xref: /openbmc/linux/block/blk-mq.c (revision 1c2dd16a)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38 
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			!list_empty_careful(&hctx->dispatch) ||
69 			blk_mq_sched_has_work(hctx);
70 }
71 
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 				     struct blk_mq_ctx *ctx)
77 {
78 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81 
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 				      struct blk_mq_ctx *ctx)
84 {
85 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87 
88 void blk_freeze_queue_start(struct request_queue *q)
89 {
90 	int freeze_depth;
91 
92 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
93 	if (freeze_depth == 1) {
94 		percpu_ref_kill(&q->q_usage_counter);
95 		blk_mq_run_hw_queues(q, false);
96 	}
97 }
98 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
99 
100 void blk_mq_freeze_queue_wait(struct request_queue *q)
101 {
102 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
103 }
104 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
105 
106 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
107 				     unsigned long timeout)
108 {
109 	return wait_event_timeout(q->mq_freeze_wq,
110 					percpu_ref_is_zero(&q->q_usage_counter),
111 					timeout);
112 }
113 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114 
115 /*
116  * Guarantee no request is in use, so we can change any data structure of
117  * the queue afterward.
118  */
119 void blk_freeze_queue(struct request_queue *q)
120 {
121 	/*
122 	 * In the !blk_mq case we are only calling this to kill the
123 	 * q_usage_counter, otherwise this increases the freeze depth
124 	 * and waits for it to return to zero.  For this reason there is
125 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
126 	 * exported to drivers as the only user for unfreeze is blk_mq.
127 	 */
128 	blk_freeze_queue_start(q);
129 	blk_mq_freeze_queue_wait(q);
130 }
131 
132 void blk_mq_freeze_queue(struct request_queue *q)
133 {
134 	/*
135 	 * ...just an alias to keep freeze and unfreeze actions balanced
136 	 * in the blk_mq_* namespace
137 	 */
138 	blk_freeze_queue(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 	int freeze_depth;
145 
146 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 	WARN_ON_ONCE(freeze_depth < 0);
148 	if (!freeze_depth) {
149 		percpu_ref_reinit(&q->q_usage_counter);
150 		wake_up_all(&q->mq_freeze_wq);
151 	}
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 
155 /**
156  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
157  * @q: request queue.
158  *
159  * Note: this function does not prevent that the struct request end_io()
160  * callback function is invoked. Additionally, it is not prevented that
161  * new queue_rq() calls occur unless the queue has been stopped first.
162  */
163 void blk_mq_quiesce_queue(struct request_queue *q)
164 {
165 	struct blk_mq_hw_ctx *hctx;
166 	unsigned int i;
167 	bool rcu = false;
168 
169 	blk_mq_stop_hw_queues(q);
170 
171 	queue_for_each_hw_ctx(q, hctx, i) {
172 		if (hctx->flags & BLK_MQ_F_BLOCKING)
173 			synchronize_srcu(&hctx->queue_rq_srcu);
174 		else
175 			rcu = true;
176 	}
177 	if (rcu)
178 		synchronize_rcu();
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
181 
182 void blk_mq_wake_waiters(struct request_queue *q)
183 {
184 	struct blk_mq_hw_ctx *hctx;
185 	unsigned int i;
186 
187 	queue_for_each_hw_ctx(q, hctx, i)
188 		if (blk_mq_hw_queue_mapped(hctx))
189 			blk_mq_tag_wakeup_all(hctx->tags, true);
190 
191 	/*
192 	 * If we are called because the queue has now been marked as
193 	 * dying, we need to ensure that processes currently waiting on
194 	 * the queue are notified as well.
195 	 */
196 	wake_up_all(&q->mq_freeze_wq);
197 }
198 
199 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
200 {
201 	return blk_mq_has_free_tags(hctx->tags);
202 }
203 EXPORT_SYMBOL(blk_mq_can_queue);
204 
205 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
206 			struct request *rq, unsigned int op)
207 {
208 	INIT_LIST_HEAD(&rq->queuelist);
209 	/* csd/requeue_work/fifo_time is initialized before use */
210 	rq->q = q;
211 	rq->mq_ctx = ctx;
212 	rq->cmd_flags = op;
213 	if (blk_queue_io_stat(q))
214 		rq->rq_flags |= RQF_IO_STAT;
215 	/* do not touch atomic flags, it needs atomic ops against the timer */
216 	rq->cpu = -1;
217 	INIT_HLIST_NODE(&rq->hash);
218 	RB_CLEAR_NODE(&rq->rb_node);
219 	rq->rq_disk = NULL;
220 	rq->part = NULL;
221 	rq->start_time = jiffies;
222 #ifdef CONFIG_BLK_CGROUP
223 	rq->rl = NULL;
224 	set_start_time_ns(rq);
225 	rq->io_start_time_ns = 0;
226 #endif
227 	rq->nr_phys_segments = 0;
228 #if defined(CONFIG_BLK_DEV_INTEGRITY)
229 	rq->nr_integrity_segments = 0;
230 #endif
231 	rq->special = NULL;
232 	/* tag was already set */
233 	rq->extra_len = 0;
234 
235 	INIT_LIST_HEAD(&rq->timeout_list);
236 	rq->timeout = 0;
237 
238 	rq->end_io = NULL;
239 	rq->end_io_data = NULL;
240 	rq->next_rq = NULL;
241 
242 	ctx->rq_dispatched[op_is_sync(op)]++;
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
245 
246 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
247 				       unsigned int op)
248 {
249 	struct request *rq;
250 	unsigned int tag;
251 
252 	tag = blk_mq_get_tag(data);
253 	if (tag != BLK_MQ_TAG_FAIL) {
254 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
255 
256 		rq = tags->static_rqs[tag];
257 
258 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
259 			rq->tag = -1;
260 			rq->internal_tag = tag;
261 		} else {
262 			if (blk_mq_tag_busy(data->hctx)) {
263 				rq->rq_flags = RQF_MQ_INFLIGHT;
264 				atomic_inc(&data->hctx->nr_active);
265 			}
266 			rq->tag = tag;
267 			rq->internal_tag = -1;
268 			data->hctx->tags->rqs[rq->tag] = rq;
269 		}
270 
271 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
272 		return rq;
273 	}
274 
275 	return NULL;
276 }
277 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
278 
279 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
280 		unsigned int flags)
281 {
282 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
283 	struct request *rq;
284 	int ret;
285 
286 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
287 	if (ret)
288 		return ERR_PTR(ret);
289 
290 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
291 
292 	blk_mq_put_ctx(alloc_data.ctx);
293 	blk_queue_exit(q);
294 
295 	if (!rq)
296 		return ERR_PTR(-EWOULDBLOCK);
297 
298 	rq->__data_len = 0;
299 	rq->__sector = (sector_t) -1;
300 	rq->bio = rq->biotail = NULL;
301 	return rq;
302 }
303 EXPORT_SYMBOL(blk_mq_alloc_request);
304 
305 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
306 		unsigned int flags, unsigned int hctx_idx)
307 {
308 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
309 	struct request *rq;
310 	unsigned int cpu;
311 	int ret;
312 
313 	/*
314 	 * If the tag allocator sleeps we could get an allocation for a
315 	 * different hardware context.  No need to complicate the low level
316 	 * allocator for this for the rare use case of a command tied to
317 	 * a specific queue.
318 	 */
319 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
320 		return ERR_PTR(-EINVAL);
321 
322 	if (hctx_idx >= q->nr_hw_queues)
323 		return ERR_PTR(-EIO);
324 
325 	ret = blk_queue_enter(q, true);
326 	if (ret)
327 		return ERR_PTR(ret);
328 
329 	/*
330 	 * Check if the hardware context is actually mapped to anything.
331 	 * If not tell the caller that it should skip this queue.
332 	 */
333 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
334 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
335 		blk_queue_exit(q);
336 		return ERR_PTR(-EXDEV);
337 	}
338 	cpu = cpumask_first(alloc_data.hctx->cpumask);
339 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
340 
341 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
342 
343 	blk_queue_exit(q);
344 
345 	if (!rq)
346 		return ERR_PTR(-EWOULDBLOCK);
347 
348 	return rq;
349 }
350 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
351 
352 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
353 			     struct request *rq)
354 {
355 	const int sched_tag = rq->internal_tag;
356 	struct request_queue *q = rq->q;
357 
358 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
359 		atomic_dec(&hctx->nr_active);
360 
361 	wbt_done(q->rq_wb, &rq->issue_stat);
362 	rq->rq_flags = 0;
363 
364 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
366 	if (rq->tag != -1)
367 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
368 	if (sched_tag != -1)
369 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
370 	blk_mq_sched_restart(hctx);
371 	blk_queue_exit(q);
372 }
373 
374 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
375 				     struct request *rq)
376 {
377 	struct blk_mq_ctx *ctx = rq->mq_ctx;
378 
379 	ctx->rq_completed[rq_is_sync(rq)]++;
380 	__blk_mq_finish_request(hctx, ctx, rq);
381 }
382 
383 void blk_mq_finish_request(struct request *rq)
384 {
385 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
386 }
387 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
388 
389 void blk_mq_free_request(struct request *rq)
390 {
391 	blk_mq_sched_put_request(rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_free_request);
394 
395 inline void __blk_mq_end_request(struct request *rq, int error)
396 {
397 	blk_account_io_done(rq);
398 
399 	if (rq->end_io) {
400 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
401 		rq->end_io(rq, error);
402 	} else {
403 		if (unlikely(blk_bidi_rq(rq)))
404 			blk_mq_free_request(rq->next_rq);
405 		blk_mq_free_request(rq);
406 	}
407 }
408 EXPORT_SYMBOL(__blk_mq_end_request);
409 
410 void blk_mq_end_request(struct request *rq, int error)
411 {
412 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
413 		BUG();
414 	__blk_mq_end_request(rq, error);
415 }
416 EXPORT_SYMBOL(blk_mq_end_request);
417 
418 static void __blk_mq_complete_request_remote(void *data)
419 {
420 	struct request *rq = data;
421 
422 	rq->q->softirq_done_fn(rq);
423 }
424 
425 static void __blk_mq_complete_request(struct request *rq)
426 {
427 	struct blk_mq_ctx *ctx = rq->mq_ctx;
428 	bool shared = false;
429 	int cpu;
430 
431 	if (rq->internal_tag != -1)
432 		blk_mq_sched_completed_request(rq);
433 	if (rq->rq_flags & RQF_STATS) {
434 		blk_mq_poll_stats_start(rq->q);
435 		blk_stat_add(rq);
436 	}
437 
438 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
439 		rq->q->softirq_done_fn(rq);
440 		return;
441 	}
442 
443 	cpu = get_cpu();
444 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
445 		shared = cpus_share_cache(cpu, ctx->cpu);
446 
447 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
448 		rq->csd.func = __blk_mq_complete_request_remote;
449 		rq->csd.info = rq;
450 		rq->csd.flags = 0;
451 		smp_call_function_single_async(ctx->cpu, &rq->csd);
452 	} else {
453 		rq->q->softirq_done_fn(rq);
454 	}
455 	put_cpu();
456 }
457 
458 /**
459  * blk_mq_complete_request - end I/O on a request
460  * @rq:		the request being processed
461  *
462  * Description:
463  *	Ends all I/O on a request. It does not handle partial completions.
464  *	The actual completion happens out-of-order, through a IPI handler.
465  **/
466 void blk_mq_complete_request(struct request *rq)
467 {
468 	struct request_queue *q = rq->q;
469 
470 	if (unlikely(blk_should_fake_timeout(q)))
471 		return;
472 	if (!blk_mark_rq_complete(rq))
473 		__blk_mq_complete_request(rq);
474 }
475 EXPORT_SYMBOL(blk_mq_complete_request);
476 
477 int blk_mq_request_started(struct request *rq)
478 {
479 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_request_started);
482 
483 void blk_mq_start_request(struct request *rq)
484 {
485 	struct request_queue *q = rq->q;
486 
487 	blk_mq_sched_started_request(rq);
488 
489 	trace_block_rq_issue(q, rq);
490 
491 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
492 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
493 		rq->rq_flags |= RQF_STATS;
494 		wbt_issue(q->rq_wb, &rq->issue_stat);
495 	}
496 
497 	blk_add_timer(rq);
498 
499 	/*
500 	 * Ensure that ->deadline is visible before set the started
501 	 * flag and clear the completed flag.
502 	 */
503 	smp_mb__before_atomic();
504 
505 	/*
506 	 * Mark us as started and clear complete. Complete might have been
507 	 * set if requeue raced with timeout, which then marked it as
508 	 * complete. So be sure to clear complete again when we start
509 	 * the request, otherwise we'll ignore the completion event.
510 	 */
511 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
512 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
513 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
514 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
515 
516 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
517 		/*
518 		 * Make sure space for the drain appears.  We know we can do
519 		 * this because max_hw_segments has been adjusted to be one
520 		 * fewer than the device can handle.
521 		 */
522 		rq->nr_phys_segments++;
523 	}
524 }
525 EXPORT_SYMBOL(blk_mq_start_request);
526 
527 /*
528  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
529  * flag isn't set yet, so there may be race with timeout handler,
530  * but given rq->deadline is just set in .queue_rq() under
531  * this situation, the race won't be possible in reality because
532  * rq->timeout should be set as big enough to cover the window
533  * between blk_mq_start_request() called from .queue_rq() and
534  * clearing REQ_ATOM_STARTED here.
535  */
536 static void __blk_mq_requeue_request(struct request *rq)
537 {
538 	struct request_queue *q = rq->q;
539 
540 	trace_block_rq_requeue(q, rq);
541 	wbt_requeue(q->rq_wb, &rq->issue_stat);
542 	blk_mq_sched_requeue_request(rq);
543 
544 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
545 		if (q->dma_drain_size && blk_rq_bytes(rq))
546 			rq->nr_phys_segments--;
547 	}
548 }
549 
550 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
551 {
552 	__blk_mq_requeue_request(rq);
553 
554 	BUG_ON(blk_queued_rq(rq));
555 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
556 }
557 EXPORT_SYMBOL(blk_mq_requeue_request);
558 
559 static void blk_mq_requeue_work(struct work_struct *work)
560 {
561 	struct request_queue *q =
562 		container_of(work, struct request_queue, requeue_work.work);
563 	LIST_HEAD(rq_list);
564 	struct request *rq, *next;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&q->requeue_lock, flags);
568 	list_splice_init(&q->requeue_list, &rq_list);
569 	spin_unlock_irqrestore(&q->requeue_lock, flags);
570 
571 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
572 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
573 			continue;
574 
575 		rq->rq_flags &= ~RQF_SOFTBARRIER;
576 		list_del_init(&rq->queuelist);
577 		blk_mq_sched_insert_request(rq, true, false, false, true);
578 	}
579 
580 	while (!list_empty(&rq_list)) {
581 		rq = list_entry(rq_list.next, struct request, queuelist);
582 		list_del_init(&rq->queuelist);
583 		blk_mq_sched_insert_request(rq, false, false, false, true);
584 	}
585 
586 	blk_mq_run_hw_queues(q, false);
587 }
588 
589 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
590 				bool kick_requeue_list)
591 {
592 	struct request_queue *q = rq->q;
593 	unsigned long flags;
594 
595 	/*
596 	 * We abuse this flag that is otherwise used by the I/O scheduler to
597 	 * request head insertation from the workqueue.
598 	 */
599 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
600 
601 	spin_lock_irqsave(&q->requeue_lock, flags);
602 	if (at_head) {
603 		rq->rq_flags |= RQF_SOFTBARRIER;
604 		list_add(&rq->queuelist, &q->requeue_list);
605 	} else {
606 		list_add_tail(&rq->queuelist, &q->requeue_list);
607 	}
608 	spin_unlock_irqrestore(&q->requeue_lock, flags);
609 
610 	if (kick_requeue_list)
611 		blk_mq_kick_requeue_list(q);
612 }
613 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
614 
615 void blk_mq_kick_requeue_list(struct request_queue *q)
616 {
617 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
618 }
619 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
620 
621 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
622 				    unsigned long msecs)
623 {
624 	kblockd_schedule_delayed_work(&q->requeue_work,
625 				      msecs_to_jiffies(msecs));
626 }
627 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
628 
629 void blk_mq_abort_requeue_list(struct request_queue *q)
630 {
631 	unsigned long flags;
632 	LIST_HEAD(rq_list);
633 
634 	spin_lock_irqsave(&q->requeue_lock, flags);
635 	list_splice_init(&q->requeue_list, &rq_list);
636 	spin_unlock_irqrestore(&q->requeue_lock, flags);
637 
638 	while (!list_empty(&rq_list)) {
639 		struct request *rq;
640 
641 		rq = list_first_entry(&rq_list, struct request, queuelist);
642 		list_del_init(&rq->queuelist);
643 		blk_mq_end_request(rq, -EIO);
644 	}
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647 
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650 	if (tag < tags->nr_tags) {
651 		prefetch(tags->rqs[tag]);
652 		return tags->rqs[tag];
653 	}
654 
655 	return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658 
659 struct blk_mq_timeout_data {
660 	unsigned long next;
661 	unsigned int next_set;
662 };
663 
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666 	const struct blk_mq_ops *ops = req->q->mq_ops;
667 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668 
669 	/*
670 	 * We know that complete is set at this point. If STARTED isn't set
671 	 * anymore, then the request isn't active and the "timeout" should
672 	 * just be ignored. This can happen due to the bitflag ordering.
673 	 * Timeout first checks if STARTED is set, and if it is, assumes
674 	 * the request is active. But if we race with completion, then
675 	 * both flags will get cleared. So check here again, and ignore
676 	 * a timeout event with a request that isn't active.
677 	 */
678 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 		return;
680 
681 	if (ops->timeout)
682 		ret = ops->timeout(req, reserved);
683 
684 	switch (ret) {
685 	case BLK_EH_HANDLED:
686 		__blk_mq_complete_request(req);
687 		break;
688 	case BLK_EH_RESET_TIMER:
689 		blk_add_timer(req);
690 		blk_clear_rq_complete(req);
691 		break;
692 	case BLK_EH_NOT_HANDLED:
693 		break;
694 	default:
695 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 		break;
697 	}
698 }
699 
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 		struct request *rq, void *priv, bool reserved)
702 {
703 	struct blk_mq_timeout_data *data = priv;
704 
705 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706 		return;
707 
708 	/*
709 	 * The rq being checked may have been freed and reallocated
710 	 * out already here, we avoid this race by checking rq->deadline
711 	 * and REQ_ATOM_COMPLETE flag together:
712 	 *
713 	 * - if rq->deadline is observed as new value because of
714 	 *   reusing, the rq won't be timed out because of timing.
715 	 * - if rq->deadline is observed as previous value,
716 	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 	 *   because we put a barrier between setting rq->deadline
718 	 *   and clearing the flag in blk_mq_start_request(), so
719 	 *   this rq won't be timed out too.
720 	 */
721 	if (time_after_eq(jiffies, rq->deadline)) {
722 		if (!blk_mark_rq_complete(rq))
723 			blk_mq_rq_timed_out(rq, reserved);
724 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 		data->next = rq->deadline;
726 		data->next_set = 1;
727 	}
728 }
729 
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732 	struct request_queue *q =
733 		container_of(work, struct request_queue, timeout_work);
734 	struct blk_mq_timeout_data data = {
735 		.next		= 0,
736 		.next_set	= 0,
737 	};
738 	int i;
739 
740 	/* A deadlock might occur if a request is stuck requiring a
741 	 * timeout at the same time a queue freeze is waiting
742 	 * completion, since the timeout code would not be able to
743 	 * acquire the queue reference here.
744 	 *
745 	 * That's why we don't use blk_queue_enter here; instead, we use
746 	 * percpu_ref_tryget directly, because we need to be able to
747 	 * obtain a reference even in the short window between the queue
748 	 * starting to freeze, by dropping the first reference in
749 	 * blk_freeze_queue_start, and the moment the last request is
750 	 * consumed, marked by the instant q_usage_counter reaches
751 	 * zero.
752 	 */
753 	if (!percpu_ref_tryget(&q->q_usage_counter))
754 		return;
755 
756 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757 
758 	if (data.next_set) {
759 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 		mod_timer(&q->timeout, data.next);
761 	} else {
762 		struct blk_mq_hw_ctx *hctx;
763 
764 		queue_for_each_hw_ctx(q, hctx, i) {
765 			/* the hctx may be unmapped, so check it here */
766 			if (blk_mq_hw_queue_mapped(hctx))
767 				blk_mq_tag_idle(hctx);
768 		}
769 	}
770 	blk_queue_exit(q);
771 }
772 
773 /*
774  * Reverse check our software queue for entries that we could potentially
775  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776  * too much time checking for merges.
777  */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779 				 struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781 	struct request *rq;
782 	int checked = 8;
783 
784 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785 		bool merged = false;
786 
787 		if (!checked--)
788 			break;
789 
790 		if (!blk_rq_merge_ok(rq, bio))
791 			continue;
792 
793 		switch (blk_try_merge(rq, bio)) {
794 		case ELEVATOR_BACK_MERGE:
795 			if (blk_mq_sched_allow_merge(q, rq, bio))
796 				merged = bio_attempt_back_merge(q, rq, bio);
797 			break;
798 		case ELEVATOR_FRONT_MERGE:
799 			if (blk_mq_sched_allow_merge(q, rq, bio))
800 				merged = bio_attempt_front_merge(q, rq, bio);
801 			break;
802 		case ELEVATOR_DISCARD_MERGE:
803 			merged = bio_attempt_discard_merge(q, rq, bio);
804 			break;
805 		default:
806 			continue;
807 		}
808 
809 		if (merged)
810 			ctx->rq_merged++;
811 		return merged;
812 	}
813 
814 	return false;
815 }
816 
817 struct flush_busy_ctx_data {
818 	struct blk_mq_hw_ctx *hctx;
819 	struct list_head *list;
820 };
821 
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824 	struct flush_busy_ctx_data *flush_data = data;
825 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827 
828 	sbitmap_clear_bit(sb, bitnr);
829 	spin_lock(&ctx->lock);
830 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 	spin_unlock(&ctx->lock);
832 	return true;
833 }
834 
835 /*
836  * Process software queues that have been marked busy, splicing them
837  * to the for-dispatch
838  */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841 	struct flush_busy_ctx_data data = {
842 		.hctx = hctx,
843 		.list = list,
844 	};
845 
846 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849 
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852 	if (!queued)
853 		return 0;
854 
855 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857 
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 			   bool wait)
860 {
861 	struct blk_mq_alloc_data data = {
862 		.q = rq->q,
863 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 	};
866 
867 	might_sleep_if(wait);
868 
869 	if (rq->tag != -1)
870 		goto done;
871 
872 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
873 		data.flags |= BLK_MQ_REQ_RESERVED;
874 
875 	rq->tag = blk_mq_get_tag(&data);
876 	if (rq->tag >= 0) {
877 		if (blk_mq_tag_busy(data.hctx)) {
878 			rq->rq_flags |= RQF_MQ_INFLIGHT;
879 			atomic_inc(&data.hctx->nr_active);
880 		}
881 		data.hctx->tags->rqs[rq->tag] = rq;
882 	}
883 
884 done:
885 	if (hctx)
886 		*hctx = data.hctx;
887 	return rq->tag != -1;
888 }
889 
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 				    struct request *rq)
892 {
893 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 	rq->tag = -1;
895 
896 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 		atomic_dec(&hctx->nr_active);
899 	}
900 }
901 
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 				       struct request *rq)
904 {
905 	if (rq->tag == -1 || rq->internal_tag == -1)
906 		return;
907 
908 	__blk_mq_put_driver_tag(hctx, rq);
909 }
910 
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913 	struct blk_mq_hw_ctx *hctx;
914 
915 	if (rq->tag == -1 || rq->internal_tag == -1)
916 		return;
917 
918 	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 	__blk_mq_put_driver_tag(hctx, rq);
920 }
921 
922 /*
923  * If we fail getting a driver tag because all the driver tags are already
924  * assigned and on the dispatch list, BUT the first entry does not have a
925  * tag, then we could deadlock. For that case, move entries with assigned
926  * driver tags to the front, leaving the set of tagged requests in the
927  * same order, and the untagged set in the same order.
928  */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931 	struct request *rq, *tmp, *first = NULL;
932 
933 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 		if (rq == first)
935 			break;
936 		if (rq->tag != -1) {
937 			list_move(&rq->queuelist, list);
938 			if (!first)
939 				first = rq;
940 		}
941 	}
942 
943 	return first != NULL;
944 }
945 
946 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947 				void *key)
948 {
949 	struct blk_mq_hw_ctx *hctx;
950 
951 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952 
953 	list_del(&wait->task_list);
954 	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 	blk_mq_run_hw_queue(hctx, true);
956 	return 1;
957 }
958 
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961 	struct sbq_wait_state *ws;
962 
963 	/*
964 	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 	 * The thread which wins the race to grab this bit adds the hardware
966 	 * queue to the wait queue.
967 	 */
968 	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 		return false;
971 
972 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974 
975 	/*
976 	 * As soon as this returns, it's no longer safe to fiddle with
977 	 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 	 * and unlock the bit.
979 	 */
980 	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 	return true;
982 }
983 
984 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985 {
986 	struct blk_mq_hw_ctx *hctx;
987 	struct request *rq;
988 	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
989 
990 	if (list_empty(list))
991 		return false;
992 
993 	/*
994 	 * Now process all the entries, sending them to the driver.
995 	 */
996 	errors = queued = 0;
997 	do {
998 		struct blk_mq_queue_data bd;
999 
1000 		rq = list_first_entry(list, struct request, queuelist);
1001 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1002 			if (!queued && reorder_tags_to_front(list))
1003 				continue;
1004 
1005 			/*
1006 			 * The initial allocation attempt failed, so we need to
1007 			 * rerun the hardware queue when a tag is freed.
1008 			 */
1009 			if (!blk_mq_dispatch_wait_add(hctx))
1010 				break;
1011 
1012 			/*
1013 			 * It's possible that a tag was freed in the window
1014 			 * between the allocation failure and adding the
1015 			 * hardware queue to the wait queue.
1016 			 */
1017 			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1018 				break;
1019 		}
1020 
1021 		list_del_init(&rq->queuelist);
1022 
1023 		bd.rq = rq;
1024 
1025 		/*
1026 		 * Flag last if we have no more requests, or if we have more
1027 		 * but can't assign a driver tag to it.
1028 		 */
1029 		if (list_empty(list))
1030 			bd.last = true;
1031 		else {
1032 			struct request *nxt;
1033 
1034 			nxt = list_first_entry(list, struct request, queuelist);
1035 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1036 		}
1037 
1038 		ret = q->mq_ops->queue_rq(hctx, &bd);
1039 		switch (ret) {
1040 		case BLK_MQ_RQ_QUEUE_OK:
1041 			queued++;
1042 			break;
1043 		case BLK_MQ_RQ_QUEUE_BUSY:
1044 			blk_mq_put_driver_tag_hctx(hctx, rq);
1045 			list_add(&rq->queuelist, list);
1046 			__blk_mq_requeue_request(rq);
1047 			break;
1048 		default:
1049 			pr_err("blk-mq: bad return on queue: %d\n", ret);
1050 		case BLK_MQ_RQ_QUEUE_ERROR:
1051 			errors++;
1052 			blk_mq_end_request(rq, -EIO);
1053 			break;
1054 		}
1055 
1056 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1057 			break;
1058 	} while (!list_empty(list));
1059 
1060 	hctx->dispatched[queued_to_index(queued)]++;
1061 
1062 	/*
1063 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1064 	 * that is where we will continue on next queue run.
1065 	 */
1066 	if (!list_empty(list)) {
1067 		/*
1068 		 * If an I/O scheduler has been configured and we got a driver
1069 		 * tag for the next request already, free it again.
1070 		 */
1071 		rq = list_first_entry(list, struct request, queuelist);
1072 		blk_mq_put_driver_tag(rq);
1073 
1074 		spin_lock(&hctx->lock);
1075 		list_splice_init(list, &hctx->dispatch);
1076 		spin_unlock(&hctx->lock);
1077 
1078 		/*
1079 		 * If SCHED_RESTART was set by the caller of this function and
1080 		 * it is no longer set that means that it was cleared by another
1081 		 * thread and hence that a queue rerun is needed.
1082 		 *
1083 		 * If TAG_WAITING is set that means that an I/O scheduler has
1084 		 * been configured and another thread is waiting for a driver
1085 		 * tag. To guarantee fairness, do not rerun this hardware queue
1086 		 * but let the other thread grab the driver tag.
1087 		 *
1088 		 * If no I/O scheduler has been configured it is possible that
1089 		 * the hardware queue got stopped and restarted before requests
1090 		 * were pushed back onto the dispatch list. Rerun the queue to
1091 		 * avoid starvation. Notes:
1092 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1093 		 *   been stopped before rerunning a queue.
1094 		 * - Some but not all block drivers stop a queue before
1095 		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1096 		 *   and dm-rq.
1097 		 */
1098 		if (!blk_mq_sched_needs_restart(hctx) &&
1099 		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1100 			blk_mq_run_hw_queue(hctx, true);
1101 	}
1102 
1103 	return (queued + errors) != 0;
1104 }
1105 
1106 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1107 {
1108 	int srcu_idx;
1109 
1110 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1111 		cpu_online(hctx->next_cpu));
1112 
1113 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1114 		rcu_read_lock();
1115 		blk_mq_sched_dispatch_requests(hctx);
1116 		rcu_read_unlock();
1117 	} else {
1118 		might_sleep();
1119 
1120 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1121 		blk_mq_sched_dispatch_requests(hctx);
1122 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1123 	}
1124 }
1125 
1126 /*
1127  * It'd be great if the workqueue API had a way to pass
1128  * in a mask and had some smarts for more clever placement.
1129  * For now we just round-robin here, switching for every
1130  * BLK_MQ_CPU_WORK_BATCH queued items.
1131  */
1132 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1133 {
1134 	if (hctx->queue->nr_hw_queues == 1)
1135 		return WORK_CPU_UNBOUND;
1136 
1137 	if (--hctx->next_cpu_batch <= 0) {
1138 		int next_cpu;
1139 
1140 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141 		if (next_cpu >= nr_cpu_ids)
1142 			next_cpu = cpumask_first(hctx->cpumask);
1143 
1144 		hctx->next_cpu = next_cpu;
1145 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1146 	}
1147 
1148 	return hctx->next_cpu;
1149 }
1150 
1151 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152 					unsigned long msecs)
1153 {
1154 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1155 		     !blk_mq_hw_queue_mapped(hctx)))
1156 		return;
1157 
1158 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1159 		int cpu = get_cpu();
1160 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1161 			__blk_mq_run_hw_queue(hctx);
1162 			put_cpu();
1163 			return;
1164 		}
1165 
1166 		put_cpu();
1167 	}
1168 
1169 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1170 					 &hctx->run_work,
1171 					 msecs_to_jiffies(msecs));
1172 }
1173 
1174 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1175 {
1176 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1177 }
1178 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1179 
1180 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1181 {
1182 	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1183 }
1184 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1185 
1186 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1187 {
1188 	struct blk_mq_hw_ctx *hctx;
1189 	int i;
1190 
1191 	queue_for_each_hw_ctx(q, hctx, i) {
1192 		if (!blk_mq_hctx_has_pending(hctx) ||
1193 		    blk_mq_hctx_stopped(hctx))
1194 			continue;
1195 
1196 		blk_mq_run_hw_queue(hctx, async);
1197 	}
1198 }
1199 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1200 
1201 /**
1202  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1203  * @q: request queue.
1204  *
1205  * The caller is responsible for serializing this function against
1206  * blk_mq_{start,stop}_hw_queue().
1207  */
1208 bool blk_mq_queue_stopped(struct request_queue *q)
1209 {
1210 	struct blk_mq_hw_ctx *hctx;
1211 	int i;
1212 
1213 	queue_for_each_hw_ctx(q, hctx, i)
1214 		if (blk_mq_hctx_stopped(hctx))
1215 			return true;
1216 
1217 	return false;
1218 }
1219 EXPORT_SYMBOL(blk_mq_queue_stopped);
1220 
1221 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1222 {
1223 	cancel_delayed_work_sync(&hctx->run_work);
1224 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1225 }
1226 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1227 
1228 void blk_mq_stop_hw_queues(struct request_queue *q)
1229 {
1230 	struct blk_mq_hw_ctx *hctx;
1231 	int i;
1232 
1233 	queue_for_each_hw_ctx(q, hctx, i)
1234 		blk_mq_stop_hw_queue(hctx);
1235 }
1236 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1237 
1238 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1239 {
1240 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1241 
1242 	blk_mq_run_hw_queue(hctx, false);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1245 
1246 void blk_mq_start_hw_queues(struct request_queue *q)
1247 {
1248 	struct blk_mq_hw_ctx *hctx;
1249 	int i;
1250 
1251 	queue_for_each_hw_ctx(q, hctx, i)
1252 		blk_mq_start_hw_queue(hctx);
1253 }
1254 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1255 
1256 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1257 {
1258 	if (!blk_mq_hctx_stopped(hctx))
1259 		return;
1260 
1261 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1262 	blk_mq_run_hw_queue(hctx, async);
1263 }
1264 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1265 
1266 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1267 {
1268 	struct blk_mq_hw_ctx *hctx;
1269 	int i;
1270 
1271 	queue_for_each_hw_ctx(q, hctx, i)
1272 		blk_mq_start_stopped_hw_queue(hctx, async);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1275 
1276 static void blk_mq_run_work_fn(struct work_struct *work)
1277 {
1278 	struct blk_mq_hw_ctx *hctx;
1279 
1280 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1281 
1282 	/*
1283 	 * If we are stopped, don't run the queue. The exception is if
1284 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1285 	 * the STOPPED bit and run it.
1286 	 */
1287 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1288 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1289 			return;
1290 
1291 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1292 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1293 	}
1294 
1295 	__blk_mq_run_hw_queue(hctx);
1296 }
1297 
1298 
1299 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1300 {
1301 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1302 		return;
1303 
1304 	/*
1305 	 * Stop the hw queue, then modify currently delayed work.
1306 	 * This should prevent us from running the queue prematurely.
1307 	 * Mark the queue as auto-clearing STOPPED when it runs.
1308 	 */
1309 	blk_mq_stop_hw_queue(hctx);
1310 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1311 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1312 					&hctx->run_work,
1313 					msecs_to_jiffies(msecs));
1314 }
1315 EXPORT_SYMBOL(blk_mq_delay_queue);
1316 
1317 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1318 					    struct request *rq,
1319 					    bool at_head)
1320 {
1321 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1322 
1323 	trace_block_rq_insert(hctx->queue, rq);
1324 
1325 	if (at_head)
1326 		list_add(&rq->queuelist, &ctx->rq_list);
1327 	else
1328 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1329 }
1330 
1331 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1332 			     bool at_head)
1333 {
1334 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1335 
1336 	__blk_mq_insert_req_list(hctx, rq, at_head);
1337 	blk_mq_hctx_mark_pending(hctx, ctx);
1338 }
1339 
1340 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1341 			    struct list_head *list)
1342 
1343 {
1344 	/*
1345 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1346 	 * offline now
1347 	 */
1348 	spin_lock(&ctx->lock);
1349 	while (!list_empty(list)) {
1350 		struct request *rq;
1351 
1352 		rq = list_first_entry(list, struct request, queuelist);
1353 		BUG_ON(rq->mq_ctx != ctx);
1354 		list_del_init(&rq->queuelist);
1355 		__blk_mq_insert_req_list(hctx, rq, false);
1356 	}
1357 	blk_mq_hctx_mark_pending(hctx, ctx);
1358 	spin_unlock(&ctx->lock);
1359 }
1360 
1361 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1362 {
1363 	struct request *rqa = container_of(a, struct request, queuelist);
1364 	struct request *rqb = container_of(b, struct request, queuelist);
1365 
1366 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1367 		 (rqa->mq_ctx == rqb->mq_ctx &&
1368 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1369 }
1370 
1371 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1372 {
1373 	struct blk_mq_ctx *this_ctx;
1374 	struct request_queue *this_q;
1375 	struct request *rq;
1376 	LIST_HEAD(list);
1377 	LIST_HEAD(ctx_list);
1378 	unsigned int depth;
1379 
1380 	list_splice_init(&plug->mq_list, &list);
1381 
1382 	list_sort(NULL, &list, plug_ctx_cmp);
1383 
1384 	this_q = NULL;
1385 	this_ctx = NULL;
1386 	depth = 0;
1387 
1388 	while (!list_empty(&list)) {
1389 		rq = list_entry_rq(list.next);
1390 		list_del_init(&rq->queuelist);
1391 		BUG_ON(!rq->q);
1392 		if (rq->mq_ctx != this_ctx) {
1393 			if (this_ctx) {
1394 				trace_block_unplug(this_q, depth, from_schedule);
1395 				blk_mq_sched_insert_requests(this_q, this_ctx,
1396 								&ctx_list,
1397 								from_schedule);
1398 			}
1399 
1400 			this_ctx = rq->mq_ctx;
1401 			this_q = rq->q;
1402 			depth = 0;
1403 		}
1404 
1405 		depth++;
1406 		list_add_tail(&rq->queuelist, &ctx_list);
1407 	}
1408 
1409 	/*
1410 	 * If 'this_ctx' is set, we know we have entries to complete
1411 	 * on 'ctx_list'. Do those.
1412 	 */
1413 	if (this_ctx) {
1414 		trace_block_unplug(this_q, depth, from_schedule);
1415 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1416 						from_schedule);
1417 	}
1418 }
1419 
1420 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1421 {
1422 	blk_init_request_from_bio(rq, bio);
1423 
1424 	blk_account_io_start(rq, true);
1425 }
1426 
1427 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1428 {
1429 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1430 		!blk_queue_nomerges(hctx->queue);
1431 }
1432 
1433 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1434 					 struct blk_mq_ctx *ctx,
1435 					 struct request *rq, struct bio *bio)
1436 {
1437 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1438 		blk_mq_bio_to_request(rq, bio);
1439 		spin_lock(&ctx->lock);
1440 insert_rq:
1441 		__blk_mq_insert_request(hctx, rq, false);
1442 		spin_unlock(&ctx->lock);
1443 		return false;
1444 	} else {
1445 		struct request_queue *q = hctx->queue;
1446 
1447 		spin_lock(&ctx->lock);
1448 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1449 			blk_mq_bio_to_request(rq, bio);
1450 			goto insert_rq;
1451 		}
1452 
1453 		spin_unlock(&ctx->lock);
1454 		__blk_mq_finish_request(hctx, ctx, rq);
1455 		return true;
1456 	}
1457 }
1458 
1459 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1460 {
1461 	if (rq->tag != -1)
1462 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1463 
1464 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1465 }
1466 
1467 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1468 				      bool may_sleep)
1469 {
1470 	struct request_queue *q = rq->q;
1471 	struct blk_mq_queue_data bd = {
1472 		.rq = rq,
1473 		.last = true,
1474 	};
1475 	struct blk_mq_hw_ctx *hctx;
1476 	blk_qc_t new_cookie;
1477 	int ret;
1478 
1479 	if (q->elevator)
1480 		goto insert;
1481 
1482 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1483 		goto insert;
1484 
1485 	new_cookie = request_to_qc_t(hctx, rq);
1486 
1487 	/*
1488 	 * For OK queue, we are done. For error, kill it. Any other
1489 	 * error (busy), just add it to our list as we previously
1490 	 * would have done
1491 	 */
1492 	ret = q->mq_ops->queue_rq(hctx, &bd);
1493 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1494 		*cookie = new_cookie;
1495 		return;
1496 	}
1497 
1498 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1499 		*cookie = BLK_QC_T_NONE;
1500 		blk_mq_end_request(rq, -EIO);
1501 		return;
1502 	}
1503 
1504 	__blk_mq_requeue_request(rq);
1505 insert:
1506 	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1507 }
1508 
1509 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1510 		struct request *rq, blk_qc_t *cookie)
1511 {
1512 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1513 		rcu_read_lock();
1514 		__blk_mq_try_issue_directly(rq, cookie, false);
1515 		rcu_read_unlock();
1516 	} else {
1517 		unsigned int srcu_idx;
1518 
1519 		might_sleep();
1520 
1521 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1522 		__blk_mq_try_issue_directly(rq, cookie, true);
1523 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1524 	}
1525 }
1526 
1527 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529 	const int is_sync = op_is_sync(bio->bi_opf);
1530 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1531 	struct blk_mq_alloc_data data = { .flags = 0 };
1532 	struct request *rq;
1533 	unsigned int request_count = 0;
1534 	struct blk_plug *plug;
1535 	struct request *same_queue_rq = NULL;
1536 	blk_qc_t cookie;
1537 	unsigned int wb_acct;
1538 
1539 	blk_queue_bounce(q, &bio);
1540 
1541 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1542 		bio_io_error(bio);
1543 		return BLK_QC_T_NONE;
1544 	}
1545 
1546 	blk_queue_split(q, &bio, q->bio_split);
1547 
1548 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1549 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1550 		return BLK_QC_T_NONE;
1551 
1552 	if (blk_mq_sched_bio_merge(q, bio))
1553 		return BLK_QC_T_NONE;
1554 
1555 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1556 
1557 	trace_block_getrq(q, bio, bio->bi_opf);
1558 
1559 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1560 	if (unlikely(!rq)) {
1561 		__wbt_done(q->rq_wb, wb_acct);
1562 		return BLK_QC_T_NONE;
1563 	}
1564 
1565 	wbt_track(&rq->issue_stat, wb_acct);
1566 
1567 	cookie = request_to_qc_t(data.hctx, rq);
1568 
1569 	plug = current->plug;
1570 	if (unlikely(is_flush_fua)) {
1571 		blk_mq_put_ctx(data.ctx);
1572 		blk_mq_bio_to_request(rq, bio);
1573 		if (q->elevator) {
1574 			blk_mq_sched_insert_request(rq, false, true, true,
1575 					true);
1576 		} else {
1577 			blk_insert_flush(rq);
1578 			blk_mq_run_hw_queue(data.hctx, true);
1579 		}
1580 	} else if (plug && q->nr_hw_queues == 1) {
1581 		struct request *last = NULL;
1582 
1583 		blk_mq_put_ctx(data.ctx);
1584 		blk_mq_bio_to_request(rq, bio);
1585 
1586 		/*
1587 		 * @request_count may become stale because of schedule
1588 		 * out, so check the list again.
1589 		 */
1590 		if (list_empty(&plug->mq_list))
1591 			request_count = 0;
1592 		else if (blk_queue_nomerges(q))
1593 			request_count = blk_plug_queued_count(q);
1594 
1595 		if (!request_count)
1596 			trace_block_plug(q);
1597 		else
1598 			last = list_entry_rq(plug->mq_list.prev);
1599 
1600 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1601 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602 			blk_flush_plug_list(plug, false);
1603 			trace_block_plug(q);
1604 		}
1605 
1606 		list_add_tail(&rq->queuelist, &plug->mq_list);
1607 	} else if (plug && !blk_queue_nomerges(q)) {
1608 		blk_mq_bio_to_request(rq, bio);
1609 
1610 		/*
1611 		 * We do limited plugging. If the bio can be merged, do that.
1612 		 * Otherwise the existing request in the plug list will be
1613 		 * issued. So the plug list will have one request at most
1614 		 * The plug list might get flushed before this. If that happens,
1615 		 * the plug list is empty, and same_queue_rq is invalid.
1616 		 */
1617 		if (list_empty(&plug->mq_list))
1618 			same_queue_rq = NULL;
1619 		if (same_queue_rq)
1620 			list_del_init(&same_queue_rq->queuelist);
1621 		list_add_tail(&rq->queuelist, &plug->mq_list);
1622 
1623 		blk_mq_put_ctx(data.ctx);
1624 
1625 		if (same_queue_rq)
1626 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1627 					&cookie);
1628 	} else if (q->nr_hw_queues > 1 && is_sync) {
1629 		blk_mq_put_ctx(data.ctx);
1630 		blk_mq_bio_to_request(rq, bio);
1631 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1632 	} else if (q->elevator) {
1633 		blk_mq_put_ctx(data.ctx);
1634 		blk_mq_bio_to_request(rq, bio);
1635 		blk_mq_sched_insert_request(rq, false, true, true, true);
1636 	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1637 		blk_mq_put_ctx(data.ctx);
1638 		blk_mq_run_hw_queue(data.hctx, true);
1639 	} else
1640 		blk_mq_put_ctx(data.ctx);
1641 
1642 	return cookie;
1643 }
1644 
1645 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646 		     unsigned int hctx_idx)
1647 {
1648 	struct page *page;
1649 
1650 	if (tags->rqs && set->ops->exit_request) {
1651 		int i;
1652 
1653 		for (i = 0; i < tags->nr_tags; i++) {
1654 			struct request *rq = tags->static_rqs[i];
1655 
1656 			if (!rq)
1657 				continue;
1658 			set->ops->exit_request(set->driver_data, rq,
1659 						hctx_idx, i);
1660 			tags->static_rqs[i] = NULL;
1661 		}
1662 	}
1663 
1664 	while (!list_empty(&tags->page_list)) {
1665 		page = list_first_entry(&tags->page_list, struct page, lru);
1666 		list_del_init(&page->lru);
1667 		/*
1668 		 * Remove kmemleak object previously allocated in
1669 		 * blk_mq_init_rq_map().
1670 		 */
1671 		kmemleak_free(page_address(page));
1672 		__free_pages(page, page->private);
1673 	}
1674 }
1675 
1676 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1677 {
1678 	kfree(tags->rqs);
1679 	tags->rqs = NULL;
1680 	kfree(tags->static_rqs);
1681 	tags->static_rqs = NULL;
1682 
1683 	blk_mq_free_tags(tags);
1684 }
1685 
1686 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1687 					unsigned int hctx_idx,
1688 					unsigned int nr_tags,
1689 					unsigned int reserved_tags)
1690 {
1691 	struct blk_mq_tags *tags;
1692 	int node;
1693 
1694 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1695 	if (node == NUMA_NO_NODE)
1696 		node = set->numa_node;
1697 
1698 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1699 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1700 	if (!tags)
1701 		return NULL;
1702 
1703 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705 				 node);
1706 	if (!tags->rqs) {
1707 		blk_mq_free_tags(tags);
1708 		return NULL;
1709 	}
1710 
1711 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1712 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1713 				 node);
1714 	if (!tags->static_rqs) {
1715 		kfree(tags->rqs);
1716 		blk_mq_free_tags(tags);
1717 		return NULL;
1718 	}
1719 
1720 	return tags;
1721 }
1722 
1723 static size_t order_to_size(unsigned int order)
1724 {
1725 	return (size_t)PAGE_SIZE << order;
1726 }
1727 
1728 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1729 		     unsigned int hctx_idx, unsigned int depth)
1730 {
1731 	unsigned int i, j, entries_per_page, max_order = 4;
1732 	size_t rq_size, left;
1733 	int node;
1734 
1735 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1736 	if (node == NUMA_NO_NODE)
1737 		node = set->numa_node;
1738 
1739 	INIT_LIST_HEAD(&tags->page_list);
1740 
1741 	/*
1742 	 * rq_size is the size of the request plus driver payload, rounded
1743 	 * to the cacheline size
1744 	 */
1745 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1746 				cache_line_size());
1747 	left = rq_size * depth;
1748 
1749 	for (i = 0; i < depth; ) {
1750 		int this_order = max_order;
1751 		struct page *page;
1752 		int to_do;
1753 		void *p;
1754 
1755 		while (this_order && left < order_to_size(this_order - 1))
1756 			this_order--;
1757 
1758 		do {
1759 			page = alloc_pages_node(node,
1760 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1761 				this_order);
1762 			if (page)
1763 				break;
1764 			if (!this_order--)
1765 				break;
1766 			if (order_to_size(this_order) < rq_size)
1767 				break;
1768 		} while (1);
1769 
1770 		if (!page)
1771 			goto fail;
1772 
1773 		page->private = this_order;
1774 		list_add_tail(&page->lru, &tags->page_list);
1775 
1776 		p = page_address(page);
1777 		/*
1778 		 * Allow kmemleak to scan these pages as they contain pointers
1779 		 * to additional allocations like via ops->init_request().
1780 		 */
1781 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1782 		entries_per_page = order_to_size(this_order) / rq_size;
1783 		to_do = min(entries_per_page, depth - i);
1784 		left -= to_do * rq_size;
1785 		for (j = 0; j < to_do; j++) {
1786 			struct request *rq = p;
1787 
1788 			tags->static_rqs[i] = rq;
1789 			if (set->ops->init_request) {
1790 				if (set->ops->init_request(set->driver_data,
1791 						rq, hctx_idx, i,
1792 						node)) {
1793 					tags->static_rqs[i] = NULL;
1794 					goto fail;
1795 				}
1796 			}
1797 
1798 			p += rq_size;
1799 			i++;
1800 		}
1801 	}
1802 	return 0;
1803 
1804 fail:
1805 	blk_mq_free_rqs(set, tags, hctx_idx);
1806 	return -ENOMEM;
1807 }
1808 
1809 /*
1810  * 'cpu' is going away. splice any existing rq_list entries from this
1811  * software queue to the hw queue dispatch list, and ensure that it
1812  * gets run.
1813  */
1814 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1815 {
1816 	struct blk_mq_hw_ctx *hctx;
1817 	struct blk_mq_ctx *ctx;
1818 	LIST_HEAD(tmp);
1819 
1820 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1821 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1822 
1823 	spin_lock(&ctx->lock);
1824 	if (!list_empty(&ctx->rq_list)) {
1825 		list_splice_init(&ctx->rq_list, &tmp);
1826 		blk_mq_hctx_clear_pending(hctx, ctx);
1827 	}
1828 	spin_unlock(&ctx->lock);
1829 
1830 	if (list_empty(&tmp))
1831 		return 0;
1832 
1833 	spin_lock(&hctx->lock);
1834 	list_splice_tail_init(&tmp, &hctx->dispatch);
1835 	spin_unlock(&hctx->lock);
1836 
1837 	blk_mq_run_hw_queue(hctx, true);
1838 	return 0;
1839 }
1840 
1841 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1842 {
1843 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1844 					    &hctx->cpuhp_dead);
1845 }
1846 
1847 /* hctx->ctxs will be freed in queue's release handler */
1848 static void blk_mq_exit_hctx(struct request_queue *q,
1849 		struct blk_mq_tag_set *set,
1850 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1851 {
1852 	unsigned flush_start_tag = set->queue_depth;
1853 
1854 	blk_mq_tag_idle(hctx);
1855 
1856 	if (set->ops->exit_request)
1857 		set->ops->exit_request(set->driver_data,
1858 				       hctx->fq->flush_rq, hctx_idx,
1859 				       flush_start_tag + hctx_idx);
1860 
1861 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1862 
1863 	if (set->ops->exit_hctx)
1864 		set->ops->exit_hctx(hctx, hctx_idx);
1865 
1866 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1867 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1868 
1869 	blk_mq_remove_cpuhp(hctx);
1870 	blk_free_flush_queue(hctx->fq);
1871 	sbitmap_free(&hctx->ctx_map);
1872 }
1873 
1874 static void blk_mq_exit_hw_queues(struct request_queue *q,
1875 		struct blk_mq_tag_set *set, int nr_queue)
1876 {
1877 	struct blk_mq_hw_ctx *hctx;
1878 	unsigned int i;
1879 
1880 	queue_for_each_hw_ctx(q, hctx, i) {
1881 		if (i == nr_queue)
1882 			break;
1883 		blk_mq_exit_hctx(q, set, hctx, i);
1884 	}
1885 }
1886 
1887 static int blk_mq_init_hctx(struct request_queue *q,
1888 		struct blk_mq_tag_set *set,
1889 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1890 {
1891 	int node;
1892 	unsigned flush_start_tag = set->queue_depth;
1893 
1894 	node = hctx->numa_node;
1895 	if (node == NUMA_NO_NODE)
1896 		node = hctx->numa_node = set->numa_node;
1897 
1898 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1899 	spin_lock_init(&hctx->lock);
1900 	INIT_LIST_HEAD(&hctx->dispatch);
1901 	hctx->queue = q;
1902 	hctx->queue_num = hctx_idx;
1903 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1904 
1905 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1906 
1907 	hctx->tags = set->tags[hctx_idx];
1908 
1909 	/*
1910 	 * Allocate space for all possible cpus to avoid allocation at
1911 	 * runtime
1912 	 */
1913 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1914 					GFP_KERNEL, node);
1915 	if (!hctx->ctxs)
1916 		goto unregister_cpu_notifier;
1917 
1918 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1919 			      node))
1920 		goto free_ctxs;
1921 
1922 	hctx->nr_ctx = 0;
1923 
1924 	if (set->ops->init_hctx &&
1925 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1926 		goto free_bitmap;
1927 
1928 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1929 		goto exit_hctx;
1930 
1931 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1932 	if (!hctx->fq)
1933 		goto sched_exit_hctx;
1934 
1935 	if (set->ops->init_request &&
1936 	    set->ops->init_request(set->driver_data,
1937 				   hctx->fq->flush_rq, hctx_idx,
1938 				   flush_start_tag + hctx_idx, node))
1939 		goto free_fq;
1940 
1941 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1942 		init_srcu_struct(&hctx->queue_rq_srcu);
1943 
1944 	return 0;
1945 
1946  free_fq:
1947 	kfree(hctx->fq);
1948  sched_exit_hctx:
1949 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1950  exit_hctx:
1951 	if (set->ops->exit_hctx)
1952 		set->ops->exit_hctx(hctx, hctx_idx);
1953  free_bitmap:
1954 	sbitmap_free(&hctx->ctx_map);
1955  free_ctxs:
1956 	kfree(hctx->ctxs);
1957  unregister_cpu_notifier:
1958 	blk_mq_remove_cpuhp(hctx);
1959 	return -1;
1960 }
1961 
1962 static void blk_mq_init_cpu_queues(struct request_queue *q,
1963 				   unsigned int nr_hw_queues)
1964 {
1965 	unsigned int i;
1966 
1967 	for_each_possible_cpu(i) {
1968 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1969 		struct blk_mq_hw_ctx *hctx;
1970 
1971 		__ctx->cpu = i;
1972 		spin_lock_init(&__ctx->lock);
1973 		INIT_LIST_HEAD(&__ctx->rq_list);
1974 		__ctx->queue = q;
1975 
1976 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1977 		if (!cpu_online(i))
1978 			continue;
1979 
1980 		hctx = blk_mq_map_queue(q, i);
1981 
1982 		/*
1983 		 * Set local node, IFF we have more than one hw queue. If
1984 		 * not, we remain on the home node of the device
1985 		 */
1986 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1987 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1988 	}
1989 }
1990 
1991 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1992 {
1993 	int ret = 0;
1994 
1995 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1996 					set->queue_depth, set->reserved_tags);
1997 	if (!set->tags[hctx_idx])
1998 		return false;
1999 
2000 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2001 				set->queue_depth);
2002 	if (!ret)
2003 		return true;
2004 
2005 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2006 	set->tags[hctx_idx] = NULL;
2007 	return false;
2008 }
2009 
2010 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2011 					 unsigned int hctx_idx)
2012 {
2013 	if (set->tags[hctx_idx]) {
2014 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2015 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2016 		set->tags[hctx_idx] = NULL;
2017 	}
2018 }
2019 
2020 static void blk_mq_map_swqueue(struct request_queue *q,
2021 			       const struct cpumask *online_mask)
2022 {
2023 	unsigned int i, hctx_idx;
2024 	struct blk_mq_hw_ctx *hctx;
2025 	struct blk_mq_ctx *ctx;
2026 	struct blk_mq_tag_set *set = q->tag_set;
2027 
2028 	/*
2029 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2030 	 */
2031 	mutex_lock(&q->sysfs_lock);
2032 
2033 	queue_for_each_hw_ctx(q, hctx, i) {
2034 		cpumask_clear(hctx->cpumask);
2035 		hctx->nr_ctx = 0;
2036 	}
2037 
2038 	/*
2039 	 * Map software to hardware queues
2040 	 */
2041 	for_each_possible_cpu(i) {
2042 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2043 		if (!cpumask_test_cpu(i, online_mask))
2044 			continue;
2045 
2046 		hctx_idx = q->mq_map[i];
2047 		/* unmapped hw queue can be remapped after CPU topo changed */
2048 		if (!set->tags[hctx_idx] &&
2049 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2050 			/*
2051 			 * If tags initialization fail for some hctx,
2052 			 * that hctx won't be brought online.  In this
2053 			 * case, remap the current ctx to hctx[0] which
2054 			 * is guaranteed to always have tags allocated
2055 			 */
2056 			q->mq_map[i] = 0;
2057 		}
2058 
2059 		ctx = per_cpu_ptr(q->queue_ctx, i);
2060 		hctx = blk_mq_map_queue(q, i);
2061 
2062 		cpumask_set_cpu(i, hctx->cpumask);
2063 		ctx->index_hw = hctx->nr_ctx;
2064 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2065 	}
2066 
2067 	mutex_unlock(&q->sysfs_lock);
2068 
2069 	queue_for_each_hw_ctx(q, hctx, i) {
2070 		/*
2071 		 * If no software queues are mapped to this hardware queue,
2072 		 * disable it and free the request entries.
2073 		 */
2074 		if (!hctx->nr_ctx) {
2075 			/* Never unmap queue 0.  We need it as a
2076 			 * fallback in case of a new remap fails
2077 			 * allocation
2078 			 */
2079 			if (i && set->tags[i])
2080 				blk_mq_free_map_and_requests(set, i);
2081 
2082 			hctx->tags = NULL;
2083 			continue;
2084 		}
2085 
2086 		hctx->tags = set->tags[i];
2087 		WARN_ON(!hctx->tags);
2088 
2089 		/*
2090 		 * Set the map size to the number of mapped software queues.
2091 		 * This is more accurate and more efficient than looping
2092 		 * over all possibly mapped software queues.
2093 		 */
2094 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2095 
2096 		/*
2097 		 * Initialize batch roundrobin counts
2098 		 */
2099 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2100 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2101 	}
2102 }
2103 
2104 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2105 {
2106 	struct blk_mq_hw_ctx *hctx;
2107 	int i;
2108 
2109 	queue_for_each_hw_ctx(q, hctx, i) {
2110 		if (shared)
2111 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2112 		else
2113 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2114 	}
2115 }
2116 
2117 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2118 {
2119 	struct request_queue *q;
2120 
2121 	lockdep_assert_held(&set->tag_list_lock);
2122 
2123 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2124 		blk_mq_freeze_queue(q);
2125 		queue_set_hctx_shared(q, shared);
2126 		blk_mq_unfreeze_queue(q);
2127 	}
2128 }
2129 
2130 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2131 {
2132 	struct blk_mq_tag_set *set = q->tag_set;
2133 
2134 	mutex_lock(&set->tag_list_lock);
2135 	list_del_rcu(&q->tag_set_list);
2136 	INIT_LIST_HEAD(&q->tag_set_list);
2137 	if (list_is_singular(&set->tag_list)) {
2138 		/* just transitioned to unshared */
2139 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2140 		/* update existing queue */
2141 		blk_mq_update_tag_set_depth(set, false);
2142 	}
2143 	mutex_unlock(&set->tag_list_lock);
2144 
2145 	synchronize_rcu();
2146 }
2147 
2148 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2149 				     struct request_queue *q)
2150 {
2151 	q->tag_set = set;
2152 
2153 	mutex_lock(&set->tag_list_lock);
2154 
2155 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2156 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2157 		set->flags |= BLK_MQ_F_TAG_SHARED;
2158 		/* update existing queue */
2159 		blk_mq_update_tag_set_depth(set, true);
2160 	}
2161 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2162 		queue_set_hctx_shared(q, true);
2163 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2164 
2165 	mutex_unlock(&set->tag_list_lock);
2166 }
2167 
2168 /*
2169  * It is the actual release handler for mq, but we do it from
2170  * request queue's release handler for avoiding use-after-free
2171  * and headache because q->mq_kobj shouldn't have been introduced,
2172  * but we can't group ctx/kctx kobj without it.
2173  */
2174 void blk_mq_release(struct request_queue *q)
2175 {
2176 	struct blk_mq_hw_ctx *hctx;
2177 	unsigned int i;
2178 
2179 	/* hctx kobj stays in hctx */
2180 	queue_for_each_hw_ctx(q, hctx, i) {
2181 		if (!hctx)
2182 			continue;
2183 		kobject_put(&hctx->kobj);
2184 	}
2185 
2186 	q->mq_map = NULL;
2187 
2188 	kfree(q->queue_hw_ctx);
2189 
2190 	/*
2191 	 * release .mq_kobj and sw queue's kobject now because
2192 	 * both share lifetime with request queue.
2193 	 */
2194 	blk_mq_sysfs_deinit(q);
2195 
2196 	free_percpu(q->queue_ctx);
2197 }
2198 
2199 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2200 {
2201 	struct request_queue *uninit_q, *q;
2202 
2203 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2204 	if (!uninit_q)
2205 		return ERR_PTR(-ENOMEM);
2206 
2207 	q = blk_mq_init_allocated_queue(set, uninit_q);
2208 	if (IS_ERR(q))
2209 		blk_cleanup_queue(uninit_q);
2210 
2211 	return q;
2212 }
2213 EXPORT_SYMBOL(blk_mq_init_queue);
2214 
2215 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2216 						struct request_queue *q)
2217 {
2218 	int i, j;
2219 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2220 
2221 	blk_mq_sysfs_unregister(q);
2222 	for (i = 0; i < set->nr_hw_queues; i++) {
2223 		int node;
2224 
2225 		if (hctxs[i])
2226 			continue;
2227 
2228 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2229 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2230 					GFP_KERNEL, node);
2231 		if (!hctxs[i])
2232 			break;
2233 
2234 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2235 						node)) {
2236 			kfree(hctxs[i]);
2237 			hctxs[i] = NULL;
2238 			break;
2239 		}
2240 
2241 		atomic_set(&hctxs[i]->nr_active, 0);
2242 		hctxs[i]->numa_node = node;
2243 		hctxs[i]->queue_num = i;
2244 
2245 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2246 			free_cpumask_var(hctxs[i]->cpumask);
2247 			kfree(hctxs[i]);
2248 			hctxs[i] = NULL;
2249 			break;
2250 		}
2251 		blk_mq_hctx_kobj_init(hctxs[i]);
2252 	}
2253 	for (j = i; j < q->nr_hw_queues; j++) {
2254 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2255 
2256 		if (hctx) {
2257 			if (hctx->tags)
2258 				blk_mq_free_map_and_requests(set, j);
2259 			blk_mq_exit_hctx(q, set, hctx, j);
2260 			kobject_put(&hctx->kobj);
2261 			hctxs[j] = NULL;
2262 
2263 		}
2264 	}
2265 	q->nr_hw_queues = i;
2266 	blk_mq_sysfs_register(q);
2267 }
2268 
2269 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2270 						  struct request_queue *q)
2271 {
2272 	/* mark the queue as mq asap */
2273 	q->mq_ops = set->ops;
2274 
2275 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2276 					     blk_mq_poll_stats_bkt,
2277 					     BLK_MQ_POLL_STATS_BKTS, q);
2278 	if (!q->poll_cb)
2279 		goto err_exit;
2280 
2281 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2282 	if (!q->queue_ctx)
2283 		goto err_exit;
2284 
2285 	/* init q->mq_kobj and sw queues' kobjects */
2286 	blk_mq_sysfs_init(q);
2287 
2288 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2289 						GFP_KERNEL, set->numa_node);
2290 	if (!q->queue_hw_ctx)
2291 		goto err_percpu;
2292 
2293 	q->mq_map = set->mq_map;
2294 
2295 	blk_mq_realloc_hw_ctxs(set, q);
2296 	if (!q->nr_hw_queues)
2297 		goto err_hctxs;
2298 
2299 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2300 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2301 
2302 	q->nr_queues = nr_cpu_ids;
2303 
2304 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2305 
2306 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2307 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2308 
2309 	q->sg_reserved_size = INT_MAX;
2310 
2311 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2312 	INIT_LIST_HEAD(&q->requeue_list);
2313 	spin_lock_init(&q->requeue_lock);
2314 
2315 	blk_queue_make_request(q, blk_mq_make_request);
2316 
2317 	/*
2318 	 * Do this after blk_queue_make_request() overrides it...
2319 	 */
2320 	q->nr_requests = set->queue_depth;
2321 
2322 	/*
2323 	 * Default to classic polling
2324 	 */
2325 	q->poll_nsec = -1;
2326 
2327 	if (set->ops->complete)
2328 		blk_queue_softirq_done(q, set->ops->complete);
2329 
2330 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2331 
2332 	get_online_cpus();
2333 	mutex_lock(&all_q_mutex);
2334 
2335 	list_add_tail(&q->all_q_node, &all_q_list);
2336 	blk_mq_add_queue_tag_set(set, q);
2337 	blk_mq_map_swqueue(q, cpu_online_mask);
2338 
2339 	mutex_unlock(&all_q_mutex);
2340 	put_online_cpus();
2341 
2342 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2343 		int ret;
2344 
2345 		ret = blk_mq_sched_init(q);
2346 		if (ret)
2347 			return ERR_PTR(ret);
2348 	}
2349 
2350 	return q;
2351 
2352 err_hctxs:
2353 	kfree(q->queue_hw_ctx);
2354 err_percpu:
2355 	free_percpu(q->queue_ctx);
2356 err_exit:
2357 	q->mq_ops = NULL;
2358 	return ERR_PTR(-ENOMEM);
2359 }
2360 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2361 
2362 void blk_mq_free_queue(struct request_queue *q)
2363 {
2364 	struct blk_mq_tag_set	*set = q->tag_set;
2365 
2366 	mutex_lock(&all_q_mutex);
2367 	list_del_init(&q->all_q_node);
2368 	mutex_unlock(&all_q_mutex);
2369 
2370 	blk_mq_del_queue_tag_set(q);
2371 
2372 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2373 }
2374 
2375 /* Basically redo blk_mq_init_queue with queue frozen */
2376 static void blk_mq_queue_reinit(struct request_queue *q,
2377 				const struct cpumask *online_mask)
2378 {
2379 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2380 
2381 	blk_mq_sysfs_unregister(q);
2382 
2383 	/*
2384 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2385 	 * we should change hctx numa_node according to new topology (this
2386 	 * involves free and re-allocate memory, worthy doing?)
2387 	 */
2388 
2389 	blk_mq_map_swqueue(q, online_mask);
2390 
2391 	blk_mq_sysfs_register(q);
2392 }
2393 
2394 /*
2395  * New online cpumask which is going to be set in this hotplug event.
2396  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2397  * one-by-one and dynamically allocating this could result in a failure.
2398  */
2399 static struct cpumask cpuhp_online_new;
2400 
2401 static void blk_mq_queue_reinit_work(void)
2402 {
2403 	struct request_queue *q;
2404 
2405 	mutex_lock(&all_q_mutex);
2406 	/*
2407 	 * We need to freeze and reinit all existing queues.  Freezing
2408 	 * involves synchronous wait for an RCU grace period and doing it
2409 	 * one by one may take a long time.  Start freezing all queues in
2410 	 * one swoop and then wait for the completions so that freezing can
2411 	 * take place in parallel.
2412 	 */
2413 	list_for_each_entry(q, &all_q_list, all_q_node)
2414 		blk_freeze_queue_start(q);
2415 	list_for_each_entry(q, &all_q_list, all_q_node)
2416 		blk_mq_freeze_queue_wait(q);
2417 
2418 	list_for_each_entry(q, &all_q_list, all_q_node)
2419 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2420 
2421 	list_for_each_entry(q, &all_q_list, all_q_node)
2422 		blk_mq_unfreeze_queue(q);
2423 
2424 	mutex_unlock(&all_q_mutex);
2425 }
2426 
2427 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2428 {
2429 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2430 	blk_mq_queue_reinit_work();
2431 	return 0;
2432 }
2433 
2434 /*
2435  * Before hotadded cpu starts handling requests, new mappings must be
2436  * established.  Otherwise, these requests in hw queue might never be
2437  * dispatched.
2438  *
2439  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2440  * for CPU0, and ctx1 for CPU1).
2441  *
2442  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2443  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2444  *
2445  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2446  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2447  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2448  * ignored.
2449  */
2450 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2451 {
2452 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2453 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2454 	blk_mq_queue_reinit_work();
2455 	return 0;
2456 }
2457 
2458 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2459 {
2460 	int i;
2461 
2462 	for (i = 0; i < set->nr_hw_queues; i++)
2463 		if (!__blk_mq_alloc_rq_map(set, i))
2464 			goto out_unwind;
2465 
2466 	return 0;
2467 
2468 out_unwind:
2469 	while (--i >= 0)
2470 		blk_mq_free_rq_map(set->tags[i]);
2471 
2472 	return -ENOMEM;
2473 }
2474 
2475 /*
2476  * Allocate the request maps associated with this tag_set. Note that this
2477  * may reduce the depth asked for, if memory is tight. set->queue_depth
2478  * will be updated to reflect the allocated depth.
2479  */
2480 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2481 {
2482 	unsigned int depth;
2483 	int err;
2484 
2485 	depth = set->queue_depth;
2486 	do {
2487 		err = __blk_mq_alloc_rq_maps(set);
2488 		if (!err)
2489 			break;
2490 
2491 		set->queue_depth >>= 1;
2492 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2493 			err = -ENOMEM;
2494 			break;
2495 		}
2496 	} while (set->queue_depth);
2497 
2498 	if (!set->queue_depth || err) {
2499 		pr_err("blk-mq: failed to allocate request map\n");
2500 		return -ENOMEM;
2501 	}
2502 
2503 	if (depth != set->queue_depth)
2504 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2505 						depth, set->queue_depth);
2506 
2507 	return 0;
2508 }
2509 
2510 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2511 {
2512 	if (set->ops->map_queues)
2513 		return set->ops->map_queues(set);
2514 	else
2515 		return blk_mq_map_queues(set);
2516 }
2517 
2518 /*
2519  * Alloc a tag set to be associated with one or more request queues.
2520  * May fail with EINVAL for various error conditions. May adjust the
2521  * requested depth down, if if it too large. In that case, the set
2522  * value will be stored in set->queue_depth.
2523  */
2524 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2525 {
2526 	int ret;
2527 
2528 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2529 
2530 	if (!set->nr_hw_queues)
2531 		return -EINVAL;
2532 	if (!set->queue_depth)
2533 		return -EINVAL;
2534 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2535 		return -EINVAL;
2536 
2537 	if (!set->ops->queue_rq)
2538 		return -EINVAL;
2539 
2540 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2541 		pr_info("blk-mq: reduced tag depth to %u\n",
2542 			BLK_MQ_MAX_DEPTH);
2543 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2544 	}
2545 
2546 	/*
2547 	 * If a crashdump is active, then we are potentially in a very
2548 	 * memory constrained environment. Limit us to 1 queue and
2549 	 * 64 tags to prevent using too much memory.
2550 	 */
2551 	if (is_kdump_kernel()) {
2552 		set->nr_hw_queues = 1;
2553 		set->queue_depth = min(64U, set->queue_depth);
2554 	}
2555 	/*
2556 	 * There is no use for more h/w queues than cpus.
2557 	 */
2558 	if (set->nr_hw_queues > nr_cpu_ids)
2559 		set->nr_hw_queues = nr_cpu_ids;
2560 
2561 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2562 				 GFP_KERNEL, set->numa_node);
2563 	if (!set->tags)
2564 		return -ENOMEM;
2565 
2566 	ret = -ENOMEM;
2567 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2568 			GFP_KERNEL, set->numa_node);
2569 	if (!set->mq_map)
2570 		goto out_free_tags;
2571 
2572 	ret = blk_mq_update_queue_map(set);
2573 	if (ret)
2574 		goto out_free_mq_map;
2575 
2576 	ret = blk_mq_alloc_rq_maps(set);
2577 	if (ret)
2578 		goto out_free_mq_map;
2579 
2580 	mutex_init(&set->tag_list_lock);
2581 	INIT_LIST_HEAD(&set->tag_list);
2582 
2583 	return 0;
2584 
2585 out_free_mq_map:
2586 	kfree(set->mq_map);
2587 	set->mq_map = NULL;
2588 out_free_tags:
2589 	kfree(set->tags);
2590 	set->tags = NULL;
2591 	return ret;
2592 }
2593 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2594 
2595 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2596 {
2597 	int i;
2598 
2599 	for (i = 0; i < nr_cpu_ids; i++)
2600 		blk_mq_free_map_and_requests(set, i);
2601 
2602 	kfree(set->mq_map);
2603 	set->mq_map = NULL;
2604 
2605 	kfree(set->tags);
2606 	set->tags = NULL;
2607 }
2608 EXPORT_SYMBOL(blk_mq_free_tag_set);
2609 
2610 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2611 {
2612 	struct blk_mq_tag_set *set = q->tag_set;
2613 	struct blk_mq_hw_ctx *hctx;
2614 	int i, ret;
2615 
2616 	if (!set)
2617 		return -EINVAL;
2618 
2619 	blk_mq_freeze_queue(q);
2620 	blk_mq_quiesce_queue(q);
2621 
2622 	ret = 0;
2623 	queue_for_each_hw_ctx(q, hctx, i) {
2624 		if (!hctx->tags)
2625 			continue;
2626 		/*
2627 		 * If we're using an MQ scheduler, just update the scheduler
2628 		 * queue depth. This is similar to what the old code would do.
2629 		 */
2630 		if (!hctx->sched_tags) {
2631 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2632 							min(nr, set->queue_depth),
2633 							false);
2634 		} else {
2635 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2636 							nr, true);
2637 		}
2638 		if (ret)
2639 			break;
2640 	}
2641 
2642 	if (!ret)
2643 		q->nr_requests = nr;
2644 
2645 	blk_mq_unfreeze_queue(q);
2646 	blk_mq_start_stopped_hw_queues(q, true);
2647 
2648 	return ret;
2649 }
2650 
2651 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2652 {
2653 	struct request_queue *q;
2654 
2655 	lockdep_assert_held(&set->tag_list_lock);
2656 
2657 	if (nr_hw_queues > nr_cpu_ids)
2658 		nr_hw_queues = nr_cpu_ids;
2659 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2660 		return;
2661 
2662 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2663 		blk_mq_freeze_queue(q);
2664 
2665 	set->nr_hw_queues = nr_hw_queues;
2666 	blk_mq_update_queue_map(set);
2667 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2668 		blk_mq_realloc_hw_ctxs(set, q);
2669 		blk_mq_queue_reinit(q, cpu_online_mask);
2670 	}
2671 
2672 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2673 		blk_mq_unfreeze_queue(q);
2674 }
2675 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2676 
2677 /* Enable polling stats and return whether they were already enabled. */
2678 static bool blk_poll_stats_enable(struct request_queue *q)
2679 {
2680 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2681 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2682 		return true;
2683 	blk_stat_add_callback(q, q->poll_cb);
2684 	return false;
2685 }
2686 
2687 static void blk_mq_poll_stats_start(struct request_queue *q)
2688 {
2689 	/*
2690 	 * We don't arm the callback if polling stats are not enabled or the
2691 	 * callback is already active.
2692 	 */
2693 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2694 	    blk_stat_is_active(q->poll_cb))
2695 		return;
2696 
2697 	blk_stat_activate_msecs(q->poll_cb, 100);
2698 }
2699 
2700 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2701 {
2702 	struct request_queue *q = cb->data;
2703 	int bucket;
2704 
2705 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2706 		if (cb->stat[bucket].nr_samples)
2707 			q->poll_stat[bucket] = cb->stat[bucket];
2708 	}
2709 }
2710 
2711 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2712 				       struct blk_mq_hw_ctx *hctx,
2713 				       struct request *rq)
2714 {
2715 	unsigned long ret = 0;
2716 	int bucket;
2717 
2718 	/*
2719 	 * If stats collection isn't on, don't sleep but turn it on for
2720 	 * future users
2721 	 */
2722 	if (!blk_poll_stats_enable(q))
2723 		return 0;
2724 
2725 	/*
2726 	 * As an optimistic guess, use half of the mean service time
2727 	 * for this type of request. We can (and should) make this smarter.
2728 	 * For instance, if the completion latencies are tight, we can
2729 	 * get closer than just half the mean. This is especially
2730 	 * important on devices where the completion latencies are longer
2731 	 * than ~10 usec. We do use the stats for the relevant IO size
2732 	 * if available which does lead to better estimates.
2733 	 */
2734 	bucket = blk_mq_poll_stats_bkt(rq);
2735 	if (bucket < 0)
2736 		return ret;
2737 
2738 	if (q->poll_stat[bucket].nr_samples)
2739 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2740 
2741 	return ret;
2742 }
2743 
2744 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2745 				     struct blk_mq_hw_ctx *hctx,
2746 				     struct request *rq)
2747 {
2748 	struct hrtimer_sleeper hs;
2749 	enum hrtimer_mode mode;
2750 	unsigned int nsecs;
2751 	ktime_t kt;
2752 
2753 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2754 		return false;
2755 
2756 	/*
2757 	 * poll_nsec can be:
2758 	 *
2759 	 * -1:	don't ever hybrid sleep
2760 	 *  0:	use half of prev avg
2761 	 * >0:	use this specific value
2762 	 */
2763 	if (q->poll_nsec == -1)
2764 		return false;
2765 	else if (q->poll_nsec > 0)
2766 		nsecs = q->poll_nsec;
2767 	else
2768 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2769 
2770 	if (!nsecs)
2771 		return false;
2772 
2773 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2774 
2775 	/*
2776 	 * This will be replaced with the stats tracking code, using
2777 	 * 'avg_completion_time / 2' as the pre-sleep target.
2778 	 */
2779 	kt = nsecs;
2780 
2781 	mode = HRTIMER_MODE_REL;
2782 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2783 	hrtimer_set_expires(&hs.timer, kt);
2784 
2785 	hrtimer_init_sleeper(&hs, current);
2786 	do {
2787 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2788 			break;
2789 		set_current_state(TASK_UNINTERRUPTIBLE);
2790 		hrtimer_start_expires(&hs.timer, mode);
2791 		if (hs.task)
2792 			io_schedule();
2793 		hrtimer_cancel(&hs.timer);
2794 		mode = HRTIMER_MODE_ABS;
2795 	} while (hs.task && !signal_pending(current));
2796 
2797 	__set_current_state(TASK_RUNNING);
2798 	destroy_hrtimer_on_stack(&hs.timer);
2799 	return true;
2800 }
2801 
2802 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2803 {
2804 	struct request_queue *q = hctx->queue;
2805 	long state;
2806 
2807 	/*
2808 	 * If we sleep, have the caller restart the poll loop to reset
2809 	 * the state. Like for the other success return cases, the
2810 	 * caller is responsible for checking if the IO completed. If
2811 	 * the IO isn't complete, we'll get called again and will go
2812 	 * straight to the busy poll loop.
2813 	 */
2814 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2815 		return true;
2816 
2817 	hctx->poll_considered++;
2818 
2819 	state = current->state;
2820 	while (!need_resched()) {
2821 		int ret;
2822 
2823 		hctx->poll_invoked++;
2824 
2825 		ret = q->mq_ops->poll(hctx, rq->tag);
2826 		if (ret > 0) {
2827 			hctx->poll_success++;
2828 			set_current_state(TASK_RUNNING);
2829 			return true;
2830 		}
2831 
2832 		if (signal_pending_state(state, current))
2833 			set_current_state(TASK_RUNNING);
2834 
2835 		if (current->state == TASK_RUNNING)
2836 			return true;
2837 		if (ret < 0)
2838 			break;
2839 		cpu_relax();
2840 	}
2841 
2842 	return false;
2843 }
2844 
2845 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2846 {
2847 	struct blk_mq_hw_ctx *hctx;
2848 	struct blk_plug *plug;
2849 	struct request *rq;
2850 
2851 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2852 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2853 		return false;
2854 
2855 	plug = current->plug;
2856 	if (plug)
2857 		blk_flush_plug_list(plug, false);
2858 
2859 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2860 	if (!blk_qc_t_is_internal(cookie))
2861 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2862 	else {
2863 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2864 		/*
2865 		 * With scheduling, if the request has completed, we'll
2866 		 * get a NULL return here, as we clear the sched tag when
2867 		 * that happens. The request still remains valid, like always,
2868 		 * so we should be safe with just the NULL check.
2869 		 */
2870 		if (!rq)
2871 			return false;
2872 	}
2873 
2874 	return __blk_mq_poll(hctx, rq);
2875 }
2876 EXPORT_SYMBOL_GPL(blk_mq_poll);
2877 
2878 void blk_mq_disable_hotplug(void)
2879 {
2880 	mutex_lock(&all_q_mutex);
2881 }
2882 
2883 void blk_mq_enable_hotplug(void)
2884 {
2885 	mutex_unlock(&all_q_mutex);
2886 }
2887 
2888 static int __init blk_mq_init(void)
2889 {
2890 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2891 				blk_mq_hctx_notify_dead);
2892 
2893 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2894 				  blk_mq_queue_reinit_prepare,
2895 				  blk_mq_queue_reinit_dead);
2896 	return 0;
2897 }
2898 subsys_initcall(blk_mq_init);
2899