xref: /openbmc/linux/block/blk-mq.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	if (data->flags & BLK_MQ_REQ_RESERVED)
478 		data->rq_flags |= RQF_RESV;
479 
480 	/*
481 	 * Try batched alloc if we want more than 1 tag.
482 	 */
483 	if (data->nr_tags > 1) {
484 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 		if (rq)
486 			return rq;
487 		data->nr_tags = 1;
488 	}
489 
490 	/*
491 	 * Waiting allocations only fail because of an inactive hctx.  In that
492 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 	 * should have migrated us to an online CPU by now.
494 	 */
495 	tag = blk_mq_get_tag(data);
496 	if (tag == BLK_MQ_NO_TAG) {
497 		if (data->flags & BLK_MQ_REQ_NOWAIT)
498 			return NULL;
499 		/*
500 		 * Give up the CPU and sleep for a random short time to
501 		 * ensure that thread using a realtime scheduling class
502 		 * are migrated off the CPU, and thus off the hctx that
503 		 * is going away.
504 		 */
505 		msleep(3);
506 		goto retry;
507 	}
508 
509 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 					alloc_time_ns);
511 }
512 
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514 		blk_mq_req_flags_t flags)
515 {
516 	struct blk_mq_alloc_data data = {
517 		.q		= q,
518 		.flags		= flags,
519 		.cmd_flags	= opf,
520 		.nr_tags	= 1,
521 	};
522 	struct request *rq;
523 	int ret;
524 
525 	ret = blk_queue_enter(q, flags);
526 	if (ret)
527 		return ERR_PTR(ret);
528 
529 	rq = __blk_mq_alloc_requests(&data);
530 	if (!rq)
531 		goto out_queue_exit;
532 	rq->__data_len = 0;
533 	rq->__sector = (sector_t) -1;
534 	rq->bio = rq->biotail = NULL;
535 	return rq;
536 out_queue_exit:
537 	blk_queue_exit(q);
538 	return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541 
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545 	struct blk_mq_alloc_data data = {
546 		.q		= q,
547 		.flags		= flags,
548 		.cmd_flags	= opf,
549 		.nr_tags	= 1,
550 	};
551 	u64 alloc_time_ns = 0;
552 	unsigned int cpu;
553 	unsigned int tag;
554 	int ret;
555 
556 	/* alloc_time includes depth and tag waits */
557 	if (blk_queue_rq_alloc_time(q))
558 		alloc_time_ns = ktime_get_ns();
559 
560 	/*
561 	 * If the tag allocator sleeps we could get an allocation for a
562 	 * different hardware context.  No need to complicate the low level
563 	 * allocator for this for the rare use case of a command tied to
564 	 * a specific queue.
565 	 */
566 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567 		return ERR_PTR(-EINVAL);
568 
569 	if (hctx_idx >= q->nr_hw_queues)
570 		return ERR_PTR(-EIO);
571 
572 	ret = blk_queue_enter(q, flags);
573 	if (ret)
574 		return ERR_PTR(ret);
575 
576 	/*
577 	 * Check if the hardware context is actually mapped to anything.
578 	 * If not tell the caller that it should skip this queue.
579 	 */
580 	ret = -EXDEV;
581 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
582 	if (!blk_mq_hw_queue_mapped(data.hctx))
583 		goto out_queue_exit;
584 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585 	if (cpu >= nr_cpu_ids)
586 		goto out_queue_exit;
587 	data.ctx = __blk_mq_get_ctx(q, cpu);
588 
589 	if (!q->elevator)
590 		blk_mq_tag_busy(data.hctx);
591 	else
592 		data.rq_flags |= RQF_ELV;
593 
594 	if (flags & BLK_MQ_REQ_RESERVED)
595 		data.rq_flags |= RQF_RESV;
596 
597 	ret = -EWOULDBLOCK;
598 	tag = blk_mq_get_tag(&data);
599 	if (tag == BLK_MQ_NO_TAG)
600 		goto out_queue_exit;
601 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602 					alloc_time_ns);
603 
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609 
610 static void __blk_mq_free_request(struct request *rq)
611 {
612 	struct request_queue *q = rq->q;
613 	struct blk_mq_ctx *ctx = rq->mq_ctx;
614 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615 	const int sched_tag = rq->internal_tag;
616 
617 	blk_crypto_free_request(rq);
618 	blk_pm_mark_last_busy(rq);
619 	rq->mq_hctx = NULL;
620 	if (rq->tag != BLK_MQ_NO_TAG)
621 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622 	if (sched_tag != BLK_MQ_NO_TAG)
623 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624 	blk_mq_sched_restart(hctx);
625 	blk_queue_exit(q);
626 }
627 
628 void blk_mq_free_request(struct request *rq)
629 {
630 	struct request_queue *q = rq->q;
631 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632 
633 	if ((rq->rq_flags & RQF_ELVPRIV) &&
634 	    q->elevator->type->ops.finish_request)
635 		q->elevator->type->ops.finish_request(rq);
636 
637 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
638 		__blk_mq_dec_active_requests(hctx);
639 
640 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641 		laptop_io_completion(q->disk->bdi);
642 
643 	rq_qos_done(q, rq);
644 
645 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646 	if (req_ref_put_and_test(rq))
647 		__blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650 
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653 	struct request *rq;
654 
655 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656 		blk_mq_free_request(rq);
657 }
658 
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662 		rq->q->disk ? rq->q->disk->disk_name : "?",
663 		(__force unsigned long long) rq->cmd_flags);
664 
665 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666 	       (unsigned long long)blk_rq_pos(rq),
667 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672 
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674 			  unsigned int nbytes, blk_status_t error)
675 {
676 	if (unlikely(error)) {
677 		bio->bi_status = error;
678 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679 		/*
680 		 * Partial zone append completions cannot be supported as the
681 		 * BIO fragments may end up not being written sequentially.
682 		 */
683 		if (bio->bi_iter.bi_size != nbytes)
684 			bio->bi_status = BLK_STS_IOERR;
685 		else
686 			bio->bi_iter.bi_sector = rq->__sector;
687 	}
688 
689 	bio_advance(bio, nbytes);
690 
691 	if (unlikely(rq->rq_flags & RQF_QUIET))
692 		bio_set_flag(bio, BIO_QUIET);
693 	/* don't actually finish bio if it's part of flush sequence */
694 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695 		bio_endio(bio);
696 }
697 
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700 	if (req->part && blk_do_io_stat(req)) {
701 		const int sgrp = op_stat_group(req_op(req));
702 
703 		part_stat_lock();
704 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705 		part_stat_unlock();
706 	}
707 }
708 
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711 	printk_ratelimited(KERN_ERR
712 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713 		"phys_seg %u prio class %u\n",
714 		blk_status_to_str(status),
715 		req->q->disk ? req->q->disk->disk_name : "?",
716 		blk_rq_pos(req), (__force u32)req_op(req),
717 		blk_op_str(req_op(req)),
718 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719 		req->nr_phys_segments,
720 		IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722 
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730 	int total_bytes = blk_rq_bytes(req);
731 	struct bio *bio = req->bio;
732 
733 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734 
735 	if (!bio)
736 		return;
737 
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740 		req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742 
743 	blk_account_io_completion(req, total_bytes);
744 
745 	do {
746 		struct bio *next = bio->bi_next;
747 
748 		/* Completion has already been traced */
749 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750 
751 		if (req_op(req) == REQ_OP_ZONE_APPEND)
752 			bio->bi_iter.bi_sector = req->__sector;
753 
754 		if (!is_flush)
755 			bio_endio(bio);
756 		bio = next;
757 	} while (bio);
758 
759 	/*
760 	 * Reset counters so that the request stacking driver
761 	 * can find how many bytes remain in the request
762 	 * later.
763 	 */
764 	req->bio = NULL;
765 	req->__data_len = 0;
766 }
767 
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791 		unsigned int nr_bytes)
792 {
793 	int total_bytes;
794 
795 	trace_block_rq_complete(req, error, nr_bytes);
796 
797 	if (!req->bio)
798 		return false;
799 
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802 	    error == BLK_STS_OK)
803 		req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805 
806 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
807 		     !(req->rq_flags & RQF_QUIET)) &&
808 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
809 		blk_print_req_error(req, error);
810 		trace_block_rq_error(req, error, nr_bytes);
811 	}
812 
813 	blk_account_io_completion(req, nr_bytes);
814 
815 	total_bytes = 0;
816 	while (req->bio) {
817 		struct bio *bio = req->bio;
818 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819 
820 		if (bio_bytes == bio->bi_iter.bi_size)
821 			req->bio = bio->bi_next;
822 
823 		/* Completion has already been traced */
824 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825 		req_bio_endio(req, bio, bio_bytes, error);
826 
827 		total_bytes += bio_bytes;
828 		nr_bytes -= bio_bytes;
829 
830 		if (!nr_bytes)
831 			break;
832 	}
833 
834 	/*
835 	 * completely done
836 	 */
837 	if (!req->bio) {
838 		/*
839 		 * Reset counters so that the request stacking driver
840 		 * can find how many bytes remain in the request
841 		 * later.
842 		 */
843 		req->__data_len = 0;
844 		return false;
845 	}
846 
847 	req->__data_len -= total_bytes;
848 
849 	/* update sector only for requests with clear definition of sector */
850 	if (!blk_rq_is_passthrough(req))
851 		req->__sector += total_bytes >> 9;
852 
853 	/* mixed attributes always follow the first bio */
854 	if (req->rq_flags & RQF_MIXED_MERGE) {
855 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
856 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857 	}
858 
859 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860 		/*
861 		 * If total number of sectors is less than the first segment
862 		 * size, something has gone terribly wrong.
863 		 */
864 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865 			blk_dump_rq_flags(req, "request botched");
866 			req->__data_len = blk_rq_cur_bytes(req);
867 		}
868 
869 		/* recalculate the number of segments */
870 		req->nr_phys_segments = blk_recalc_rq_segments(req);
871 	}
872 
873 	return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876 
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879 	const int sgrp = op_stat_group(req_op(req));
880 
881 	part_stat_lock();
882 	update_io_ticks(req->part, jiffies, true);
883 	part_stat_inc(req->part, ios[sgrp]);
884 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885 	part_stat_unlock();
886 }
887 
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890 	/*
891 	 * Account IO completion.  flush_rq isn't accounted as a
892 	 * normal IO on queueing nor completion.  Accounting the
893 	 * containing request is enough.
894 	 */
895 	if (blk_do_io_stat(req) && req->part &&
896 	    !(req->rq_flags & RQF_FLUSH_SEQ))
897 		__blk_account_io_done(req, now);
898 }
899 
900 static void __blk_account_io_start(struct request *rq)
901 {
902 	/*
903 	 * All non-passthrough requests are created from a bio with one
904 	 * exception: when a flush command that is part of a flush sequence
905 	 * generated by the state machine in blk-flush.c is cloned onto the
906 	 * lower device by dm-multipath we can get here without a bio.
907 	 */
908 	if (rq->bio)
909 		rq->part = rq->bio->bi_bdev;
910 	else
911 		rq->part = rq->q->disk->part0;
912 
913 	part_stat_lock();
914 	update_io_ticks(rq->part, jiffies, false);
915 	part_stat_unlock();
916 }
917 
918 static inline void blk_account_io_start(struct request *req)
919 {
920 	if (blk_do_io_stat(req))
921 		__blk_account_io_start(req);
922 }
923 
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926 	if (rq->rq_flags & RQF_STATS) {
927 		blk_mq_poll_stats_start(rq->q);
928 		blk_stat_add(rq, now);
929 	}
930 
931 	blk_mq_sched_completed_request(rq, now);
932 	blk_account_io_done(rq, now);
933 }
934 
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937 	if (blk_mq_need_time_stamp(rq))
938 		__blk_mq_end_request_acct(rq, ktime_get_ns());
939 
940 	if (rq->end_io) {
941 		rq_qos_done(rq->q, rq);
942 		rq->end_io(rq, error);
943 	} else {
944 		blk_mq_free_request(rq);
945 	}
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948 
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952 		BUG();
953 	__blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956 
957 #define TAG_COMP_BATCH		32
958 
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960 					  int *tag_array, int nr_tags)
961 {
962 	struct request_queue *q = hctx->queue;
963 
964 	/*
965 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
966 	 * update hctx->nr_active in batch
967 	 */
968 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969 		__blk_mq_sub_active_requests(hctx, nr_tags);
970 
971 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974 
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977 	int tags[TAG_COMP_BATCH], nr_tags = 0;
978 	struct blk_mq_hw_ctx *cur_hctx = NULL;
979 	struct request *rq;
980 	u64 now = 0;
981 
982 	if (iob->need_ts)
983 		now = ktime_get_ns();
984 
985 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986 		prefetch(rq->bio);
987 		prefetch(rq->rq_next);
988 
989 		blk_complete_request(rq);
990 		if (iob->need_ts)
991 			__blk_mq_end_request_acct(rq, now);
992 
993 		rq_qos_done(rq->q, rq);
994 
995 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996 		if (!req_ref_put_and_test(rq))
997 			continue;
998 
999 		blk_crypto_free_request(rq);
1000 		blk_pm_mark_last_busy(rq);
1001 
1002 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003 			if (cur_hctx)
1004 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005 			nr_tags = 0;
1006 			cur_hctx = rq->mq_hctx;
1007 		}
1008 		tags[nr_tags++] = rq->tag;
1009 	}
1010 
1011 	if (nr_tags)
1012 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015 
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019 	struct request *rq, *next;
1020 
1021 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022 		rq->q->mq_ops->complete(rq);
1023 }
1024 
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029 
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033 	return 0;
1034 }
1035 
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040 
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043 	int cpu = raw_smp_processor_id();
1044 
1045 	if (!IS_ENABLED(CONFIG_SMP) ||
1046 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047 		return false;
1048 	/*
1049 	 * With force threaded interrupts enabled, raising softirq from an SMP
1050 	 * function call will always result in waking the ksoftirqd thread.
1051 	 * This is probably worse than completing the request on a different
1052 	 * cache domain.
1053 	 */
1054 	if (force_irqthreads())
1055 		return false;
1056 
1057 	/* same CPU or cache domain?  Complete locally */
1058 	if (cpu == rq->mq_ctx->cpu ||
1059 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061 		return false;
1062 
1063 	/* don't try to IPI to an offline CPU */
1064 	return cpu_online(rq->mq_ctx->cpu);
1065 }
1066 
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069 	struct llist_head *list;
1070 	unsigned int cpu;
1071 
1072 	cpu = rq->mq_ctx->cpu;
1073 	list = &per_cpu(blk_cpu_done, cpu);
1074 	if (llist_add(&rq->ipi_list, list)) {
1075 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076 		smp_call_function_single_async(cpu, &rq->csd);
1077 	}
1078 }
1079 
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082 	struct llist_head *list;
1083 
1084 	preempt_disable();
1085 	list = this_cpu_ptr(&blk_cpu_done);
1086 	if (llist_add(&rq->ipi_list, list))
1087 		raise_softirq(BLOCK_SOFTIRQ);
1088 	preempt_enable();
1089 }
1090 
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094 
1095 	/*
1096 	 * For a polled request, always complete locally, it's pointless
1097 	 * to redirect the completion.
1098 	 */
1099 	if (rq->cmd_flags & REQ_POLLED)
1100 		return false;
1101 
1102 	if (blk_mq_complete_need_ipi(rq)) {
1103 		blk_mq_complete_send_ipi(rq);
1104 		return true;
1105 	}
1106 
1107 	if (rq->q->nr_hw_queues == 1) {
1108 		blk_mq_raise_softirq(rq);
1109 		return true;
1110 	}
1111 	return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114 
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:		the request being processed
1118  *
1119  * Description:
1120  *	Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124 	if (!blk_mq_complete_request_remote(rq))
1125 		rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128 
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139 	struct request_queue *q = rq->q;
1140 
1141 	trace_block_rq_issue(rq);
1142 
1143 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144 		rq->io_start_time_ns = ktime_get_ns();
1145 		rq->stats_sectors = blk_rq_sectors(rq);
1146 		rq->rq_flags |= RQF_STATS;
1147 		rq_qos_issue(q, rq);
1148 	}
1149 
1150 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151 
1152 	blk_add_timer(rq);
1153 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154 
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157 		q->integrity.profile->prepare_fn(rq);
1158 #endif
1159 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163 
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171 	if (plug->multiple_queues)
1172 		return BLK_MAX_REQUEST_COUNT * 2;
1173 	return BLK_MAX_REQUEST_COUNT;
1174 }
1175 
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178 	struct request *last = rq_list_peek(&plug->mq_list);
1179 
1180 	if (!plug->rq_count) {
1181 		trace_block_plug(rq->q);
1182 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183 		   (!blk_queue_nomerges(rq->q) &&
1184 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185 		blk_mq_flush_plug_list(plug, false);
1186 		trace_block_plug(rq->q);
1187 	}
1188 
1189 	if (!plug->multiple_queues && last && last->q != rq->q)
1190 		plug->multiple_queues = true;
1191 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1192 		plug->has_elevator = true;
1193 	rq->rq_next = NULL;
1194 	rq_list_add(&plug->mq_list, rq);
1195 	plug->rq_count++;
1196 }
1197 
1198 /**
1199  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1200  * @rq:		request to insert
1201  * @at_head:    insert request at head or tail of queue
1202  *
1203  * Description:
1204  *    Insert a fully prepared request at the back of the I/O scheduler queue
1205  *    for execution.  Don't wait for completion.
1206  *
1207  * Note:
1208  *    This function will invoke @done directly if the queue is dead.
1209  */
1210 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1211 {
1212 	WARN_ON(irqs_disabled());
1213 	WARN_ON(!blk_rq_is_passthrough(rq));
1214 
1215 	blk_account_io_start(rq);
1216 	if (current->plug)
1217 		blk_add_rq_to_plug(current->plug, rq);
1218 	else
1219 		blk_mq_sched_insert_request(rq, at_head, true, false);
1220 }
1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1222 
1223 struct blk_rq_wait {
1224 	struct completion done;
1225 	blk_status_t ret;
1226 };
1227 
1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1229 {
1230 	struct blk_rq_wait *wait = rq->end_io_data;
1231 
1232 	wait->ret = ret;
1233 	complete(&wait->done);
1234 }
1235 
1236 static bool blk_rq_is_poll(struct request *rq)
1237 {
1238 	if (!rq->mq_hctx)
1239 		return false;
1240 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1241 		return false;
1242 	if (WARN_ON_ONCE(!rq->bio))
1243 		return false;
1244 	return true;
1245 }
1246 
1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1248 {
1249 	do {
1250 		bio_poll(rq->bio, NULL, 0);
1251 		cond_resched();
1252 	} while (!completion_done(wait));
1253 }
1254 
1255 /**
1256  * blk_execute_rq - insert a request into queue for execution
1257  * @rq:		request to insert
1258  * @at_head:    insert request at head or tail of queue
1259  *
1260  * Description:
1261  *    Insert a fully prepared request at the back of the I/O scheduler queue
1262  *    for execution and wait for completion.
1263  * Return: The blk_status_t result provided to blk_mq_end_request().
1264  */
1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1266 {
1267 	struct blk_rq_wait wait = {
1268 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1269 	};
1270 
1271 	WARN_ON(irqs_disabled());
1272 	WARN_ON(!blk_rq_is_passthrough(rq));
1273 
1274 	rq->end_io_data = &wait;
1275 	rq->end_io = blk_end_sync_rq;
1276 
1277 	blk_account_io_start(rq);
1278 	blk_mq_sched_insert_request(rq, at_head, true, false);
1279 
1280 	if (blk_rq_is_poll(rq)) {
1281 		blk_rq_poll_completion(rq, &wait.done);
1282 	} else {
1283 		/*
1284 		 * Prevent hang_check timer from firing at us during very long
1285 		 * I/O
1286 		 */
1287 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1288 
1289 		if (hang_check)
1290 			while (!wait_for_completion_io_timeout(&wait.done,
1291 					hang_check * (HZ/2)))
1292 				;
1293 		else
1294 			wait_for_completion_io(&wait.done);
1295 	}
1296 
1297 	return wait.ret;
1298 }
1299 EXPORT_SYMBOL(blk_execute_rq);
1300 
1301 static void __blk_mq_requeue_request(struct request *rq)
1302 {
1303 	struct request_queue *q = rq->q;
1304 
1305 	blk_mq_put_driver_tag(rq);
1306 
1307 	trace_block_rq_requeue(rq);
1308 	rq_qos_requeue(q, rq);
1309 
1310 	if (blk_mq_request_started(rq)) {
1311 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1312 		rq->rq_flags &= ~RQF_TIMED_OUT;
1313 	}
1314 }
1315 
1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1317 {
1318 	__blk_mq_requeue_request(rq);
1319 
1320 	/* this request will be re-inserted to io scheduler queue */
1321 	blk_mq_sched_requeue_request(rq);
1322 
1323 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1324 }
1325 EXPORT_SYMBOL(blk_mq_requeue_request);
1326 
1327 static void blk_mq_requeue_work(struct work_struct *work)
1328 {
1329 	struct request_queue *q =
1330 		container_of(work, struct request_queue, requeue_work.work);
1331 	LIST_HEAD(rq_list);
1332 	struct request *rq, *next;
1333 
1334 	spin_lock_irq(&q->requeue_lock);
1335 	list_splice_init(&q->requeue_list, &rq_list);
1336 	spin_unlock_irq(&q->requeue_lock);
1337 
1338 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1339 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1340 			continue;
1341 
1342 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1343 		list_del_init(&rq->queuelist);
1344 		/*
1345 		 * If RQF_DONTPREP, rq has contained some driver specific
1346 		 * data, so insert it to hctx dispatch list to avoid any
1347 		 * merge.
1348 		 */
1349 		if (rq->rq_flags & RQF_DONTPREP)
1350 			blk_mq_request_bypass_insert(rq, false, false);
1351 		else
1352 			blk_mq_sched_insert_request(rq, true, false, false);
1353 	}
1354 
1355 	while (!list_empty(&rq_list)) {
1356 		rq = list_entry(rq_list.next, struct request, queuelist);
1357 		list_del_init(&rq->queuelist);
1358 		blk_mq_sched_insert_request(rq, false, false, false);
1359 	}
1360 
1361 	blk_mq_run_hw_queues(q, false);
1362 }
1363 
1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1365 				bool kick_requeue_list)
1366 {
1367 	struct request_queue *q = rq->q;
1368 	unsigned long flags;
1369 
1370 	/*
1371 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1372 	 * request head insertion from the workqueue.
1373 	 */
1374 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1375 
1376 	spin_lock_irqsave(&q->requeue_lock, flags);
1377 	if (at_head) {
1378 		rq->rq_flags |= RQF_SOFTBARRIER;
1379 		list_add(&rq->queuelist, &q->requeue_list);
1380 	} else {
1381 		list_add_tail(&rq->queuelist, &q->requeue_list);
1382 	}
1383 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1384 
1385 	if (kick_requeue_list)
1386 		blk_mq_kick_requeue_list(q);
1387 }
1388 
1389 void blk_mq_kick_requeue_list(struct request_queue *q)
1390 {
1391 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1392 }
1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1394 
1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1396 				    unsigned long msecs)
1397 {
1398 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1399 				    msecs_to_jiffies(msecs));
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1402 
1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1404 {
1405 	/*
1406 	 * If we find a request that isn't idle we know the queue is busy
1407 	 * as it's checked in the iter.
1408 	 * Return false to stop the iteration.
1409 	 */
1410 	if (blk_mq_request_started(rq)) {
1411 		bool *busy = priv;
1412 
1413 		*busy = true;
1414 		return false;
1415 	}
1416 
1417 	return true;
1418 }
1419 
1420 bool blk_mq_queue_inflight(struct request_queue *q)
1421 {
1422 	bool busy = false;
1423 
1424 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1425 	return busy;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1428 
1429 static void blk_mq_rq_timed_out(struct request *req)
1430 {
1431 	req->rq_flags |= RQF_TIMED_OUT;
1432 	if (req->q->mq_ops->timeout) {
1433 		enum blk_eh_timer_return ret;
1434 
1435 		ret = req->q->mq_ops->timeout(req);
1436 		if (ret == BLK_EH_DONE)
1437 			return;
1438 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1439 	}
1440 
1441 	blk_add_timer(req);
1442 }
1443 
1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1445 {
1446 	unsigned long deadline;
1447 
1448 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1449 		return false;
1450 	if (rq->rq_flags & RQF_TIMED_OUT)
1451 		return false;
1452 
1453 	deadline = READ_ONCE(rq->deadline);
1454 	if (time_after_eq(jiffies, deadline))
1455 		return true;
1456 
1457 	if (*next == 0)
1458 		*next = deadline;
1459 	else if (time_after(*next, deadline))
1460 		*next = deadline;
1461 	return false;
1462 }
1463 
1464 void blk_mq_put_rq_ref(struct request *rq)
1465 {
1466 	if (is_flush_rq(rq))
1467 		rq->end_io(rq, 0);
1468 	else if (req_ref_put_and_test(rq))
1469 		__blk_mq_free_request(rq);
1470 }
1471 
1472 static bool blk_mq_check_expired(struct request *rq, void *priv)
1473 {
1474 	unsigned long *next = priv;
1475 
1476 	/*
1477 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1478 	 * be reallocated underneath the timeout handler's processing, then
1479 	 * the expire check is reliable. If the request is not expired, then
1480 	 * it was completed and reallocated as a new request after returning
1481 	 * from blk_mq_check_expired().
1482 	 */
1483 	if (blk_mq_req_expired(rq, next))
1484 		blk_mq_rq_timed_out(rq);
1485 	return true;
1486 }
1487 
1488 static void blk_mq_timeout_work(struct work_struct *work)
1489 {
1490 	struct request_queue *q =
1491 		container_of(work, struct request_queue, timeout_work);
1492 	unsigned long next = 0;
1493 	struct blk_mq_hw_ctx *hctx;
1494 	unsigned long i;
1495 
1496 	/* A deadlock might occur if a request is stuck requiring a
1497 	 * timeout at the same time a queue freeze is waiting
1498 	 * completion, since the timeout code would not be able to
1499 	 * acquire the queue reference here.
1500 	 *
1501 	 * That's why we don't use blk_queue_enter here; instead, we use
1502 	 * percpu_ref_tryget directly, because we need to be able to
1503 	 * obtain a reference even in the short window between the queue
1504 	 * starting to freeze, by dropping the first reference in
1505 	 * blk_freeze_queue_start, and the moment the last request is
1506 	 * consumed, marked by the instant q_usage_counter reaches
1507 	 * zero.
1508 	 */
1509 	if (!percpu_ref_tryget(&q->q_usage_counter))
1510 		return;
1511 
1512 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1513 
1514 	if (next != 0) {
1515 		mod_timer(&q->timeout, next);
1516 	} else {
1517 		/*
1518 		 * Request timeouts are handled as a forward rolling timer. If
1519 		 * we end up here it means that no requests are pending and
1520 		 * also that no request has been pending for a while. Mark
1521 		 * each hctx as idle.
1522 		 */
1523 		queue_for_each_hw_ctx(q, hctx, i) {
1524 			/* the hctx may be unmapped, so check it here */
1525 			if (blk_mq_hw_queue_mapped(hctx))
1526 				blk_mq_tag_idle(hctx);
1527 		}
1528 	}
1529 	blk_queue_exit(q);
1530 }
1531 
1532 struct flush_busy_ctx_data {
1533 	struct blk_mq_hw_ctx *hctx;
1534 	struct list_head *list;
1535 };
1536 
1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1538 {
1539 	struct flush_busy_ctx_data *flush_data = data;
1540 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1541 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1542 	enum hctx_type type = hctx->type;
1543 
1544 	spin_lock(&ctx->lock);
1545 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1546 	sbitmap_clear_bit(sb, bitnr);
1547 	spin_unlock(&ctx->lock);
1548 	return true;
1549 }
1550 
1551 /*
1552  * Process software queues that have been marked busy, splicing them
1553  * to the for-dispatch
1554  */
1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1556 {
1557 	struct flush_busy_ctx_data data = {
1558 		.hctx = hctx,
1559 		.list = list,
1560 	};
1561 
1562 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1565 
1566 struct dispatch_rq_data {
1567 	struct blk_mq_hw_ctx *hctx;
1568 	struct request *rq;
1569 };
1570 
1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1572 		void *data)
1573 {
1574 	struct dispatch_rq_data *dispatch_data = data;
1575 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1576 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1577 	enum hctx_type type = hctx->type;
1578 
1579 	spin_lock(&ctx->lock);
1580 	if (!list_empty(&ctx->rq_lists[type])) {
1581 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1582 		list_del_init(&dispatch_data->rq->queuelist);
1583 		if (list_empty(&ctx->rq_lists[type]))
1584 			sbitmap_clear_bit(sb, bitnr);
1585 	}
1586 	spin_unlock(&ctx->lock);
1587 
1588 	return !dispatch_data->rq;
1589 }
1590 
1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1592 					struct blk_mq_ctx *start)
1593 {
1594 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1595 	struct dispatch_rq_data data = {
1596 		.hctx = hctx,
1597 		.rq   = NULL,
1598 	};
1599 
1600 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1601 			       dispatch_rq_from_ctx, &data);
1602 
1603 	return data.rq;
1604 }
1605 
1606 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1607 {
1608 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1609 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1610 	int tag;
1611 
1612 	blk_mq_tag_busy(rq->mq_hctx);
1613 
1614 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1615 		bt = &rq->mq_hctx->tags->breserved_tags;
1616 		tag_offset = 0;
1617 	} else {
1618 		if (!hctx_may_queue(rq->mq_hctx, bt))
1619 			return false;
1620 	}
1621 
1622 	tag = __sbitmap_queue_get(bt);
1623 	if (tag == BLK_MQ_NO_TAG)
1624 		return false;
1625 
1626 	rq->tag = tag + tag_offset;
1627 	return true;
1628 }
1629 
1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1633 		return false;
1634 
1635 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1636 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1637 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1638 		__blk_mq_inc_active_requests(hctx);
1639 	}
1640 	hctx->tags->rqs[rq->tag] = rq;
1641 	return true;
1642 }
1643 
1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1645 				int flags, void *key)
1646 {
1647 	struct blk_mq_hw_ctx *hctx;
1648 
1649 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1650 
1651 	spin_lock(&hctx->dispatch_wait_lock);
1652 	if (!list_empty(&wait->entry)) {
1653 		struct sbitmap_queue *sbq;
1654 
1655 		list_del_init(&wait->entry);
1656 		sbq = &hctx->tags->bitmap_tags;
1657 		atomic_dec(&sbq->ws_active);
1658 	}
1659 	spin_unlock(&hctx->dispatch_wait_lock);
1660 
1661 	blk_mq_run_hw_queue(hctx, true);
1662 	return 1;
1663 }
1664 
1665 /*
1666  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1667  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1668  * restart. For both cases, take care to check the condition again after
1669  * marking us as waiting.
1670  */
1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1672 				 struct request *rq)
1673 {
1674 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1675 	struct wait_queue_head *wq;
1676 	wait_queue_entry_t *wait;
1677 	bool ret;
1678 
1679 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1680 		blk_mq_sched_mark_restart_hctx(hctx);
1681 
1682 		/*
1683 		 * It's possible that a tag was freed in the window between the
1684 		 * allocation failure and adding the hardware queue to the wait
1685 		 * queue.
1686 		 *
1687 		 * Don't clear RESTART here, someone else could have set it.
1688 		 * At most this will cost an extra queue run.
1689 		 */
1690 		return blk_mq_get_driver_tag(rq);
1691 	}
1692 
1693 	wait = &hctx->dispatch_wait;
1694 	if (!list_empty_careful(&wait->entry))
1695 		return false;
1696 
1697 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1698 
1699 	spin_lock_irq(&wq->lock);
1700 	spin_lock(&hctx->dispatch_wait_lock);
1701 	if (!list_empty(&wait->entry)) {
1702 		spin_unlock(&hctx->dispatch_wait_lock);
1703 		spin_unlock_irq(&wq->lock);
1704 		return false;
1705 	}
1706 
1707 	atomic_inc(&sbq->ws_active);
1708 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1709 	__add_wait_queue(wq, wait);
1710 
1711 	/*
1712 	 * It's possible that a tag was freed in the window between the
1713 	 * allocation failure and adding the hardware queue to the wait
1714 	 * queue.
1715 	 */
1716 	ret = blk_mq_get_driver_tag(rq);
1717 	if (!ret) {
1718 		spin_unlock(&hctx->dispatch_wait_lock);
1719 		spin_unlock_irq(&wq->lock);
1720 		return false;
1721 	}
1722 
1723 	/*
1724 	 * We got a tag, remove ourselves from the wait queue to ensure
1725 	 * someone else gets the wakeup.
1726 	 */
1727 	list_del_init(&wait->entry);
1728 	atomic_dec(&sbq->ws_active);
1729 	spin_unlock(&hctx->dispatch_wait_lock);
1730 	spin_unlock_irq(&wq->lock);
1731 
1732 	return true;
1733 }
1734 
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1737 /*
1738  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1739  * - EWMA is one simple way to compute running average value
1740  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1741  * - take 4 as factor for avoiding to get too small(0) result, and this
1742  *   factor doesn't matter because EWMA decreases exponentially
1743  */
1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1745 {
1746 	unsigned int ewma;
1747 
1748 	ewma = hctx->dispatch_busy;
1749 
1750 	if (!ewma && !busy)
1751 		return;
1752 
1753 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1754 	if (busy)
1755 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1756 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1757 
1758 	hctx->dispatch_busy = ewma;
1759 }
1760 
1761 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1762 
1763 static void blk_mq_handle_dev_resource(struct request *rq,
1764 				       struct list_head *list)
1765 {
1766 	struct request *next =
1767 		list_first_entry_or_null(list, struct request, queuelist);
1768 
1769 	/*
1770 	 * If an I/O scheduler has been configured and we got a driver tag for
1771 	 * the next request already, free it.
1772 	 */
1773 	if (next)
1774 		blk_mq_put_driver_tag(next);
1775 
1776 	list_add(&rq->queuelist, list);
1777 	__blk_mq_requeue_request(rq);
1778 }
1779 
1780 static void blk_mq_handle_zone_resource(struct request *rq,
1781 					struct list_head *zone_list)
1782 {
1783 	/*
1784 	 * If we end up here it is because we cannot dispatch a request to a
1785 	 * specific zone due to LLD level zone-write locking or other zone
1786 	 * related resource not being available. In this case, set the request
1787 	 * aside in zone_list for retrying it later.
1788 	 */
1789 	list_add(&rq->queuelist, zone_list);
1790 	__blk_mq_requeue_request(rq);
1791 }
1792 
1793 enum prep_dispatch {
1794 	PREP_DISPATCH_OK,
1795 	PREP_DISPATCH_NO_TAG,
1796 	PREP_DISPATCH_NO_BUDGET,
1797 };
1798 
1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1800 						  bool need_budget)
1801 {
1802 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1803 	int budget_token = -1;
1804 
1805 	if (need_budget) {
1806 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1807 		if (budget_token < 0) {
1808 			blk_mq_put_driver_tag(rq);
1809 			return PREP_DISPATCH_NO_BUDGET;
1810 		}
1811 		blk_mq_set_rq_budget_token(rq, budget_token);
1812 	}
1813 
1814 	if (!blk_mq_get_driver_tag(rq)) {
1815 		/*
1816 		 * The initial allocation attempt failed, so we need to
1817 		 * rerun the hardware queue when a tag is freed. The
1818 		 * waitqueue takes care of that. If the queue is run
1819 		 * before we add this entry back on the dispatch list,
1820 		 * we'll re-run it below.
1821 		 */
1822 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1823 			/*
1824 			 * All budgets not got from this function will be put
1825 			 * together during handling partial dispatch
1826 			 */
1827 			if (need_budget)
1828 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1829 			return PREP_DISPATCH_NO_TAG;
1830 		}
1831 	}
1832 
1833 	return PREP_DISPATCH_OK;
1834 }
1835 
1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1837 static void blk_mq_release_budgets(struct request_queue *q,
1838 		struct list_head *list)
1839 {
1840 	struct request *rq;
1841 
1842 	list_for_each_entry(rq, list, queuelist) {
1843 		int budget_token = blk_mq_get_rq_budget_token(rq);
1844 
1845 		if (budget_token >= 0)
1846 			blk_mq_put_dispatch_budget(q, budget_token);
1847 	}
1848 }
1849 
1850 /*
1851  * Returns true if we did some work AND can potentially do more.
1852  */
1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1854 			     unsigned int nr_budgets)
1855 {
1856 	enum prep_dispatch prep;
1857 	struct request_queue *q = hctx->queue;
1858 	struct request *rq, *nxt;
1859 	int errors, queued;
1860 	blk_status_t ret = BLK_STS_OK;
1861 	LIST_HEAD(zone_list);
1862 	bool needs_resource = false;
1863 
1864 	if (list_empty(list))
1865 		return false;
1866 
1867 	/*
1868 	 * Now process all the entries, sending them to the driver.
1869 	 */
1870 	errors = queued = 0;
1871 	do {
1872 		struct blk_mq_queue_data bd;
1873 
1874 		rq = list_first_entry(list, struct request, queuelist);
1875 
1876 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1877 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1878 		if (prep != PREP_DISPATCH_OK)
1879 			break;
1880 
1881 		list_del_init(&rq->queuelist);
1882 
1883 		bd.rq = rq;
1884 
1885 		/*
1886 		 * Flag last if we have no more requests, or if we have more
1887 		 * but can't assign a driver tag to it.
1888 		 */
1889 		if (list_empty(list))
1890 			bd.last = true;
1891 		else {
1892 			nxt = list_first_entry(list, struct request, queuelist);
1893 			bd.last = !blk_mq_get_driver_tag(nxt);
1894 		}
1895 
1896 		/*
1897 		 * once the request is queued to lld, no need to cover the
1898 		 * budget any more
1899 		 */
1900 		if (nr_budgets)
1901 			nr_budgets--;
1902 		ret = q->mq_ops->queue_rq(hctx, &bd);
1903 		switch (ret) {
1904 		case BLK_STS_OK:
1905 			queued++;
1906 			break;
1907 		case BLK_STS_RESOURCE:
1908 			needs_resource = true;
1909 			fallthrough;
1910 		case BLK_STS_DEV_RESOURCE:
1911 			blk_mq_handle_dev_resource(rq, list);
1912 			goto out;
1913 		case BLK_STS_ZONE_RESOURCE:
1914 			/*
1915 			 * Move the request to zone_list and keep going through
1916 			 * the dispatch list to find more requests the drive can
1917 			 * accept.
1918 			 */
1919 			blk_mq_handle_zone_resource(rq, &zone_list);
1920 			needs_resource = true;
1921 			break;
1922 		default:
1923 			errors++;
1924 			blk_mq_end_request(rq, ret);
1925 		}
1926 	} while (!list_empty(list));
1927 out:
1928 	if (!list_empty(&zone_list))
1929 		list_splice_tail_init(&zone_list, list);
1930 
1931 	/* If we didn't flush the entire list, we could have told the driver
1932 	 * there was more coming, but that turned out to be a lie.
1933 	 */
1934 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1935 		q->mq_ops->commit_rqs(hctx);
1936 	/*
1937 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1938 	 * that is where we will continue on next queue run.
1939 	 */
1940 	if (!list_empty(list)) {
1941 		bool needs_restart;
1942 		/* For non-shared tags, the RESTART check will suffice */
1943 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1944 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1945 
1946 		if (nr_budgets)
1947 			blk_mq_release_budgets(q, list);
1948 
1949 		spin_lock(&hctx->lock);
1950 		list_splice_tail_init(list, &hctx->dispatch);
1951 		spin_unlock(&hctx->lock);
1952 
1953 		/*
1954 		 * Order adding requests to hctx->dispatch and checking
1955 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1956 		 * in blk_mq_sched_restart(). Avoid restart code path to
1957 		 * miss the new added requests to hctx->dispatch, meantime
1958 		 * SCHED_RESTART is observed here.
1959 		 */
1960 		smp_mb();
1961 
1962 		/*
1963 		 * If SCHED_RESTART was set by the caller of this function and
1964 		 * it is no longer set that means that it was cleared by another
1965 		 * thread and hence that a queue rerun is needed.
1966 		 *
1967 		 * If 'no_tag' is set, that means that we failed getting
1968 		 * a driver tag with an I/O scheduler attached. If our dispatch
1969 		 * waitqueue is no longer active, ensure that we run the queue
1970 		 * AFTER adding our entries back to the list.
1971 		 *
1972 		 * If no I/O scheduler has been configured it is possible that
1973 		 * the hardware queue got stopped and restarted before requests
1974 		 * were pushed back onto the dispatch list. Rerun the queue to
1975 		 * avoid starvation. Notes:
1976 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1977 		 *   been stopped before rerunning a queue.
1978 		 * - Some but not all block drivers stop a queue before
1979 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1980 		 *   and dm-rq.
1981 		 *
1982 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1983 		 * bit is set, run queue after a delay to avoid IO stalls
1984 		 * that could otherwise occur if the queue is idle.  We'll do
1985 		 * similar if we couldn't get budget or couldn't lock a zone
1986 		 * and SCHED_RESTART is set.
1987 		 */
1988 		needs_restart = blk_mq_sched_needs_restart(hctx);
1989 		if (prep == PREP_DISPATCH_NO_BUDGET)
1990 			needs_resource = true;
1991 		if (!needs_restart ||
1992 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1993 			blk_mq_run_hw_queue(hctx, true);
1994 		else if (needs_restart && needs_resource)
1995 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1996 
1997 		blk_mq_update_dispatch_busy(hctx, true);
1998 		return false;
1999 	} else
2000 		blk_mq_update_dispatch_busy(hctx, false);
2001 
2002 	return (queued + errors) != 0;
2003 }
2004 
2005 /**
2006  * __blk_mq_run_hw_queue - Run a hardware queue.
2007  * @hctx: Pointer to the hardware queue to run.
2008  *
2009  * Send pending requests to the hardware.
2010  */
2011 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2012 {
2013 	/*
2014 	 * We can't run the queue inline with ints disabled. Ensure that
2015 	 * we catch bad users of this early.
2016 	 */
2017 	WARN_ON_ONCE(in_interrupt());
2018 
2019 	blk_mq_run_dispatch_ops(hctx->queue,
2020 			blk_mq_sched_dispatch_requests(hctx));
2021 }
2022 
2023 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2024 {
2025 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2026 
2027 	if (cpu >= nr_cpu_ids)
2028 		cpu = cpumask_first(hctx->cpumask);
2029 	return cpu;
2030 }
2031 
2032 /*
2033  * It'd be great if the workqueue API had a way to pass
2034  * in a mask and had some smarts for more clever placement.
2035  * For now we just round-robin here, switching for every
2036  * BLK_MQ_CPU_WORK_BATCH queued items.
2037  */
2038 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2039 {
2040 	bool tried = false;
2041 	int next_cpu = hctx->next_cpu;
2042 
2043 	if (hctx->queue->nr_hw_queues == 1)
2044 		return WORK_CPU_UNBOUND;
2045 
2046 	if (--hctx->next_cpu_batch <= 0) {
2047 select_cpu:
2048 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2049 				cpu_online_mask);
2050 		if (next_cpu >= nr_cpu_ids)
2051 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2052 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2053 	}
2054 
2055 	/*
2056 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2057 	 * and it should only happen in the path of handling CPU DEAD.
2058 	 */
2059 	if (!cpu_online(next_cpu)) {
2060 		if (!tried) {
2061 			tried = true;
2062 			goto select_cpu;
2063 		}
2064 
2065 		/*
2066 		 * Make sure to re-select CPU next time once after CPUs
2067 		 * in hctx->cpumask become online again.
2068 		 */
2069 		hctx->next_cpu = next_cpu;
2070 		hctx->next_cpu_batch = 1;
2071 		return WORK_CPU_UNBOUND;
2072 	}
2073 
2074 	hctx->next_cpu = next_cpu;
2075 	return next_cpu;
2076 }
2077 
2078 /**
2079  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2080  * @hctx: Pointer to the hardware queue to run.
2081  * @async: If we want to run the queue asynchronously.
2082  * @msecs: Milliseconds of delay to wait before running the queue.
2083  *
2084  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2085  * with a delay of @msecs.
2086  */
2087 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2088 					unsigned long msecs)
2089 {
2090 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2091 		return;
2092 
2093 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2094 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2095 			__blk_mq_run_hw_queue(hctx);
2096 			return;
2097 		}
2098 	}
2099 
2100 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2101 				    msecs_to_jiffies(msecs));
2102 }
2103 
2104 /**
2105  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2106  * @hctx: Pointer to the hardware queue to run.
2107  * @msecs: Milliseconds of delay to wait before running the queue.
2108  *
2109  * Run a hardware queue asynchronously with a delay of @msecs.
2110  */
2111 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2112 {
2113 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2114 }
2115 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2116 
2117 /**
2118  * blk_mq_run_hw_queue - Start to run a hardware queue.
2119  * @hctx: Pointer to the hardware queue to run.
2120  * @async: If we want to run the queue asynchronously.
2121  *
2122  * Check if the request queue is not in a quiesced state and if there are
2123  * pending requests to be sent. If this is true, run the queue to send requests
2124  * to hardware.
2125  */
2126 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2127 {
2128 	bool need_run;
2129 
2130 	/*
2131 	 * When queue is quiesced, we may be switching io scheduler, or
2132 	 * updating nr_hw_queues, or other things, and we can't run queue
2133 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2134 	 *
2135 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2136 	 * quiesced.
2137 	 */
2138 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2139 		need_run = !blk_queue_quiesced(hctx->queue) &&
2140 		blk_mq_hctx_has_pending(hctx));
2141 
2142 	if (need_run)
2143 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2144 }
2145 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2146 
2147 /*
2148  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2149  * scheduler.
2150  */
2151 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2152 {
2153 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2154 	/*
2155 	 * If the IO scheduler does not respect hardware queues when
2156 	 * dispatching, we just don't bother with multiple HW queues and
2157 	 * dispatch from hctx for the current CPU since running multiple queues
2158 	 * just causes lock contention inside the scheduler and pointless cache
2159 	 * bouncing.
2160 	 */
2161 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2162 
2163 	if (!blk_mq_hctx_stopped(hctx))
2164 		return hctx;
2165 	return NULL;
2166 }
2167 
2168 /**
2169  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2170  * @q: Pointer to the request queue to run.
2171  * @async: If we want to run the queue asynchronously.
2172  */
2173 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2174 {
2175 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2176 	unsigned long i;
2177 
2178 	sq_hctx = NULL;
2179 	if (blk_queue_sq_sched(q))
2180 		sq_hctx = blk_mq_get_sq_hctx(q);
2181 	queue_for_each_hw_ctx(q, hctx, i) {
2182 		if (blk_mq_hctx_stopped(hctx))
2183 			continue;
2184 		/*
2185 		 * Dispatch from this hctx either if there's no hctx preferred
2186 		 * by IO scheduler or if it has requests that bypass the
2187 		 * scheduler.
2188 		 */
2189 		if (!sq_hctx || sq_hctx == hctx ||
2190 		    !list_empty_careful(&hctx->dispatch))
2191 			blk_mq_run_hw_queue(hctx, async);
2192 	}
2193 }
2194 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2195 
2196 /**
2197  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2198  * @q: Pointer to the request queue to run.
2199  * @msecs: Milliseconds of delay to wait before running the queues.
2200  */
2201 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2202 {
2203 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2204 	unsigned long i;
2205 
2206 	sq_hctx = NULL;
2207 	if (blk_queue_sq_sched(q))
2208 		sq_hctx = blk_mq_get_sq_hctx(q);
2209 	queue_for_each_hw_ctx(q, hctx, i) {
2210 		if (blk_mq_hctx_stopped(hctx))
2211 			continue;
2212 		/*
2213 		 * If there is already a run_work pending, leave the
2214 		 * pending delay untouched. Otherwise, a hctx can stall
2215 		 * if another hctx is re-delaying the other's work
2216 		 * before the work executes.
2217 		 */
2218 		if (delayed_work_pending(&hctx->run_work))
2219 			continue;
2220 		/*
2221 		 * Dispatch from this hctx either if there's no hctx preferred
2222 		 * by IO scheduler or if it has requests that bypass the
2223 		 * scheduler.
2224 		 */
2225 		if (!sq_hctx || sq_hctx == hctx ||
2226 		    !list_empty_careful(&hctx->dispatch))
2227 			blk_mq_delay_run_hw_queue(hctx, msecs);
2228 	}
2229 }
2230 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2231 
2232 /**
2233  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2234  * @q: request queue.
2235  *
2236  * The caller is responsible for serializing this function against
2237  * blk_mq_{start,stop}_hw_queue().
2238  */
2239 bool blk_mq_queue_stopped(struct request_queue *q)
2240 {
2241 	struct blk_mq_hw_ctx *hctx;
2242 	unsigned long i;
2243 
2244 	queue_for_each_hw_ctx(q, hctx, i)
2245 		if (blk_mq_hctx_stopped(hctx))
2246 			return true;
2247 
2248 	return false;
2249 }
2250 EXPORT_SYMBOL(blk_mq_queue_stopped);
2251 
2252 /*
2253  * This function is often used for pausing .queue_rq() by driver when
2254  * there isn't enough resource or some conditions aren't satisfied, and
2255  * BLK_STS_RESOURCE is usually returned.
2256  *
2257  * We do not guarantee that dispatch can be drained or blocked
2258  * after blk_mq_stop_hw_queue() returns. Please use
2259  * blk_mq_quiesce_queue() for that requirement.
2260  */
2261 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2262 {
2263 	cancel_delayed_work(&hctx->run_work);
2264 
2265 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2268 
2269 /*
2270  * This function is often used for pausing .queue_rq() by driver when
2271  * there isn't enough resource or some conditions aren't satisfied, and
2272  * BLK_STS_RESOURCE is usually returned.
2273  *
2274  * We do not guarantee that dispatch can be drained or blocked
2275  * after blk_mq_stop_hw_queues() returns. Please use
2276  * blk_mq_quiesce_queue() for that requirement.
2277  */
2278 void blk_mq_stop_hw_queues(struct request_queue *q)
2279 {
2280 	struct blk_mq_hw_ctx *hctx;
2281 	unsigned long i;
2282 
2283 	queue_for_each_hw_ctx(q, hctx, i)
2284 		blk_mq_stop_hw_queue(hctx);
2285 }
2286 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2287 
2288 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2289 {
2290 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2291 
2292 	blk_mq_run_hw_queue(hctx, false);
2293 }
2294 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2295 
2296 void blk_mq_start_hw_queues(struct request_queue *q)
2297 {
2298 	struct blk_mq_hw_ctx *hctx;
2299 	unsigned long i;
2300 
2301 	queue_for_each_hw_ctx(q, hctx, i)
2302 		blk_mq_start_hw_queue(hctx);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2305 
2306 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2307 {
2308 	if (!blk_mq_hctx_stopped(hctx))
2309 		return;
2310 
2311 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2312 	blk_mq_run_hw_queue(hctx, async);
2313 }
2314 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2315 
2316 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2317 {
2318 	struct blk_mq_hw_ctx *hctx;
2319 	unsigned long i;
2320 
2321 	queue_for_each_hw_ctx(q, hctx, i)
2322 		blk_mq_start_stopped_hw_queue(hctx, async);
2323 }
2324 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2325 
2326 static void blk_mq_run_work_fn(struct work_struct *work)
2327 {
2328 	struct blk_mq_hw_ctx *hctx;
2329 
2330 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2331 
2332 	/*
2333 	 * If we are stopped, don't run the queue.
2334 	 */
2335 	if (blk_mq_hctx_stopped(hctx))
2336 		return;
2337 
2338 	__blk_mq_run_hw_queue(hctx);
2339 }
2340 
2341 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2342 					    struct request *rq,
2343 					    bool at_head)
2344 {
2345 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2346 	enum hctx_type type = hctx->type;
2347 
2348 	lockdep_assert_held(&ctx->lock);
2349 
2350 	trace_block_rq_insert(rq);
2351 
2352 	if (at_head)
2353 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2354 	else
2355 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2356 }
2357 
2358 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2359 			     bool at_head)
2360 {
2361 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2362 
2363 	lockdep_assert_held(&ctx->lock);
2364 
2365 	__blk_mq_insert_req_list(hctx, rq, at_head);
2366 	blk_mq_hctx_mark_pending(hctx, ctx);
2367 }
2368 
2369 /**
2370  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2371  * @rq: Pointer to request to be inserted.
2372  * @at_head: true if the request should be inserted at the head of the list.
2373  * @run_queue: If we should run the hardware queue after inserting the request.
2374  *
2375  * Should only be used carefully, when the caller knows we want to
2376  * bypass a potential IO scheduler on the target device.
2377  */
2378 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2379 				  bool run_queue)
2380 {
2381 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2382 
2383 	spin_lock(&hctx->lock);
2384 	if (at_head)
2385 		list_add(&rq->queuelist, &hctx->dispatch);
2386 	else
2387 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2388 	spin_unlock(&hctx->lock);
2389 
2390 	if (run_queue)
2391 		blk_mq_run_hw_queue(hctx, false);
2392 }
2393 
2394 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2395 			    struct list_head *list)
2396 
2397 {
2398 	struct request *rq;
2399 	enum hctx_type type = hctx->type;
2400 
2401 	/*
2402 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2403 	 * offline now
2404 	 */
2405 	list_for_each_entry(rq, list, queuelist) {
2406 		BUG_ON(rq->mq_ctx != ctx);
2407 		trace_block_rq_insert(rq);
2408 	}
2409 
2410 	spin_lock(&ctx->lock);
2411 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2412 	blk_mq_hctx_mark_pending(hctx, ctx);
2413 	spin_unlock(&ctx->lock);
2414 }
2415 
2416 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2417 			      bool from_schedule)
2418 {
2419 	if (hctx->queue->mq_ops->commit_rqs) {
2420 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2421 		hctx->queue->mq_ops->commit_rqs(hctx);
2422 	}
2423 	*queued = 0;
2424 }
2425 
2426 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2427 		unsigned int nr_segs)
2428 {
2429 	int err;
2430 
2431 	if (bio->bi_opf & REQ_RAHEAD)
2432 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2433 
2434 	rq->__sector = bio->bi_iter.bi_sector;
2435 	blk_rq_bio_prep(rq, bio, nr_segs);
2436 
2437 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2438 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2439 	WARN_ON_ONCE(err);
2440 
2441 	blk_account_io_start(rq);
2442 }
2443 
2444 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2445 					    struct request *rq, bool last)
2446 {
2447 	struct request_queue *q = rq->q;
2448 	struct blk_mq_queue_data bd = {
2449 		.rq = rq,
2450 		.last = last,
2451 	};
2452 	blk_status_t ret;
2453 
2454 	/*
2455 	 * For OK queue, we are done. For error, caller may kill it.
2456 	 * Any other error (busy), just add it to our list as we
2457 	 * previously would have done.
2458 	 */
2459 	ret = q->mq_ops->queue_rq(hctx, &bd);
2460 	switch (ret) {
2461 	case BLK_STS_OK:
2462 		blk_mq_update_dispatch_busy(hctx, false);
2463 		break;
2464 	case BLK_STS_RESOURCE:
2465 	case BLK_STS_DEV_RESOURCE:
2466 		blk_mq_update_dispatch_busy(hctx, true);
2467 		__blk_mq_requeue_request(rq);
2468 		break;
2469 	default:
2470 		blk_mq_update_dispatch_busy(hctx, false);
2471 		break;
2472 	}
2473 
2474 	return ret;
2475 }
2476 
2477 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2478 						struct request *rq,
2479 						bool bypass_insert, bool last)
2480 {
2481 	struct request_queue *q = rq->q;
2482 	bool run_queue = true;
2483 	int budget_token;
2484 
2485 	/*
2486 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2487 	 *
2488 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2489 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2490 	 * and avoid driver to try to dispatch again.
2491 	 */
2492 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2493 		run_queue = false;
2494 		bypass_insert = false;
2495 		goto insert;
2496 	}
2497 
2498 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2499 		goto insert;
2500 
2501 	budget_token = blk_mq_get_dispatch_budget(q);
2502 	if (budget_token < 0)
2503 		goto insert;
2504 
2505 	blk_mq_set_rq_budget_token(rq, budget_token);
2506 
2507 	if (!blk_mq_get_driver_tag(rq)) {
2508 		blk_mq_put_dispatch_budget(q, budget_token);
2509 		goto insert;
2510 	}
2511 
2512 	return __blk_mq_issue_directly(hctx, rq, last);
2513 insert:
2514 	if (bypass_insert)
2515 		return BLK_STS_RESOURCE;
2516 
2517 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2518 
2519 	return BLK_STS_OK;
2520 }
2521 
2522 /**
2523  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2524  * @hctx: Pointer of the associated hardware queue.
2525  * @rq: Pointer to request to be sent.
2526  *
2527  * If the device has enough resources to accept a new request now, send the
2528  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2529  * we can try send it another time in the future. Requests inserted at this
2530  * queue have higher priority.
2531  */
2532 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2533 		struct request *rq)
2534 {
2535 	blk_status_t ret =
2536 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2537 
2538 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2539 		blk_mq_request_bypass_insert(rq, false, true);
2540 	else if (ret != BLK_STS_OK)
2541 		blk_mq_end_request(rq, ret);
2542 }
2543 
2544 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2545 {
2546 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2547 }
2548 
2549 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2550 {
2551 	struct blk_mq_hw_ctx *hctx = NULL;
2552 	struct request *rq;
2553 	int queued = 0;
2554 	int errors = 0;
2555 
2556 	while ((rq = rq_list_pop(&plug->mq_list))) {
2557 		bool last = rq_list_empty(plug->mq_list);
2558 		blk_status_t ret;
2559 
2560 		if (hctx != rq->mq_hctx) {
2561 			if (hctx)
2562 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2563 			hctx = rq->mq_hctx;
2564 		}
2565 
2566 		ret = blk_mq_request_issue_directly(rq, last);
2567 		switch (ret) {
2568 		case BLK_STS_OK:
2569 			queued++;
2570 			break;
2571 		case BLK_STS_RESOURCE:
2572 		case BLK_STS_DEV_RESOURCE:
2573 			blk_mq_request_bypass_insert(rq, false, last);
2574 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2575 			return;
2576 		default:
2577 			blk_mq_end_request(rq, ret);
2578 			errors++;
2579 			break;
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * If we didn't flush the entire list, we could have told the driver
2585 	 * there was more coming, but that turned out to be a lie.
2586 	 */
2587 	if (errors)
2588 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2589 }
2590 
2591 static void __blk_mq_flush_plug_list(struct request_queue *q,
2592 				     struct blk_plug *plug)
2593 {
2594 	if (blk_queue_quiesced(q))
2595 		return;
2596 	q->mq_ops->queue_rqs(&plug->mq_list);
2597 }
2598 
2599 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2600 {
2601 	struct blk_mq_hw_ctx *this_hctx = NULL;
2602 	struct blk_mq_ctx *this_ctx = NULL;
2603 	struct request *requeue_list = NULL;
2604 	unsigned int depth = 0;
2605 	LIST_HEAD(list);
2606 
2607 	do {
2608 		struct request *rq = rq_list_pop(&plug->mq_list);
2609 
2610 		if (!this_hctx) {
2611 			this_hctx = rq->mq_hctx;
2612 			this_ctx = rq->mq_ctx;
2613 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2614 			rq_list_add(&requeue_list, rq);
2615 			continue;
2616 		}
2617 		list_add_tail(&rq->queuelist, &list);
2618 		depth++;
2619 	} while (!rq_list_empty(plug->mq_list));
2620 
2621 	plug->mq_list = requeue_list;
2622 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2623 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2624 }
2625 
2626 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2627 {
2628 	struct request *rq;
2629 
2630 	if (rq_list_empty(plug->mq_list))
2631 		return;
2632 	plug->rq_count = 0;
2633 
2634 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2635 		struct request_queue *q;
2636 
2637 		rq = rq_list_peek(&plug->mq_list);
2638 		q = rq->q;
2639 
2640 		/*
2641 		 * Peek first request and see if we have a ->queue_rqs() hook.
2642 		 * If we do, we can dispatch the whole plug list in one go. We
2643 		 * already know at this point that all requests belong to the
2644 		 * same queue, caller must ensure that's the case.
2645 		 *
2646 		 * Since we pass off the full list to the driver at this point,
2647 		 * we do not increment the active request count for the queue.
2648 		 * Bypass shared tags for now because of that.
2649 		 */
2650 		if (q->mq_ops->queue_rqs &&
2651 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2652 			blk_mq_run_dispatch_ops(q,
2653 				__blk_mq_flush_plug_list(q, plug));
2654 			if (rq_list_empty(plug->mq_list))
2655 				return;
2656 		}
2657 
2658 		blk_mq_run_dispatch_ops(q,
2659 				blk_mq_plug_issue_direct(plug, false));
2660 		if (rq_list_empty(plug->mq_list))
2661 			return;
2662 	}
2663 
2664 	do {
2665 		blk_mq_dispatch_plug_list(plug, from_schedule);
2666 	} while (!rq_list_empty(plug->mq_list));
2667 }
2668 
2669 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2670 		struct list_head *list)
2671 {
2672 	int queued = 0;
2673 	int errors = 0;
2674 
2675 	while (!list_empty(list)) {
2676 		blk_status_t ret;
2677 		struct request *rq = list_first_entry(list, struct request,
2678 				queuelist);
2679 
2680 		list_del_init(&rq->queuelist);
2681 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2682 		if (ret != BLK_STS_OK) {
2683 			if (ret == BLK_STS_RESOURCE ||
2684 					ret == BLK_STS_DEV_RESOURCE) {
2685 				blk_mq_request_bypass_insert(rq, false,
2686 							list_empty(list));
2687 				break;
2688 			}
2689 			blk_mq_end_request(rq, ret);
2690 			errors++;
2691 		} else
2692 			queued++;
2693 	}
2694 
2695 	/*
2696 	 * If we didn't flush the entire list, we could have told
2697 	 * the driver there was more coming, but that turned out to
2698 	 * be a lie.
2699 	 */
2700 	if ((!list_empty(list) || errors) &&
2701 	     hctx->queue->mq_ops->commit_rqs && queued)
2702 		hctx->queue->mq_ops->commit_rqs(hctx);
2703 }
2704 
2705 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2706 				     struct bio *bio, unsigned int nr_segs)
2707 {
2708 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2709 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2710 			return true;
2711 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2712 			return true;
2713 	}
2714 	return false;
2715 }
2716 
2717 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2718 					       struct blk_plug *plug,
2719 					       struct bio *bio,
2720 					       unsigned int nsegs)
2721 {
2722 	struct blk_mq_alloc_data data = {
2723 		.q		= q,
2724 		.nr_tags	= 1,
2725 		.cmd_flags	= bio->bi_opf,
2726 	};
2727 	struct request *rq;
2728 
2729 	if (unlikely(bio_queue_enter(bio)))
2730 		return NULL;
2731 
2732 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2733 		goto queue_exit;
2734 
2735 	rq_qos_throttle(q, bio);
2736 
2737 	if (plug) {
2738 		data.nr_tags = plug->nr_ios;
2739 		plug->nr_ios = 1;
2740 		data.cached_rq = &plug->cached_rq;
2741 	}
2742 
2743 	rq = __blk_mq_alloc_requests(&data);
2744 	if (rq)
2745 		return rq;
2746 	rq_qos_cleanup(q, bio);
2747 	if (bio->bi_opf & REQ_NOWAIT)
2748 		bio_wouldblock_error(bio);
2749 queue_exit:
2750 	blk_queue_exit(q);
2751 	return NULL;
2752 }
2753 
2754 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2755 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2756 {
2757 	struct request *rq;
2758 
2759 	if (!plug)
2760 		return NULL;
2761 	rq = rq_list_peek(&plug->cached_rq);
2762 	if (!rq || rq->q != q)
2763 		return NULL;
2764 
2765 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2766 		*bio = NULL;
2767 		return NULL;
2768 	}
2769 
2770 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2771 		return NULL;
2772 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2773 		return NULL;
2774 
2775 	/*
2776 	 * If any qos ->throttle() end up blocking, we will have flushed the
2777 	 * plug and hence killed the cached_rq list as well. Pop this entry
2778 	 * before we throttle.
2779 	 */
2780 	plug->cached_rq = rq_list_next(rq);
2781 	rq_qos_throttle(q, *bio);
2782 
2783 	rq->cmd_flags = (*bio)->bi_opf;
2784 	INIT_LIST_HEAD(&rq->queuelist);
2785 	return rq;
2786 }
2787 
2788 static void bio_set_ioprio(struct bio *bio)
2789 {
2790 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2791 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2792 		bio->bi_ioprio = get_current_ioprio();
2793 	blkcg_set_ioprio(bio);
2794 }
2795 
2796 /**
2797  * blk_mq_submit_bio - Create and send a request to block device.
2798  * @bio: Bio pointer.
2799  *
2800  * Builds up a request structure from @q and @bio and send to the device. The
2801  * request may not be queued directly to hardware if:
2802  * * This request can be merged with another one
2803  * * We want to place request at plug queue for possible future merging
2804  * * There is an IO scheduler active at this queue
2805  *
2806  * It will not queue the request if there is an error with the bio, or at the
2807  * request creation.
2808  */
2809 void blk_mq_submit_bio(struct bio *bio)
2810 {
2811 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2812 	struct blk_plug *plug = blk_mq_plug(bio);
2813 	const int is_sync = op_is_sync(bio->bi_opf);
2814 	struct request *rq;
2815 	unsigned int nr_segs = 1;
2816 	blk_status_t ret;
2817 
2818 	bio = blk_queue_bounce(bio, q);
2819 	if (bio_may_exceed_limits(bio, &q->limits))
2820 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2821 
2822 	if (!bio_integrity_prep(bio))
2823 		return;
2824 
2825 	bio_set_ioprio(bio);
2826 
2827 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2828 	if (!rq) {
2829 		if (!bio)
2830 			return;
2831 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2832 		if (unlikely(!rq))
2833 			return;
2834 	}
2835 
2836 	trace_block_getrq(bio);
2837 
2838 	rq_qos_track(q, rq, bio);
2839 
2840 	blk_mq_bio_to_request(rq, bio, nr_segs);
2841 
2842 	ret = blk_crypto_init_request(rq);
2843 	if (ret != BLK_STS_OK) {
2844 		bio->bi_status = ret;
2845 		bio_endio(bio);
2846 		blk_mq_free_request(rq);
2847 		return;
2848 	}
2849 
2850 	if (op_is_flush(bio->bi_opf)) {
2851 		blk_insert_flush(rq);
2852 		return;
2853 	}
2854 
2855 	if (plug)
2856 		blk_add_rq_to_plug(plug, rq);
2857 	else if ((rq->rq_flags & RQF_ELV) ||
2858 		 (rq->mq_hctx->dispatch_busy &&
2859 		  (q->nr_hw_queues == 1 || !is_sync)))
2860 		blk_mq_sched_insert_request(rq, false, true, true);
2861 	else
2862 		blk_mq_run_dispatch_ops(rq->q,
2863 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2864 }
2865 
2866 #ifdef CONFIG_BLK_MQ_STACKING
2867 /**
2868  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2869  * @rq: the request being queued
2870  */
2871 blk_status_t blk_insert_cloned_request(struct request *rq)
2872 {
2873 	struct request_queue *q = rq->q;
2874 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2875 	blk_status_t ret;
2876 
2877 	if (blk_rq_sectors(rq) > max_sectors) {
2878 		/*
2879 		 * SCSI device does not have a good way to return if
2880 		 * Write Same/Zero is actually supported. If a device rejects
2881 		 * a non-read/write command (discard, write same,etc.) the
2882 		 * low-level device driver will set the relevant queue limit to
2883 		 * 0 to prevent blk-lib from issuing more of the offending
2884 		 * operations. Commands queued prior to the queue limit being
2885 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2886 		 * errors being propagated to upper layers.
2887 		 */
2888 		if (max_sectors == 0)
2889 			return BLK_STS_NOTSUPP;
2890 
2891 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2892 			__func__, blk_rq_sectors(rq), max_sectors);
2893 		return BLK_STS_IOERR;
2894 	}
2895 
2896 	/*
2897 	 * The queue settings related to segment counting may differ from the
2898 	 * original queue.
2899 	 */
2900 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2901 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2902 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2903 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2904 		return BLK_STS_IOERR;
2905 	}
2906 
2907 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2908 		return BLK_STS_IOERR;
2909 
2910 	if (blk_crypto_insert_cloned_request(rq))
2911 		return BLK_STS_IOERR;
2912 
2913 	blk_account_io_start(rq);
2914 
2915 	/*
2916 	 * Since we have a scheduler attached on the top device,
2917 	 * bypass a potential scheduler on the bottom device for
2918 	 * insert.
2919 	 */
2920 	blk_mq_run_dispatch_ops(q,
2921 			ret = blk_mq_request_issue_directly(rq, true));
2922 	if (ret)
2923 		blk_account_io_done(rq, ktime_get_ns());
2924 	return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2927 
2928 /**
2929  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2930  * @rq: the clone request to be cleaned up
2931  *
2932  * Description:
2933  *     Free all bios in @rq for a cloned request.
2934  */
2935 void blk_rq_unprep_clone(struct request *rq)
2936 {
2937 	struct bio *bio;
2938 
2939 	while ((bio = rq->bio) != NULL) {
2940 		rq->bio = bio->bi_next;
2941 
2942 		bio_put(bio);
2943 	}
2944 }
2945 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2946 
2947 /**
2948  * blk_rq_prep_clone - Helper function to setup clone request
2949  * @rq: the request to be setup
2950  * @rq_src: original request to be cloned
2951  * @bs: bio_set that bios for clone are allocated from
2952  * @gfp_mask: memory allocation mask for bio
2953  * @bio_ctr: setup function to be called for each clone bio.
2954  *           Returns %0 for success, non %0 for failure.
2955  * @data: private data to be passed to @bio_ctr
2956  *
2957  * Description:
2958  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2959  *     Also, pages which the original bios are pointing to are not copied
2960  *     and the cloned bios just point same pages.
2961  *     So cloned bios must be completed before original bios, which means
2962  *     the caller must complete @rq before @rq_src.
2963  */
2964 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2965 		      struct bio_set *bs, gfp_t gfp_mask,
2966 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2967 		      void *data)
2968 {
2969 	struct bio *bio, *bio_src;
2970 
2971 	if (!bs)
2972 		bs = &fs_bio_set;
2973 
2974 	__rq_for_each_bio(bio_src, rq_src) {
2975 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2976 				      bs);
2977 		if (!bio)
2978 			goto free_and_out;
2979 
2980 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2981 			goto free_and_out;
2982 
2983 		if (rq->bio) {
2984 			rq->biotail->bi_next = bio;
2985 			rq->biotail = bio;
2986 		} else {
2987 			rq->bio = rq->biotail = bio;
2988 		}
2989 		bio = NULL;
2990 	}
2991 
2992 	/* Copy attributes of the original request to the clone request. */
2993 	rq->__sector = blk_rq_pos(rq_src);
2994 	rq->__data_len = blk_rq_bytes(rq_src);
2995 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2996 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2997 		rq->special_vec = rq_src->special_vec;
2998 	}
2999 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3000 	rq->ioprio = rq_src->ioprio;
3001 
3002 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3003 		goto free_and_out;
3004 
3005 	return 0;
3006 
3007 free_and_out:
3008 	if (bio)
3009 		bio_put(bio);
3010 	blk_rq_unprep_clone(rq);
3011 
3012 	return -ENOMEM;
3013 }
3014 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3015 #endif /* CONFIG_BLK_MQ_STACKING */
3016 
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023 	if (rq->bio) {
3024 		if (list->tail)
3025 			list->tail->bi_next = rq->bio;
3026 		else
3027 			list->head = rq->bio;
3028 		list->tail = rq->biotail;
3029 
3030 		rq->bio = NULL;
3031 		rq->biotail = NULL;
3032 	}
3033 
3034 	rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037 
3038 static size_t order_to_size(unsigned int order)
3039 {
3040 	return (size_t)PAGE_SIZE << order;
3041 }
3042 
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045 				    struct blk_mq_tags *tags)
3046 {
3047 	struct page *page;
3048 	unsigned long flags;
3049 
3050 	/* There is no need to clear a driver tags own mapping */
3051 	if (drv_tags == tags)
3052 		return;
3053 
3054 	list_for_each_entry(page, &tags->page_list, lru) {
3055 		unsigned long start = (unsigned long)page_address(page);
3056 		unsigned long end = start + order_to_size(page->private);
3057 		int i;
3058 
3059 		for (i = 0; i < drv_tags->nr_tags; i++) {
3060 			struct request *rq = drv_tags->rqs[i];
3061 			unsigned long rq_addr = (unsigned long)rq;
3062 
3063 			if (rq_addr >= start && rq_addr < end) {
3064 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3065 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066 			}
3067 		}
3068 	}
3069 
3070 	/*
3071 	 * Wait until all pending iteration is done.
3072 	 *
3073 	 * Request reference is cleared and it is guaranteed to be observed
3074 	 * after the ->lock is released.
3075 	 */
3076 	spin_lock_irqsave(&drv_tags->lock, flags);
3077 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079 
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081 		     unsigned int hctx_idx)
3082 {
3083 	struct blk_mq_tags *drv_tags;
3084 	struct page *page;
3085 
3086 	if (list_empty(&tags->page_list))
3087 		return;
3088 
3089 	if (blk_mq_is_shared_tags(set->flags))
3090 		drv_tags = set->shared_tags;
3091 	else
3092 		drv_tags = set->tags[hctx_idx];
3093 
3094 	if (tags->static_rqs && set->ops->exit_request) {
3095 		int i;
3096 
3097 		for (i = 0; i < tags->nr_tags; i++) {
3098 			struct request *rq = tags->static_rqs[i];
3099 
3100 			if (!rq)
3101 				continue;
3102 			set->ops->exit_request(set, rq, hctx_idx);
3103 			tags->static_rqs[i] = NULL;
3104 		}
3105 	}
3106 
3107 	blk_mq_clear_rq_mapping(drv_tags, tags);
3108 
3109 	while (!list_empty(&tags->page_list)) {
3110 		page = list_first_entry(&tags->page_list, struct page, lru);
3111 		list_del_init(&page->lru);
3112 		/*
3113 		 * Remove kmemleak object previously allocated in
3114 		 * blk_mq_alloc_rqs().
3115 		 */
3116 		kmemleak_free(page_address(page));
3117 		__free_pages(page, page->private);
3118 	}
3119 }
3120 
3121 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3122 {
3123 	kfree(tags->rqs);
3124 	tags->rqs = NULL;
3125 	kfree(tags->static_rqs);
3126 	tags->static_rqs = NULL;
3127 
3128 	blk_mq_free_tags(tags);
3129 }
3130 
3131 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3132 		unsigned int hctx_idx)
3133 {
3134 	int i;
3135 
3136 	for (i = 0; i < set->nr_maps; i++) {
3137 		unsigned int start = set->map[i].queue_offset;
3138 		unsigned int end = start + set->map[i].nr_queues;
3139 
3140 		if (hctx_idx >= start && hctx_idx < end)
3141 			break;
3142 	}
3143 
3144 	if (i >= set->nr_maps)
3145 		i = HCTX_TYPE_DEFAULT;
3146 
3147 	return i;
3148 }
3149 
3150 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3151 		unsigned int hctx_idx)
3152 {
3153 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3154 
3155 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3156 }
3157 
3158 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3159 					       unsigned int hctx_idx,
3160 					       unsigned int nr_tags,
3161 					       unsigned int reserved_tags)
3162 {
3163 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3164 	struct blk_mq_tags *tags;
3165 
3166 	if (node == NUMA_NO_NODE)
3167 		node = set->numa_node;
3168 
3169 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3170 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3171 	if (!tags)
3172 		return NULL;
3173 
3174 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3175 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3176 				 node);
3177 	if (!tags->rqs) {
3178 		blk_mq_free_tags(tags);
3179 		return NULL;
3180 	}
3181 
3182 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3183 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3184 					node);
3185 	if (!tags->static_rqs) {
3186 		kfree(tags->rqs);
3187 		blk_mq_free_tags(tags);
3188 		return NULL;
3189 	}
3190 
3191 	return tags;
3192 }
3193 
3194 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3195 			       unsigned int hctx_idx, int node)
3196 {
3197 	int ret;
3198 
3199 	if (set->ops->init_request) {
3200 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3201 		if (ret)
3202 			return ret;
3203 	}
3204 
3205 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3206 	return 0;
3207 }
3208 
3209 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3210 			    struct blk_mq_tags *tags,
3211 			    unsigned int hctx_idx, unsigned int depth)
3212 {
3213 	unsigned int i, j, entries_per_page, max_order = 4;
3214 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3215 	size_t rq_size, left;
3216 
3217 	if (node == NUMA_NO_NODE)
3218 		node = set->numa_node;
3219 
3220 	INIT_LIST_HEAD(&tags->page_list);
3221 
3222 	/*
3223 	 * rq_size is the size of the request plus driver payload, rounded
3224 	 * to the cacheline size
3225 	 */
3226 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3227 				cache_line_size());
3228 	left = rq_size * depth;
3229 
3230 	for (i = 0; i < depth; ) {
3231 		int this_order = max_order;
3232 		struct page *page;
3233 		int to_do;
3234 		void *p;
3235 
3236 		while (this_order && left < order_to_size(this_order - 1))
3237 			this_order--;
3238 
3239 		do {
3240 			page = alloc_pages_node(node,
3241 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3242 				this_order);
3243 			if (page)
3244 				break;
3245 			if (!this_order--)
3246 				break;
3247 			if (order_to_size(this_order) < rq_size)
3248 				break;
3249 		} while (1);
3250 
3251 		if (!page)
3252 			goto fail;
3253 
3254 		page->private = this_order;
3255 		list_add_tail(&page->lru, &tags->page_list);
3256 
3257 		p = page_address(page);
3258 		/*
3259 		 * Allow kmemleak to scan these pages as they contain pointers
3260 		 * to additional allocations like via ops->init_request().
3261 		 */
3262 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3263 		entries_per_page = order_to_size(this_order) / rq_size;
3264 		to_do = min(entries_per_page, depth - i);
3265 		left -= to_do * rq_size;
3266 		for (j = 0; j < to_do; j++) {
3267 			struct request *rq = p;
3268 
3269 			tags->static_rqs[i] = rq;
3270 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3271 				tags->static_rqs[i] = NULL;
3272 				goto fail;
3273 			}
3274 
3275 			p += rq_size;
3276 			i++;
3277 		}
3278 	}
3279 	return 0;
3280 
3281 fail:
3282 	blk_mq_free_rqs(set, tags, hctx_idx);
3283 	return -ENOMEM;
3284 }
3285 
3286 struct rq_iter_data {
3287 	struct blk_mq_hw_ctx *hctx;
3288 	bool has_rq;
3289 };
3290 
3291 static bool blk_mq_has_request(struct request *rq, void *data)
3292 {
3293 	struct rq_iter_data *iter_data = data;
3294 
3295 	if (rq->mq_hctx != iter_data->hctx)
3296 		return true;
3297 	iter_data->has_rq = true;
3298 	return false;
3299 }
3300 
3301 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3302 {
3303 	struct blk_mq_tags *tags = hctx->sched_tags ?
3304 			hctx->sched_tags : hctx->tags;
3305 	struct rq_iter_data data = {
3306 		.hctx	= hctx,
3307 	};
3308 
3309 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3310 	return data.has_rq;
3311 }
3312 
3313 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3314 		struct blk_mq_hw_ctx *hctx)
3315 {
3316 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3317 		return false;
3318 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3319 		return false;
3320 	return true;
3321 }
3322 
3323 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3324 {
3325 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3326 			struct blk_mq_hw_ctx, cpuhp_online);
3327 
3328 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3329 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3330 		return 0;
3331 
3332 	/*
3333 	 * Prevent new request from being allocated on the current hctx.
3334 	 *
3335 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3336 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3337 	 * seen once we return from the tag allocator.
3338 	 */
3339 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3340 	smp_mb__after_atomic();
3341 
3342 	/*
3343 	 * Try to grab a reference to the queue and wait for any outstanding
3344 	 * requests.  If we could not grab a reference the queue has been
3345 	 * frozen and there are no requests.
3346 	 */
3347 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3348 		while (blk_mq_hctx_has_requests(hctx))
3349 			msleep(5);
3350 		percpu_ref_put(&hctx->queue->q_usage_counter);
3351 	}
3352 
3353 	return 0;
3354 }
3355 
3356 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3357 {
3358 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3359 			struct blk_mq_hw_ctx, cpuhp_online);
3360 
3361 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3362 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3363 	return 0;
3364 }
3365 
3366 /*
3367  * 'cpu' is going away. splice any existing rq_list entries from this
3368  * software queue to the hw queue dispatch list, and ensure that it
3369  * gets run.
3370  */
3371 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3372 {
3373 	struct blk_mq_hw_ctx *hctx;
3374 	struct blk_mq_ctx *ctx;
3375 	LIST_HEAD(tmp);
3376 	enum hctx_type type;
3377 
3378 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3379 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3380 		return 0;
3381 
3382 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3383 	type = hctx->type;
3384 
3385 	spin_lock(&ctx->lock);
3386 	if (!list_empty(&ctx->rq_lists[type])) {
3387 		list_splice_init(&ctx->rq_lists[type], &tmp);
3388 		blk_mq_hctx_clear_pending(hctx, ctx);
3389 	}
3390 	spin_unlock(&ctx->lock);
3391 
3392 	if (list_empty(&tmp))
3393 		return 0;
3394 
3395 	spin_lock(&hctx->lock);
3396 	list_splice_tail_init(&tmp, &hctx->dispatch);
3397 	spin_unlock(&hctx->lock);
3398 
3399 	blk_mq_run_hw_queue(hctx, true);
3400 	return 0;
3401 }
3402 
3403 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3404 {
3405 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3406 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3407 						    &hctx->cpuhp_online);
3408 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3409 					    &hctx->cpuhp_dead);
3410 }
3411 
3412 /*
3413  * Before freeing hw queue, clearing the flush request reference in
3414  * tags->rqs[] for avoiding potential UAF.
3415  */
3416 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3417 		unsigned int queue_depth, struct request *flush_rq)
3418 {
3419 	int i;
3420 	unsigned long flags;
3421 
3422 	/* The hw queue may not be mapped yet */
3423 	if (!tags)
3424 		return;
3425 
3426 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3427 
3428 	for (i = 0; i < queue_depth; i++)
3429 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3430 
3431 	/*
3432 	 * Wait until all pending iteration is done.
3433 	 *
3434 	 * Request reference is cleared and it is guaranteed to be observed
3435 	 * after the ->lock is released.
3436 	 */
3437 	spin_lock_irqsave(&tags->lock, flags);
3438 	spin_unlock_irqrestore(&tags->lock, flags);
3439 }
3440 
3441 /* hctx->ctxs will be freed in queue's release handler */
3442 static void blk_mq_exit_hctx(struct request_queue *q,
3443 		struct blk_mq_tag_set *set,
3444 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3445 {
3446 	struct request *flush_rq = hctx->fq->flush_rq;
3447 
3448 	if (blk_mq_hw_queue_mapped(hctx))
3449 		blk_mq_tag_idle(hctx);
3450 
3451 	if (blk_queue_init_done(q))
3452 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3453 				set->queue_depth, flush_rq);
3454 	if (set->ops->exit_request)
3455 		set->ops->exit_request(set, flush_rq, hctx_idx);
3456 
3457 	if (set->ops->exit_hctx)
3458 		set->ops->exit_hctx(hctx, hctx_idx);
3459 
3460 	blk_mq_remove_cpuhp(hctx);
3461 
3462 	xa_erase(&q->hctx_table, hctx_idx);
3463 
3464 	spin_lock(&q->unused_hctx_lock);
3465 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3466 	spin_unlock(&q->unused_hctx_lock);
3467 }
3468 
3469 static void blk_mq_exit_hw_queues(struct request_queue *q,
3470 		struct blk_mq_tag_set *set, int nr_queue)
3471 {
3472 	struct blk_mq_hw_ctx *hctx;
3473 	unsigned long i;
3474 
3475 	queue_for_each_hw_ctx(q, hctx, i) {
3476 		if (i == nr_queue)
3477 			break;
3478 		blk_mq_exit_hctx(q, set, hctx, i);
3479 	}
3480 }
3481 
3482 static int blk_mq_init_hctx(struct request_queue *q,
3483 		struct blk_mq_tag_set *set,
3484 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3485 {
3486 	hctx->queue_num = hctx_idx;
3487 
3488 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3489 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3490 				&hctx->cpuhp_online);
3491 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3492 
3493 	hctx->tags = set->tags[hctx_idx];
3494 
3495 	if (set->ops->init_hctx &&
3496 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3497 		goto unregister_cpu_notifier;
3498 
3499 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3500 				hctx->numa_node))
3501 		goto exit_hctx;
3502 
3503 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3504 		goto exit_flush_rq;
3505 
3506 	return 0;
3507 
3508  exit_flush_rq:
3509 	if (set->ops->exit_request)
3510 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3511  exit_hctx:
3512 	if (set->ops->exit_hctx)
3513 		set->ops->exit_hctx(hctx, hctx_idx);
3514  unregister_cpu_notifier:
3515 	blk_mq_remove_cpuhp(hctx);
3516 	return -1;
3517 }
3518 
3519 static struct blk_mq_hw_ctx *
3520 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3521 		int node)
3522 {
3523 	struct blk_mq_hw_ctx *hctx;
3524 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3525 
3526 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3527 	if (!hctx)
3528 		goto fail_alloc_hctx;
3529 
3530 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3531 		goto free_hctx;
3532 
3533 	atomic_set(&hctx->nr_active, 0);
3534 	if (node == NUMA_NO_NODE)
3535 		node = set->numa_node;
3536 	hctx->numa_node = node;
3537 
3538 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3539 	spin_lock_init(&hctx->lock);
3540 	INIT_LIST_HEAD(&hctx->dispatch);
3541 	hctx->queue = q;
3542 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3543 
3544 	INIT_LIST_HEAD(&hctx->hctx_list);
3545 
3546 	/*
3547 	 * Allocate space for all possible cpus to avoid allocation at
3548 	 * runtime
3549 	 */
3550 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3551 			gfp, node);
3552 	if (!hctx->ctxs)
3553 		goto free_cpumask;
3554 
3555 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3556 				gfp, node, false, false))
3557 		goto free_ctxs;
3558 	hctx->nr_ctx = 0;
3559 
3560 	spin_lock_init(&hctx->dispatch_wait_lock);
3561 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3562 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3563 
3564 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3565 	if (!hctx->fq)
3566 		goto free_bitmap;
3567 
3568 	blk_mq_hctx_kobj_init(hctx);
3569 
3570 	return hctx;
3571 
3572  free_bitmap:
3573 	sbitmap_free(&hctx->ctx_map);
3574  free_ctxs:
3575 	kfree(hctx->ctxs);
3576  free_cpumask:
3577 	free_cpumask_var(hctx->cpumask);
3578  free_hctx:
3579 	kfree(hctx);
3580  fail_alloc_hctx:
3581 	return NULL;
3582 }
3583 
3584 static void blk_mq_init_cpu_queues(struct request_queue *q,
3585 				   unsigned int nr_hw_queues)
3586 {
3587 	struct blk_mq_tag_set *set = q->tag_set;
3588 	unsigned int i, j;
3589 
3590 	for_each_possible_cpu(i) {
3591 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3592 		struct blk_mq_hw_ctx *hctx;
3593 		int k;
3594 
3595 		__ctx->cpu = i;
3596 		spin_lock_init(&__ctx->lock);
3597 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3598 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3599 
3600 		__ctx->queue = q;
3601 
3602 		/*
3603 		 * Set local node, IFF we have more than one hw queue. If
3604 		 * not, we remain on the home node of the device
3605 		 */
3606 		for (j = 0; j < set->nr_maps; j++) {
3607 			hctx = blk_mq_map_queue_type(q, j, i);
3608 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3609 				hctx->numa_node = cpu_to_node(i);
3610 		}
3611 	}
3612 }
3613 
3614 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3615 					     unsigned int hctx_idx,
3616 					     unsigned int depth)
3617 {
3618 	struct blk_mq_tags *tags;
3619 	int ret;
3620 
3621 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3622 	if (!tags)
3623 		return NULL;
3624 
3625 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3626 	if (ret) {
3627 		blk_mq_free_rq_map(tags);
3628 		return NULL;
3629 	}
3630 
3631 	return tags;
3632 }
3633 
3634 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3635 				       int hctx_idx)
3636 {
3637 	if (blk_mq_is_shared_tags(set->flags)) {
3638 		set->tags[hctx_idx] = set->shared_tags;
3639 
3640 		return true;
3641 	}
3642 
3643 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3644 						       set->queue_depth);
3645 
3646 	return set->tags[hctx_idx];
3647 }
3648 
3649 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3650 			     struct blk_mq_tags *tags,
3651 			     unsigned int hctx_idx)
3652 {
3653 	if (tags) {
3654 		blk_mq_free_rqs(set, tags, hctx_idx);
3655 		blk_mq_free_rq_map(tags);
3656 	}
3657 }
3658 
3659 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3660 				      unsigned int hctx_idx)
3661 {
3662 	if (!blk_mq_is_shared_tags(set->flags))
3663 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3664 
3665 	set->tags[hctx_idx] = NULL;
3666 }
3667 
3668 static void blk_mq_map_swqueue(struct request_queue *q)
3669 {
3670 	unsigned int j, hctx_idx;
3671 	unsigned long i;
3672 	struct blk_mq_hw_ctx *hctx;
3673 	struct blk_mq_ctx *ctx;
3674 	struct blk_mq_tag_set *set = q->tag_set;
3675 
3676 	queue_for_each_hw_ctx(q, hctx, i) {
3677 		cpumask_clear(hctx->cpumask);
3678 		hctx->nr_ctx = 0;
3679 		hctx->dispatch_from = NULL;
3680 	}
3681 
3682 	/*
3683 	 * Map software to hardware queues.
3684 	 *
3685 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3686 	 */
3687 	for_each_possible_cpu(i) {
3688 
3689 		ctx = per_cpu_ptr(q->queue_ctx, i);
3690 		for (j = 0; j < set->nr_maps; j++) {
3691 			if (!set->map[j].nr_queues) {
3692 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3693 						HCTX_TYPE_DEFAULT, i);
3694 				continue;
3695 			}
3696 			hctx_idx = set->map[j].mq_map[i];
3697 			/* unmapped hw queue can be remapped after CPU topo changed */
3698 			if (!set->tags[hctx_idx] &&
3699 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3700 				/*
3701 				 * If tags initialization fail for some hctx,
3702 				 * that hctx won't be brought online.  In this
3703 				 * case, remap the current ctx to hctx[0] which
3704 				 * is guaranteed to always have tags allocated
3705 				 */
3706 				set->map[j].mq_map[i] = 0;
3707 			}
3708 
3709 			hctx = blk_mq_map_queue_type(q, j, i);
3710 			ctx->hctxs[j] = hctx;
3711 			/*
3712 			 * If the CPU is already set in the mask, then we've
3713 			 * mapped this one already. This can happen if
3714 			 * devices share queues across queue maps.
3715 			 */
3716 			if (cpumask_test_cpu(i, hctx->cpumask))
3717 				continue;
3718 
3719 			cpumask_set_cpu(i, hctx->cpumask);
3720 			hctx->type = j;
3721 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3722 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3723 
3724 			/*
3725 			 * If the nr_ctx type overflows, we have exceeded the
3726 			 * amount of sw queues we can support.
3727 			 */
3728 			BUG_ON(!hctx->nr_ctx);
3729 		}
3730 
3731 		for (; j < HCTX_MAX_TYPES; j++)
3732 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3733 					HCTX_TYPE_DEFAULT, i);
3734 	}
3735 
3736 	queue_for_each_hw_ctx(q, hctx, i) {
3737 		/*
3738 		 * If no software queues are mapped to this hardware queue,
3739 		 * disable it and free the request entries.
3740 		 */
3741 		if (!hctx->nr_ctx) {
3742 			/* Never unmap queue 0.  We need it as a
3743 			 * fallback in case of a new remap fails
3744 			 * allocation
3745 			 */
3746 			if (i)
3747 				__blk_mq_free_map_and_rqs(set, i);
3748 
3749 			hctx->tags = NULL;
3750 			continue;
3751 		}
3752 
3753 		hctx->tags = set->tags[i];
3754 		WARN_ON(!hctx->tags);
3755 
3756 		/*
3757 		 * Set the map size to the number of mapped software queues.
3758 		 * This is more accurate and more efficient than looping
3759 		 * over all possibly mapped software queues.
3760 		 */
3761 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3762 
3763 		/*
3764 		 * Initialize batch roundrobin counts
3765 		 */
3766 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3767 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3768 	}
3769 }
3770 
3771 /*
3772  * Caller needs to ensure that we're either frozen/quiesced, or that
3773  * the queue isn't live yet.
3774  */
3775 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3776 {
3777 	struct blk_mq_hw_ctx *hctx;
3778 	unsigned long i;
3779 
3780 	queue_for_each_hw_ctx(q, hctx, i) {
3781 		if (shared) {
3782 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3783 		} else {
3784 			blk_mq_tag_idle(hctx);
3785 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3786 		}
3787 	}
3788 }
3789 
3790 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3791 					 bool shared)
3792 {
3793 	struct request_queue *q;
3794 
3795 	lockdep_assert_held(&set->tag_list_lock);
3796 
3797 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3798 		blk_mq_freeze_queue(q);
3799 		queue_set_hctx_shared(q, shared);
3800 		blk_mq_unfreeze_queue(q);
3801 	}
3802 }
3803 
3804 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3805 {
3806 	struct blk_mq_tag_set *set = q->tag_set;
3807 
3808 	mutex_lock(&set->tag_list_lock);
3809 	list_del(&q->tag_set_list);
3810 	if (list_is_singular(&set->tag_list)) {
3811 		/* just transitioned to unshared */
3812 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3813 		/* update existing queue */
3814 		blk_mq_update_tag_set_shared(set, false);
3815 	}
3816 	mutex_unlock(&set->tag_list_lock);
3817 	INIT_LIST_HEAD(&q->tag_set_list);
3818 }
3819 
3820 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3821 				     struct request_queue *q)
3822 {
3823 	mutex_lock(&set->tag_list_lock);
3824 
3825 	/*
3826 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3827 	 */
3828 	if (!list_empty(&set->tag_list) &&
3829 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3830 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3831 		/* update existing queue */
3832 		blk_mq_update_tag_set_shared(set, true);
3833 	}
3834 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3835 		queue_set_hctx_shared(q, true);
3836 	list_add_tail(&q->tag_set_list, &set->tag_list);
3837 
3838 	mutex_unlock(&set->tag_list_lock);
3839 }
3840 
3841 /* All allocations will be freed in release handler of q->mq_kobj */
3842 static int blk_mq_alloc_ctxs(struct request_queue *q)
3843 {
3844 	struct blk_mq_ctxs *ctxs;
3845 	int cpu;
3846 
3847 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3848 	if (!ctxs)
3849 		return -ENOMEM;
3850 
3851 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3852 	if (!ctxs->queue_ctx)
3853 		goto fail;
3854 
3855 	for_each_possible_cpu(cpu) {
3856 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3857 		ctx->ctxs = ctxs;
3858 	}
3859 
3860 	q->mq_kobj = &ctxs->kobj;
3861 	q->queue_ctx = ctxs->queue_ctx;
3862 
3863 	return 0;
3864  fail:
3865 	kfree(ctxs);
3866 	return -ENOMEM;
3867 }
3868 
3869 /*
3870  * It is the actual release handler for mq, but we do it from
3871  * request queue's release handler for avoiding use-after-free
3872  * and headache because q->mq_kobj shouldn't have been introduced,
3873  * but we can't group ctx/kctx kobj without it.
3874  */
3875 void blk_mq_release(struct request_queue *q)
3876 {
3877 	struct blk_mq_hw_ctx *hctx, *next;
3878 	unsigned long i;
3879 
3880 	queue_for_each_hw_ctx(q, hctx, i)
3881 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3882 
3883 	/* all hctx are in .unused_hctx_list now */
3884 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3885 		list_del_init(&hctx->hctx_list);
3886 		kobject_put(&hctx->kobj);
3887 	}
3888 
3889 	xa_destroy(&q->hctx_table);
3890 
3891 	/*
3892 	 * release .mq_kobj and sw queue's kobject now because
3893 	 * both share lifetime with request queue.
3894 	 */
3895 	blk_mq_sysfs_deinit(q);
3896 }
3897 
3898 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3899 		void *queuedata)
3900 {
3901 	struct request_queue *q;
3902 	int ret;
3903 
3904 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3905 	if (!q)
3906 		return ERR_PTR(-ENOMEM);
3907 	q->queuedata = queuedata;
3908 	ret = blk_mq_init_allocated_queue(set, q);
3909 	if (ret) {
3910 		blk_put_queue(q);
3911 		return ERR_PTR(ret);
3912 	}
3913 	return q;
3914 }
3915 
3916 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3917 {
3918 	return blk_mq_init_queue_data(set, NULL);
3919 }
3920 EXPORT_SYMBOL(blk_mq_init_queue);
3921 
3922 /**
3923  * blk_mq_destroy_queue - shutdown a request queue
3924  * @q: request queue to shutdown
3925  *
3926  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3927  * the initial reference.  All future requests will failed with -ENODEV.
3928  *
3929  * Context: can sleep
3930  */
3931 void blk_mq_destroy_queue(struct request_queue *q)
3932 {
3933 	WARN_ON_ONCE(!queue_is_mq(q));
3934 	WARN_ON_ONCE(blk_queue_registered(q));
3935 
3936 	might_sleep();
3937 
3938 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3939 	blk_queue_start_drain(q);
3940 	blk_freeze_queue(q);
3941 
3942 	blk_sync_queue(q);
3943 	blk_mq_cancel_work_sync(q);
3944 	blk_mq_exit_queue(q);
3945 
3946 	/* @q is and will stay empty, shutdown and put */
3947 	blk_put_queue(q);
3948 }
3949 EXPORT_SYMBOL(blk_mq_destroy_queue);
3950 
3951 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3952 		struct lock_class_key *lkclass)
3953 {
3954 	struct request_queue *q;
3955 	struct gendisk *disk;
3956 
3957 	q = blk_mq_init_queue_data(set, queuedata);
3958 	if (IS_ERR(q))
3959 		return ERR_CAST(q);
3960 
3961 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3962 	if (!disk) {
3963 		blk_mq_destroy_queue(q);
3964 		return ERR_PTR(-ENOMEM);
3965 	}
3966 	set_bit(GD_OWNS_QUEUE, &disk->state);
3967 	return disk;
3968 }
3969 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3970 
3971 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3972 		struct lock_class_key *lkclass)
3973 {
3974 	if (!blk_get_queue(q))
3975 		return NULL;
3976 	return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3977 }
3978 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3979 
3980 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3981 		struct blk_mq_tag_set *set, struct request_queue *q,
3982 		int hctx_idx, int node)
3983 {
3984 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3985 
3986 	/* reuse dead hctx first */
3987 	spin_lock(&q->unused_hctx_lock);
3988 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3989 		if (tmp->numa_node == node) {
3990 			hctx = tmp;
3991 			break;
3992 		}
3993 	}
3994 	if (hctx)
3995 		list_del_init(&hctx->hctx_list);
3996 	spin_unlock(&q->unused_hctx_lock);
3997 
3998 	if (!hctx)
3999 		hctx = blk_mq_alloc_hctx(q, set, node);
4000 	if (!hctx)
4001 		goto fail;
4002 
4003 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4004 		goto free_hctx;
4005 
4006 	return hctx;
4007 
4008  free_hctx:
4009 	kobject_put(&hctx->kobj);
4010  fail:
4011 	return NULL;
4012 }
4013 
4014 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4015 						struct request_queue *q)
4016 {
4017 	struct blk_mq_hw_ctx *hctx;
4018 	unsigned long i, j;
4019 
4020 	/* protect against switching io scheduler  */
4021 	mutex_lock(&q->sysfs_lock);
4022 	for (i = 0; i < set->nr_hw_queues; i++) {
4023 		int old_node;
4024 		int node = blk_mq_get_hctx_node(set, i);
4025 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4026 
4027 		if (old_hctx) {
4028 			old_node = old_hctx->numa_node;
4029 			blk_mq_exit_hctx(q, set, old_hctx, i);
4030 		}
4031 
4032 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4033 			if (!old_hctx)
4034 				break;
4035 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4036 					node, old_node);
4037 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4038 			WARN_ON_ONCE(!hctx);
4039 		}
4040 	}
4041 	/*
4042 	 * Increasing nr_hw_queues fails. Free the newly allocated
4043 	 * hctxs and keep the previous q->nr_hw_queues.
4044 	 */
4045 	if (i != set->nr_hw_queues) {
4046 		j = q->nr_hw_queues;
4047 	} else {
4048 		j = i;
4049 		q->nr_hw_queues = set->nr_hw_queues;
4050 	}
4051 
4052 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4053 		blk_mq_exit_hctx(q, set, hctx, j);
4054 	mutex_unlock(&q->sysfs_lock);
4055 }
4056 
4057 static void blk_mq_update_poll_flag(struct request_queue *q)
4058 {
4059 	struct blk_mq_tag_set *set = q->tag_set;
4060 
4061 	if (set->nr_maps > HCTX_TYPE_POLL &&
4062 	    set->map[HCTX_TYPE_POLL].nr_queues)
4063 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4064 	else
4065 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4066 }
4067 
4068 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4069 		struct request_queue *q)
4070 {
4071 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4072 			!!(set->flags & BLK_MQ_F_BLOCKING));
4073 
4074 	/* mark the queue as mq asap */
4075 	q->mq_ops = set->ops;
4076 
4077 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4078 					     blk_mq_poll_stats_bkt,
4079 					     BLK_MQ_POLL_STATS_BKTS, q);
4080 	if (!q->poll_cb)
4081 		goto err_exit;
4082 
4083 	if (blk_mq_alloc_ctxs(q))
4084 		goto err_poll;
4085 
4086 	/* init q->mq_kobj and sw queues' kobjects */
4087 	blk_mq_sysfs_init(q);
4088 
4089 	INIT_LIST_HEAD(&q->unused_hctx_list);
4090 	spin_lock_init(&q->unused_hctx_lock);
4091 
4092 	xa_init(&q->hctx_table);
4093 
4094 	blk_mq_realloc_hw_ctxs(set, q);
4095 	if (!q->nr_hw_queues)
4096 		goto err_hctxs;
4097 
4098 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4099 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4100 
4101 	q->tag_set = set;
4102 
4103 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4104 	blk_mq_update_poll_flag(q);
4105 
4106 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4107 	INIT_LIST_HEAD(&q->requeue_list);
4108 	spin_lock_init(&q->requeue_lock);
4109 
4110 	q->nr_requests = set->queue_depth;
4111 
4112 	/*
4113 	 * Default to classic polling
4114 	 */
4115 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4116 
4117 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4118 	blk_mq_add_queue_tag_set(set, q);
4119 	blk_mq_map_swqueue(q);
4120 	return 0;
4121 
4122 err_hctxs:
4123 	xa_destroy(&q->hctx_table);
4124 	q->nr_hw_queues = 0;
4125 	blk_mq_sysfs_deinit(q);
4126 err_poll:
4127 	blk_stat_free_callback(q->poll_cb);
4128 	q->poll_cb = NULL;
4129 err_exit:
4130 	q->mq_ops = NULL;
4131 	return -ENOMEM;
4132 }
4133 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4134 
4135 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4136 void blk_mq_exit_queue(struct request_queue *q)
4137 {
4138 	struct blk_mq_tag_set *set = q->tag_set;
4139 
4140 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4141 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4142 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4143 	blk_mq_del_queue_tag_set(q);
4144 }
4145 
4146 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4147 {
4148 	int i;
4149 
4150 	if (blk_mq_is_shared_tags(set->flags)) {
4151 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4152 						BLK_MQ_NO_HCTX_IDX,
4153 						set->queue_depth);
4154 		if (!set->shared_tags)
4155 			return -ENOMEM;
4156 	}
4157 
4158 	for (i = 0; i < set->nr_hw_queues; i++) {
4159 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4160 			goto out_unwind;
4161 		cond_resched();
4162 	}
4163 
4164 	return 0;
4165 
4166 out_unwind:
4167 	while (--i >= 0)
4168 		__blk_mq_free_map_and_rqs(set, i);
4169 
4170 	if (blk_mq_is_shared_tags(set->flags)) {
4171 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4172 					BLK_MQ_NO_HCTX_IDX);
4173 	}
4174 
4175 	return -ENOMEM;
4176 }
4177 
4178 /*
4179  * Allocate the request maps associated with this tag_set. Note that this
4180  * may reduce the depth asked for, if memory is tight. set->queue_depth
4181  * will be updated to reflect the allocated depth.
4182  */
4183 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4184 {
4185 	unsigned int depth;
4186 	int err;
4187 
4188 	depth = set->queue_depth;
4189 	do {
4190 		err = __blk_mq_alloc_rq_maps(set);
4191 		if (!err)
4192 			break;
4193 
4194 		set->queue_depth >>= 1;
4195 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4196 			err = -ENOMEM;
4197 			break;
4198 		}
4199 	} while (set->queue_depth);
4200 
4201 	if (!set->queue_depth || err) {
4202 		pr_err("blk-mq: failed to allocate request map\n");
4203 		return -ENOMEM;
4204 	}
4205 
4206 	if (depth != set->queue_depth)
4207 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4208 						depth, set->queue_depth);
4209 
4210 	return 0;
4211 }
4212 
4213 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4214 {
4215 	/*
4216 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4217 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4218 	 * number of hardware queues.
4219 	 */
4220 	if (set->nr_maps == 1)
4221 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4222 
4223 	if (set->ops->map_queues && !is_kdump_kernel()) {
4224 		int i;
4225 
4226 		/*
4227 		 * transport .map_queues is usually done in the following
4228 		 * way:
4229 		 *
4230 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4231 		 * 	mask = get_cpu_mask(queue)
4232 		 * 	for_each_cpu(cpu, mask)
4233 		 * 		set->map[x].mq_map[cpu] = queue;
4234 		 * }
4235 		 *
4236 		 * When we need to remap, the table has to be cleared for
4237 		 * killing stale mapping since one CPU may not be mapped
4238 		 * to any hw queue.
4239 		 */
4240 		for (i = 0; i < set->nr_maps; i++)
4241 			blk_mq_clear_mq_map(&set->map[i]);
4242 
4243 		return set->ops->map_queues(set);
4244 	} else {
4245 		BUG_ON(set->nr_maps > 1);
4246 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4247 	}
4248 }
4249 
4250 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4251 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4252 {
4253 	struct blk_mq_tags **new_tags;
4254 
4255 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4256 		return 0;
4257 
4258 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4259 				GFP_KERNEL, set->numa_node);
4260 	if (!new_tags)
4261 		return -ENOMEM;
4262 
4263 	if (set->tags)
4264 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4265 		       sizeof(*set->tags));
4266 	kfree(set->tags);
4267 	set->tags = new_tags;
4268 	set->nr_hw_queues = new_nr_hw_queues;
4269 
4270 	return 0;
4271 }
4272 
4273 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4274 				int new_nr_hw_queues)
4275 {
4276 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4277 }
4278 
4279 /*
4280  * Alloc a tag set to be associated with one or more request queues.
4281  * May fail with EINVAL for various error conditions. May adjust the
4282  * requested depth down, if it's too large. In that case, the set
4283  * value will be stored in set->queue_depth.
4284  */
4285 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4286 {
4287 	int i, ret;
4288 
4289 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4290 
4291 	if (!set->nr_hw_queues)
4292 		return -EINVAL;
4293 	if (!set->queue_depth)
4294 		return -EINVAL;
4295 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4296 		return -EINVAL;
4297 
4298 	if (!set->ops->queue_rq)
4299 		return -EINVAL;
4300 
4301 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4302 		return -EINVAL;
4303 
4304 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4305 		pr_info("blk-mq: reduced tag depth to %u\n",
4306 			BLK_MQ_MAX_DEPTH);
4307 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4308 	}
4309 
4310 	if (!set->nr_maps)
4311 		set->nr_maps = 1;
4312 	else if (set->nr_maps > HCTX_MAX_TYPES)
4313 		return -EINVAL;
4314 
4315 	/*
4316 	 * If a crashdump is active, then we are potentially in a very
4317 	 * memory constrained environment. Limit us to 1 queue and
4318 	 * 64 tags to prevent using too much memory.
4319 	 */
4320 	if (is_kdump_kernel()) {
4321 		set->nr_hw_queues = 1;
4322 		set->nr_maps = 1;
4323 		set->queue_depth = min(64U, set->queue_depth);
4324 	}
4325 	/*
4326 	 * There is no use for more h/w queues than cpus if we just have
4327 	 * a single map
4328 	 */
4329 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4330 		set->nr_hw_queues = nr_cpu_ids;
4331 
4332 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4333 		return -ENOMEM;
4334 
4335 	ret = -ENOMEM;
4336 	for (i = 0; i < set->nr_maps; i++) {
4337 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4338 						  sizeof(set->map[i].mq_map[0]),
4339 						  GFP_KERNEL, set->numa_node);
4340 		if (!set->map[i].mq_map)
4341 			goto out_free_mq_map;
4342 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4343 	}
4344 
4345 	ret = blk_mq_update_queue_map(set);
4346 	if (ret)
4347 		goto out_free_mq_map;
4348 
4349 	ret = blk_mq_alloc_set_map_and_rqs(set);
4350 	if (ret)
4351 		goto out_free_mq_map;
4352 
4353 	mutex_init(&set->tag_list_lock);
4354 	INIT_LIST_HEAD(&set->tag_list);
4355 
4356 	return 0;
4357 
4358 out_free_mq_map:
4359 	for (i = 0; i < set->nr_maps; i++) {
4360 		kfree(set->map[i].mq_map);
4361 		set->map[i].mq_map = NULL;
4362 	}
4363 	kfree(set->tags);
4364 	set->tags = NULL;
4365 	return ret;
4366 }
4367 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4368 
4369 /* allocate and initialize a tagset for a simple single-queue device */
4370 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4371 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4372 		unsigned int set_flags)
4373 {
4374 	memset(set, 0, sizeof(*set));
4375 	set->ops = ops;
4376 	set->nr_hw_queues = 1;
4377 	set->nr_maps = 1;
4378 	set->queue_depth = queue_depth;
4379 	set->numa_node = NUMA_NO_NODE;
4380 	set->flags = set_flags;
4381 	return blk_mq_alloc_tag_set(set);
4382 }
4383 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4384 
4385 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4386 {
4387 	int i, j;
4388 
4389 	for (i = 0; i < set->nr_hw_queues; i++)
4390 		__blk_mq_free_map_and_rqs(set, i);
4391 
4392 	if (blk_mq_is_shared_tags(set->flags)) {
4393 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4394 					BLK_MQ_NO_HCTX_IDX);
4395 	}
4396 
4397 	for (j = 0; j < set->nr_maps; j++) {
4398 		kfree(set->map[j].mq_map);
4399 		set->map[j].mq_map = NULL;
4400 	}
4401 
4402 	kfree(set->tags);
4403 	set->tags = NULL;
4404 }
4405 EXPORT_SYMBOL(blk_mq_free_tag_set);
4406 
4407 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4408 {
4409 	struct blk_mq_tag_set *set = q->tag_set;
4410 	struct blk_mq_hw_ctx *hctx;
4411 	int ret;
4412 	unsigned long i;
4413 
4414 	if (!set)
4415 		return -EINVAL;
4416 
4417 	if (q->nr_requests == nr)
4418 		return 0;
4419 
4420 	blk_mq_freeze_queue(q);
4421 	blk_mq_quiesce_queue(q);
4422 
4423 	ret = 0;
4424 	queue_for_each_hw_ctx(q, hctx, i) {
4425 		if (!hctx->tags)
4426 			continue;
4427 		/*
4428 		 * If we're using an MQ scheduler, just update the scheduler
4429 		 * queue depth. This is similar to what the old code would do.
4430 		 */
4431 		if (hctx->sched_tags) {
4432 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4433 						      nr, true);
4434 		} else {
4435 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4436 						      false);
4437 		}
4438 		if (ret)
4439 			break;
4440 		if (q->elevator && q->elevator->type->ops.depth_updated)
4441 			q->elevator->type->ops.depth_updated(hctx);
4442 	}
4443 	if (!ret) {
4444 		q->nr_requests = nr;
4445 		if (blk_mq_is_shared_tags(set->flags)) {
4446 			if (q->elevator)
4447 				blk_mq_tag_update_sched_shared_tags(q);
4448 			else
4449 				blk_mq_tag_resize_shared_tags(set, nr);
4450 		}
4451 	}
4452 
4453 	blk_mq_unquiesce_queue(q);
4454 	blk_mq_unfreeze_queue(q);
4455 
4456 	return ret;
4457 }
4458 
4459 /*
4460  * request_queue and elevator_type pair.
4461  * It is just used by __blk_mq_update_nr_hw_queues to cache
4462  * the elevator_type associated with a request_queue.
4463  */
4464 struct blk_mq_qe_pair {
4465 	struct list_head node;
4466 	struct request_queue *q;
4467 	struct elevator_type *type;
4468 };
4469 
4470 /*
4471  * Cache the elevator_type in qe pair list and switch the
4472  * io scheduler to 'none'
4473  */
4474 static bool blk_mq_elv_switch_none(struct list_head *head,
4475 		struct request_queue *q)
4476 {
4477 	struct blk_mq_qe_pair *qe;
4478 
4479 	if (!q->elevator)
4480 		return true;
4481 
4482 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4483 	if (!qe)
4484 		return false;
4485 
4486 	/* q->elevator needs protection from ->sysfs_lock */
4487 	mutex_lock(&q->sysfs_lock);
4488 
4489 	INIT_LIST_HEAD(&qe->node);
4490 	qe->q = q;
4491 	qe->type = q->elevator->type;
4492 	list_add(&qe->node, head);
4493 
4494 	/*
4495 	 * After elevator_switch_mq, the previous elevator_queue will be
4496 	 * released by elevator_release. The reference of the io scheduler
4497 	 * module get by elevator_get will also be put. So we need to get
4498 	 * a reference of the io scheduler module here to prevent it to be
4499 	 * removed.
4500 	 */
4501 	__module_get(qe->type->elevator_owner);
4502 	elevator_switch_mq(q, NULL);
4503 	mutex_unlock(&q->sysfs_lock);
4504 
4505 	return true;
4506 }
4507 
4508 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4509 						struct request_queue *q)
4510 {
4511 	struct blk_mq_qe_pair *qe;
4512 
4513 	list_for_each_entry(qe, head, node)
4514 		if (qe->q == q)
4515 			return qe;
4516 
4517 	return NULL;
4518 }
4519 
4520 static void blk_mq_elv_switch_back(struct list_head *head,
4521 				  struct request_queue *q)
4522 {
4523 	struct blk_mq_qe_pair *qe;
4524 	struct elevator_type *t;
4525 
4526 	qe = blk_lookup_qe_pair(head, q);
4527 	if (!qe)
4528 		return;
4529 	t = qe->type;
4530 	list_del(&qe->node);
4531 	kfree(qe);
4532 
4533 	mutex_lock(&q->sysfs_lock);
4534 	elevator_switch_mq(q, t);
4535 	mutex_unlock(&q->sysfs_lock);
4536 }
4537 
4538 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4539 							int nr_hw_queues)
4540 {
4541 	struct request_queue *q;
4542 	LIST_HEAD(head);
4543 	int prev_nr_hw_queues;
4544 
4545 	lockdep_assert_held(&set->tag_list_lock);
4546 
4547 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4548 		nr_hw_queues = nr_cpu_ids;
4549 	if (nr_hw_queues < 1)
4550 		return;
4551 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4552 		return;
4553 
4554 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4555 		blk_mq_freeze_queue(q);
4556 	/*
4557 	 * Switch IO scheduler to 'none', cleaning up the data associated
4558 	 * with the previous scheduler. We will switch back once we are done
4559 	 * updating the new sw to hw queue mappings.
4560 	 */
4561 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4562 		if (!blk_mq_elv_switch_none(&head, q))
4563 			goto switch_back;
4564 
4565 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4566 		blk_mq_debugfs_unregister_hctxs(q);
4567 		blk_mq_sysfs_unregister_hctxs(q);
4568 	}
4569 
4570 	prev_nr_hw_queues = set->nr_hw_queues;
4571 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4572 	    0)
4573 		goto reregister;
4574 
4575 	set->nr_hw_queues = nr_hw_queues;
4576 fallback:
4577 	blk_mq_update_queue_map(set);
4578 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4579 		blk_mq_realloc_hw_ctxs(set, q);
4580 		blk_mq_update_poll_flag(q);
4581 		if (q->nr_hw_queues != set->nr_hw_queues) {
4582 			int i = prev_nr_hw_queues;
4583 
4584 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4585 					nr_hw_queues, prev_nr_hw_queues);
4586 			for (; i < set->nr_hw_queues; i++)
4587 				__blk_mq_free_map_and_rqs(set, i);
4588 
4589 			set->nr_hw_queues = prev_nr_hw_queues;
4590 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4591 			goto fallback;
4592 		}
4593 		blk_mq_map_swqueue(q);
4594 	}
4595 
4596 reregister:
4597 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4598 		blk_mq_sysfs_register_hctxs(q);
4599 		blk_mq_debugfs_register_hctxs(q);
4600 	}
4601 
4602 switch_back:
4603 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4604 		blk_mq_elv_switch_back(&head, q);
4605 
4606 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4607 		blk_mq_unfreeze_queue(q);
4608 }
4609 
4610 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4611 {
4612 	mutex_lock(&set->tag_list_lock);
4613 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4614 	mutex_unlock(&set->tag_list_lock);
4615 }
4616 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4617 
4618 /* Enable polling stats and return whether they were already enabled. */
4619 static bool blk_poll_stats_enable(struct request_queue *q)
4620 {
4621 	if (q->poll_stat)
4622 		return true;
4623 
4624 	return blk_stats_alloc_enable(q);
4625 }
4626 
4627 static void blk_mq_poll_stats_start(struct request_queue *q)
4628 {
4629 	/*
4630 	 * We don't arm the callback if polling stats are not enabled or the
4631 	 * callback is already active.
4632 	 */
4633 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4634 		return;
4635 
4636 	blk_stat_activate_msecs(q->poll_cb, 100);
4637 }
4638 
4639 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4640 {
4641 	struct request_queue *q = cb->data;
4642 	int bucket;
4643 
4644 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4645 		if (cb->stat[bucket].nr_samples)
4646 			q->poll_stat[bucket] = cb->stat[bucket];
4647 	}
4648 }
4649 
4650 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4651 				       struct request *rq)
4652 {
4653 	unsigned long ret = 0;
4654 	int bucket;
4655 
4656 	/*
4657 	 * If stats collection isn't on, don't sleep but turn it on for
4658 	 * future users
4659 	 */
4660 	if (!blk_poll_stats_enable(q))
4661 		return 0;
4662 
4663 	/*
4664 	 * As an optimistic guess, use half of the mean service time
4665 	 * for this type of request. We can (and should) make this smarter.
4666 	 * For instance, if the completion latencies are tight, we can
4667 	 * get closer than just half the mean. This is especially
4668 	 * important on devices where the completion latencies are longer
4669 	 * than ~10 usec. We do use the stats for the relevant IO size
4670 	 * if available which does lead to better estimates.
4671 	 */
4672 	bucket = blk_mq_poll_stats_bkt(rq);
4673 	if (bucket < 0)
4674 		return ret;
4675 
4676 	if (q->poll_stat[bucket].nr_samples)
4677 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4678 
4679 	return ret;
4680 }
4681 
4682 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4683 {
4684 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4685 	struct request *rq = blk_qc_to_rq(hctx, qc);
4686 	struct hrtimer_sleeper hs;
4687 	enum hrtimer_mode mode;
4688 	unsigned int nsecs;
4689 	ktime_t kt;
4690 
4691 	/*
4692 	 * If a request has completed on queue that uses an I/O scheduler, we
4693 	 * won't get back a request from blk_qc_to_rq.
4694 	 */
4695 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4696 		return false;
4697 
4698 	/*
4699 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4700 	 *
4701 	 *  0:	use half of prev avg
4702 	 * >0:	use this specific value
4703 	 */
4704 	if (q->poll_nsec > 0)
4705 		nsecs = q->poll_nsec;
4706 	else
4707 		nsecs = blk_mq_poll_nsecs(q, rq);
4708 
4709 	if (!nsecs)
4710 		return false;
4711 
4712 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4713 
4714 	/*
4715 	 * This will be replaced with the stats tracking code, using
4716 	 * 'avg_completion_time / 2' as the pre-sleep target.
4717 	 */
4718 	kt = nsecs;
4719 
4720 	mode = HRTIMER_MODE_REL;
4721 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4722 	hrtimer_set_expires(&hs.timer, kt);
4723 
4724 	do {
4725 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4726 			break;
4727 		set_current_state(TASK_UNINTERRUPTIBLE);
4728 		hrtimer_sleeper_start_expires(&hs, mode);
4729 		if (hs.task)
4730 			io_schedule();
4731 		hrtimer_cancel(&hs.timer);
4732 		mode = HRTIMER_MODE_ABS;
4733 	} while (hs.task && !signal_pending(current));
4734 
4735 	__set_current_state(TASK_RUNNING);
4736 	destroy_hrtimer_on_stack(&hs.timer);
4737 
4738 	/*
4739 	 * If we sleep, have the caller restart the poll loop to reset the
4740 	 * state.  Like for the other success return cases, the caller is
4741 	 * responsible for checking if the IO completed.  If the IO isn't
4742 	 * complete, we'll get called again and will go straight to the busy
4743 	 * poll loop.
4744 	 */
4745 	return true;
4746 }
4747 
4748 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4749 			       struct io_comp_batch *iob, unsigned int flags)
4750 {
4751 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4752 	long state = get_current_state();
4753 	int ret;
4754 
4755 	do {
4756 		ret = q->mq_ops->poll(hctx, iob);
4757 		if (ret > 0) {
4758 			__set_current_state(TASK_RUNNING);
4759 			return ret;
4760 		}
4761 
4762 		if (signal_pending_state(state, current))
4763 			__set_current_state(TASK_RUNNING);
4764 		if (task_is_running(current))
4765 			return 1;
4766 
4767 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4768 			break;
4769 		cpu_relax();
4770 	} while (!need_resched());
4771 
4772 	__set_current_state(TASK_RUNNING);
4773 	return 0;
4774 }
4775 
4776 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4777 		unsigned int flags)
4778 {
4779 	if (!(flags & BLK_POLL_NOSLEEP) &&
4780 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4781 		if (blk_mq_poll_hybrid(q, cookie))
4782 			return 1;
4783 	}
4784 	return blk_mq_poll_classic(q, cookie, iob, flags);
4785 }
4786 
4787 unsigned int blk_mq_rq_cpu(struct request *rq)
4788 {
4789 	return rq->mq_ctx->cpu;
4790 }
4791 EXPORT_SYMBOL(blk_mq_rq_cpu);
4792 
4793 void blk_mq_cancel_work_sync(struct request_queue *q)
4794 {
4795 	if (queue_is_mq(q)) {
4796 		struct blk_mq_hw_ctx *hctx;
4797 		unsigned long i;
4798 
4799 		cancel_delayed_work_sync(&q->requeue_work);
4800 
4801 		queue_for_each_hw_ctx(q, hctx, i)
4802 			cancel_delayed_work_sync(&hctx->run_work);
4803 	}
4804 }
4805 
4806 static int __init blk_mq_init(void)
4807 {
4808 	int i;
4809 
4810 	for_each_possible_cpu(i)
4811 		init_llist_head(&per_cpu(blk_cpu_done, i));
4812 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4813 
4814 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4815 				  "block/softirq:dead", NULL,
4816 				  blk_softirq_cpu_dead);
4817 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4818 				blk_mq_hctx_notify_dead);
4819 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4820 				blk_mq_hctx_notify_online,
4821 				blk_mq_hctx_notify_offline);
4822 	return 0;
4823 }
4824 subsys_initcall(blk_mq_init);
4825