(q);
2843 
2844 	INIT_LIST_HEAD(&q->unused_hctx_list);
2845 	spin_lock_init(&q->unused_hctx_lock);
2846 
2847 	blk_mq_realloc_hw_ctxs(set, q);
2848 	if (!q->nr_hw_queues)
2849 		goto err_hctxs;
2850 
2851 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2852 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2853 
2854 	q->tag_set = set;
2855 
2856 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2857 	if (set->nr_maps > HCTX_TYPE_POLL &&
2858 	    set->map[HCTX_TYPE_POLL].nr_queues)
2859 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2860 
2861 	q->sg_reserved_size = INT_MAX;
2862 
2863 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2864 	INIT_LIST_HEAD(&q->requeue_list);
2865 	spin_lock_init(&q->requeue_lock);
2866 
2867 	blk_queue_make_request(q, blk_mq_make_request);
2868 
2869 	/*
2870 	 * Do this after blk_queue_make_request() overrides it...
2871 	 */
2872 	q->nr_requests = set->queue_depth;
2873 
2874 	/*
2875 	 * Default to classic polling
2876 	 */
2877 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2878 
2879 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2880 	blk_mq_add_queue_tag_set(set, q);
2881 	blk_mq_map_swqueue(q);
2882 
2883 	if (elevator_init)
2884 		elevator_init_mq(q);
2885 
2886 	return q;
2887 
2888 err_hctxs:
2889 	kfree(q->queue_hw_ctx);
2890 	q->nr_hw_queues = 0;
2891 	blk_mq_sysfs_deinit(q);
2892 err_poll:
2893 	blk_stat_free_callback(q->poll_cb);
2894 	q->poll_cb = NULL;
2895 err_exit:
2896 	q->mq_ops = NULL;
2897 	return ERR_PTR(-ENOMEM);
2898 }
2899 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2900 
2901 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2902 void blk_mq_exit_queue(struct request_queue *q)
2903 {
2904 	struct blk_mq_tag_set	*set = q->tag_set;
2905 
2906 	blk_mq_del_queue_tag_set(q);
2907 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2908 }
2909 
2910 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2911 {
2912 	int i;
2913 
2914 	for (i = 0; i < set->nr_hw_queues; i++)
2915 		if (!__blk_mq_alloc_rq_map(set, i))
2916 			goto out_unwind;
2917 
2918 	return 0;
2919 
2920 out_unwind:
2921 	while (--i >= 0)
2922 		blk_mq_free_rq_map(set->tags[i]);
2923 
2924 	return -ENOMEM;
2925 }
2926 
2927 /*
2928  * Allocate the request maps associated with this tag_set. Note that this
2929  * may reduce the depth asked for, if memory is tight. set->queue_depth
2930  * will be updated to reflect the allocated depth.
2931  */
2932 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2933 {
2934 	unsigned int depth;
2935 	int err;
2936 
2937 	depth = set->queue_depth;
2938 	do {
2939 		err = __blk_mq_alloc_rq_maps(set);
2940 		if (!err)
2941 			break;
2942 
2943 		set->queue_depth >>= 1;
2944 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2945 			err = -ENOMEM;
2946 			break;
2947 		}
2948 	} while (set->queue_depth);
2949 
2950 	if (!set->queue_depth || err) {
2951 		pr_err("blk-mq: failed to allocate request map\n");
2952 		return -ENOMEM;
2953 	}
2954 
2955 	if (depth != set->queue_depth)
2956 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2957 						depth, set->queue_depth);
2958 
2959 	return 0;
2960 }
2961 
2962 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2963 {
2964 	if (set->ops->map_queues && !is_kdump_kernel()) {
2965 		int i;
2966 
2967 		/*
2968 		 * transport .map_queues is usually done in the following
2969 		 * way:
2970 		 *
2971 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2972 		 * 	mask = get_cpu_mask(queue)
2973 		 * 	for_each_cpu(cpu, mask)
2974 		 * 		set->map[x].mq_map[cpu] = queue;
2975 		 * }
2976 		 *
2977 		 * When we need to remap, the table has to be cleared for
2978 		 * killing stale mapping since one CPU may not be mapped
2979 		 * to any hw queue.
2980 		 */
2981 		for (i = 0; i < set->nr_maps; i++)
2982 			blk_mq_clear_mq_map(&set->map[i]);
2983 
2984 		return set->ops->map_queues(set);
2985 	} else {
2986 		BUG_ON(set->nr_maps > 1);
2987 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2988 	}
2989 }
2990 
2991 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
2992 				  int cur_nr_hw_queues, int new_nr_hw_queues)
2993 {
2994 	struct blk_mq_tags **new_tags;
2995 
2996 	if (cur_nr_hw_queues >= new_nr_hw_queues)
2997 		return 0;
2998 
2999 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3000 				GFP_KERNEL, set->numa_node);
3001 	if (!new_tags)
3002 		return -ENOMEM;
3003 
3004 	if (set->tags)
3005 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3006 		       sizeof(*set->tags));
3007 	kfree(set->tags);
3008 	set->tags = new_tags;
3009 	set->nr_hw_queues = new_nr_hw_queues;
3010 
3011 	return 0;
3012 }
3013 
3014 /*
3015  * Alloc a tag set to be associated with one or more request queues.
3016  * May fail with EINVAL for various error conditions. May adjust the
3017  * requested depth down, if it's too large. In that case, the set
3018  * value will be stored in set->queue_depth.
3019  */
3020 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3021 {
3022 	int i, ret;
3023 
3024 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3025 
3026 	if (!set->nr_hw_queues)
3027 		return -EINVAL;
3028 	if (!set->queue_depth)
3029 		return -EINVAL;
3030 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3031 		return -EINVAL;
3032 
3033 	if (!set->ops->queue_rq)
3034 		return -EINVAL;
3035 
3036 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3037 		return -EINVAL;
3038 
3039 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3040 		pr_info("blk-mq: reduced tag depth to %u\n",
3041 			BLK_MQ_MAX_DEPTH);
3042 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3043 	}
3044 
3045 	if (!set->nr_maps)
3046 		set->nr_maps = 1;
3047 	else if (set->nr_maps > HCTX_MAX_TYPES)
3048 		return -EINVAL;
3049 
3050 	/*
3051 	 * If a crashdump is active, then we are potentially in a very
3052 	 * memory constrained environment. Limit us to 1 queue and
3053 	 * 64 tags to prevent using too much memory.
3054 	 */
3055 	if (is_kdump_kernel()) {
3056 		set->nr_hw_queues = 1;
3057 		set->nr_maps = 1;
3058 		set->queue_depth = min(64U, set->queue_depth);
3059 	}
3060 	/*
3061 	 * There is no use for more h/w queues than cpus if we just have
3062 	 * a single map
3063 	 */
3064 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3065 		set->nr_hw_queues = nr_cpu_ids;
3066 
3067 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3068 		return -ENOMEM;
3069 
3070 	ret = -ENOMEM;
3071 	for (i = 0; i < set->nr_maps; i++) {
3072 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3073 						  sizeof(set->map[i].mq_map[0]),
3074 						  GFP_KERNEL, set->numa_node);
3075 		if (!set->map[i].mq_map)
3076 			goto out_free_mq_map;
3077 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3078 	}
3079 
3080 	ret = blk_mq_update_queue_map(set);
3081 	if (ret)
3082 		goto out_free_mq_map;
3083 
3084 	ret = blk_mq_alloc_rq_maps(set);
3085 	if (ret)
3086 		goto out_free_mq_map;
3087 
3088 	mutex_init(&set->tag_list_lock);
3089 	INIT_LIST_HEAD(&set->tag_list);
3090 
3091 	return 0;
3092 
3093 out_free_mq_map:
3094 	for (i = 0; i < set->nr_maps; i++) {
3095 		kfree(set->map[i].mq_map);
3096 		set->map[i].mq_map = NULL;
3097 	}
3098 	kfree(set->tags);
3099 	set->tags = NULL;
3100 	return ret;
3101 }
3102 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3103 
3104 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3105 {
3106 	int i, j;
3107 
3108 	for (i = 0; i < set->nr_hw_queues; i++)
3109 		blk_mq_free_map_and_requests(set, i);
3110 
3111 	for (j = 0; j < set->nr_maps; j++) {
3112 		kfree(set->map[j].mq_map);
3113 		set->map[j].mq_map = NULL;
3114 	}
3115 
3116 	kfree(set->tags);
3117 	set->tags = NULL;
3118 }
3119 EXPORT_SYMBOL(blk_mq_free_tag_set);
3120 
3121 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3122 {
3123 	struct blk_mq_tag_set *set = q->tag_set;
3124 	struct blk_mq_hw_ctx *hctx;
3125 	int i, ret;
3126 
3127 	if (!set)
3128 		return -EINVAL;
3129 
3130 	if (q->nr_requests == nr)
3131 		return 0;
3132 
3133 	blk_mq_freeze_queue(q);
3134 	blk_mq_quiesce_queue(q);
3135 
3136 	ret = 0;
3137 	queue_for_each_hw_ctx(q, hctx, i) {
3138 		if (!hctx->tags)
3139 			continue;
3140 		/*
3141 		 * If we're using an MQ scheduler, just update the scheduler
3142 		 * queue depth. This is similar to what the old code would do.
3143 		 */
3144 		if (!hctx->sched_tags) {
3145 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3146 							false);
3147 		} else {
3148 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3149 							nr, true);
3150 		}
3151 		if (ret)
3152 			break;
3153 		if (q->elevator && q->elevator->type->ops.depth_updated)
3154 			q->elevator->type->ops.depth_updated(hctx);
3155 	}
3156 
3157 	if (!ret)
3158 		q->nr_requests = nr;
3159 
3160 	blk_mq_unquiesce_queue(q);
3161 	blk_mq_unfreeze_queue(q);
3162 
3163 	return ret;
3164 }
3165 
3166 /*
3167  * request_queue and elevator_type pair.
3168  * It is just used by __blk_mq_update_nr_hw_queues to cache
3169  * the elevator_type associated with a request_queue.
3170  */
3171 struct blk_mq_qe_pair {
3172 	struct list_head node;
3173 	struct request_queue *q;
3174 	struct elevator_type *type;
3175 };
3176 
3177 /*
3178  * Cache the elevator_type in qe pair list and switch the
3179  * io scheduler to 'none'
3180  */
3181 static bool blk_mq_elv_switch_none(struct list_head *head,
3182 		struct request_queue *q)
3183 {
3184 	struct blk_mq_qe_pair *qe;
3185 
3186 	if (!q->elevator)
3187 		return true;
3188 
3189 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3190 	if (!qe)
3191 		return false;
3192 
3193 	INIT_LIST_HEAD(&qe->node);
3194 	qe->q = q;
3195 	qe->type = q->elevator->type;
3196 	list_add(&qe->node, head);
3197 
3198 	mutex_lock(&q->sysfs_lock);
3199 	/*
3200 	 * After elevator_switch_mq, the previous elevator_queue will be
3201 	 * released by elevator_release. The reference of the io scheduler
3202 	 * module get by elevator_get will also be put. So we need to get
3203 	 * a reference of the io scheduler module here to prevent it to be
3204 	 * removed.
3205 	 */
3206 	__module_get(qe->type->elevator_owner);
3207 	elevator_switch_mq(q, NULL);
3208 	mutex_unlock(&q->sysfs_lock);
3209 
3210 	return true;
3211 }
3212 
3213 static void blk_mq_elv_switch_back(struct list_head *head,
3214 		struct request_queue *q)
3215 {
3216 	struct blk_mq_qe_pair *qe;
3217 	struct elevator_type *t = NULL;
3218 
3219 	list_for_each_entry(qe, head, node)
3220 		if (qe->q == q) {
3221 			t = qe->type;
3222 			break;
3223 		}
3224 
3225 	if (!t)
3226 		return;
3227 
3228 	list_del(&qe->node);
3229 	kfree(qe);
3230 
3231 	mutex_lock(&q->sysfs_lock);
3232 	elevator_switch_mq(q, t);
3233 	mutex_unlock(&q->sysfs_lock);
3234 }
3235 
3236 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3237 							int nr_hw_queues)
3238 {
3239 	struct request_queue *q;
3240 	LIST_HEAD(head);
3241 	int prev_nr_hw_queues;
3242 
3243 	lockdep_assert_held(&set->tag_list_lock);
3244 
3245 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3246 		nr_hw_queues = nr_cpu_ids;
3247 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3248 		return;
3249 
3250 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3251 		blk_mq_freeze_queue(q);
3252 	/*
3253 	 * Switch IO scheduler to 'none', cleaning up the data associated
3254 	 * with the previous scheduler. We will switch back once we are done
3255 	 * updating the new sw to hw queue mappings.
3256 	 */
3257 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3258 		if (!blk_mq_elv_switch_none(&head, q))
3259 			goto switch_back;
3260 
3261 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3262 		blk_mq_debugfs_unregister_hctxs(q);
3263 		blk_mq_sysfs_unregister(q);
3264 	}
3265 
3266 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3267 	    0)
3268 		goto reregister;
3269 
3270 	prev_nr_hw_queues = set->nr_hw_queues;
3271 	set->nr_hw_queues = nr_hw_queues;
3272 	blk_mq_update_queue_map(set);
3273 fallback:
3274 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3275 		blk_mq_realloc_hw_ctxs(set, q);
3276 		if (q->nr_hw_queues != set->nr_hw_queues) {
3277 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3278 					nr_hw_queues, prev_nr_hw_queues);
3279 			set->nr_hw_queues = prev_nr_hw_queues;
3280 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3281 			goto fallback;
3282 		}
3283 		blk_mq_map_swqueue(q);
3284 	}
3285 
3286 reregister:
3287 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3288 		blk_mq_sysfs_register(q);
3289 		blk_mq_debugfs_register_hctxs(q);
3290 	}
3291 
3292 switch_back:
3293 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3294 		blk_mq_elv_switch_back(&head, q);
3295 
3296 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3297 		blk_mq_unfreeze_queue(q);
3298 }
3299 
3300 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3301 {
3302 	mutex_lock(&set->tag_list_lock);
3303 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3304 	mutex_unlock(&set->tag_list_lock);
3305 }
3306 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3307 
3308 /* Enable polling stats and return whether they were already enabled. */
3309 static bool blk_poll_stats_enable(struct request_queue *q)
3310 {
3311 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3312 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3313 		return true;
3314 	blk_stat_add_callback(q, q->poll_cb);
3315 	return false;
3316 }
3317 
3318 static void blk_mq_poll_stats_start(struct request_queue *q)
3319 {
3320 	/*
3321 	 * We don't arm the callback if polling stats are not enabled or the
3322 	 * callback is already active.
3323 	 */
3324 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3325 	    blk_stat_is_active(q->poll_cb))
3326 		return;
3327 
3328 	blk_stat_activate_msecs(q->poll_cb, 100);
3329 }
3330 
3331 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3332 {
3333 	struct request_queue *q = cb->data;
3334 	int bucket;
3335 
3336 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3337 		if (cb->stat[bucket].nr_samples)
3338 			q->poll_stat[bucket] = cb->stat[bucket];
3339 	}
3340 }
3341 
3342 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3343 				       struct blk_mq_hw_ctx *hctx,
3344 				       struct request *rq)
3345 {
3346 	unsigned long ret = 0;
3347 	int bucket;
3348 
3349 	/*
3350 	 * If stats collection isn't on, don't sleep but turn it on for
3351 	 * future users
3352 	 */
3353 	if (!blk_poll_stats_enable(q))
3354 		return 0;
3355 
3356 	/*
3357 	 * As an optimistic guess, use half of the mean service time
3358 	 * for this type of request. We can (and should) make this smarter.
3359 	 * For instance, if the completion latencies are tight, we can
3360 	 * get closer than just half the mean. This is especially
3361 	 * important on devices where the completion latencies are longer
3362 	 * than ~10 usec. We do use the stats for the relevant IO size
3363 	 * if available which does lead to better estimates.
3364 	 */
3365 	bucket = blk_mq_poll_stats_bkt(rq);
3366 	if (bucket < 0)
3367 		return ret;
3368 
3369 	if (q->poll_stat[bucket].nr_samples)
3370 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3371 
3372 	return ret;
3373 }
3374 
3375 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3376 				     struct blk_mq_hw_ctx *hctx,
3377 				     struct request *rq)
3378 {
3379 	struct hrtimer_sleeper hs;
3380 	enum hrtimer_mode mode;
3381 	unsigned int nsecs;
3382 	ktime_t kt;
3383 
3384 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3385 		return false;
3386 
3387 	/*
3388 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3389 	 *
3390 	 *  0:	use half of prev avg
3391 	 * >0:	use this specific value
3392 	 */
3393 	if (q->poll_nsec > 0)
3394 		nsecs = q->poll_nsec;
3395 	else
3396 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3397 
3398 	if (!nsecs)
3399 		return false;
3400 
3401 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3402 
3403 	/*
3404 	 * This will be replaced with the stats tracking code, using
3405 	 * 'avg_completion_time / 2' as the pre-sleep target.
3406 	 */
3407 	kt = nsecs;
3408 
3409 	mode = HRTIMER_MODE_REL;
3410 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3411 	hrtimer_set_expires(&hs.timer, kt);
3412 
3413 	do {
3414 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3415 			break;
3416 		set_current_state(TASK_UNINTERRUPTIBLE);
3417 		hrtimer_sleeper_start_expires(&hs, mode);
3418 		if (hs.task)
3419 			io_schedule();
3420 		hrtimer_cancel(&hs.timer);
3421 		mode = HRTIMER_MODE_ABS;
3422 	} while (hs.task && !signal_pending(current));
3423 
3424 	__set_current_state(TASK_RUNNING);
3425 	destroy_hrtimer_on_stack(&hs.timer);
3426 	return true;
3427 }
3428 
3429 static bool blk_mq_poll_hybrid(struct request_queue *q,
3430 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3431 {
3432 	struct request *rq;
3433 
3434 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3435 		return false;
3436 
3437 	if (!blk_qc_t_is_internal(cookie))
3438 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3439 	else {
3440 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3441 		/*
3442 		 * With scheduling, if the request has completed, we'll
3443 		 * get a NULL return here, as we clear the sched tag when
3444 		 * that happens. The request still remains valid, like always,
3445 		 * so we should be safe with just the NULL check.
3446 		 */
3447 		if (!rq)
3448 			return false;
3449 	}
3450 
3451 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3452 }
3453 
3454 /**
3455  * blk_poll - poll for IO completions
3456  * @q:  the queue
3457  * @cookie: cookie passed back at IO submission time
3458  * @spin: whether to spin for completions
3459  *
3460  * Description:
3461  *    Poll for completions on the passed in queue. Returns number of
3462  *    completed entries found. If @spin is true, then blk_poll will continue
3463  *    looping until at least one completion is found, unless the task is
3464  *    otherwise marked running (or we need to reschedule).
3465  */
3466 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3467 {
3468 	struct blk_mq_hw_ctx *hctx;
3469 	long state;
3470 
3471 	if (!blk_qc_t_valid(cookie) ||
3472 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3473 		return 0;
3474 
3475 	if (current->plug)
3476 		blk_flush_plug_list(current->plug, false);
3477 
3478 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3479 
3480 	/*
3481 	 * If we sleep, have the caller restart the poll loop to reset
3482 	 * the state. Like for the other success return cases, the
3483 	 * caller is responsible for checking if the IO completed. If
3484 	 * the IO isn't complete, we'll get called again and will go
3485 	 * straight to the busy poll loop.
3486 	 */
3487 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3488 		return 1;
3489 
3490 	hctx->poll_considered++;
3491 
3492 	state = current->state;
3493 	do {
3494 		int ret;
3495 
3496 		hctx->poll_invoked++;
3497 
3498 		ret = q->mq_ops->poll(hctx);
3499 		if (ret > 0) {
3500 			hctx->poll_success++;
3501 			__set_current_state(TASK_RUNNING);
3502 			return ret;
3503 		}
3504 
3505 		if (signal_pending_state(state, current))
3506 			__set_current_state(TASK_RUNNING);
3507 
3508 		if (current->state == TASK_RUNNING)
3509 			return 1;
3510 		if (ret < 0 || !spin)
3511 			break;
3512 		cpu_relax();
3513 	} while (!need_resched());
3514 
3515 	__set_current_state(TASK_RUNNING);
3516 	return 0;
3517 }
3518 EXPORT_SYMBOL_GPL(blk_poll);
3519 
3520 unsigned int blk_mq_rq_cpu(struct request *rq)
3521 {
3522 	return rq->mq_ctx->cpu;
3523 }
3524 EXPORT_SYMBOL(blk_mq_rq_cpu);
3525 
3526 static int __init blk_mq_init(void)
3527 {
3528 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3529 				blk_mq_hctx_notify_dead);
3530 	return 0;
3531 }
3532 subsys_initcall(blk_mq_init);
3533