xref: /openbmc/linux/block/blk-mq.c (revision 11930010)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = ktime_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
332 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
333 {
334 	struct blk_mq_ctx *ctx = data->ctx;
335 	struct blk_mq_hw_ctx *hctx = data->hctx;
336 	struct request_queue *q = data->q;
337 	struct request *rq = tags->static_rqs[tag];
338 
339 	rq->q = q;
340 	rq->mq_ctx = ctx;
341 	rq->mq_hctx = hctx;
342 	rq->cmd_flags = data->cmd_flags;
343 
344 	if (data->flags & BLK_MQ_REQ_PM)
345 		data->rq_flags |= RQF_PM;
346 	if (blk_queue_io_stat(q))
347 		data->rq_flags |= RQF_IO_STAT;
348 	rq->rq_flags = data->rq_flags;
349 
350 	if (data->rq_flags & RQF_SCHED_TAGS) {
351 		rq->tag = BLK_MQ_NO_TAG;
352 		rq->internal_tag = tag;
353 	} else {
354 		rq->tag = tag;
355 		rq->internal_tag = BLK_MQ_NO_TAG;
356 	}
357 	rq->timeout = 0;
358 
359 	if (blk_mq_need_time_stamp(rq))
360 		rq->start_time_ns = ktime_get_ns();
361 	else
362 		rq->start_time_ns = 0;
363 	rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 	rq->alloc_time_ns = alloc_time_ns;
366 #endif
367 	rq->io_start_time_ns = 0;
368 	rq->stats_sectors = 0;
369 	rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 	rq->nr_integrity_segments = 0;
372 #endif
373 	rq->end_io = NULL;
374 	rq->end_io_data = NULL;
375 
376 	blk_crypto_rq_set_defaults(rq);
377 	INIT_LIST_HEAD(&rq->queuelist);
378 	/* tag was already set */
379 	WRITE_ONCE(rq->deadline, 0);
380 	req_ref_set(rq, 1);
381 
382 	if (rq->rq_flags & RQF_USE_SCHED) {
383 		struct elevator_queue *e = data->q->elevator;
384 
385 		INIT_HLIST_NODE(&rq->hash);
386 		RB_CLEAR_NODE(&rq->rb_node);
387 
388 		if (e->type->ops.prepare_request)
389 			e->type->ops.prepare_request(rq);
390 	}
391 
392 	return rq;
393 }
394 
395 static inline struct request *
396 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
397 		u64 alloc_time_ns)
398 {
399 	unsigned int tag, tag_offset;
400 	struct blk_mq_tags *tags;
401 	struct request *rq;
402 	unsigned long tag_mask;
403 	int i, nr = 0;
404 
405 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
406 	if (unlikely(!tag_mask))
407 		return NULL;
408 
409 	tags = blk_mq_tags_from_data(data);
410 	for (i = 0; tag_mask; i++) {
411 		if (!(tag_mask & (1UL << i)))
412 			continue;
413 		tag = tag_offset + i;
414 		prefetch(tags->static_rqs[tag]);
415 		tag_mask &= ~(1UL << i);
416 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
417 		rq_list_add(data->cached_rq, rq);
418 		nr++;
419 	}
420 	/* caller already holds a reference, add for remainder */
421 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
422 	data->nr_tags -= nr;
423 
424 	return rq_list_pop(data->cached_rq);
425 }
426 
427 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
428 {
429 	struct request_queue *q = data->q;
430 	u64 alloc_time_ns = 0;
431 	struct request *rq;
432 	unsigned int tag;
433 
434 	/* alloc_time includes depth and tag waits */
435 	if (blk_queue_rq_alloc_time(q))
436 		alloc_time_ns = ktime_get_ns();
437 
438 	if (data->cmd_flags & REQ_NOWAIT)
439 		data->flags |= BLK_MQ_REQ_NOWAIT;
440 
441 	if (q->elevator) {
442 		/*
443 		 * All requests use scheduler tags when an I/O scheduler is
444 		 * enabled for the queue.
445 		 */
446 		data->rq_flags |= RQF_SCHED_TAGS;
447 
448 		/*
449 		 * Flush/passthrough requests are special and go directly to the
450 		 * dispatch list.
451 		 */
452 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
453 		    !blk_op_is_passthrough(data->cmd_flags)) {
454 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
455 
456 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
457 
458 			data->rq_flags |= RQF_USE_SCHED;
459 			if (ops->limit_depth)
460 				ops->limit_depth(data->cmd_flags, data);
461 		}
462 	}
463 
464 retry:
465 	data->ctx = blk_mq_get_ctx(q);
466 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
467 	if (!(data->rq_flags & RQF_SCHED_TAGS))
468 		blk_mq_tag_busy(data->hctx);
469 
470 	if (data->flags & BLK_MQ_REQ_RESERVED)
471 		data->rq_flags |= RQF_RESV;
472 
473 	/*
474 	 * Try batched alloc if we want more than 1 tag.
475 	 */
476 	if (data->nr_tags > 1) {
477 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
478 		if (rq)
479 			return rq;
480 		data->nr_tags = 1;
481 	}
482 
483 	/*
484 	 * Waiting allocations only fail because of an inactive hctx.  In that
485 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
486 	 * should have migrated us to an online CPU by now.
487 	 */
488 	tag = blk_mq_get_tag(data);
489 	if (tag == BLK_MQ_NO_TAG) {
490 		if (data->flags & BLK_MQ_REQ_NOWAIT)
491 			return NULL;
492 		/*
493 		 * Give up the CPU and sleep for a random short time to
494 		 * ensure that thread using a realtime scheduling class
495 		 * are migrated off the CPU, and thus off the hctx that
496 		 * is going away.
497 		 */
498 		msleep(3);
499 		goto retry;
500 	}
501 
502 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
503 					alloc_time_ns);
504 }
505 
506 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
507 					    struct blk_plug *plug,
508 					    blk_opf_t opf,
509 					    blk_mq_req_flags_t flags)
510 {
511 	struct blk_mq_alloc_data data = {
512 		.q		= q,
513 		.flags		= flags,
514 		.cmd_flags	= opf,
515 		.nr_tags	= plug->nr_ios,
516 		.cached_rq	= &plug->cached_rq,
517 	};
518 	struct request *rq;
519 
520 	if (blk_queue_enter(q, flags))
521 		return NULL;
522 
523 	plug->nr_ios = 1;
524 
525 	rq = __blk_mq_alloc_requests(&data);
526 	if (unlikely(!rq))
527 		blk_queue_exit(q);
528 	return rq;
529 }
530 
531 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
532 						   blk_opf_t opf,
533 						   blk_mq_req_flags_t flags)
534 {
535 	struct blk_plug *plug = current->plug;
536 	struct request *rq;
537 
538 	if (!plug)
539 		return NULL;
540 
541 	if (rq_list_empty(plug->cached_rq)) {
542 		if (plug->nr_ios == 1)
543 			return NULL;
544 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
545 		if (!rq)
546 			return NULL;
547 	} else {
548 		rq = rq_list_peek(&plug->cached_rq);
549 		if (!rq || rq->q != q)
550 			return NULL;
551 
552 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
553 			return NULL;
554 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
555 			return NULL;
556 
557 		plug->cached_rq = rq_list_next(rq);
558 	}
559 
560 	rq->cmd_flags = opf;
561 	INIT_LIST_HEAD(&rq->queuelist);
562 	return rq;
563 }
564 
565 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
566 		blk_mq_req_flags_t flags)
567 {
568 	struct request *rq;
569 
570 	rq = blk_mq_alloc_cached_request(q, opf, flags);
571 	if (!rq) {
572 		struct blk_mq_alloc_data data = {
573 			.q		= q,
574 			.flags		= flags,
575 			.cmd_flags	= opf,
576 			.nr_tags	= 1,
577 		};
578 		int ret;
579 
580 		ret = blk_queue_enter(q, flags);
581 		if (ret)
582 			return ERR_PTR(ret);
583 
584 		rq = __blk_mq_alloc_requests(&data);
585 		if (!rq)
586 			goto out_queue_exit;
587 	}
588 	rq->__data_len = 0;
589 	rq->__sector = (sector_t) -1;
590 	rq->bio = rq->biotail = NULL;
591 	return rq;
592 out_queue_exit:
593 	blk_queue_exit(q);
594 	return ERR_PTR(-EWOULDBLOCK);
595 }
596 EXPORT_SYMBOL(blk_mq_alloc_request);
597 
598 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
599 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
600 {
601 	struct blk_mq_alloc_data data = {
602 		.q		= q,
603 		.flags		= flags,
604 		.cmd_flags	= opf,
605 		.nr_tags	= 1,
606 	};
607 	u64 alloc_time_ns = 0;
608 	struct request *rq;
609 	unsigned int cpu;
610 	unsigned int tag;
611 	int ret;
612 
613 	/* alloc_time includes depth and tag waits */
614 	if (blk_queue_rq_alloc_time(q))
615 		alloc_time_ns = ktime_get_ns();
616 
617 	/*
618 	 * If the tag allocator sleeps we could get an allocation for a
619 	 * different hardware context.  No need to complicate the low level
620 	 * allocator for this for the rare use case of a command tied to
621 	 * a specific queue.
622 	 */
623 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
624 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
625 		return ERR_PTR(-EINVAL);
626 
627 	if (hctx_idx >= q->nr_hw_queues)
628 		return ERR_PTR(-EIO);
629 
630 	ret = blk_queue_enter(q, flags);
631 	if (ret)
632 		return ERR_PTR(ret);
633 
634 	/*
635 	 * Check if the hardware context is actually mapped to anything.
636 	 * If not tell the caller that it should skip this queue.
637 	 */
638 	ret = -EXDEV;
639 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
640 	if (!blk_mq_hw_queue_mapped(data.hctx))
641 		goto out_queue_exit;
642 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
643 	if (cpu >= nr_cpu_ids)
644 		goto out_queue_exit;
645 	data.ctx = __blk_mq_get_ctx(q, cpu);
646 
647 	if (q->elevator)
648 		data.rq_flags |= RQF_SCHED_TAGS;
649 	else
650 		blk_mq_tag_busy(data.hctx);
651 
652 	if (flags & BLK_MQ_REQ_RESERVED)
653 		data.rq_flags |= RQF_RESV;
654 
655 	ret = -EWOULDBLOCK;
656 	tag = blk_mq_get_tag(&data);
657 	if (tag == BLK_MQ_NO_TAG)
658 		goto out_queue_exit;
659 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
660 					alloc_time_ns);
661 	rq->__data_len = 0;
662 	rq->__sector = (sector_t) -1;
663 	rq->bio = rq->biotail = NULL;
664 	return rq;
665 
666 out_queue_exit:
667 	blk_queue_exit(q);
668 	return ERR_PTR(ret);
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
671 
672 static void __blk_mq_free_request(struct request *rq)
673 {
674 	struct request_queue *q = rq->q;
675 	struct blk_mq_ctx *ctx = rq->mq_ctx;
676 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677 	const int sched_tag = rq->internal_tag;
678 
679 	blk_crypto_free_request(rq);
680 	blk_pm_mark_last_busy(rq);
681 	rq->mq_hctx = NULL;
682 
683 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
684 		__blk_mq_dec_active_requests(hctx);
685 
686 	if (rq->tag != BLK_MQ_NO_TAG)
687 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688 	if (sched_tag != BLK_MQ_NO_TAG)
689 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690 	blk_mq_sched_restart(hctx);
691 	blk_queue_exit(q);
692 }
693 
694 void blk_mq_free_request(struct request *rq)
695 {
696 	struct request_queue *q = rq->q;
697 
698 	if ((rq->rq_flags & RQF_USE_SCHED) &&
699 	    q->elevator->type->ops.finish_request)
700 		q->elevator->type->ops.finish_request(rq);
701 
702 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703 		laptop_io_completion(q->disk->bdi);
704 
705 	rq_qos_done(q, rq);
706 
707 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708 	if (req_ref_put_and_test(rq))
709 		__blk_mq_free_request(rq);
710 }
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
712 
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
714 {
715 	struct request *rq;
716 
717 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718 		blk_mq_free_request(rq);
719 }
720 
721 void blk_dump_rq_flags(struct request *rq, char *msg)
722 {
723 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724 		rq->q->disk ? rq->q->disk->disk_name : "?",
725 		(__force unsigned long long) rq->cmd_flags);
726 
727 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
728 	       (unsigned long long)blk_rq_pos(rq),
729 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
731 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
732 }
733 EXPORT_SYMBOL(blk_dump_rq_flags);
734 
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736 			  unsigned int nbytes, blk_status_t error)
737 {
738 	if (unlikely(error)) {
739 		bio->bi_status = error;
740 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
741 		/*
742 		 * Partial zone append completions cannot be supported as the
743 		 * BIO fragments may end up not being written sequentially.
744 		 */
745 		if (bio->bi_iter.bi_size != nbytes)
746 			bio->bi_status = BLK_STS_IOERR;
747 		else
748 			bio->bi_iter.bi_sector = rq->__sector;
749 	}
750 
751 	bio_advance(bio, nbytes);
752 
753 	if (unlikely(rq->rq_flags & RQF_QUIET))
754 		bio_set_flag(bio, BIO_QUIET);
755 	/* don't actually finish bio if it's part of flush sequence */
756 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
757 		bio_endio(bio);
758 }
759 
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
761 {
762 	if (req->part && blk_do_io_stat(req)) {
763 		const int sgrp = op_stat_group(req_op(req));
764 
765 		part_stat_lock();
766 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
767 		part_stat_unlock();
768 	}
769 }
770 
771 static void blk_print_req_error(struct request *req, blk_status_t status)
772 {
773 	printk_ratelimited(KERN_ERR
774 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775 		"phys_seg %u prio class %u\n",
776 		blk_status_to_str(status),
777 		req->q->disk ? req->q->disk->disk_name : "?",
778 		blk_rq_pos(req), (__force u32)req_op(req),
779 		blk_op_str(req_op(req)),
780 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781 		req->nr_phys_segments,
782 		IOPRIO_PRIO_CLASS(req->ioprio));
783 }
784 
785 /*
786  * Fully end IO on a request. Does not support partial completions, or
787  * errors.
788  */
789 static void blk_complete_request(struct request *req)
790 {
791 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792 	int total_bytes = blk_rq_bytes(req);
793 	struct bio *bio = req->bio;
794 
795 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
796 
797 	if (!bio)
798 		return;
799 
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802 		req->q->integrity.profile->complete_fn(req, total_bytes);
803 #endif
804 
805 	/*
806 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
807 	 * bio_endio().  Therefore, the keyslot must be released before that.
808 	 */
809 	blk_crypto_rq_put_keyslot(req);
810 
811 	blk_account_io_completion(req, total_bytes);
812 
813 	do {
814 		struct bio *next = bio->bi_next;
815 
816 		/* Completion has already been traced */
817 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818 
819 		if (req_op(req) == REQ_OP_ZONE_APPEND)
820 			bio->bi_iter.bi_sector = req->__sector;
821 
822 		if (!is_flush)
823 			bio_endio(bio);
824 		bio = next;
825 	} while (bio);
826 
827 	/*
828 	 * Reset counters so that the request stacking driver
829 	 * can find how many bytes remain in the request
830 	 * later.
831 	 */
832 	if (!req->end_io) {
833 		req->bio = NULL;
834 		req->__data_len = 0;
835 	}
836 }
837 
838 /**
839  * blk_update_request - Complete multiple bytes without completing the request
840  * @req:      the request being processed
841  * @error:    block status code
842  * @nr_bytes: number of bytes to complete for @req
843  *
844  * Description:
845  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
846  *     the request structure even if @req doesn't have leftover.
847  *     If @req has leftover, sets it up for the next range of segments.
848  *
849  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
850  *     %false return from this function.
851  *
852  * Note:
853  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
854  *      except in the consistency check at the end of this function.
855  *
856  * Return:
857  *     %false - this request doesn't have any more data
858  *     %true  - this request has more data
859  **/
860 bool blk_update_request(struct request *req, blk_status_t error,
861 		unsigned int nr_bytes)
862 {
863 	int total_bytes;
864 
865 	trace_block_rq_complete(req, error, nr_bytes);
866 
867 	if (!req->bio)
868 		return false;
869 
870 #ifdef CONFIG_BLK_DEV_INTEGRITY
871 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
872 	    error == BLK_STS_OK)
873 		req->q->integrity.profile->complete_fn(req, nr_bytes);
874 #endif
875 
876 	/*
877 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
878 	 * bio_endio().  Therefore, the keyslot must be released before that.
879 	 */
880 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
881 		__blk_crypto_rq_put_keyslot(req);
882 
883 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
884 		     !(req->rq_flags & RQF_QUIET)) &&
885 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
886 		blk_print_req_error(req, error);
887 		trace_block_rq_error(req, error, nr_bytes);
888 	}
889 
890 	blk_account_io_completion(req, nr_bytes);
891 
892 	total_bytes = 0;
893 	while (req->bio) {
894 		struct bio *bio = req->bio;
895 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
896 
897 		if (bio_bytes == bio->bi_iter.bi_size)
898 			req->bio = bio->bi_next;
899 
900 		/* Completion has already been traced */
901 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
902 		req_bio_endio(req, bio, bio_bytes, error);
903 
904 		total_bytes += bio_bytes;
905 		nr_bytes -= bio_bytes;
906 
907 		if (!nr_bytes)
908 			break;
909 	}
910 
911 	/*
912 	 * completely done
913 	 */
914 	if (!req->bio) {
915 		/*
916 		 * Reset counters so that the request stacking driver
917 		 * can find how many bytes remain in the request
918 		 * later.
919 		 */
920 		req->__data_len = 0;
921 		return false;
922 	}
923 
924 	req->__data_len -= total_bytes;
925 
926 	/* update sector only for requests with clear definition of sector */
927 	if (!blk_rq_is_passthrough(req))
928 		req->__sector += total_bytes >> 9;
929 
930 	/* mixed attributes always follow the first bio */
931 	if (req->rq_flags & RQF_MIXED_MERGE) {
932 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
933 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
934 	}
935 
936 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
937 		/*
938 		 * If total number of sectors is less than the first segment
939 		 * size, something has gone terribly wrong.
940 		 */
941 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
942 			blk_dump_rq_flags(req, "request botched");
943 			req->__data_len = blk_rq_cur_bytes(req);
944 		}
945 
946 		/* recalculate the number of segments */
947 		req->nr_phys_segments = blk_recalc_rq_segments(req);
948 	}
949 
950 	return true;
951 }
952 EXPORT_SYMBOL_GPL(blk_update_request);
953 
954 static inline void blk_account_io_done(struct request *req, u64 now)
955 {
956 	trace_block_io_done(req);
957 
958 	/*
959 	 * Account IO completion.  flush_rq isn't accounted as a
960 	 * normal IO on queueing nor completion.  Accounting the
961 	 * containing request is enough.
962 	 */
963 	if (blk_do_io_stat(req) && req->part &&
964 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
965 		const int sgrp = op_stat_group(req_op(req));
966 
967 		part_stat_lock();
968 		update_io_ticks(req->part, jiffies, true);
969 		part_stat_inc(req->part, ios[sgrp]);
970 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
971 		part_stat_unlock();
972 	}
973 }
974 
975 static inline void blk_account_io_start(struct request *req)
976 {
977 	trace_block_io_start(req);
978 
979 	if (blk_do_io_stat(req)) {
980 		/*
981 		 * All non-passthrough requests are created from a bio with one
982 		 * exception: when a flush command that is part of a flush sequence
983 		 * generated by the state machine in blk-flush.c is cloned onto the
984 		 * lower device by dm-multipath we can get here without a bio.
985 		 */
986 		if (req->bio)
987 			req->part = req->bio->bi_bdev;
988 		else
989 			req->part = req->q->disk->part0;
990 
991 		part_stat_lock();
992 		update_io_ticks(req->part, jiffies, false);
993 		part_stat_unlock();
994 	}
995 }
996 
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999 	if (rq->rq_flags & RQF_STATS)
1000 		blk_stat_add(rq, now);
1001 
1002 	blk_mq_sched_completed_request(rq, now);
1003 	blk_account_io_done(rq, now);
1004 }
1005 
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008 	if (blk_mq_need_time_stamp(rq))
1009 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1010 
1011 	if (rq->end_io) {
1012 		rq_qos_done(rq->q, rq);
1013 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014 			blk_mq_free_request(rq);
1015 	} else {
1016 		blk_mq_free_request(rq);
1017 	}
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020 
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024 		BUG();
1025 	__blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028 
1029 #define TAG_COMP_BATCH		32
1030 
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032 					  int *tag_array, int nr_tags)
1033 {
1034 	struct request_queue *q = hctx->queue;
1035 
1036 	/*
1037 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038 	 * update hctx->nr_active in batch
1039 	 */
1040 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041 		__blk_mq_sub_active_requests(hctx, nr_tags);
1042 
1043 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046 
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1050 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1051 	struct request *rq;
1052 	u64 now = 0;
1053 
1054 	if (iob->need_ts)
1055 		now = ktime_get_ns();
1056 
1057 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058 		prefetch(rq->bio);
1059 		prefetch(rq->rq_next);
1060 
1061 		blk_complete_request(rq);
1062 		if (iob->need_ts)
1063 			__blk_mq_end_request_acct(rq, now);
1064 
1065 		rq_qos_done(rq->q, rq);
1066 
1067 		/*
1068 		 * If end_io handler returns NONE, then it still has
1069 		 * ownership of the request.
1070 		 */
1071 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072 			continue;
1073 
1074 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075 		if (!req_ref_put_and_test(rq))
1076 			continue;
1077 
1078 		blk_crypto_free_request(rq);
1079 		blk_pm_mark_last_busy(rq);
1080 
1081 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082 			if (cur_hctx)
1083 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084 			nr_tags = 0;
1085 			cur_hctx = rq->mq_hctx;
1086 		}
1087 		tags[nr_tags++] = rq->tag;
1088 	}
1089 
1090 	if (nr_tags)
1091 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094 
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098 	struct request *rq, *next;
1099 
1100 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101 		rq->q->mq_ops->complete(rq);
1102 }
1103 
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108 
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112 	return 0;
1113 }
1114 
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119 
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122 	int cpu = raw_smp_processor_id();
1123 
1124 	if (!IS_ENABLED(CONFIG_SMP) ||
1125 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126 		return false;
1127 	/*
1128 	 * With force threaded interrupts enabled, raising softirq from an SMP
1129 	 * function call will always result in waking the ksoftirqd thread.
1130 	 * This is probably worse than completing the request on a different
1131 	 * cache domain.
1132 	 */
1133 	if (force_irqthreads())
1134 		return false;
1135 
1136 	/* same CPU or cache domain?  Complete locally */
1137 	if (cpu == rq->mq_ctx->cpu ||
1138 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140 		return false;
1141 
1142 	/* don't try to IPI to an offline CPU */
1143 	return cpu_online(rq->mq_ctx->cpu);
1144 }
1145 
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148 	struct llist_head *list;
1149 	unsigned int cpu;
1150 
1151 	cpu = rq->mq_ctx->cpu;
1152 	list = &per_cpu(blk_cpu_done, cpu);
1153 	if (llist_add(&rq->ipi_list, list)) {
1154 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155 		smp_call_function_single_async(cpu, &rq->csd);
1156 	}
1157 }
1158 
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161 	struct llist_head *list;
1162 
1163 	preempt_disable();
1164 	list = this_cpu_ptr(&blk_cpu_done);
1165 	if (llist_add(&rq->ipi_list, list))
1166 		raise_softirq(BLOCK_SOFTIRQ);
1167 	preempt_enable();
1168 }
1169 
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173 
1174 	/*
1175 	 * For request which hctx has only one ctx mapping,
1176 	 * or a polled request, always complete locally,
1177 	 * it's pointless to redirect the completion.
1178 	 */
1179 	if ((rq->mq_hctx->nr_ctx == 1 &&
1180 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1181 	     rq->cmd_flags & REQ_POLLED)
1182 		return false;
1183 
1184 	if (blk_mq_complete_need_ipi(rq)) {
1185 		blk_mq_complete_send_ipi(rq);
1186 		return true;
1187 	}
1188 
1189 	if (rq->q->nr_hw_queues == 1) {
1190 		blk_mq_raise_softirq(rq);
1191 		return true;
1192 	}
1193 	return false;
1194 }
1195 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1196 
1197 /**
1198  * blk_mq_complete_request - end I/O on a request
1199  * @rq:		the request being processed
1200  *
1201  * Description:
1202  *	Complete a request by scheduling the ->complete_rq operation.
1203  **/
1204 void blk_mq_complete_request(struct request *rq)
1205 {
1206 	if (!blk_mq_complete_request_remote(rq))
1207 		rq->q->mq_ops->complete(rq);
1208 }
1209 EXPORT_SYMBOL(blk_mq_complete_request);
1210 
1211 /**
1212  * blk_mq_start_request - Start processing a request
1213  * @rq: Pointer to request to be started
1214  *
1215  * Function used by device drivers to notify the block layer that a request
1216  * is going to be processed now, so blk layer can do proper initializations
1217  * such as starting the timeout timer.
1218  */
1219 void blk_mq_start_request(struct request *rq)
1220 {
1221 	struct request_queue *q = rq->q;
1222 
1223 	trace_block_rq_issue(rq);
1224 
1225 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1226 		rq->io_start_time_ns = ktime_get_ns();
1227 		rq->stats_sectors = blk_rq_sectors(rq);
1228 		rq->rq_flags |= RQF_STATS;
1229 		rq_qos_issue(q, rq);
1230 	}
1231 
1232 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1233 
1234 	blk_add_timer(rq);
1235 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1236 
1237 #ifdef CONFIG_BLK_DEV_INTEGRITY
1238 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1239 		q->integrity.profile->prepare_fn(rq);
1240 #endif
1241 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1242 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_request);
1245 
1246 /*
1247  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1248  * queues. This is important for md arrays to benefit from merging
1249  * requests.
1250  */
1251 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1252 {
1253 	if (plug->multiple_queues)
1254 		return BLK_MAX_REQUEST_COUNT * 2;
1255 	return BLK_MAX_REQUEST_COUNT;
1256 }
1257 
1258 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1259 {
1260 	struct request *last = rq_list_peek(&plug->mq_list);
1261 
1262 	if (!plug->rq_count) {
1263 		trace_block_plug(rq->q);
1264 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1265 		   (!blk_queue_nomerges(rq->q) &&
1266 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1267 		blk_mq_flush_plug_list(plug, false);
1268 		last = NULL;
1269 		trace_block_plug(rq->q);
1270 	}
1271 
1272 	if (!plug->multiple_queues && last && last->q != rq->q)
1273 		plug->multiple_queues = true;
1274 	/*
1275 	 * Any request allocated from sched tags can't be issued to
1276 	 * ->queue_rqs() directly
1277 	 */
1278 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1279 		plug->has_elevator = true;
1280 	rq->rq_next = NULL;
1281 	rq_list_add(&plug->mq_list, rq);
1282 	plug->rq_count++;
1283 }
1284 
1285 /**
1286  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1287  * @rq:		request to insert
1288  * @at_head:    insert request at head or tail of queue
1289  *
1290  * Description:
1291  *    Insert a fully prepared request at the back of the I/O scheduler queue
1292  *    for execution.  Don't wait for completion.
1293  *
1294  * Note:
1295  *    This function will invoke @done directly if the queue is dead.
1296  */
1297 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1298 {
1299 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1300 
1301 	WARN_ON(irqs_disabled());
1302 	WARN_ON(!blk_rq_is_passthrough(rq));
1303 
1304 	blk_account_io_start(rq);
1305 
1306 	/*
1307 	 * As plugging can be enabled for passthrough requests on a zoned
1308 	 * device, directly accessing the plug instead of using blk_mq_plug()
1309 	 * should not have any consequences.
1310 	 */
1311 	if (current->plug && !at_head) {
1312 		blk_add_rq_to_plug(current->plug, rq);
1313 		return;
1314 	}
1315 
1316 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1317 	blk_mq_run_hw_queue(hctx, false);
1318 }
1319 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1320 
1321 struct blk_rq_wait {
1322 	struct completion done;
1323 	blk_status_t ret;
1324 };
1325 
1326 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1327 {
1328 	struct blk_rq_wait *wait = rq->end_io_data;
1329 
1330 	wait->ret = ret;
1331 	complete(&wait->done);
1332 	return RQ_END_IO_NONE;
1333 }
1334 
1335 bool blk_rq_is_poll(struct request *rq)
1336 {
1337 	if (!rq->mq_hctx)
1338 		return false;
1339 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1340 		return false;
1341 	return true;
1342 }
1343 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1344 
1345 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1346 {
1347 	do {
1348 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1349 		cond_resched();
1350 	} while (!completion_done(wait));
1351 }
1352 
1353 /**
1354  * blk_execute_rq - insert a request into queue for execution
1355  * @rq:		request to insert
1356  * @at_head:    insert request at head or tail of queue
1357  *
1358  * Description:
1359  *    Insert a fully prepared request at the back of the I/O scheduler queue
1360  *    for execution and wait for completion.
1361  * Return: The blk_status_t result provided to blk_mq_end_request().
1362  */
1363 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1364 {
1365 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1366 	struct blk_rq_wait wait = {
1367 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1368 	};
1369 
1370 	WARN_ON(irqs_disabled());
1371 	WARN_ON(!blk_rq_is_passthrough(rq));
1372 
1373 	rq->end_io_data = &wait;
1374 	rq->end_io = blk_end_sync_rq;
1375 
1376 	blk_account_io_start(rq);
1377 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1378 	blk_mq_run_hw_queue(hctx, false);
1379 
1380 	if (blk_rq_is_poll(rq)) {
1381 		blk_rq_poll_completion(rq, &wait.done);
1382 	} else {
1383 		/*
1384 		 * Prevent hang_check timer from firing at us during very long
1385 		 * I/O
1386 		 */
1387 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1388 
1389 		if (hang_check)
1390 			while (!wait_for_completion_io_timeout(&wait.done,
1391 					hang_check * (HZ/2)))
1392 				;
1393 		else
1394 			wait_for_completion_io(&wait.done);
1395 	}
1396 
1397 	return wait.ret;
1398 }
1399 EXPORT_SYMBOL(blk_execute_rq);
1400 
1401 static void __blk_mq_requeue_request(struct request *rq)
1402 {
1403 	struct request_queue *q = rq->q;
1404 
1405 	blk_mq_put_driver_tag(rq);
1406 
1407 	trace_block_rq_requeue(rq);
1408 	rq_qos_requeue(q, rq);
1409 
1410 	if (blk_mq_request_started(rq)) {
1411 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1412 		rq->rq_flags &= ~RQF_TIMED_OUT;
1413 	}
1414 }
1415 
1416 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1417 {
1418 	struct request_queue *q = rq->q;
1419 	unsigned long flags;
1420 
1421 	__blk_mq_requeue_request(rq);
1422 
1423 	/* this request will be re-inserted to io scheduler queue */
1424 	blk_mq_sched_requeue_request(rq);
1425 
1426 	spin_lock_irqsave(&q->requeue_lock, flags);
1427 	list_add_tail(&rq->queuelist, &q->requeue_list);
1428 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1429 
1430 	if (kick_requeue_list)
1431 		blk_mq_kick_requeue_list(q);
1432 }
1433 EXPORT_SYMBOL(blk_mq_requeue_request);
1434 
1435 static void blk_mq_requeue_work(struct work_struct *work)
1436 {
1437 	struct request_queue *q =
1438 		container_of(work, struct request_queue, requeue_work.work);
1439 	LIST_HEAD(rq_list);
1440 	LIST_HEAD(flush_list);
1441 	struct request *rq;
1442 
1443 	spin_lock_irq(&q->requeue_lock);
1444 	list_splice_init(&q->requeue_list, &rq_list);
1445 	list_splice_init(&q->flush_list, &flush_list);
1446 	spin_unlock_irq(&q->requeue_lock);
1447 
1448 	while (!list_empty(&rq_list)) {
1449 		rq = list_entry(rq_list.next, struct request, queuelist);
1450 		/*
1451 		 * If RQF_DONTPREP ist set, the request has been started by the
1452 		 * driver already and might have driver-specific data allocated
1453 		 * already.  Insert it into the hctx dispatch list to avoid
1454 		 * block layer merges for the request.
1455 		 */
1456 		if (rq->rq_flags & RQF_DONTPREP) {
1457 			list_del_init(&rq->queuelist);
1458 			blk_mq_request_bypass_insert(rq, 0);
1459 		} else {
1460 			list_del_init(&rq->queuelist);
1461 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1462 		}
1463 	}
1464 
1465 	while (!list_empty(&flush_list)) {
1466 		rq = list_entry(flush_list.next, struct request, queuelist);
1467 		list_del_init(&rq->queuelist);
1468 		blk_mq_insert_request(rq, 0);
1469 	}
1470 
1471 	blk_mq_run_hw_queues(q, false);
1472 }
1473 
1474 void blk_mq_kick_requeue_list(struct request_queue *q)
1475 {
1476 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1477 }
1478 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1479 
1480 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1481 				    unsigned long msecs)
1482 {
1483 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1484 				    msecs_to_jiffies(msecs));
1485 }
1486 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1487 
1488 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1489 {
1490 	/*
1491 	 * If we find a request that isn't idle we know the queue is busy
1492 	 * as it's checked in the iter.
1493 	 * Return false to stop the iteration.
1494 	 */
1495 	if (blk_mq_request_started(rq)) {
1496 		bool *busy = priv;
1497 
1498 		*busy = true;
1499 		return false;
1500 	}
1501 
1502 	return true;
1503 }
1504 
1505 bool blk_mq_queue_inflight(struct request_queue *q)
1506 {
1507 	bool busy = false;
1508 
1509 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1510 	return busy;
1511 }
1512 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1513 
1514 static void blk_mq_rq_timed_out(struct request *req)
1515 {
1516 	req->rq_flags |= RQF_TIMED_OUT;
1517 	if (req->q->mq_ops->timeout) {
1518 		enum blk_eh_timer_return ret;
1519 
1520 		ret = req->q->mq_ops->timeout(req);
1521 		if (ret == BLK_EH_DONE)
1522 			return;
1523 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1524 	}
1525 
1526 	blk_add_timer(req);
1527 }
1528 
1529 struct blk_expired_data {
1530 	bool has_timedout_rq;
1531 	unsigned long next;
1532 	unsigned long timeout_start;
1533 };
1534 
1535 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1536 {
1537 	unsigned long deadline;
1538 
1539 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1540 		return false;
1541 	if (rq->rq_flags & RQF_TIMED_OUT)
1542 		return false;
1543 
1544 	deadline = READ_ONCE(rq->deadline);
1545 	if (time_after_eq(expired->timeout_start, deadline))
1546 		return true;
1547 
1548 	if (expired->next == 0)
1549 		expired->next = deadline;
1550 	else if (time_after(expired->next, deadline))
1551 		expired->next = deadline;
1552 	return false;
1553 }
1554 
1555 void blk_mq_put_rq_ref(struct request *rq)
1556 {
1557 	if (is_flush_rq(rq)) {
1558 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1559 			blk_mq_free_request(rq);
1560 	} else if (req_ref_put_and_test(rq)) {
1561 		__blk_mq_free_request(rq);
1562 	}
1563 }
1564 
1565 static bool blk_mq_check_expired(struct request *rq, void *priv)
1566 {
1567 	struct blk_expired_data *expired = priv;
1568 
1569 	/*
1570 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1571 	 * be reallocated underneath the timeout handler's processing, then
1572 	 * the expire check is reliable. If the request is not expired, then
1573 	 * it was completed and reallocated as a new request after returning
1574 	 * from blk_mq_check_expired().
1575 	 */
1576 	if (blk_mq_req_expired(rq, expired)) {
1577 		expired->has_timedout_rq = true;
1578 		return false;
1579 	}
1580 	return true;
1581 }
1582 
1583 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1584 {
1585 	struct blk_expired_data *expired = priv;
1586 
1587 	if (blk_mq_req_expired(rq, expired))
1588 		blk_mq_rq_timed_out(rq);
1589 	return true;
1590 }
1591 
1592 static void blk_mq_timeout_work(struct work_struct *work)
1593 {
1594 	struct request_queue *q =
1595 		container_of(work, struct request_queue, timeout_work);
1596 	struct blk_expired_data expired = {
1597 		.timeout_start = jiffies,
1598 	};
1599 	struct blk_mq_hw_ctx *hctx;
1600 	unsigned long i;
1601 
1602 	/* A deadlock might occur if a request is stuck requiring a
1603 	 * timeout at the same time a queue freeze is waiting
1604 	 * completion, since the timeout code would not be able to
1605 	 * acquire the queue reference here.
1606 	 *
1607 	 * That's why we don't use blk_queue_enter here; instead, we use
1608 	 * percpu_ref_tryget directly, because we need to be able to
1609 	 * obtain a reference even in the short window between the queue
1610 	 * starting to freeze, by dropping the first reference in
1611 	 * blk_freeze_queue_start, and the moment the last request is
1612 	 * consumed, marked by the instant q_usage_counter reaches
1613 	 * zero.
1614 	 */
1615 	if (!percpu_ref_tryget(&q->q_usage_counter))
1616 		return;
1617 
1618 	/* check if there is any timed-out request */
1619 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1620 	if (expired.has_timedout_rq) {
1621 		/*
1622 		 * Before walking tags, we must ensure any submit started
1623 		 * before the current time has finished. Since the submit
1624 		 * uses srcu or rcu, wait for a synchronization point to
1625 		 * ensure all running submits have finished
1626 		 */
1627 		blk_mq_wait_quiesce_done(q->tag_set);
1628 
1629 		expired.next = 0;
1630 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1631 	}
1632 
1633 	if (expired.next != 0) {
1634 		mod_timer(&q->timeout, expired.next);
1635 	} else {
1636 		/*
1637 		 * Request timeouts are handled as a forward rolling timer. If
1638 		 * we end up here it means that no requests are pending and
1639 		 * also that no request has been pending for a while. Mark
1640 		 * each hctx as idle.
1641 		 */
1642 		queue_for_each_hw_ctx(q, hctx, i) {
1643 			/* the hctx may be unmapped, so check it here */
1644 			if (blk_mq_hw_queue_mapped(hctx))
1645 				blk_mq_tag_idle(hctx);
1646 		}
1647 	}
1648 	blk_queue_exit(q);
1649 }
1650 
1651 struct flush_busy_ctx_data {
1652 	struct blk_mq_hw_ctx *hctx;
1653 	struct list_head *list;
1654 };
1655 
1656 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1657 {
1658 	struct flush_busy_ctx_data *flush_data = data;
1659 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1660 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1661 	enum hctx_type type = hctx->type;
1662 
1663 	spin_lock(&ctx->lock);
1664 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1665 	sbitmap_clear_bit(sb, bitnr);
1666 	spin_unlock(&ctx->lock);
1667 	return true;
1668 }
1669 
1670 /*
1671  * Process software queues that have been marked busy, splicing them
1672  * to the for-dispatch
1673  */
1674 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1675 {
1676 	struct flush_busy_ctx_data data = {
1677 		.hctx = hctx,
1678 		.list = list,
1679 	};
1680 
1681 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1682 }
1683 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1684 
1685 struct dispatch_rq_data {
1686 	struct blk_mq_hw_ctx *hctx;
1687 	struct request *rq;
1688 };
1689 
1690 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1691 		void *data)
1692 {
1693 	struct dispatch_rq_data *dispatch_data = data;
1694 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1695 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696 	enum hctx_type type = hctx->type;
1697 
1698 	spin_lock(&ctx->lock);
1699 	if (!list_empty(&ctx->rq_lists[type])) {
1700 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1701 		list_del_init(&dispatch_data->rq->queuelist);
1702 		if (list_empty(&ctx->rq_lists[type]))
1703 			sbitmap_clear_bit(sb, bitnr);
1704 	}
1705 	spin_unlock(&ctx->lock);
1706 
1707 	return !dispatch_data->rq;
1708 }
1709 
1710 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1711 					struct blk_mq_ctx *start)
1712 {
1713 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1714 	struct dispatch_rq_data data = {
1715 		.hctx = hctx,
1716 		.rq   = NULL,
1717 	};
1718 
1719 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1720 			       dispatch_rq_from_ctx, &data);
1721 
1722 	return data.rq;
1723 }
1724 
1725 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1726 {
1727 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1728 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1729 	int tag;
1730 
1731 	blk_mq_tag_busy(rq->mq_hctx);
1732 
1733 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1734 		bt = &rq->mq_hctx->tags->breserved_tags;
1735 		tag_offset = 0;
1736 	} else {
1737 		if (!hctx_may_queue(rq->mq_hctx, bt))
1738 			return false;
1739 	}
1740 
1741 	tag = __sbitmap_queue_get(bt);
1742 	if (tag == BLK_MQ_NO_TAG)
1743 		return false;
1744 
1745 	rq->tag = tag + tag_offset;
1746 	return true;
1747 }
1748 
1749 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1750 {
1751 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1752 		return false;
1753 
1754 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1755 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1756 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1757 		__blk_mq_inc_active_requests(hctx);
1758 	}
1759 	hctx->tags->rqs[rq->tag] = rq;
1760 	return true;
1761 }
1762 
1763 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1764 				int flags, void *key)
1765 {
1766 	struct blk_mq_hw_ctx *hctx;
1767 
1768 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1769 
1770 	spin_lock(&hctx->dispatch_wait_lock);
1771 	if (!list_empty(&wait->entry)) {
1772 		struct sbitmap_queue *sbq;
1773 
1774 		list_del_init(&wait->entry);
1775 		sbq = &hctx->tags->bitmap_tags;
1776 		atomic_dec(&sbq->ws_active);
1777 	}
1778 	spin_unlock(&hctx->dispatch_wait_lock);
1779 
1780 	blk_mq_run_hw_queue(hctx, true);
1781 	return 1;
1782 }
1783 
1784 /*
1785  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1786  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1787  * restart. For both cases, take care to check the condition again after
1788  * marking us as waiting.
1789  */
1790 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1791 				 struct request *rq)
1792 {
1793 	struct sbitmap_queue *sbq;
1794 	struct wait_queue_head *wq;
1795 	wait_queue_entry_t *wait;
1796 	bool ret;
1797 
1798 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1799 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1800 		blk_mq_sched_mark_restart_hctx(hctx);
1801 
1802 		/*
1803 		 * It's possible that a tag was freed in the window between the
1804 		 * allocation failure and adding the hardware queue to the wait
1805 		 * queue.
1806 		 *
1807 		 * Don't clear RESTART here, someone else could have set it.
1808 		 * At most this will cost an extra queue run.
1809 		 */
1810 		return blk_mq_get_driver_tag(rq);
1811 	}
1812 
1813 	wait = &hctx->dispatch_wait;
1814 	if (!list_empty_careful(&wait->entry))
1815 		return false;
1816 
1817 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1818 		sbq = &hctx->tags->breserved_tags;
1819 	else
1820 		sbq = &hctx->tags->bitmap_tags;
1821 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1822 
1823 	spin_lock_irq(&wq->lock);
1824 	spin_lock(&hctx->dispatch_wait_lock);
1825 	if (!list_empty(&wait->entry)) {
1826 		spin_unlock(&hctx->dispatch_wait_lock);
1827 		spin_unlock_irq(&wq->lock);
1828 		return false;
1829 	}
1830 
1831 	atomic_inc(&sbq->ws_active);
1832 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1833 	__add_wait_queue(wq, wait);
1834 
1835 	/*
1836 	 * It's possible that a tag was freed in the window between the
1837 	 * allocation failure and adding the hardware queue to the wait
1838 	 * queue.
1839 	 */
1840 	ret = blk_mq_get_driver_tag(rq);
1841 	if (!ret) {
1842 		spin_unlock(&hctx->dispatch_wait_lock);
1843 		spin_unlock_irq(&wq->lock);
1844 		return false;
1845 	}
1846 
1847 	/*
1848 	 * We got a tag, remove ourselves from the wait queue to ensure
1849 	 * someone else gets the wakeup.
1850 	 */
1851 	list_del_init(&wait->entry);
1852 	atomic_dec(&sbq->ws_active);
1853 	spin_unlock(&hctx->dispatch_wait_lock);
1854 	spin_unlock_irq(&wq->lock);
1855 
1856 	return true;
1857 }
1858 
1859 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1860 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1861 /*
1862  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1863  * - EWMA is one simple way to compute running average value
1864  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1865  * - take 4 as factor for avoiding to get too small(0) result, and this
1866  *   factor doesn't matter because EWMA decreases exponentially
1867  */
1868 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1869 {
1870 	unsigned int ewma;
1871 
1872 	ewma = hctx->dispatch_busy;
1873 
1874 	if (!ewma && !busy)
1875 		return;
1876 
1877 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1878 	if (busy)
1879 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1880 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1881 
1882 	hctx->dispatch_busy = ewma;
1883 }
1884 
1885 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1886 
1887 static void blk_mq_handle_dev_resource(struct request *rq,
1888 				       struct list_head *list)
1889 {
1890 	list_add(&rq->queuelist, list);
1891 	__blk_mq_requeue_request(rq);
1892 }
1893 
1894 static void blk_mq_handle_zone_resource(struct request *rq,
1895 					struct list_head *zone_list)
1896 {
1897 	/*
1898 	 * If we end up here it is because we cannot dispatch a request to a
1899 	 * specific zone due to LLD level zone-write locking or other zone
1900 	 * related resource not being available. In this case, set the request
1901 	 * aside in zone_list for retrying it later.
1902 	 */
1903 	list_add(&rq->queuelist, zone_list);
1904 	__blk_mq_requeue_request(rq);
1905 }
1906 
1907 enum prep_dispatch {
1908 	PREP_DISPATCH_OK,
1909 	PREP_DISPATCH_NO_TAG,
1910 	PREP_DISPATCH_NO_BUDGET,
1911 };
1912 
1913 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1914 						  bool need_budget)
1915 {
1916 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1917 	int budget_token = -1;
1918 
1919 	if (need_budget) {
1920 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1921 		if (budget_token < 0) {
1922 			blk_mq_put_driver_tag(rq);
1923 			return PREP_DISPATCH_NO_BUDGET;
1924 		}
1925 		blk_mq_set_rq_budget_token(rq, budget_token);
1926 	}
1927 
1928 	if (!blk_mq_get_driver_tag(rq)) {
1929 		/*
1930 		 * The initial allocation attempt failed, so we need to
1931 		 * rerun the hardware queue when a tag is freed. The
1932 		 * waitqueue takes care of that. If the queue is run
1933 		 * before we add this entry back on the dispatch list,
1934 		 * we'll re-run it below.
1935 		 */
1936 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1937 			/*
1938 			 * All budgets not got from this function will be put
1939 			 * together during handling partial dispatch
1940 			 */
1941 			if (need_budget)
1942 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1943 			return PREP_DISPATCH_NO_TAG;
1944 		}
1945 	}
1946 
1947 	return PREP_DISPATCH_OK;
1948 }
1949 
1950 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1951 static void blk_mq_release_budgets(struct request_queue *q,
1952 		struct list_head *list)
1953 {
1954 	struct request *rq;
1955 
1956 	list_for_each_entry(rq, list, queuelist) {
1957 		int budget_token = blk_mq_get_rq_budget_token(rq);
1958 
1959 		if (budget_token >= 0)
1960 			blk_mq_put_dispatch_budget(q, budget_token);
1961 	}
1962 }
1963 
1964 /*
1965  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1966  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1967  * details)
1968  * Attention, we should explicitly call this in unusual cases:
1969  *  1) did not queue everything initially scheduled to queue
1970  *  2) the last attempt to queue a request failed
1971  */
1972 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1973 			      bool from_schedule)
1974 {
1975 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1976 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1977 		hctx->queue->mq_ops->commit_rqs(hctx);
1978 	}
1979 }
1980 
1981 /*
1982  * Returns true if we did some work AND can potentially do more.
1983  */
1984 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1985 			     unsigned int nr_budgets)
1986 {
1987 	enum prep_dispatch prep;
1988 	struct request_queue *q = hctx->queue;
1989 	struct request *rq;
1990 	int queued;
1991 	blk_status_t ret = BLK_STS_OK;
1992 	LIST_HEAD(zone_list);
1993 	bool needs_resource = false;
1994 
1995 	if (list_empty(list))
1996 		return false;
1997 
1998 	/*
1999 	 * Now process all the entries, sending them to the driver.
2000 	 */
2001 	queued = 0;
2002 	do {
2003 		struct blk_mq_queue_data bd;
2004 
2005 		rq = list_first_entry(list, struct request, queuelist);
2006 
2007 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2008 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2009 		if (prep != PREP_DISPATCH_OK)
2010 			break;
2011 
2012 		list_del_init(&rq->queuelist);
2013 
2014 		bd.rq = rq;
2015 		bd.last = list_empty(list);
2016 
2017 		/*
2018 		 * once the request is queued to lld, no need to cover the
2019 		 * budget any more
2020 		 */
2021 		if (nr_budgets)
2022 			nr_budgets--;
2023 		ret = q->mq_ops->queue_rq(hctx, &bd);
2024 		switch (ret) {
2025 		case BLK_STS_OK:
2026 			queued++;
2027 			break;
2028 		case BLK_STS_RESOURCE:
2029 			needs_resource = true;
2030 			fallthrough;
2031 		case BLK_STS_DEV_RESOURCE:
2032 			blk_mq_handle_dev_resource(rq, list);
2033 			goto out;
2034 		case BLK_STS_ZONE_RESOURCE:
2035 			/*
2036 			 * Move the request to zone_list and keep going through
2037 			 * the dispatch list to find more requests the drive can
2038 			 * accept.
2039 			 */
2040 			blk_mq_handle_zone_resource(rq, &zone_list);
2041 			needs_resource = true;
2042 			break;
2043 		default:
2044 			blk_mq_end_request(rq, ret);
2045 		}
2046 	} while (!list_empty(list));
2047 out:
2048 	if (!list_empty(&zone_list))
2049 		list_splice_tail_init(&zone_list, list);
2050 
2051 	/* If we didn't flush the entire list, we could have told the driver
2052 	 * there was more coming, but that turned out to be a lie.
2053 	 */
2054 	if (!list_empty(list) || ret != BLK_STS_OK)
2055 		blk_mq_commit_rqs(hctx, queued, false);
2056 
2057 	/*
2058 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2059 	 * that is where we will continue on next queue run.
2060 	 */
2061 	if (!list_empty(list)) {
2062 		bool needs_restart;
2063 		/* For non-shared tags, the RESTART check will suffice */
2064 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2065 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2066 			blk_mq_is_shared_tags(hctx->flags));
2067 
2068 		if (nr_budgets)
2069 			blk_mq_release_budgets(q, list);
2070 
2071 		spin_lock(&hctx->lock);
2072 		list_splice_tail_init(list, &hctx->dispatch);
2073 		spin_unlock(&hctx->lock);
2074 
2075 		/*
2076 		 * Order adding requests to hctx->dispatch and checking
2077 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2078 		 * in blk_mq_sched_restart(). Avoid restart code path to
2079 		 * miss the new added requests to hctx->dispatch, meantime
2080 		 * SCHED_RESTART is observed here.
2081 		 */
2082 		smp_mb();
2083 
2084 		/*
2085 		 * If SCHED_RESTART was set by the caller of this function and
2086 		 * it is no longer set that means that it was cleared by another
2087 		 * thread and hence that a queue rerun is needed.
2088 		 *
2089 		 * If 'no_tag' is set, that means that we failed getting
2090 		 * a driver tag with an I/O scheduler attached. If our dispatch
2091 		 * waitqueue is no longer active, ensure that we run the queue
2092 		 * AFTER adding our entries back to the list.
2093 		 *
2094 		 * If no I/O scheduler has been configured it is possible that
2095 		 * the hardware queue got stopped and restarted before requests
2096 		 * were pushed back onto the dispatch list. Rerun the queue to
2097 		 * avoid starvation. Notes:
2098 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2099 		 *   been stopped before rerunning a queue.
2100 		 * - Some but not all block drivers stop a queue before
2101 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2102 		 *   and dm-rq.
2103 		 *
2104 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2105 		 * bit is set, run queue after a delay to avoid IO stalls
2106 		 * that could otherwise occur if the queue is idle.  We'll do
2107 		 * similar if we couldn't get budget or couldn't lock a zone
2108 		 * and SCHED_RESTART is set.
2109 		 */
2110 		needs_restart = blk_mq_sched_needs_restart(hctx);
2111 		if (prep == PREP_DISPATCH_NO_BUDGET)
2112 			needs_resource = true;
2113 		if (!needs_restart ||
2114 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2115 			blk_mq_run_hw_queue(hctx, true);
2116 		else if (needs_resource)
2117 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2118 
2119 		blk_mq_update_dispatch_busy(hctx, true);
2120 		return false;
2121 	}
2122 
2123 	blk_mq_update_dispatch_busy(hctx, false);
2124 	return true;
2125 }
2126 
2127 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2128 {
2129 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2130 
2131 	if (cpu >= nr_cpu_ids)
2132 		cpu = cpumask_first(hctx->cpumask);
2133 	return cpu;
2134 }
2135 
2136 /*
2137  * It'd be great if the workqueue API had a way to pass
2138  * in a mask and had some smarts for more clever placement.
2139  * For now we just round-robin here, switching for every
2140  * BLK_MQ_CPU_WORK_BATCH queued items.
2141  */
2142 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2143 {
2144 	bool tried = false;
2145 	int next_cpu = hctx->next_cpu;
2146 
2147 	if (hctx->queue->nr_hw_queues == 1)
2148 		return WORK_CPU_UNBOUND;
2149 
2150 	if (--hctx->next_cpu_batch <= 0) {
2151 select_cpu:
2152 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2153 				cpu_online_mask);
2154 		if (next_cpu >= nr_cpu_ids)
2155 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2156 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2157 	}
2158 
2159 	/*
2160 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2161 	 * and it should only happen in the path of handling CPU DEAD.
2162 	 */
2163 	if (!cpu_online(next_cpu)) {
2164 		if (!tried) {
2165 			tried = true;
2166 			goto select_cpu;
2167 		}
2168 
2169 		/*
2170 		 * Make sure to re-select CPU next time once after CPUs
2171 		 * in hctx->cpumask become online again.
2172 		 */
2173 		hctx->next_cpu = next_cpu;
2174 		hctx->next_cpu_batch = 1;
2175 		return WORK_CPU_UNBOUND;
2176 	}
2177 
2178 	hctx->next_cpu = next_cpu;
2179 	return next_cpu;
2180 }
2181 
2182 /**
2183  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2184  * @hctx: Pointer to the hardware queue to run.
2185  * @msecs: Milliseconds of delay to wait before running the queue.
2186  *
2187  * Run a hardware queue asynchronously with a delay of @msecs.
2188  */
2189 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2190 {
2191 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2192 		return;
2193 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2194 				    msecs_to_jiffies(msecs));
2195 }
2196 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2197 
2198 /**
2199  * blk_mq_run_hw_queue - Start to run a hardware queue.
2200  * @hctx: Pointer to the hardware queue to run.
2201  * @async: If we want to run the queue asynchronously.
2202  *
2203  * Check if the request queue is not in a quiesced state and if there are
2204  * pending requests to be sent. If this is true, run the queue to send requests
2205  * to hardware.
2206  */
2207 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2208 {
2209 	bool need_run;
2210 
2211 	/*
2212 	 * We can't run the queue inline with interrupts disabled.
2213 	 */
2214 	WARN_ON_ONCE(!async && in_interrupt());
2215 
2216 	/*
2217 	 * When queue is quiesced, we may be switching io scheduler, or
2218 	 * updating nr_hw_queues, or other things, and we can't run queue
2219 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2220 	 *
2221 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2222 	 * quiesced.
2223 	 */
2224 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2225 		need_run = !blk_queue_quiesced(hctx->queue) &&
2226 		blk_mq_hctx_has_pending(hctx));
2227 
2228 	if (!need_run)
2229 		return;
2230 
2231 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2232 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2233 		blk_mq_delay_run_hw_queue(hctx, 0);
2234 		return;
2235 	}
2236 
2237 	blk_mq_run_dispatch_ops(hctx->queue,
2238 				blk_mq_sched_dispatch_requests(hctx));
2239 }
2240 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2241 
2242 /*
2243  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2244  * scheduler.
2245  */
2246 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2247 {
2248 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2249 	/*
2250 	 * If the IO scheduler does not respect hardware queues when
2251 	 * dispatching, we just don't bother with multiple HW queues and
2252 	 * dispatch from hctx for the current CPU since running multiple queues
2253 	 * just causes lock contention inside the scheduler and pointless cache
2254 	 * bouncing.
2255 	 */
2256 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2257 
2258 	if (!blk_mq_hctx_stopped(hctx))
2259 		return hctx;
2260 	return NULL;
2261 }
2262 
2263 /**
2264  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2265  * @q: Pointer to the request queue to run.
2266  * @async: If we want to run the queue asynchronously.
2267  */
2268 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2269 {
2270 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2271 	unsigned long i;
2272 
2273 	sq_hctx = NULL;
2274 	if (blk_queue_sq_sched(q))
2275 		sq_hctx = blk_mq_get_sq_hctx(q);
2276 	queue_for_each_hw_ctx(q, hctx, i) {
2277 		if (blk_mq_hctx_stopped(hctx))
2278 			continue;
2279 		/*
2280 		 * Dispatch from this hctx either if there's no hctx preferred
2281 		 * by IO scheduler or if it has requests that bypass the
2282 		 * scheduler.
2283 		 */
2284 		if (!sq_hctx || sq_hctx == hctx ||
2285 		    !list_empty_careful(&hctx->dispatch))
2286 			blk_mq_run_hw_queue(hctx, async);
2287 	}
2288 }
2289 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2290 
2291 /**
2292  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2293  * @q: Pointer to the request queue to run.
2294  * @msecs: Milliseconds of delay to wait before running the queues.
2295  */
2296 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2297 {
2298 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2299 	unsigned long i;
2300 
2301 	sq_hctx = NULL;
2302 	if (blk_queue_sq_sched(q))
2303 		sq_hctx = blk_mq_get_sq_hctx(q);
2304 	queue_for_each_hw_ctx(q, hctx, i) {
2305 		if (blk_mq_hctx_stopped(hctx))
2306 			continue;
2307 		/*
2308 		 * If there is already a run_work pending, leave the
2309 		 * pending delay untouched. Otherwise, a hctx can stall
2310 		 * if another hctx is re-delaying the other's work
2311 		 * before the work executes.
2312 		 */
2313 		if (delayed_work_pending(&hctx->run_work))
2314 			continue;
2315 		/*
2316 		 * Dispatch from this hctx either if there's no hctx preferred
2317 		 * by IO scheduler or if it has requests that bypass the
2318 		 * scheduler.
2319 		 */
2320 		if (!sq_hctx || sq_hctx == hctx ||
2321 		    !list_empty_careful(&hctx->dispatch))
2322 			blk_mq_delay_run_hw_queue(hctx, msecs);
2323 	}
2324 }
2325 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2326 
2327 /*
2328  * This function is often used for pausing .queue_rq() by driver when
2329  * there isn't enough resource or some conditions aren't satisfied, and
2330  * BLK_STS_RESOURCE is usually returned.
2331  *
2332  * We do not guarantee that dispatch can be drained or blocked
2333  * after blk_mq_stop_hw_queue() returns. Please use
2334  * blk_mq_quiesce_queue() for that requirement.
2335  */
2336 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2337 {
2338 	cancel_delayed_work(&hctx->run_work);
2339 
2340 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2341 }
2342 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2343 
2344 /*
2345  * This function is often used for pausing .queue_rq() by driver when
2346  * there isn't enough resource or some conditions aren't satisfied, and
2347  * BLK_STS_RESOURCE is usually returned.
2348  *
2349  * We do not guarantee that dispatch can be drained or blocked
2350  * after blk_mq_stop_hw_queues() returns. Please use
2351  * blk_mq_quiesce_queue() for that requirement.
2352  */
2353 void blk_mq_stop_hw_queues(struct request_queue *q)
2354 {
2355 	struct blk_mq_hw_ctx *hctx;
2356 	unsigned long i;
2357 
2358 	queue_for_each_hw_ctx(q, hctx, i)
2359 		blk_mq_stop_hw_queue(hctx);
2360 }
2361 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2362 
2363 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2366 
2367 	blk_mq_run_hw_queue(hctx, false);
2368 }
2369 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2370 
2371 void blk_mq_start_hw_queues(struct request_queue *q)
2372 {
2373 	struct blk_mq_hw_ctx *hctx;
2374 	unsigned long i;
2375 
2376 	queue_for_each_hw_ctx(q, hctx, i)
2377 		blk_mq_start_hw_queue(hctx);
2378 }
2379 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2380 
2381 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2382 {
2383 	if (!blk_mq_hctx_stopped(hctx))
2384 		return;
2385 
2386 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387 	blk_mq_run_hw_queue(hctx, async);
2388 }
2389 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2390 
2391 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2392 {
2393 	struct blk_mq_hw_ctx *hctx;
2394 	unsigned long i;
2395 
2396 	queue_for_each_hw_ctx(q, hctx, i)
2397 		blk_mq_start_stopped_hw_queue(hctx, async);
2398 }
2399 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2400 
2401 static void blk_mq_run_work_fn(struct work_struct *work)
2402 {
2403 	struct blk_mq_hw_ctx *hctx =
2404 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2405 
2406 	blk_mq_run_dispatch_ops(hctx->queue,
2407 				blk_mq_sched_dispatch_requests(hctx));
2408 }
2409 
2410 /**
2411  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2412  * @rq: Pointer to request to be inserted.
2413  * @flags: BLK_MQ_INSERT_*
2414  *
2415  * Should only be used carefully, when the caller knows we want to
2416  * bypass a potential IO scheduler on the target device.
2417  */
2418 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2419 {
2420 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2421 
2422 	spin_lock(&hctx->lock);
2423 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2424 		list_add(&rq->queuelist, &hctx->dispatch);
2425 	else
2426 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2427 	spin_unlock(&hctx->lock);
2428 }
2429 
2430 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2431 		struct blk_mq_ctx *ctx, struct list_head *list,
2432 		bool run_queue_async)
2433 {
2434 	struct request *rq;
2435 	enum hctx_type type = hctx->type;
2436 
2437 	/*
2438 	 * Try to issue requests directly if the hw queue isn't busy to save an
2439 	 * extra enqueue & dequeue to the sw queue.
2440 	 */
2441 	if (!hctx->dispatch_busy && !run_queue_async) {
2442 		blk_mq_run_dispatch_ops(hctx->queue,
2443 			blk_mq_try_issue_list_directly(hctx, list));
2444 		if (list_empty(list))
2445 			goto out;
2446 	}
2447 
2448 	/*
2449 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2450 	 * offline now
2451 	 */
2452 	list_for_each_entry(rq, list, queuelist) {
2453 		BUG_ON(rq->mq_ctx != ctx);
2454 		trace_block_rq_insert(rq);
2455 	}
2456 
2457 	spin_lock(&ctx->lock);
2458 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2459 	blk_mq_hctx_mark_pending(hctx, ctx);
2460 	spin_unlock(&ctx->lock);
2461 out:
2462 	blk_mq_run_hw_queue(hctx, run_queue_async);
2463 }
2464 
2465 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2466 {
2467 	struct request_queue *q = rq->q;
2468 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2469 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2470 
2471 	if (blk_rq_is_passthrough(rq)) {
2472 		/*
2473 		 * Passthrough request have to be added to hctx->dispatch
2474 		 * directly.  The device may be in a situation where it can't
2475 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2476 		 * them, which gets them added to hctx->dispatch.
2477 		 *
2478 		 * If a passthrough request is required to unblock the queues,
2479 		 * and it is added to the scheduler queue, there is no chance to
2480 		 * dispatch it given we prioritize requests in hctx->dispatch.
2481 		 */
2482 		blk_mq_request_bypass_insert(rq, flags);
2483 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2484 		/*
2485 		 * Firstly normal IO request is inserted to scheduler queue or
2486 		 * sw queue, meantime we add flush request to dispatch queue(
2487 		 * hctx->dispatch) directly and there is at most one in-flight
2488 		 * flush request for each hw queue, so it doesn't matter to add
2489 		 * flush request to tail or front of the dispatch queue.
2490 		 *
2491 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2492 		 * command, and queueing it will fail when there is any
2493 		 * in-flight normal IO request(NCQ command). When adding flush
2494 		 * rq to the front of hctx->dispatch, it is easier to introduce
2495 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2496 		 * compared with adding to the tail of dispatch queue, then
2497 		 * chance of flush merge is increased, and less flush requests
2498 		 * will be issued to controller. It is observed that ~10% time
2499 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2500 		 * drive when adding flush rq to the front of hctx->dispatch.
2501 		 *
2502 		 * Simply queue flush rq to the front of hctx->dispatch so that
2503 		 * intensive flush workloads can benefit in case of NCQ HW.
2504 		 */
2505 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2506 	} else if (q->elevator) {
2507 		LIST_HEAD(list);
2508 
2509 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2510 
2511 		list_add(&rq->queuelist, &list);
2512 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2513 	} else {
2514 		trace_block_rq_insert(rq);
2515 
2516 		spin_lock(&ctx->lock);
2517 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2518 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2519 		else
2520 			list_add_tail(&rq->queuelist,
2521 				      &ctx->rq_lists[hctx->type]);
2522 		blk_mq_hctx_mark_pending(hctx, ctx);
2523 		spin_unlock(&ctx->lock);
2524 	}
2525 }
2526 
2527 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2528 		unsigned int nr_segs)
2529 {
2530 	int err;
2531 
2532 	if (bio->bi_opf & REQ_RAHEAD)
2533 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2534 
2535 	rq->__sector = bio->bi_iter.bi_sector;
2536 	blk_rq_bio_prep(rq, bio, nr_segs);
2537 
2538 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2539 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2540 	WARN_ON_ONCE(err);
2541 
2542 	blk_account_io_start(rq);
2543 }
2544 
2545 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2546 					    struct request *rq, bool last)
2547 {
2548 	struct request_queue *q = rq->q;
2549 	struct blk_mq_queue_data bd = {
2550 		.rq = rq,
2551 		.last = last,
2552 	};
2553 	blk_status_t ret;
2554 
2555 	/*
2556 	 * For OK queue, we are done. For error, caller may kill it.
2557 	 * Any other error (busy), just add it to our list as we
2558 	 * previously would have done.
2559 	 */
2560 	ret = q->mq_ops->queue_rq(hctx, &bd);
2561 	switch (ret) {
2562 	case BLK_STS_OK:
2563 		blk_mq_update_dispatch_busy(hctx, false);
2564 		break;
2565 	case BLK_STS_RESOURCE:
2566 	case BLK_STS_DEV_RESOURCE:
2567 		blk_mq_update_dispatch_busy(hctx, true);
2568 		__blk_mq_requeue_request(rq);
2569 		break;
2570 	default:
2571 		blk_mq_update_dispatch_busy(hctx, false);
2572 		break;
2573 	}
2574 
2575 	return ret;
2576 }
2577 
2578 static bool blk_mq_get_budget_and_tag(struct request *rq)
2579 {
2580 	int budget_token;
2581 
2582 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2583 	if (budget_token < 0)
2584 		return false;
2585 	blk_mq_set_rq_budget_token(rq, budget_token);
2586 	if (!blk_mq_get_driver_tag(rq)) {
2587 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2588 		return false;
2589 	}
2590 	return true;
2591 }
2592 
2593 /**
2594  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2595  * @hctx: Pointer of the associated hardware queue.
2596  * @rq: Pointer to request to be sent.
2597  *
2598  * If the device has enough resources to accept a new request now, send the
2599  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2600  * we can try send it another time in the future. Requests inserted at this
2601  * queue have higher priority.
2602  */
2603 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2604 		struct request *rq)
2605 {
2606 	blk_status_t ret;
2607 
2608 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2609 		blk_mq_insert_request(rq, 0);
2610 		return;
2611 	}
2612 
2613 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2614 		blk_mq_insert_request(rq, 0);
2615 		blk_mq_run_hw_queue(hctx, false);
2616 		return;
2617 	}
2618 
2619 	ret = __blk_mq_issue_directly(hctx, rq, true);
2620 	switch (ret) {
2621 	case BLK_STS_OK:
2622 		break;
2623 	case BLK_STS_RESOURCE:
2624 	case BLK_STS_DEV_RESOURCE:
2625 		blk_mq_request_bypass_insert(rq, 0);
2626 		blk_mq_run_hw_queue(hctx, false);
2627 		break;
2628 	default:
2629 		blk_mq_end_request(rq, ret);
2630 		break;
2631 	}
2632 }
2633 
2634 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2635 {
2636 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2637 
2638 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639 		blk_mq_insert_request(rq, 0);
2640 		return BLK_STS_OK;
2641 	}
2642 
2643 	if (!blk_mq_get_budget_and_tag(rq))
2644 		return BLK_STS_RESOURCE;
2645 	return __blk_mq_issue_directly(hctx, rq, last);
2646 }
2647 
2648 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2649 {
2650 	struct blk_mq_hw_ctx *hctx = NULL;
2651 	struct request *rq;
2652 	int queued = 0;
2653 	blk_status_t ret = BLK_STS_OK;
2654 
2655 	while ((rq = rq_list_pop(&plug->mq_list))) {
2656 		bool last = rq_list_empty(plug->mq_list);
2657 
2658 		if (hctx != rq->mq_hctx) {
2659 			if (hctx) {
2660 				blk_mq_commit_rqs(hctx, queued, false);
2661 				queued = 0;
2662 			}
2663 			hctx = rq->mq_hctx;
2664 		}
2665 
2666 		ret = blk_mq_request_issue_directly(rq, last);
2667 		switch (ret) {
2668 		case BLK_STS_OK:
2669 			queued++;
2670 			break;
2671 		case BLK_STS_RESOURCE:
2672 		case BLK_STS_DEV_RESOURCE:
2673 			blk_mq_request_bypass_insert(rq, 0);
2674 			blk_mq_run_hw_queue(hctx, false);
2675 			goto out;
2676 		default:
2677 			blk_mq_end_request(rq, ret);
2678 			break;
2679 		}
2680 	}
2681 
2682 out:
2683 	if (ret != BLK_STS_OK)
2684 		blk_mq_commit_rqs(hctx, queued, false);
2685 }
2686 
2687 static void __blk_mq_flush_plug_list(struct request_queue *q,
2688 				     struct blk_plug *plug)
2689 {
2690 	if (blk_queue_quiesced(q))
2691 		return;
2692 	q->mq_ops->queue_rqs(&plug->mq_list);
2693 }
2694 
2695 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2696 {
2697 	struct blk_mq_hw_ctx *this_hctx = NULL;
2698 	struct blk_mq_ctx *this_ctx = NULL;
2699 	struct request *requeue_list = NULL;
2700 	struct request **requeue_lastp = &requeue_list;
2701 	unsigned int depth = 0;
2702 	bool is_passthrough = false;
2703 	LIST_HEAD(list);
2704 
2705 	do {
2706 		struct request *rq = rq_list_pop(&plug->mq_list);
2707 
2708 		if (!this_hctx) {
2709 			this_hctx = rq->mq_hctx;
2710 			this_ctx = rq->mq_ctx;
2711 			is_passthrough = blk_rq_is_passthrough(rq);
2712 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2713 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2714 			rq_list_add_tail(&requeue_lastp, rq);
2715 			continue;
2716 		}
2717 		list_add(&rq->queuelist, &list);
2718 		depth++;
2719 	} while (!rq_list_empty(plug->mq_list));
2720 
2721 	plug->mq_list = requeue_list;
2722 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2723 
2724 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2725 	/* passthrough requests should never be issued to the I/O scheduler */
2726 	if (is_passthrough) {
2727 		spin_lock(&this_hctx->lock);
2728 		list_splice_tail_init(&list, &this_hctx->dispatch);
2729 		spin_unlock(&this_hctx->lock);
2730 		blk_mq_run_hw_queue(this_hctx, from_sched);
2731 	} else if (this_hctx->queue->elevator) {
2732 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2733 				&list, 0);
2734 		blk_mq_run_hw_queue(this_hctx, from_sched);
2735 	} else {
2736 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2737 	}
2738 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2739 }
2740 
2741 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2742 {
2743 	struct request *rq;
2744 
2745 	if (rq_list_empty(plug->mq_list))
2746 		return;
2747 	plug->rq_count = 0;
2748 
2749 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2750 		struct request_queue *q;
2751 
2752 		rq = rq_list_peek(&plug->mq_list);
2753 		q = rq->q;
2754 
2755 		/*
2756 		 * Peek first request and see if we have a ->queue_rqs() hook.
2757 		 * If we do, we can dispatch the whole plug list in one go. We
2758 		 * already know at this point that all requests belong to the
2759 		 * same queue, caller must ensure that's the case.
2760 		 *
2761 		 * Since we pass off the full list to the driver at this point,
2762 		 * we do not increment the active request count for the queue.
2763 		 * Bypass shared tags for now because of that.
2764 		 */
2765 		if (q->mq_ops->queue_rqs &&
2766 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2767 			blk_mq_run_dispatch_ops(q,
2768 				__blk_mq_flush_plug_list(q, plug));
2769 			if (rq_list_empty(plug->mq_list))
2770 				return;
2771 		}
2772 
2773 		blk_mq_run_dispatch_ops(q,
2774 				blk_mq_plug_issue_direct(plug));
2775 		if (rq_list_empty(plug->mq_list))
2776 			return;
2777 	}
2778 
2779 	do {
2780 		blk_mq_dispatch_plug_list(plug, from_schedule);
2781 	} while (!rq_list_empty(plug->mq_list));
2782 }
2783 
2784 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2785 		struct list_head *list)
2786 {
2787 	int queued = 0;
2788 	blk_status_t ret = BLK_STS_OK;
2789 
2790 	while (!list_empty(list)) {
2791 		struct request *rq = list_first_entry(list, struct request,
2792 				queuelist);
2793 
2794 		list_del_init(&rq->queuelist);
2795 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2796 		switch (ret) {
2797 		case BLK_STS_OK:
2798 			queued++;
2799 			break;
2800 		case BLK_STS_RESOURCE:
2801 		case BLK_STS_DEV_RESOURCE:
2802 			blk_mq_request_bypass_insert(rq, 0);
2803 			if (list_empty(list))
2804 				blk_mq_run_hw_queue(hctx, false);
2805 			goto out;
2806 		default:
2807 			blk_mq_end_request(rq, ret);
2808 			break;
2809 		}
2810 	}
2811 
2812 out:
2813 	if (ret != BLK_STS_OK)
2814 		blk_mq_commit_rqs(hctx, queued, false);
2815 }
2816 
2817 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2818 				     struct bio *bio, unsigned int nr_segs)
2819 {
2820 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2821 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2822 			return true;
2823 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2824 			return true;
2825 	}
2826 	return false;
2827 }
2828 
2829 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2830 					       struct blk_plug *plug,
2831 					       struct bio *bio,
2832 					       unsigned int nsegs)
2833 {
2834 	struct blk_mq_alloc_data data = {
2835 		.q		= q,
2836 		.nr_tags	= 1,
2837 		.cmd_flags	= bio->bi_opf,
2838 	};
2839 	struct request *rq;
2840 
2841 	if (unlikely(bio_queue_enter(bio)))
2842 		return NULL;
2843 
2844 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2845 		goto queue_exit;
2846 
2847 	rq_qos_throttle(q, bio);
2848 
2849 	if (plug) {
2850 		data.nr_tags = plug->nr_ios;
2851 		plug->nr_ios = 1;
2852 		data.cached_rq = &plug->cached_rq;
2853 	}
2854 
2855 	rq = __blk_mq_alloc_requests(&data);
2856 	if (rq)
2857 		return rq;
2858 	rq_qos_cleanup(q, bio);
2859 	if (bio->bi_opf & REQ_NOWAIT)
2860 		bio_wouldblock_error(bio);
2861 queue_exit:
2862 	blk_queue_exit(q);
2863 	return NULL;
2864 }
2865 
2866 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2867 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2868 {
2869 	struct request *rq;
2870 	enum hctx_type type, hctx_type;
2871 
2872 	if (!plug)
2873 		return NULL;
2874 	rq = rq_list_peek(&plug->cached_rq);
2875 	if (!rq || rq->q != q)
2876 		return NULL;
2877 
2878 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2879 		*bio = NULL;
2880 		return NULL;
2881 	}
2882 
2883 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2884 	hctx_type = rq->mq_hctx->type;
2885 	if (type != hctx_type &&
2886 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2887 		return NULL;
2888 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2889 		return NULL;
2890 
2891 	/*
2892 	 * If any qos ->throttle() end up blocking, we will have flushed the
2893 	 * plug and hence killed the cached_rq list as well. Pop this entry
2894 	 * before we throttle.
2895 	 */
2896 	plug->cached_rq = rq_list_next(rq);
2897 	rq_qos_throttle(q, *bio);
2898 
2899 	rq->cmd_flags = (*bio)->bi_opf;
2900 	INIT_LIST_HEAD(&rq->queuelist);
2901 	return rq;
2902 }
2903 
2904 static void bio_set_ioprio(struct bio *bio)
2905 {
2906 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2907 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2908 		bio->bi_ioprio = get_current_ioprio();
2909 	blkcg_set_ioprio(bio);
2910 }
2911 
2912 /**
2913  * blk_mq_submit_bio - Create and send a request to block device.
2914  * @bio: Bio pointer.
2915  *
2916  * Builds up a request structure from @q and @bio and send to the device. The
2917  * request may not be queued directly to hardware if:
2918  * * This request can be merged with another one
2919  * * We want to place request at plug queue for possible future merging
2920  * * There is an IO scheduler active at this queue
2921  *
2922  * It will not queue the request if there is an error with the bio, or at the
2923  * request creation.
2924  */
2925 void blk_mq_submit_bio(struct bio *bio)
2926 {
2927 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2928 	struct blk_plug *plug = blk_mq_plug(bio);
2929 	const int is_sync = op_is_sync(bio->bi_opf);
2930 	struct blk_mq_hw_ctx *hctx;
2931 	struct request *rq;
2932 	unsigned int nr_segs = 1;
2933 	blk_status_t ret;
2934 
2935 	bio = blk_queue_bounce(bio, q);
2936 	if (bio_may_exceed_limits(bio, &q->limits)) {
2937 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2938 		if (!bio)
2939 			return;
2940 	}
2941 
2942 	if (!bio_integrity_prep(bio))
2943 		return;
2944 
2945 	bio_set_ioprio(bio);
2946 
2947 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2948 	if (!rq) {
2949 		if (!bio)
2950 			return;
2951 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2952 		if (unlikely(!rq))
2953 			return;
2954 	}
2955 
2956 	trace_block_getrq(bio);
2957 
2958 	rq_qos_track(q, rq, bio);
2959 
2960 	blk_mq_bio_to_request(rq, bio, nr_segs);
2961 
2962 	ret = blk_crypto_rq_get_keyslot(rq);
2963 	if (ret != BLK_STS_OK) {
2964 		bio->bi_status = ret;
2965 		bio_endio(bio);
2966 		blk_mq_free_request(rq);
2967 		return;
2968 	}
2969 
2970 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2971 		return;
2972 
2973 	if (plug) {
2974 		blk_add_rq_to_plug(plug, rq);
2975 		return;
2976 	}
2977 
2978 	hctx = rq->mq_hctx;
2979 	if ((rq->rq_flags & RQF_USE_SCHED) ||
2980 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2981 		blk_mq_insert_request(rq, 0);
2982 		blk_mq_run_hw_queue(hctx, true);
2983 	} else {
2984 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2985 	}
2986 }
2987 
2988 #ifdef CONFIG_BLK_MQ_STACKING
2989 /**
2990  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2991  * @rq: the request being queued
2992  */
2993 blk_status_t blk_insert_cloned_request(struct request *rq)
2994 {
2995 	struct request_queue *q = rq->q;
2996 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2997 	unsigned int max_segments = blk_rq_get_max_segments(rq);
2998 	blk_status_t ret;
2999 
3000 	if (blk_rq_sectors(rq) > max_sectors) {
3001 		/*
3002 		 * SCSI device does not have a good way to return if
3003 		 * Write Same/Zero is actually supported. If a device rejects
3004 		 * a non-read/write command (discard, write same,etc.) the
3005 		 * low-level device driver will set the relevant queue limit to
3006 		 * 0 to prevent blk-lib from issuing more of the offending
3007 		 * operations. Commands queued prior to the queue limit being
3008 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3009 		 * errors being propagated to upper layers.
3010 		 */
3011 		if (max_sectors == 0)
3012 			return BLK_STS_NOTSUPP;
3013 
3014 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3015 			__func__, blk_rq_sectors(rq), max_sectors);
3016 		return BLK_STS_IOERR;
3017 	}
3018 
3019 	/*
3020 	 * The queue settings related to segment counting may differ from the
3021 	 * original queue.
3022 	 */
3023 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3024 	if (rq->nr_phys_segments > max_segments) {
3025 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3026 			__func__, rq->nr_phys_segments, max_segments);
3027 		return BLK_STS_IOERR;
3028 	}
3029 
3030 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3031 		return BLK_STS_IOERR;
3032 
3033 	ret = blk_crypto_rq_get_keyslot(rq);
3034 	if (ret != BLK_STS_OK)
3035 		return ret;
3036 
3037 	blk_account_io_start(rq);
3038 
3039 	/*
3040 	 * Since we have a scheduler attached on the top device,
3041 	 * bypass a potential scheduler on the bottom device for
3042 	 * insert.
3043 	 */
3044 	blk_mq_run_dispatch_ops(q,
3045 			ret = blk_mq_request_issue_directly(rq, true));
3046 	if (ret)
3047 		blk_account_io_done(rq, ktime_get_ns());
3048 	return ret;
3049 }
3050 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3051 
3052 /**
3053  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3054  * @rq: the clone request to be cleaned up
3055  *
3056  * Description:
3057  *     Free all bios in @rq for a cloned request.
3058  */
3059 void blk_rq_unprep_clone(struct request *rq)
3060 {
3061 	struct bio *bio;
3062 
3063 	while ((bio = rq->bio) != NULL) {
3064 		rq->bio = bio->bi_next;
3065 
3066 		bio_put(bio);
3067 	}
3068 }
3069 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3070 
3071 /**
3072  * blk_rq_prep_clone - Helper function to setup clone request
3073  * @rq: the request to be setup
3074  * @rq_src: original request to be cloned
3075  * @bs: bio_set that bios for clone are allocated from
3076  * @gfp_mask: memory allocation mask for bio
3077  * @bio_ctr: setup function to be called for each clone bio.
3078  *           Returns %0 for success, non %0 for failure.
3079  * @data: private data to be passed to @bio_ctr
3080  *
3081  * Description:
3082  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3083  *     Also, pages which the original bios are pointing to are not copied
3084  *     and the cloned bios just point same pages.
3085  *     So cloned bios must be completed before original bios, which means
3086  *     the caller must complete @rq before @rq_src.
3087  */
3088 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3089 		      struct bio_set *bs, gfp_t gfp_mask,
3090 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3091 		      void *data)
3092 {
3093 	struct bio *bio, *bio_src;
3094 
3095 	if (!bs)
3096 		bs = &fs_bio_set;
3097 
3098 	__rq_for_each_bio(bio_src, rq_src) {
3099 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3100 				      bs);
3101 		if (!bio)
3102 			goto free_and_out;
3103 
3104 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3105 			goto free_and_out;
3106 
3107 		if (rq->bio) {
3108 			rq->biotail->bi_next = bio;
3109 			rq->biotail = bio;
3110 		} else {
3111 			rq->bio = rq->biotail = bio;
3112 		}
3113 		bio = NULL;
3114 	}
3115 
3116 	/* Copy attributes of the original request to the clone request. */
3117 	rq->__sector = blk_rq_pos(rq_src);
3118 	rq->__data_len = blk_rq_bytes(rq_src);
3119 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3120 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3121 		rq->special_vec = rq_src->special_vec;
3122 	}
3123 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3124 	rq->ioprio = rq_src->ioprio;
3125 
3126 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3127 		goto free_and_out;
3128 
3129 	return 0;
3130 
3131 free_and_out:
3132 	if (bio)
3133 		bio_put(bio);
3134 	blk_rq_unprep_clone(rq);
3135 
3136 	return -ENOMEM;
3137 }
3138 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3139 #endif /* CONFIG_BLK_MQ_STACKING */
3140 
3141 /*
3142  * Steal bios from a request and add them to a bio list.
3143  * The request must not have been partially completed before.
3144  */
3145 void blk_steal_bios(struct bio_list *list, struct request *rq)
3146 {
3147 	if (rq->bio) {
3148 		if (list->tail)
3149 			list->tail->bi_next = rq->bio;
3150 		else
3151 			list->head = rq->bio;
3152 		list->tail = rq->biotail;
3153 
3154 		rq->bio = NULL;
3155 		rq->biotail = NULL;
3156 	}
3157 
3158 	rq->__data_len = 0;
3159 }
3160 EXPORT_SYMBOL_GPL(blk_steal_bios);
3161 
3162 static size_t order_to_size(unsigned int order)
3163 {
3164 	return (size_t)PAGE_SIZE << order;
3165 }
3166 
3167 /* called before freeing request pool in @tags */
3168 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3169 				    struct blk_mq_tags *tags)
3170 {
3171 	struct page *page;
3172 	unsigned long flags;
3173 
3174 	/*
3175 	 * There is no need to clear mapping if driver tags is not initialized
3176 	 * or the mapping belongs to the driver tags.
3177 	 */
3178 	if (!drv_tags || drv_tags == tags)
3179 		return;
3180 
3181 	list_for_each_entry(page, &tags->page_list, lru) {
3182 		unsigned long start = (unsigned long)page_address(page);
3183 		unsigned long end = start + order_to_size(page->private);
3184 		int i;
3185 
3186 		for (i = 0; i < drv_tags->nr_tags; i++) {
3187 			struct request *rq = drv_tags->rqs[i];
3188 			unsigned long rq_addr = (unsigned long)rq;
3189 
3190 			if (rq_addr >= start && rq_addr < end) {
3191 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3192 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3193 			}
3194 		}
3195 	}
3196 
3197 	/*
3198 	 * Wait until all pending iteration is done.
3199 	 *
3200 	 * Request reference is cleared and it is guaranteed to be observed
3201 	 * after the ->lock is released.
3202 	 */
3203 	spin_lock_irqsave(&drv_tags->lock, flags);
3204 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3205 }
3206 
3207 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3208 		     unsigned int hctx_idx)
3209 {
3210 	struct blk_mq_tags *drv_tags;
3211 	struct page *page;
3212 
3213 	if (list_empty(&tags->page_list))
3214 		return;
3215 
3216 	if (blk_mq_is_shared_tags(set->flags))
3217 		drv_tags = set->shared_tags;
3218 	else
3219 		drv_tags = set->tags[hctx_idx];
3220 
3221 	if (tags->static_rqs && set->ops->exit_request) {
3222 		int i;
3223 
3224 		for (i = 0; i < tags->nr_tags; i++) {
3225 			struct request *rq = tags->static_rqs[i];
3226 
3227 			if (!rq)
3228 				continue;
3229 			set->ops->exit_request(set, rq, hctx_idx);
3230 			tags->static_rqs[i] = NULL;
3231 		}
3232 	}
3233 
3234 	blk_mq_clear_rq_mapping(drv_tags, tags);
3235 
3236 	while (!list_empty(&tags->page_list)) {
3237 		page = list_first_entry(&tags->page_list, struct page, lru);
3238 		list_del_init(&page->lru);
3239 		/*
3240 		 * Remove kmemleak object previously allocated in
3241 		 * blk_mq_alloc_rqs().
3242 		 */
3243 		kmemleak_free(page_address(page));
3244 		__free_pages(page, page->private);
3245 	}
3246 }
3247 
3248 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3249 {
3250 	kfree(tags->rqs);
3251 	tags->rqs = NULL;
3252 	kfree(tags->static_rqs);
3253 	tags->static_rqs = NULL;
3254 
3255 	blk_mq_free_tags(tags);
3256 }
3257 
3258 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3259 		unsigned int hctx_idx)
3260 {
3261 	int i;
3262 
3263 	for (i = 0; i < set->nr_maps; i++) {
3264 		unsigned int start = set->map[i].queue_offset;
3265 		unsigned int end = start + set->map[i].nr_queues;
3266 
3267 		if (hctx_idx >= start && hctx_idx < end)
3268 			break;
3269 	}
3270 
3271 	if (i >= set->nr_maps)
3272 		i = HCTX_TYPE_DEFAULT;
3273 
3274 	return i;
3275 }
3276 
3277 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3278 		unsigned int hctx_idx)
3279 {
3280 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3281 
3282 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3283 }
3284 
3285 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3286 					       unsigned int hctx_idx,
3287 					       unsigned int nr_tags,
3288 					       unsigned int reserved_tags)
3289 {
3290 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3291 	struct blk_mq_tags *tags;
3292 
3293 	if (node == NUMA_NO_NODE)
3294 		node = set->numa_node;
3295 
3296 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3297 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3298 	if (!tags)
3299 		return NULL;
3300 
3301 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3302 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3303 				 node);
3304 	if (!tags->rqs)
3305 		goto err_free_tags;
3306 
3307 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3308 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3309 					node);
3310 	if (!tags->static_rqs)
3311 		goto err_free_rqs;
3312 
3313 	return tags;
3314 
3315 err_free_rqs:
3316 	kfree(tags->rqs);
3317 err_free_tags:
3318 	blk_mq_free_tags(tags);
3319 	return NULL;
3320 }
3321 
3322 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3323 			       unsigned int hctx_idx, int node)
3324 {
3325 	int ret;
3326 
3327 	if (set->ops->init_request) {
3328 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3329 		if (ret)
3330 			return ret;
3331 	}
3332 
3333 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3334 	return 0;
3335 }
3336 
3337 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3338 			    struct blk_mq_tags *tags,
3339 			    unsigned int hctx_idx, unsigned int depth)
3340 {
3341 	unsigned int i, j, entries_per_page, max_order = 4;
3342 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3343 	size_t rq_size, left;
3344 
3345 	if (node == NUMA_NO_NODE)
3346 		node = set->numa_node;
3347 
3348 	INIT_LIST_HEAD(&tags->page_list);
3349 
3350 	/*
3351 	 * rq_size is the size of the request plus driver payload, rounded
3352 	 * to the cacheline size
3353 	 */
3354 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3355 				cache_line_size());
3356 	left = rq_size * depth;
3357 
3358 	for (i = 0; i < depth; ) {
3359 		int this_order = max_order;
3360 		struct page *page;
3361 		int to_do;
3362 		void *p;
3363 
3364 		while (this_order && left < order_to_size(this_order - 1))
3365 			this_order--;
3366 
3367 		do {
3368 			page = alloc_pages_node(node,
3369 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3370 				this_order);
3371 			if (page)
3372 				break;
3373 			if (!this_order--)
3374 				break;
3375 			if (order_to_size(this_order) < rq_size)
3376 				break;
3377 		} while (1);
3378 
3379 		if (!page)
3380 			goto fail;
3381 
3382 		page->private = this_order;
3383 		list_add_tail(&page->lru, &tags->page_list);
3384 
3385 		p = page_address(page);
3386 		/*
3387 		 * Allow kmemleak to scan these pages as they contain pointers
3388 		 * to additional allocations like via ops->init_request().
3389 		 */
3390 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3391 		entries_per_page = order_to_size(this_order) / rq_size;
3392 		to_do = min(entries_per_page, depth - i);
3393 		left -= to_do * rq_size;
3394 		for (j = 0; j < to_do; j++) {
3395 			struct request *rq = p;
3396 
3397 			tags->static_rqs[i] = rq;
3398 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3399 				tags->static_rqs[i] = NULL;
3400 				goto fail;
3401 			}
3402 
3403 			p += rq_size;
3404 			i++;
3405 		}
3406 	}
3407 	return 0;
3408 
3409 fail:
3410 	blk_mq_free_rqs(set, tags, hctx_idx);
3411 	return -ENOMEM;
3412 }
3413 
3414 struct rq_iter_data {
3415 	struct blk_mq_hw_ctx *hctx;
3416 	bool has_rq;
3417 };
3418 
3419 static bool blk_mq_has_request(struct request *rq, void *data)
3420 {
3421 	struct rq_iter_data *iter_data = data;
3422 
3423 	if (rq->mq_hctx != iter_data->hctx)
3424 		return true;
3425 	iter_data->has_rq = true;
3426 	return false;
3427 }
3428 
3429 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3430 {
3431 	struct blk_mq_tags *tags = hctx->sched_tags ?
3432 			hctx->sched_tags : hctx->tags;
3433 	struct rq_iter_data data = {
3434 		.hctx	= hctx,
3435 	};
3436 
3437 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3438 	return data.has_rq;
3439 }
3440 
3441 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3442 		struct blk_mq_hw_ctx *hctx)
3443 {
3444 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3445 		return false;
3446 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3447 		return false;
3448 	return true;
3449 }
3450 
3451 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3452 {
3453 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3454 			struct blk_mq_hw_ctx, cpuhp_online);
3455 
3456 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3457 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3458 		return 0;
3459 
3460 	/*
3461 	 * Prevent new request from being allocated on the current hctx.
3462 	 *
3463 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3464 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3465 	 * seen once we return from the tag allocator.
3466 	 */
3467 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3468 	smp_mb__after_atomic();
3469 
3470 	/*
3471 	 * Try to grab a reference to the queue and wait for any outstanding
3472 	 * requests.  If we could not grab a reference the queue has been
3473 	 * frozen and there are no requests.
3474 	 */
3475 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3476 		while (blk_mq_hctx_has_requests(hctx))
3477 			msleep(5);
3478 		percpu_ref_put(&hctx->queue->q_usage_counter);
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3485 {
3486 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3487 			struct blk_mq_hw_ctx, cpuhp_online);
3488 
3489 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3490 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3491 	return 0;
3492 }
3493 
3494 /*
3495  * 'cpu' is going away. splice any existing rq_list entries from this
3496  * software queue to the hw queue dispatch list, and ensure that it
3497  * gets run.
3498  */
3499 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3500 {
3501 	struct blk_mq_hw_ctx *hctx;
3502 	struct blk_mq_ctx *ctx;
3503 	LIST_HEAD(tmp);
3504 	enum hctx_type type;
3505 
3506 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3507 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3508 		return 0;
3509 
3510 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3511 	type = hctx->type;
3512 
3513 	spin_lock(&ctx->lock);
3514 	if (!list_empty(&ctx->rq_lists[type])) {
3515 		list_splice_init(&ctx->rq_lists[type], &tmp);
3516 		blk_mq_hctx_clear_pending(hctx, ctx);
3517 	}
3518 	spin_unlock(&ctx->lock);
3519 
3520 	if (list_empty(&tmp))
3521 		return 0;
3522 
3523 	spin_lock(&hctx->lock);
3524 	list_splice_tail_init(&tmp, &hctx->dispatch);
3525 	spin_unlock(&hctx->lock);
3526 
3527 	blk_mq_run_hw_queue(hctx, true);
3528 	return 0;
3529 }
3530 
3531 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3532 {
3533 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3534 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3535 						    &hctx->cpuhp_online);
3536 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3537 					    &hctx->cpuhp_dead);
3538 }
3539 
3540 /*
3541  * Before freeing hw queue, clearing the flush request reference in
3542  * tags->rqs[] for avoiding potential UAF.
3543  */
3544 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3545 		unsigned int queue_depth, struct request *flush_rq)
3546 {
3547 	int i;
3548 	unsigned long flags;
3549 
3550 	/* The hw queue may not be mapped yet */
3551 	if (!tags)
3552 		return;
3553 
3554 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3555 
3556 	for (i = 0; i < queue_depth; i++)
3557 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3558 
3559 	/*
3560 	 * Wait until all pending iteration is done.
3561 	 *
3562 	 * Request reference is cleared and it is guaranteed to be observed
3563 	 * after the ->lock is released.
3564 	 */
3565 	spin_lock_irqsave(&tags->lock, flags);
3566 	spin_unlock_irqrestore(&tags->lock, flags);
3567 }
3568 
3569 /* hctx->ctxs will be freed in queue's release handler */
3570 static void blk_mq_exit_hctx(struct request_queue *q,
3571 		struct blk_mq_tag_set *set,
3572 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3573 {
3574 	struct request *flush_rq = hctx->fq->flush_rq;
3575 
3576 	if (blk_mq_hw_queue_mapped(hctx))
3577 		blk_mq_tag_idle(hctx);
3578 
3579 	if (blk_queue_init_done(q))
3580 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3581 				set->queue_depth, flush_rq);
3582 	if (set->ops->exit_request)
3583 		set->ops->exit_request(set, flush_rq, hctx_idx);
3584 
3585 	if (set->ops->exit_hctx)
3586 		set->ops->exit_hctx(hctx, hctx_idx);
3587 
3588 	blk_mq_remove_cpuhp(hctx);
3589 
3590 	xa_erase(&q->hctx_table, hctx_idx);
3591 
3592 	spin_lock(&q->unused_hctx_lock);
3593 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3594 	spin_unlock(&q->unused_hctx_lock);
3595 }
3596 
3597 static void blk_mq_exit_hw_queues(struct request_queue *q,
3598 		struct blk_mq_tag_set *set, int nr_queue)
3599 {
3600 	struct blk_mq_hw_ctx *hctx;
3601 	unsigned long i;
3602 
3603 	queue_for_each_hw_ctx(q, hctx, i) {
3604 		if (i == nr_queue)
3605 			break;
3606 		blk_mq_exit_hctx(q, set, hctx, i);
3607 	}
3608 }
3609 
3610 static int blk_mq_init_hctx(struct request_queue *q,
3611 		struct blk_mq_tag_set *set,
3612 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3613 {
3614 	hctx->queue_num = hctx_idx;
3615 
3616 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3617 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3618 				&hctx->cpuhp_online);
3619 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3620 
3621 	hctx->tags = set->tags[hctx_idx];
3622 
3623 	if (set->ops->init_hctx &&
3624 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3625 		goto unregister_cpu_notifier;
3626 
3627 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3628 				hctx->numa_node))
3629 		goto exit_hctx;
3630 
3631 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3632 		goto exit_flush_rq;
3633 
3634 	return 0;
3635 
3636  exit_flush_rq:
3637 	if (set->ops->exit_request)
3638 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3639  exit_hctx:
3640 	if (set->ops->exit_hctx)
3641 		set->ops->exit_hctx(hctx, hctx_idx);
3642  unregister_cpu_notifier:
3643 	blk_mq_remove_cpuhp(hctx);
3644 	return -1;
3645 }
3646 
3647 static struct blk_mq_hw_ctx *
3648 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3649 		int node)
3650 {
3651 	struct blk_mq_hw_ctx *hctx;
3652 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3653 
3654 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3655 	if (!hctx)
3656 		goto fail_alloc_hctx;
3657 
3658 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3659 		goto free_hctx;
3660 
3661 	atomic_set(&hctx->nr_active, 0);
3662 	if (node == NUMA_NO_NODE)
3663 		node = set->numa_node;
3664 	hctx->numa_node = node;
3665 
3666 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3667 	spin_lock_init(&hctx->lock);
3668 	INIT_LIST_HEAD(&hctx->dispatch);
3669 	hctx->queue = q;
3670 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3671 
3672 	INIT_LIST_HEAD(&hctx->hctx_list);
3673 
3674 	/*
3675 	 * Allocate space for all possible cpus to avoid allocation at
3676 	 * runtime
3677 	 */
3678 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3679 			gfp, node);
3680 	if (!hctx->ctxs)
3681 		goto free_cpumask;
3682 
3683 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3684 				gfp, node, false, false))
3685 		goto free_ctxs;
3686 	hctx->nr_ctx = 0;
3687 
3688 	spin_lock_init(&hctx->dispatch_wait_lock);
3689 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3690 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3691 
3692 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3693 	if (!hctx->fq)
3694 		goto free_bitmap;
3695 
3696 	blk_mq_hctx_kobj_init(hctx);
3697 
3698 	return hctx;
3699 
3700  free_bitmap:
3701 	sbitmap_free(&hctx->ctx_map);
3702  free_ctxs:
3703 	kfree(hctx->ctxs);
3704  free_cpumask:
3705 	free_cpumask_var(hctx->cpumask);
3706  free_hctx:
3707 	kfree(hctx);
3708  fail_alloc_hctx:
3709 	return NULL;
3710 }
3711 
3712 static void blk_mq_init_cpu_queues(struct request_queue *q,
3713 				   unsigned int nr_hw_queues)
3714 {
3715 	struct blk_mq_tag_set *set = q->tag_set;
3716 	unsigned int i, j;
3717 
3718 	for_each_possible_cpu(i) {
3719 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3720 		struct blk_mq_hw_ctx *hctx;
3721 		int k;
3722 
3723 		__ctx->cpu = i;
3724 		spin_lock_init(&__ctx->lock);
3725 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3726 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3727 
3728 		__ctx->queue = q;
3729 
3730 		/*
3731 		 * Set local node, IFF we have more than one hw queue. If
3732 		 * not, we remain on the home node of the device
3733 		 */
3734 		for (j = 0; j < set->nr_maps; j++) {
3735 			hctx = blk_mq_map_queue_type(q, j, i);
3736 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3737 				hctx->numa_node = cpu_to_node(i);
3738 		}
3739 	}
3740 }
3741 
3742 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3743 					     unsigned int hctx_idx,
3744 					     unsigned int depth)
3745 {
3746 	struct blk_mq_tags *tags;
3747 	int ret;
3748 
3749 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3750 	if (!tags)
3751 		return NULL;
3752 
3753 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3754 	if (ret) {
3755 		blk_mq_free_rq_map(tags);
3756 		return NULL;
3757 	}
3758 
3759 	return tags;
3760 }
3761 
3762 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3763 				       int hctx_idx)
3764 {
3765 	if (blk_mq_is_shared_tags(set->flags)) {
3766 		set->tags[hctx_idx] = set->shared_tags;
3767 
3768 		return true;
3769 	}
3770 
3771 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3772 						       set->queue_depth);
3773 
3774 	return set->tags[hctx_idx];
3775 }
3776 
3777 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3778 			     struct blk_mq_tags *tags,
3779 			     unsigned int hctx_idx)
3780 {
3781 	if (tags) {
3782 		blk_mq_free_rqs(set, tags, hctx_idx);
3783 		blk_mq_free_rq_map(tags);
3784 	}
3785 }
3786 
3787 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3788 				      unsigned int hctx_idx)
3789 {
3790 	if (!blk_mq_is_shared_tags(set->flags))
3791 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3792 
3793 	set->tags[hctx_idx] = NULL;
3794 }
3795 
3796 static void blk_mq_map_swqueue(struct request_queue *q)
3797 {
3798 	unsigned int j, hctx_idx;
3799 	unsigned long i;
3800 	struct blk_mq_hw_ctx *hctx;
3801 	struct blk_mq_ctx *ctx;
3802 	struct blk_mq_tag_set *set = q->tag_set;
3803 
3804 	queue_for_each_hw_ctx(q, hctx, i) {
3805 		cpumask_clear(hctx->cpumask);
3806 		hctx->nr_ctx = 0;
3807 		hctx->dispatch_from = NULL;
3808 	}
3809 
3810 	/*
3811 	 * Map software to hardware queues.
3812 	 *
3813 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3814 	 */
3815 	for_each_possible_cpu(i) {
3816 
3817 		ctx = per_cpu_ptr(q->queue_ctx, i);
3818 		for (j = 0; j < set->nr_maps; j++) {
3819 			if (!set->map[j].nr_queues) {
3820 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3821 						HCTX_TYPE_DEFAULT, i);
3822 				continue;
3823 			}
3824 			hctx_idx = set->map[j].mq_map[i];
3825 			/* unmapped hw queue can be remapped after CPU topo changed */
3826 			if (!set->tags[hctx_idx] &&
3827 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3828 				/*
3829 				 * If tags initialization fail for some hctx,
3830 				 * that hctx won't be brought online.  In this
3831 				 * case, remap the current ctx to hctx[0] which
3832 				 * is guaranteed to always have tags allocated
3833 				 */
3834 				set->map[j].mq_map[i] = 0;
3835 			}
3836 
3837 			hctx = blk_mq_map_queue_type(q, j, i);
3838 			ctx->hctxs[j] = hctx;
3839 			/*
3840 			 * If the CPU is already set in the mask, then we've
3841 			 * mapped this one already. This can happen if
3842 			 * devices share queues across queue maps.
3843 			 */
3844 			if (cpumask_test_cpu(i, hctx->cpumask))
3845 				continue;
3846 
3847 			cpumask_set_cpu(i, hctx->cpumask);
3848 			hctx->type = j;
3849 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3850 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3851 
3852 			/*
3853 			 * If the nr_ctx type overflows, we have exceeded the
3854 			 * amount of sw queues we can support.
3855 			 */
3856 			BUG_ON(!hctx->nr_ctx);
3857 		}
3858 
3859 		for (; j < HCTX_MAX_TYPES; j++)
3860 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3861 					HCTX_TYPE_DEFAULT, i);
3862 	}
3863 
3864 	queue_for_each_hw_ctx(q, hctx, i) {
3865 		/*
3866 		 * If no software queues are mapped to this hardware queue,
3867 		 * disable it and free the request entries.
3868 		 */
3869 		if (!hctx->nr_ctx) {
3870 			/* Never unmap queue 0.  We need it as a
3871 			 * fallback in case of a new remap fails
3872 			 * allocation
3873 			 */
3874 			if (i)
3875 				__blk_mq_free_map_and_rqs(set, i);
3876 
3877 			hctx->tags = NULL;
3878 			continue;
3879 		}
3880 
3881 		hctx->tags = set->tags[i];
3882 		WARN_ON(!hctx->tags);
3883 
3884 		/*
3885 		 * Set the map size to the number of mapped software queues.
3886 		 * This is more accurate and more efficient than looping
3887 		 * over all possibly mapped software queues.
3888 		 */
3889 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3890 
3891 		/*
3892 		 * Initialize batch roundrobin counts
3893 		 */
3894 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3895 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3896 	}
3897 }
3898 
3899 /*
3900  * Caller needs to ensure that we're either frozen/quiesced, or that
3901  * the queue isn't live yet.
3902  */
3903 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3904 {
3905 	struct blk_mq_hw_ctx *hctx;
3906 	unsigned long i;
3907 
3908 	queue_for_each_hw_ctx(q, hctx, i) {
3909 		if (shared) {
3910 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3911 		} else {
3912 			blk_mq_tag_idle(hctx);
3913 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3914 		}
3915 	}
3916 }
3917 
3918 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3919 					 bool shared)
3920 {
3921 	struct request_queue *q;
3922 
3923 	lockdep_assert_held(&set->tag_list_lock);
3924 
3925 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3926 		blk_mq_freeze_queue(q);
3927 		queue_set_hctx_shared(q, shared);
3928 		blk_mq_unfreeze_queue(q);
3929 	}
3930 }
3931 
3932 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3933 {
3934 	struct blk_mq_tag_set *set = q->tag_set;
3935 
3936 	mutex_lock(&set->tag_list_lock);
3937 	list_del(&q->tag_set_list);
3938 	if (list_is_singular(&set->tag_list)) {
3939 		/* just transitioned to unshared */
3940 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3941 		/* update existing queue */
3942 		blk_mq_update_tag_set_shared(set, false);
3943 	}
3944 	mutex_unlock(&set->tag_list_lock);
3945 	INIT_LIST_HEAD(&q->tag_set_list);
3946 }
3947 
3948 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3949 				     struct request_queue *q)
3950 {
3951 	mutex_lock(&set->tag_list_lock);
3952 
3953 	/*
3954 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3955 	 */
3956 	if (!list_empty(&set->tag_list) &&
3957 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3958 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3959 		/* update existing queue */
3960 		blk_mq_update_tag_set_shared(set, true);
3961 	}
3962 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3963 		queue_set_hctx_shared(q, true);
3964 	list_add_tail(&q->tag_set_list, &set->tag_list);
3965 
3966 	mutex_unlock(&set->tag_list_lock);
3967 }
3968 
3969 /* All allocations will be freed in release handler of q->mq_kobj */
3970 static int blk_mq_alloc_ctxs(struct request_queue *q)
3971 {
3972 	struct blk_mq_ctxs *ctxs;
3973 	int cpu;
3974 
3975 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3976 	if (!ctxs)
3977 		return -ENOMEM;
3978 
3979 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3980 	if (!ctxs->queue_ctx)
3981 		goto fail;
3982 
3983 	for_each_possible_cpu(cpu) {
3984 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3985 		ctx->ctxs = ctxs;
3986 	}
3987 
3988 	q->mq_kobj = &ctxs->kobj;
3989 	q->queue_ctx = ctxs->queue_ctx;
3990 
3991 	return 0;
3992  fail:
3993 	kfree(ctxs);
3994 	return -ENOMEM;
3995 }
3996 
3997 /*
3998  * It is the actual release handler for mq, but we do it from
3999  * request queue's release handler for avoiding use-after-free
4000  * and headache because q->mq_kobj shouldn't have been introduced,
4001  * but we can't group ctx/kctx kobj without it.
4002  */
4003 void blk_mq_release(struct request_queue *q)
4004 {
4005 	struct blk_mq_hw_ctx *hctx, *next;
4006 	unsigned long i;
4007 
4008 	queue_for_each_hw_ctx(q, hctx, i)
4009 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4010 
4011 	/* all hctx are in .unused_hctx_list now */
4012 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4013 		list_del_init(&hctx->hctx_list);
4014 		kobject_put(&hctx->kobj);
4015 	}
4016 
4017 	xa_destroy(&q->hctx_table);
4018 
4019 	/*
4020 	 * release .mq_kobj and sw queue's kobject now because
4021 	 * both share lifetime with request queue.
4022 	 */
4023 	blk_mq_sysfs_deinit(q);
4024 }
4025 
4026 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4027 		void *queuedata)
4028 {
4029 	struct request_queue *q;
4030 	int ret;
4031 
4032 	q = blk_alloc_queue(set->numa_node);
4033 	if (!q)
4034 		return ERR_PTR(-ENOMEM);
4035 	q->queuedata = queuedata;
4036 	ret = blk_mq_init_allocated_queue(set, q);
4037 	if (ret) {
4038 		blk_put_queue(q);
4039 		return ERR_PTR(ret);
4040 	}
4041 	return q;
4042 }
4043 
4044 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4045 {
4046 	return blk_mq_init_queue_data(set, NULL);
4047 }
4048 EXPORT_SYMBOL(blk_mq_init_queue);
4049 
4050 /**
4051  * blk_mq_destroy_queue - shutdown a request queue
4052  * @q: request queue to shutdown
4053  *
4054  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4055  * requests will be failed with -ENODEV. The caller is responsible for dropping
4056  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4057  *
4058  * Context: can sleep
4059  */
4060 void blk_mq_destroy_queue(struct request_queue *q)
4061 {
4062 	WARN_ON_ONCE(!queue_is_mq(q));
4063 	WARN_ON_ONCE(blk_queue_registered(q));
4064 
4065 	might_sleep();
4066 
4067 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4068 	blk_queue_start_drain(q);
4069 	blk_mq_freeze_queue_wait(q);
4070 
4071 	blk_sync_queue(q);
4072 	blk_mq_cancel_work_sync(q);
4073 	blk_mq_exit_queue(q);
4074 }
4075 EXPORT_SYMBOL(blk_mq_destroy_queue);
4076 
4077 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4078 		struct lock_class_key *lkclass)
4079 {
4080 	struct request_queue *q;
4081 	struct gendisk *disk;
4082 
4083 	q = blk_mq_init_queue_data(set, queuedata);
4084 	if (IS_ERR(q))
4085 		return ERR_CAST(q);
4086 
4087 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4088 	if (!disk) {
4089 		blk_mq_destroy_queue(q);
4090 		blk_put_queue(q);
4091 		return ERR_PTR(-ENOMEM);
4092 	}
4093 	set_bit(GD_OWNS_QUEUE, &disk->state);
4094 	return disk;
4095 }
4096 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4097 
4098 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4099 		struct lock_class_key *lkclass)
4100 {
4101 	struct gendisk *disk;
4102 
4103 	if (!blk_get_queue(q))
4104 		return NULL;
4105 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4106 	if (!disk)
4107 		blk_put_queue(q);
4108 	return disk;
4109 }
4110 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4111 
4112 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4113 		struct blk_mq_tag_set *set, struct request_queue *q,
4114 		int hctx_idx, int node)
4115 {
4116 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4117 
4118 	/* reuse dead hctx first */
4119 	spin_lock(&q->unused_hctx_lock);
4120 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4121 		if (tmp->numa_node == node) {
4122 			hctx = tmp;
4123 			break;
4124 		}
4125 	}
4126 	if (hctx)
4127 		list_del_init(&hctx->hctx_list);
4128 	spin_unlock(&q->unused_hctx_lock);
4129 
4130 	if (!hctx)
4131 		hctx = blk_mq_alloc_hctx(q, set, node);
4132 	if (!hctx)
4133 		goto fail;
4134 
4135 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4136 		goto free_hctx;
4137 
4138 	return hctx;
4139 
4140  free_hctx:
4141 	kobject_put(&hctx->kobj);
4142  fail:
4143 	return NULL;
4144 }
4145 
4146 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4147 						struct request_queue *q)
4148 {
4149 	struct blk_mq_hw_ctx *hctx;
4150 	unsigned long i, j;
4151 
4152 	/* protect against switching io scheduler  */
4153 	mutex_lock(&q->sysfs_lock);
4154 	for (i = 0; i < set->nr_hw_queues; i++) {
4155 		int old_node;
4156 		int node = blk_mq_get_hctx_node(set, i);
4157 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4158 
4159 		if (old_hctx) {
4160 			old_node = old_hctx->numa_node;
4161 			blk_mq_exit_hctx(q, set, old_hctx, i);
4162 		}
4163 
4164 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4165 			if (!old_hctx)
4166 				break;
4167 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4168 					node, old_node);
4169 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4170 			WARN_ON_ONCE(!hctx);
4171 		}
4172 	}
4173 	/*
4174 	 * Increasing nr_hw_queues fails. Free the newly allocated
4175 	 * hctxs and keep the previous q->nr_hw_queues.
4176 	 */
4177 	if (i != set->nr_hw_queues) {
4178 		j = q->nr_hw_queues;
4179 	} else {
4180 		j = i;
4181 		q->nr_hw_queues = set->nr_hw_queues;
4182 	}
4183 
4184 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4185 		blk_mq_exit_hctx(q, set, hctx, j);
4186 	mutex_unlock(&q->sysfs_lock);
4187 }
4188 
4189 static void blk_mq_update_poll_flag(struct request_queue *q)
4190 {
4191 	struct blk_mq_tag_set *set = q->tag_set;
4192 
4193 	if (set->nr_maps > HCTX_TYPE_POLL &&
4194 	    set->map[HCTX_TYPE_POLL].nr_queues)
4195 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4196 	else
4197 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4198 }
4199 
4200 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4201 		struct request_queue *q)
4202 {
4203 	/* mark the queue as mq asap */
4204 	q->mq_ops = set->ops;
4205 
4206 	if (blk_mq_alloc_ctxs(q))
4207 		goto err_exit;
4208 
4209 	/* init q->mq_kobj and sw queues' kobjects */
4210 	blk_mq_sysfs_init(q);
4211 
4212 	INIT_LIST_HEAD(&q->unused_hctx_list);
4213 	spin_lock_init(&q->unused_hctx_lock);
4214 
4215 	xa_init(&q->hctx_table);
4216 
4217 	blk_mq_realloc_hw_ctxs(set, q);
4218 	if (!q->nr_hw_queues)
4219 		goto err_hctxs;
4220 
4221 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4222 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4223 
4224 	q->tag_set = set;
4225 
4226 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4227 	blk_mq_update_poll_flag(q);
4228 
4229 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4230 	INIT_LIST_HEAD(&q->flush_list);
4231 	INIT_LIST_HEAD(&q->requeue_list);
4232 	spin_lock_init(&q->requeue_lock);
4233 
4234 	q->nr_requests = set->queue_depth;
4235 
4236 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4237 	blk_mq_add_queue_tag_set(set, q);
4238 	blk_mq_map_swqueue(q);
4239 	return 0;
4240 
4241 err_hctxs:
4242 	blk_mq_release(q);
4243 err_exit:
4244 	q->mq_ops = NULL;
4245 	return -ENOMEM;
4246 }
4247 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4248 
4249 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4250 void blk_mq_exit_queue(struct request_queue *q)
4251 {
4252 	struct blk_mq_tag_set *set = q->tag_set;
4253 
4254 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4255 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4256 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4257 	blk_mq_del_queue_tag_set(q);
4258 }
4259 
4260 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4261 {
4262 	int i;
4263 
4264 	if (blk_mq_is_shared_tags(set->flags)) {
4265 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4266 						BLK_MQ_NO_HCTX_IDX,
4267 						set->queue_depth);
4268 		if (!set->shared_tags)
4269 			return -ENOMEM;
4270 	}
4271 
4272 	for (i = 0; i < set->nr_hw_queues; i++) {
4273 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4274 			goto out_unwind;
4275 		cond_resched();
4276 	}
4277 
4278 	return 0;
4279 
4280 out_unwind:
4281 	while (--i >= 0)
4282 		__blk_mq_free_map_and_rqs(set, i);
4283 
4284 	if (blk_mq_is_shared_tags(set->flags)) {
4285 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4286 					BLK_MQ_NO_HCTX_IDX);
4287 	}
4288 
4289 	return -ENOMEM;
4290 }
4291 
4292 /*
4293  * Allocate the request maps associated with this tag_set. Note that this
4294  * may reduce the depth asked for, if memory is tight. set->queue_depth
4295  * will be updated to reflect the allocated depth.
4296  */
4297 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4298 {
4299 	unsigned int depth;
4300 	int err;
4301 
4302 	depth = set->queue_depth;
4303 	do {
4304 		err = __blk_mq_alloc_rq_maps(set);
4305 		if (!err)
4306 			break;
4307 
4308 		set->queue_depth >>= 1;
4309 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4310 			err = -ENOMEM;
4311 			break;
4312 		}
4313 	} while (set->queue_depth);
4314 
4315 	if (!set->queue_depth || err) {
4316 		pr_err("blk-mq: failed to allocate request map\n");
4317 		return -ENOMEM;
4318 	}
4319 
4320 	if (depth != set->queue_depth)
4321 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4322 						depth, set->queue_depth);
4323 
4324 	return 0;
4325 }
4326 
4327 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4328 {
4329 	/*
4330 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4331 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4332 	 * number of hardware queues.
4333 	 */
4334 	if (set->nr_maps == 1)
4335 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4336 
4337 	if (set->ops->map_queues && !is_kdump_kernel()) {
4338 		int i;
4339 
4340 		/*
4341 		 * transport .map_queues is usually done in the following
4342 		 * way:
4343 		 *
4344 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4345 		 * 	mask = get_cpu_mask(queue)
4346 		 * 	for_each_cpu(cpu, mask)
4347 		 * 		set->map[x].mq_map[cpu] = queue;
4348 		 * }
4349 		 *
4350 		 * When we need to remap, the table has to be cleared for
4351 		 * killing stale mapping since one CPU may not be mapped
4352 		 * to any hw queue.
4353 		 */
4354 		for (i = 0; i < set->nr_maps; i++)
4355 			blk_mq_clear_mq_map(&set->map[i]);
4356 
4357 		set->ops->map_queues(set);
4358 	} else {
4359 		BUG_ON(set->nr_maps > 1);
4360 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4361 	}
4362 }
4363 
4364 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4365 				       int new_nr_hw_queues)
4366 {
4367 	struct blk_mq_tags **new_tags;
4368 
4369 	if (set->nr_hw_queues >= new_nr_hw_queues)
4370 		goto done;
4371 
4372 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4373 				GFP_KERNEL, set->numa_node);
4374 	if (!new_tags)
4375 		return -ENOMEM;
4376 
4377 	if (set->tags)
4378 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4379 		       sizeof(*set->tags));
4380 	kfree(set->tags);
4381 	set->tags = new_tags;
4382 done:
4383 	set->nr_hw_queues = new_nr_hw_queues;
4384 	return 0;
4385 }
4386 
4387 /*
4388  * Alloc a tag set to be associated with one or more request queues.
4389  * May fail with EINVAL for various error conditions. May adjust the
4390  * requested depth down, if it's too large. In that case, the set
4391  * value will be stored in set->queue_depth.
4392  */
4393 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4394 {
4395 	int i, ret;
4396 
4397 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4398 
4399 	if (!set->nr_hw_queues)
4400 		return -EINVAL;
4401 	if (!set->queue_depth)
4402 		return -EINVAL;
4403 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4404 		return -EINVAL;
4405 
4406 	if (!set->ops->queue_rq)
4407 		return -EINVAL;
4408 
4409 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4410 		return -EINVAL;
4411 
4412 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4413 		pr_info("blk-mq: reduced tag depth to %u\n",
4414 			BLK_MQ_MAX_DEPTH);
4415 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4416 	}
4417 
4418 	if (!set->nr_maps)
4419 		set->nr_maps = 1;
4420 	else if (set->nr_maps > HCTX_MAX_TYPES)
4421 		return -EINVAL;
4422 
4423 	/*
4424 	 * If a crashdump is active, then we are potentially in a very
4425 	 * memory constrained environment. Limit us to 1 queue and
4426 	 * 64 tags to prevent using too much memory.
4427 	 */
4428 	if (is_kdump_kernel()) {
4429 		set->nr_hw_queues = 1;
4430 		set->nr_maps = 1;
4431 		set->queue_depth = min(64U, set->queue_depth);
4432 	}
4433 	/*
4434 	 * There is no use for more h/w queues than cpus if we just have
4435 	 * a single map
4436 	 */
4437 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4438 		set->nr_hw_queues = nr_cpu_ids;
4439 
4440 	if (set->flags & BLK_MQ_F_BLOCKING) {
4441 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4442 		if (!set->srcu)
4443 			return -ENOMEM;
4444 		ret = init_srcu_struct(set->srcu);
4445 		if (ret)
4446 			goto out_free_srcu;
4447 	}
4448 
4449 	ret = -ENOMEM;
4450 	set->tags = kcalloc_node(set->nr_hw_queues,
4451 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4452 				 set->numa_node);
4453 	if (!set->tags)
4454 		goto out_cleanup_srcu;
4455 
4456 	for (i = 0; i < set->nr_maps; i++) {
4457 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4458 						  sizeof(set->map[i].mq_map[0]),
4459 						  GFP_KERNEL, set->numa_node);
4460 		if (!set->map[i].mq_map)
4461 			goto out_free_mq_map;
4462 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4463 	}
4464 
4465 	blk_mq_update_queue_map(set);
4466 
4467 	ret = blk_mq_alloc_set_map_and_rqs(set);
4468 	if (ret)
4469 		goto out_free_mq_map;
4470 
4471 	mutex_init(&set->tag_list_lock);
4472 	INIT_LIST_HEAD(&set->tag_list);
4473 
4474 	return 0;
4475 
4476 out_free_mq_map:
4477 	for (i = 0; i < set->nr_maps; i++) {
4478 		kfree(set->map[i].mq_map);
4479 		set->map[i].mq_map = NULL;
4480 	}
4481 	kfree(set->tags);
4482 	set->tags = NULL;
4483 out_cleanup_srcu:
4484 	if (set->flags & BLK_MQ_F_BLOCKING)
4485 		cleanup_srcu_struct(set->srcu);
4486 out_free_srcu:
4487 	if (set->flags & BLK_MQ_F_BLOCKING)
4488 		kfree(set->srcu);
4489 	return ret;
4490 }
4491 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4492 
4493 /* allocate and initialize a tagset for a simple single-queue device */
4494 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4495 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4496 		unsigned int set_flags)
4497 {
4498 	memset(set, 0, sizeof(*set));
4499 	set->ops = ops;
4500 	set->nr_hw_queues = 1;
4501 	set->nr_maps = 1;
4502 	set->queue_depth = queue_depth;
4503 	set->numa_node = NUMA_NO_NODE;
4504 	set->flags = set_flags;
4505 	return blk_mq_alloc_tag_set(set);
4506 }
4507 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4508 
4509 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4510 {
4511 	int i, j;
4512 
4513 	for (i = 0; i < set->nr_hw_queues; i++)
4514 		__blk_mq_free_map_and_rqs(set, i);
4515 
4516 	if (blk_mq_is_shared_tags(set->flags)) {
4517 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4518 					BLK_MQ_NO_HCTX_IDX);
4519 	}
4520 
4521 	for (j = 0; j < set->nr_maps; j++) {
4522 		kfree(set->map[j].mq_map);
4523 		set->map[j].mq_map = NULL;
4524 	}
4525 
4526 	kfree(set->tags);
4527 	set->tags = NULL;
4528 	if (set->flags & BLK_MQ_F_BLOCKING) {
4529 		cleanup_srcu_struct(set->srcu);
4530 		kfree(set->srcu);
4531 	}
4532 }
4533 EXPORT_SYMBOL(blk_mq_free_tag_set);
4534 
4535 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4536 {
4537 	struct blk_mq_tag_set *set = q->tag_set;
4538 	struct blk_mq_hw_ctx *hctx;
4539 	int ret;
4540 	unsigned long i;
4541 
4542 	if (!set)
4543 		return -EINVAL;
4544 
4545 	if (q->nr_requests == nr)
4546 		return 0;
4547 
4548 	blk_mq_freeze_queue(q);
4549 	blk_mq_quiesce_queue(q);
4550 
4551 	ret = 0;
4552 	queue_for_each_hw_ctx(q, hctx, i) {
4553 		if (!hctx->tags)
4554 			continue;
4555 		/*
4556 		 * If we're using an MQ scheduler, just update the scheduler
4557 		 * queue depth. This is similar to what the old code would do.
4558 		 */
4559 		if (hctx->sched_tags) {
4560 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4561 						      nr, true);
4562 		} else {
4563 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4564 						      false);
4565 		}
4566 		if (ret)
4567 			break;
4568 		if (q->elevator && q->elevator->type->ops.depth_updated)
4569 			q->elevator->type->ops.depth_updated(hctx);
4570 	}
4571 	if (!ret) {
4572 		q->nr_requests = nr;
4573 		if (blk_mq_is_shared_tags(set->flags)) {
4574 			if (q->elevator)
4575 				blk_mq_tag_update_sched_shared_tags(q);
4576 			else
4577 				blk_mq_tag_resize_shared_tags(set, nr);
4578 		}
4579 	}
4580 
4581 	blk_mq_unquiesce_queue(q);
4582 	blk_mq_unfreeze_queue(q);
4583 
4584 	return ret;
4585 }
4586 
4587 /*
4588  * request_queue and elevator_type pair.
4589  * It is just used by __blk_mq_update_nr_hw_queues to cache
4590  * the elevator_type associated with a request_queue.
4591  */
4592 struct blk_mq_qe_pair {
4593 	struct list_head node;
4594 	struct request_queue *q;
4595 	struct elevator_type *type;
4596 };
4597 
4598 /*
4599  * Cache the elevator_type in qe pair list and switch the
4600  * io scheduler to 'none'
4601  */
4602 static bool blk_mq_elv_switch_none(struct list_head *head,
4603 		struct request_queue *q)
4604 {
4605 	struct blk_mq_qe_pair *qe;
4606 
4607 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4608 	if (!qe)
4609 		return false;
4610 
4611 	/* q->elevator needs protection from ->sysfs_lock */
4612 	mutex_lock(&q->sysfs_lock);
4613 
4614 	/* the check has to be done with holding sysfs_lock */
4615 	if (!q->elevator) {
4616 		kfree(qe);
4617 		goto unlock;
4618 	}
4619 
4620 	INIT_LIST_HEAD(&qe->node);
4621 	qe->q = q;
4622 	qe->type = q->elevator->type;
4623 	/* keep a reference to the elevator module as we'll switch back */
4624 	__elevator_get(qe->type);
4625 	list_add(&qe->node, head);
4626 	elevator_disable(q);
4627 unlock:
4628 	mutex_unlock(&q->sysfs_lock);
4629 
4630 	return true;
4631 }
4632 
4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4634 						struct request_queue *q)
4635 {
4636 	struct blk_mq_qe_pair *qe;
4637 
4638 	list_for_each_entry(qe, head, node)
4639 		if (qe->q == q)
4640 			return qe;
4641 
4642 	return NULL;
4643 }
4644 
4645 static void blk_mq_elv_switch_back(struct list_head *head,
4646 				  struct request_queue *q)
4647 {
4648 	struct blk_mq_qe_pair *qe;
4649 	struct elevator_type *t;
4650 
4651 	qe = blk_lookup_qe_pair(head, q);
4652 	if (!qe)
4653 		return;
4654 	t = qe->type;
4655 	list_del(&qe->node);
4656 	kfree(qe);
4657 
4658 	mutex_lock(&q->sysfs_lock);
4659 	elevator_switch(q, t);
4660 	/* drop the reference acquired in blk_mq_elv_switch_none */
4661 	elevator_put(t);
4662 	mutex_unlock(&q->sysfs_lock);
4663 }
4664 
4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4666 							int nr_hw_queues)
4667 {
4668 	struct request_queue *q;
4669 	LIST_HEAD(head);
4670 	int prev_nr_hw_queues;
4671 
4672 	lockdep_assert_held(&set->tag_list_lock);
4673 
4674 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4675 		nr_hw_queues = nr_cpu_ids;
4676 	if (nr_hw_queues < 1)
4677 		return;
4678 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4679 		return;
4680 
4681 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4682 		blk_mq_freeze_queue(q);
4683 	/*
4684 	 * Switch IO scheduler to 'none', cleaning up the data associated
4685 	 * with the previous scheduler. We will switch back once we are done
4686 	 * updating the new sw to hw queue mappings.
4687 	 */
4688 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4689 		if (!blk_mq_elv_switch_none(&head, q))
4690 			goto switch_back;
4691 
4692 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4693 		blk_mq_debugfs_unregister_hctxs(q);
4694 		blk_mq_sysfs_unregister_hctxs(q);
4695 	}
4696 
4697 	prev_nr_hw_queues = set->nr_hw_queues;
4698 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4699 		goto reregister;
4700 
4701 fallback:
4702 	blk_mq_update_queue_map(set);
4703 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4704 		blk_mq_realloc_hw_ctxs(set, q);
4705 		blk_mq_update_poll_flag(q);
4706 		if (q->nr_hw_queues != set->nr_hw_queues) {
4707 			int i = prev_nr_hw_queues;
4708 
4709 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4710 					nr_hw_queues, prev_nr_hw_queues);
4711 			for (; i < set->nr_hw_queues; i++)
4712 				__blk_mq_free_map_and_rqs(set, i);
4713 
4714 			set->nr_hw_queues = prev_nr_hw_queues;
4715 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4716 			goto fallback;
4717 		}
4718 		blk_mq_map_swqueue(q);
4719 	}
4720 
4721 reregister:
4722 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723 		blk_mq_sysfs_register_hctxs(q);
4724 		blk_mq_debugfs_register_hctxs(q);
4725 	}
4726 
4727 switch_back:
4728 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4729 		blk_mq_elv_switch_back(&head, q);
4730 
4731 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4732 		blk_mq_unfreeze_queue(q);
4733 }
4734 
4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4736 {
4737 	mutex_lock(&set->tag_list_lock);
4738 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4739 	mutex_unlock(&set->tag_list_lock);
4740 }
4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4742 
4743 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4744 			 struct io_comp_batch *iob, unsigned int flags)
4745 {
4746 	long state = get_current_state();
4747 	int ret;
4748 
4749 	do {
4750 		ret = q->mq_ops->poll(hctx, iob);
4751 		if (ret > 0) {
4752 			__set_current_state(TASK_RUNNING);
4753 			return ret;
4754 		}
4755 
4756 		if (signal_pending_state(state, current))
4757 			__set_current_state(TASK_RUNNING);
4758 		if (task_is_running(current))
4759 			return 1;
4760 
4761 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4762 			break;
4763 		cpu_relax();
4764 	} while (!need_resched());
4765 
4766 	__set_current_state(TASK_RUNNING);
4767 	return 0;
4768 }
4769 
4770 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4771 		struct io_comp_batch *iob, unsigned int flags)
4772 {
4773 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4774 
4775 	return blk_hctx_poll(q, hctx, iob, flags);
4776 }
4777 
4778 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4779 		unsigned int poll_flags)
4780 {
4781 	struct request_queue *q = rq->q;
4782 	int ret;
4783 
4784 	if (!blk_rq_is_poll(rq))
4785 		return 0;
4786 	if (!percpu_ref_tryget(&q->q_usage_counter))
4787 		return 0;
4788 
4789 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4790 	blk_queue_exit(q);
4791 
4792 	return ret;
4793 }
4794 EXPORT_SYMBOL_GPL(blk_rq_poll);
4795 
4796 unsigned int blk_mq_rq_cpu(struct request *rq)
4797 {
4798 	return rq->mq_ctx->cpu;
4799 }
4800 EXPORT_SYMBOL(blk_mq_rq_cpu);
4801 
4802 void blk_mq_cancel_work_sync(struct request_queue *q)
4803 {
4804 	struct blk_mq_hw_ctx *hctx;
4805 	unsigned long i;
4806 
4807 	cancel_delayed_work_sync(&q->requeue_work);
4808 
4809 	queue_for_each_hw_ctx(q, hctx, i)
4810 		cancel_delayed_work_sync(&hctx->run_work);
4811 }
4812 
4813 static int __init blk_mq_init(void)
4814 {
4815 	int i;
4816 
4817 	for_each_possible_cpu(i)
4818 		init_llist_head(&per_cpu(blk_cpu_done, i));
4819 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4820 
4821 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4822 				  "block/softirq:dead", NULL,
4823 				  blk_softirq_cpu_dead);
4824 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4825 				blk_mq_hctx_notify_dead);
4826 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4827 				blk_mq_hctx_notify_online,
4828 				blk_mq_hctx_notify_offline);
4829 	return 0;
4830 }
4831 subsys_initcall(blk_mq_init);
4832