xref: /openbmc/linux/block/blk-mq.c (revision 113094f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct hd_struct *part;
95 	unsigned int *inflight;
96 };
97 
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 				  struct request *rq, void *priv,
100 				  bool reserved)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	/*
105 	 * index[0] counts the specific partition that was asked for.
106 	 */
107 	if (rq->part == mi->part)
108 		mi->inflight[0]++;
109 
110 	return true;
111 }
112 
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 	unsigned inflight[2];
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return inflight[0];
122 }
123 
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 				     struct request *rq, void *priv,
126 				     bool reserved)
127 {
128 	struct mq_inflight *mi = priv;
129 
130 	if (rq->part == mi->part)
131 		mi->inflight[rq_data_dir(rq)]++;
132 
133 	return true;
134 }
135 
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 			 unsigned int inflight[2])
138 {
139 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 
141 	inflight[0] = inflight[1] = 0;
142 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144 
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 	mutex_lock(&q->mq_freeze_lock);
148 	if (++q->mq_freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		mutex_unlock(&q->mq_freeze_lock);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	} else {
154 		mutex_unlock(&q->mq_freeze_lock);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158 
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164 
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 				     unsigned long timeout)
167 {
168 	return wait_event_timeout(q->mq_freeze_wq,
169 					percpu_ref_is_zero(&q->q_usage_counter),
170 					timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173 
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 	/*
181 	 * In the !blk_mq case we are only calling this to kill the
182 	 * q_usage_counter, otherwise this increases the freeze depth
183 	 * and waits for it to return to zero.  For this reason there is
184 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 	 * exported to drivers as the only user for unfreeze is blk_mq.
186 	 */
187 	blk_freeze_queue_start(q);
188 	blk_mq_freeze_queue_wait(q);
189 }
190 
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 	/*
194 	 * ...just an alias to keep freeze and unfreeze actions balanced
195 	 * in the blk_mq_* namespace
196 	 */
197 	blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200 
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 	mutex_lock(&q->mq_freeze_lock);
204 	q->mq_freeze_depth--;
205 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 	if (!q->mq_freeze_depth) {
207 		percpu_ref_resurrect(&q->q_usage_counter);
208 		wake_up_all(&q->mq_freeze_wq);
209 	}
210 	mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213 
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223 
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 	struct blk_mq_hw_ctx *hctx;
236 	unsigned int i;
237 	bool rcu = false;
238 
239 	blk_mq_quiesce_queue_nowait(q);
240 
241 	queue_for_each_hw_ctx(q, hctx, i) {
242 		if (hctx->flags & BLK_MQ_F_BLOCKING)
243 			synchronize_srcu(hctx->srcu);
244 		else
245 			rcu = true;
246 	}
247 	if (rcu)
248 		synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262 
263 	/* dispatch requests which are inserted during quiescing */
264 	blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267 
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 	struct blk_mq_hw_ctx *hctx;
271 	unsigned int i;
272 
273 	queue_for_each_hw_ctx(q, hctx, i)
274 		if (blk_mq_hw_queue_mapped(hctx))
275 			blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277 
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 	return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283 
284 /*
285  * Only need start/end time stamping if we have stats enabled, or using
286  * an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292 
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 		unsigned int tag, unsigned int op)
295 {
296 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 	struct request *rq = tags->static_rqs[tag];
298 	req_flags_t rq_flags = 0;
299 
300 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 		rq->tag = -1;
302 		rq->internal_tag = tag;
303 	} else {
304 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 			rq_flags = RQF_MQ_INFLIGHT;
306 			atomic_inc(&data->hctx->nr_active);
307 		}
308 		rq->tag = tag;
309 		rq->internal_tag = -1;
310 		data->hctx->tags->rqs[rq->tag] = rq;
311 	}
312 
313 	/* csd/requeue_work/fifo_time is initialized before use */
314 	rq->q = data->q;
315 	rq->mq_ctx = data->ctx;
316 	rq->mq_hctx = data->hctx;
317 	rq->rq_flags = rq_flags;
318 	rq->cmd_flags = op;
319 	if (data->flags & BLK_MQ_REQ_PREEMPT)
320 		rq->rq_flags |= RQF_PREEMPT;
321 	if (blk_queue_io_stat(data->q))
322 		rq->rq_flags |= RQF_IO_STAT;
323 	INIT_LIST_HEAD(&rq->queuelist);
324 	INIT_HLIST_NODE(&rq->hash);
325 	RB_CLEAR_NODE(&rq->rb_node);
326 	rq->rq_disk = NULL;
327 	rq->part = NULL;
328 	if (blk_mq_need_time_stamp(rq))
329 		rq->start_time_ns = ktime_get_ns();
330 	else
331 		rq->start_time_ns = 0;
332 	rq->io_start_time_ns = 0;
333 	rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 	rq->nr_integrity_segments = 0;
336 #endif
337 	/* tag was already set */
338 	rq->extra_len = 0;
339 	WRITE_ONCE(rq->deadline, 0);
340 
341 	rq->timeout = 0;
342 
343 	rq->end_io = NULL;
344 	rq->end_io_data = NULL;
345 
346 	data->ctx->rq_dispatched[op_is_sync(op)]++;
347 	refcount_set(&rq->ref, 1);
348 	return rq;
349 }
350 
351 static struct request *blk_mq_get_request(struct request_queue *q,
352 					  struct bio *bio,
353 					  struct blk_mq_alloc_data *data)
354 {
355 	struct elevator_queue *e = q->elevator;
356 	struct request *rq;
357 	unsigned int tag;
358 	bool clear_ctx_on_error = false;
359 
360 	blk_queue_enter_live(q);
361 	data->q = q;
362 	if (likely(!data->ctx)) {
363 		data->ctx = blk_mq_get_ctx(q);
364 		clear_ctx_on_error = true;
365 	}
366 	if (likely(!data->hctx))
367 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368 						data->ctx);
369 	if (data->cmd_flags & REQ_NOWAIT)
370 		data->flags |= BLK_MQ_REQ_NOWAIT;
371 
372 	if (e) {
373 		data->flags |= BLK_MQ_REQ_INTERNAL;
374 
375 		/*
376 		 * Flush requests are special and go directly to the
377 		 * dispatch list. Don't include reserved tags in the
378 		 * limiting, as it isn't useful.
379 		 */
380 		if (!op_is_flush(data->cmd_flags) &&
381 		    e->type->ops.limit_depth &&
382 		    !(data->flags & BLK_MQ_REQ_RESERVED))
383 			e->type->ops.limit_depth(data->cmd_flags, data);
384 	} else {
385 		blk_mq_tag_busy(data->hctx);
386 	}
387 
388 	tag = blk_mq_get_tag(data);
389 	if (tag == BLK_MQ_TAG_FAIL) {
390 		if (clear_ctx_on_error)
391 			data->ctx = NULL;
392 		blk_queue_exit(q);
393 		return NULL;
394 	}
395 
396 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 	if (!op_is_flush(data->cmd_flags)) {
398 		rq->elv.icq = NULL;
399 		if (e && e->type->ops.prepare_request) {
400 			if (e->type->icq_cache)
401 				blk_mq_sched_assign_ioc(rq);
402 
403 			e->type->ops.prepare_request(rq, bio);
404 			rq->rq_flags |= RQF_ELVPRIV;
405 		}
406 	}
407 	data->hctx->queued++;
408 	return rq;
409 }
410 
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 		blk_mq_req_flags_t flags)
413 {
414 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 	struct request *rq;
416 	int ret;
417 
418 	ret = blk_queue_enter(q, flags);
419 	if (ret)
420 		return ERR_PTR(ret);
421 
422 	rq = blk_mq_get_request(q, NULL, &alloc_data);
423 	blk_queue_exit(q);
424 
425 	if (!rq)
426 		return ERR_PTR(-EWOULDBLOCK);
427 
428 	rq->__data_len = 0;
429 	rq->__sector = (sector_t) -1;
430 	rq->bio = rq->biotail = NULL;
431 	return rq;
432 }
433 EXPORT_SYMBOL(blk_mq_alloc_request);
434 
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
437 {
438 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
439 	struct request *rq;
440 	unsigned int cpu;
441 	int ret;
442 
443 	/*
444 	 * If the tag allocator sleeps we could get an allocation for a
445 	 * different hardware context.  No need to complicate the low level
446 	 * allocator for this for the rare use case of a command tied to
447 	 * a specific queue.
448 	 */
449 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450 		return ERR_PTR(-EINVAL);
451 
452 	if (hctx_idx >= q->nr_hw_queues)
453 		return ERR_PTR(-EIO);
454 
455 	ret = blk_queue_enter(q, flags);
456 	if (ret)
457 		return ERR_PTR(ret);
458 
459 	/*
460 	 * Check if the hardware context is actually mapped to anything.
461 	 * If not tell the caller that it should skip this queue.
462 	 */
463 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
465 		blk_queue_exit(q);
466 		return ERR_PTR(-EXDEV);
467 	}
468 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	rq = blk_mq_get_request(q, NULL, &alloc_data);
472 	blk_queue_exit(q);
473 
474 	if (!rq)
475 		return ERR_PTR(-EWOULDBLOCK);
476 
477 	return rq;
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
480 
481 static void __blk_mq_free_request(struct request *rq)
482 {
483 	struct request_queue *q = rq->q;
484 	struct blk_mq_ctx *ctx = rq->mq_ctx;
485 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486 	const int sched_tag = rq->internal_tag;
487 
488 	blk_pm_mark_last_busy(rq);
489 	rq->mq_hctx = NULL;
490 	if (rq->tag != -1)
491 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 	if (sched_tag != -1)
493 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 	blk_mq_sched_restart(hctx);
495 	blk_queue_exit(q);
496 }
497 
498 void blk_mq_free_request(struct request *rq)
499 {
500 	struct request_queue *q = rq->q;
501 	struct elevator_queue *e = q->elevator;
502 	struct blk_mq_ctx *ctx = rq->mq_ctx;
503 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
504 
505 	if (rq->rq_flags & RQF_ELVPRIV) {
506 		if (e && e->type->ops.finish_request)
507 			e->type->ops.finish_request(rq);
508 		if (rq->elv.icq) {
509 			put_io_context(rq->elv.icq->ioc);
510 			rq->elv.icq = NULL;
511 		}
512 	}
513 
514 	ctx->rq_completed[rq_is_sync(rq)]++;
515 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
516 		atomic_dec(&hctx->nr_active);
517 
518 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519 		laptop_io_completion(q->backing_dev_info);
520 
521 	rq_qos_done(q, rq);
522 
523 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524 	if (refcount_dec_and_test(&rq->ref))
525 		__blk_mq_free_request(rq);
526 }
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
528 
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531 	u64 now = 0;
532 
533 	if (blk_mq_need_time_stamp(rq))
534 		now = ktime_get_ns();
535 
536 	if (rq->rq_flags & RQF_STATS) {
537 		blk_mq_poll_stats_start(rq->q);
538 		blk_stat_add(rq, now);
539 	}
540 
541 	if (rq->internal_tag != -1)
542 		blk_mq_sched_completed_request(rq, now);
543 
544 	blk_account_io_done(rq, now);
545 
546 	if (rq->end_io) {
547 		rq_qos_done(rq->q, rq);
548 		rq->end_io(rq, error);
549 	} else {
550 		blk_mq_free_request(rq);
551 	}
552 }
553 EXPORT_SYMBOL(__blk_mq_end_request);
554 
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
558 		BUG();
559 	__blk_mq_end_request(rq, error);
560 }
561 EXPORT_SYMBOL(blk_mq_end_request);
562 
563 static void __blk_mq_complete_request_remote(void *data)
564 {
565 	struct request *rq = data;
566 	struct request_queue *q = rq->q;
567 
568 	q->mq_ops->complete(rq);
569 }
570 
571 static void __blk_mq_complete_request(struct request *rq)
572 {
573 	struct blk_mq_ctx *ctx = rq->mq_ctx;
574 	struct request_queue *q = rq->q;
575 	bool shared = false;
576 	int cpu;
577 
578 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
579 	/*
580 	 * Most of single queue controllers, there is only one irq vector
581 	 * for handling IO completion, and the only irq's affinity is set
582 	 * as all possible CPUs. On most of ARCHs, this affinity means the
583 	 * irq is handled on one specific CPU.
584 	 *
585 	 * So complete IO reqeust in softirq context in case of single queue
586 	 * for not degrading IO performance by irqsoff latency.
587 	 */
588 	if (q->nr_hw_queues == 1) {
589 		__blk_complete_request(rq);
590 		return;
591 	}
592 
593 	/*
594 	 * For a polled request, always complete locallly, it's pointless
595 	 * to redirect the completion.
596 	 */
597 	if ((rq->cmd_flags & REQ_HIPRI) ||
598 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599 		q->mq_ops->complete(rq);
600 		return;
601 	}
602 
603 	cpu = get_cpu();
604 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605 		shared = cpus_share_cache(cpu, ctx->cpu);
606 
607 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608 		rq->csd.func = __blk_mq_complete_request_remote;
609 		rq->csd.info = rq;
610 		rq->csd.flags = 0;
611 		smp_call_function_single_async(ctx->cpu, &rq->csd);
612 	} else {
613 		q->mq_ops->complete(rq);
614 	}
615 	put_cpu();
616 }
617 
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619 	__releases(hctx->srcu)
620 {
621 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
622 		rcu_read_unlock();
623 	else
624 		srcu_read_unlock(hctx->srcu, srcu_idx);
625 }
626 
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628 	__acquires(hctx->srcu)
629 {
630 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631 		/* shut up gcc false positive */
632 		*srcu_idx = 0;
633 		rcu_read_lock();
634 	} else
635 		*srcu_idx = srcu_read_lock(hctx->srcu);
636 }
637 
638 /**
639  * blk_mq_complete_request - end I/O on a request
640  * @rq:		the request being processed
641  *
642  * Description:
643  *	Ends all I/O on a request. It does not handle partial completions.
644  *	The actual completion happens out-of-order, through a IPI handler.
645  **/
646 bool blk_mq_complete_request(struct request *rq)
647 {
648 	if (unlikely(blk_should_fake_timeout(rq->q)))
649 		return false;
650 	__blk_mq_complete_request(rq);
651 	return true;
652 }
653 EXPORT_SYMBOL(blk_mq_complete_request);
654 
655 void blk_mq_complete_request_sync(struct request *rq)
656 {
657 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658 	rq->q->mq_ops->complete(rq);
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
661 
662 int blk_mq_request_started(struct request *rq)
663 {
664 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667 
668 void blk_mq_start_request(struct request *rq)
669 {
670 	struct request_queue *q = rq->q;
671 
672 	blk_mq_sched_started_request(rq);
673 
674 	trace_block_rq_issue(q, rq);
675 
676 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677 		rq->io_start_time_ns = ktime_get_ns();
678 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
679 		rq->throtl_size = blk_rq_sectors(rq);
680 #endif
681 		rq->rq_flags |= RQF_STATS;
682 		rq_qos_issue(q, rq);
683 	}
684 
685 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
686 
687 	blk_add_timer(rq);
688 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
689 
690 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
691 		/*
692 		 * Make sure space for the drain appears.  We know we can do
693 		 * this because max_hw_segments has been adjusted to be one
694 		 * fewer than the device can handle.
695 		 */
696 		rq->nr_phys_segments++;
697 	}
698 }
699 EXPORT_SYMBOL(blk_mq_start_request);
700 
701 static void __blk_mq_requeue_request(struct request *rq)
702 {
703 	struct request_queue *q = rq->q;
704 
705 	blk_mq_put_driver_tag(rq);
706 
707 	trace_block_rq_requeue(q, rq);
708 	rq_qos_requeue(q, rq);
709 
710 	if (blk_mq_request_started(rq)) {
711 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712 		rq->rq_flags &= ~RQF_TIMED_OUT;
713 		if (q->dma_drain_size && blk_rq_bytes(rq))
714 			rq->nr_phys_segments--;
715 	}
716 }
717 
718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 {
720 	__blk_mq_requeue_request(rq);
721 
722 	/* this request will be re-inserted to io scheduler queue */
723 	blk_mq_sched_requeue_request(rq);
724 
725 	BUG_ON(!list_empty(&rq->queuelist));
726 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
727 }
728 EXPORT_SYMBOL(blk_mq_requeue_request);
729 
730 static void blk_mq_requeue_work(struct work_struct *work)
731 {
732 	struct request_queue *q =
733 		container_of(work, struct request_queue, requeue_work.work);
734 	LIST_HEAD(rq_list);
735 	struct request *rq, *next;
736 
737 	spin_lock_irq(&q->requeue_lock);
738 	list_splice_init(&q->requeue_list, &rq_list);
739 	spin_unlock_irq(&q->requeue_lock);
740 
741 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
742 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
743 			continue;
744 
745 		rq->rq_flags &= ~RQF_SOFTBARRIER;
746 		list_del_init(&rq->queuelist);
747 		/*
748 		 * If RQF_DONTPREP, rq has contained some driver specific
749 		 * data, so insert it to hctx dispatch list to avoid any
750 		 * merge.
751 		 */
752 		if (rq->rq_flags & RQF_DONTPREP)
753 			blk_mq_request_bypass_insert(rq, false);
754 		else
755 			blk_mq_sched_insert_request(rq, true, false, false);
756 	}
757 
758 	while (!list_empty(&rq_list)) {
759 		rq = list_entry(rq_list.next, struct request, queuelist);
760 		list_del_init(&rq->queuelist);
761 		blk_mq_sched_insert_request(rq, false, false, false);
762 	}
763 
764 	blk_mq_run_hw_queues(q, false);
765 }
766 
767 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
768 				bool kick_requeue_list)
769 {
770 	struct request_queue *q = rq->q;
771 	unsigned long flags;
772 
773 	/*
774 	 * We abuse this flag that is otherwise used by the I/O scheduler to
775 	 * request head insertion from the workqueue.
776 	 */
777 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
778 
779 	spin_lock_irqsave(&q->requeue_lock, flags);
780 	if (at_head) {
781 		rq->rq_flags |= RQF_SOFTBARRIER;
782 		list_add(&rq->queuelist, &q->requeue_list);
783 	} else {
784 		list_add_tail(&rq->queuelist, &q->requeue_list);
785 	}
786 	spin_unlock_irqrestore(&q->requeue_lock, flags);
787 
788 	if (kick_requeue_list)
789 		blk_mq_kick_requeue_list(q);
790 }
791 
792 void blk_mq_kick_requeue_list(struct request_queue *q)
793 {
794 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
795 }
796 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
797 
798 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
799 				    unsigned long msecs)
800 {
801 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
802 				    msecs_to_jiffies(msecs));
803 }
804 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
805 
806 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
807 {
808 	if (tag < tags->nr_tags) {
809 		prefetch(tags->rqs[tag]);
810 		return tags->rqs[tag];
811 	}
812 
813 	return NULL;
814 }
815 EXPORT_SYMBOL(blk_mq_tag_to_rq);
816 
817 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
818 			       void *priv, bool reserved)
819 {
820 	/*
821 	 * If we find a request that is inflight and the queue matches,
822 	 * we know the queue is busy. Return false to stop the iteration.
823 	 */
824 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
825 		bool *busy = priv;
826 
827 		*busy = true;
828 		return false;
829 	}
830 
831 	return true;
832 }
833 
834 bool blk_mq_queue_inflight(struct request_queue *q)
835 {
836 	bool busy = false;
837 
838 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
839 	return busy;
840 }
841 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
842 
843 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
844 {
845 	req->rq_flags |= RQF_TIMED_OUT;
846 	if (req->q->mq_ops->timeout) {
847 		enum blk_eh_timer_return ret;
848 
849 		ret = req->q->mq_ops->timeout(req, reserved);
850 		if (ret == BLK_EH_DONE)
851 			return;
852 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
853 	}
854 
855 	blk_add_timer(req);
856 }
857 
858 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
859 {
860 	unsigned long deadline;
861 
862 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
863 		return false;
864 	if (rq->rq_flags & RQF_TIMED_OUT)
865 		return false;
866 
867 	deadline = READ_ONCE(rq->deadline);
868 	if (time_after_eq(jiffies, deadline))
869 		return true;
870 
871 	if (*next == 0)
872 		*next = deadline;
873 	else if (time_after(*next, deadline))
874 		*next = deadline;
875 	return false;
876 }
877 
878 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
879 		struct request *rq, void *priv, bool reserved)
880 {
881 	unsigned long *next = priv;
882 
883 	/*
884 	 * Just do a quick check if it is expired before locking the request in
885 	 * so we're not unnecessarilly synchronizing across CPUs.
886 	 */
887 	if (!blk_mq_req_expired(rq, next))
888 		return true;
889 
890 	/*
891 	 * We have reason to believe the request may be expired. Take a
892 	 * reference on the request to lock this request lifetime into its
893 	 * currently allocated context to prevent it from being reallocated in
894 	 * the event the completion by-passes this timeout handler.
895 	 *
896 	 * If the reference was already released, then the driver beat the
897 	 * timeout handler to posting a natural completion.
898 	 */
899 	if (!refcount_inc_not_zero(&rq->ref))
900 		return true;
901 
902 	/*
903 	 * The request is now locked and cannot be reallocated underneath the
904 	 * timeout handler's processing. Re-verify this exact request is truly
905 	 * expired; if it is not expired, then the request was completed and
906 	 * reallocated as a new request.
907 	 */
908 	if (blk_mq_req_expired(rq, next))
909 		blk_mq_rq_timed_out(rq, reserved);
910 	if (refcount_dec_and_test(&rq->ref))
911 		__blk_mq_free_request(rq);
912 
913 	return true;
914 }
915 
916 static void blk_mq_timeout_work(struct work_struct *work)
917 {
918 	struct request_queue *q =
919 		container_of(work, struct request_queue, timeout_work);
920 	unsigned long next = 0;
921 	struct blk_mq_hw_ctx *hctx;
922 	int i;
923 
924 	/* A deadlock might occur if a request is stuck requiring a
925 	 * timeout at the same time a queue freeze is waiting
926 	 * completion, since the timeout code would not be able to
927 	 * acquire the queue reference here.
928 	 *
929 	 * That's why we don't use blk_queue_enter here; instead, we use
930 	 * percpu_ref_tryget directly, because we need to be able to
931 	 * obtain a reference even in the short window between the queue
932 	 * starting to freeze, by dropping the first reference in
933 	 * blk_freeze_queue_start, and the moment the last request is
934 	 * consumed, marked by the instant q_usage_counter reaches
935 	 * zero.
936 	 */
937 	if (!percpu_ref_tryget(&q->q_usage_counter))
938 		return;
939 
940 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
941 
942 	if (next != 0) {
943 		mod_timer(&q->timeout, next);
944 	} else {
945 		/*
946 		 * Request timeouts are handled as a forward rolling timer. If
947 		 * we end up here it means that no requests are pending and
948 		 * also that no request has been pending for a while. Mark
949 		 * each hctx as idle.
950 		 */
951 		queue_for_each_hw_ctx(q, hctx, i) {
952 			/* the hctx may be unmapped, so check it here */
953 			if (blk_mq_hw_queue_mapped(hctx))
954 				blk_mq_tag_idle(hctx);
955 		}
956 	}
957 	blk_queue_exit(q);
958 }
959 
960 struct flush_busy_ctx_data {
961 	struct blk_mq_hw_ctx *hctx;
962 	struct list_head *list;
963 };
964 
965 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
966 {
967 	struct flush_busy_ctx_data *flush_data = data;
968 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
969 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
970 	enum hctx_type type = hctx->type;
971 
972 	spin_lock(&ctx->lock);
973 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
974 	sbitmap_clear_bit(sb, bitnr);
975 	spin_unlock(&ctx->lock);
976 	return true;
977 }
978 
979 /*
980  * Process software queues that have been marked busy, splicing them
981  * to the for-dispatch
982  */
983 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
984 {
985 	struct flush_busy_ctx_data data = {
986 		.hctx = hctx,
987 		.list = list,
988 	};
989 
990 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
991 }
992 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
993 
994 struct dispatch_rq_data {
995 	struct blk_mq_hw_ctx *hctx;
996 	struct request *rq;
997 };
998 
999 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1000 		void *data)
1001 {
1002 	struct dispatch_rq_data *dispatch_data = data;
1003 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1004 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1005 	enum hctx_type type = hctx->type;
1006 
1007 	spin_lock(&ctx->lock);
1008 	if (!list_empty(&ctx->rq_lists[type])) {
1009 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1010 		list_del_init(&dispatch_data->rq->queuelist);
1011 		if (list_empty(&ctx->rq_lists[type]))
1012 			sbitmap_clear_bit(sb, bitnr);
1013 	}
1014 	spin_unlock(&ctx->lock);
1015 
1016 	return !dispatch_data->rq;
1017 }
1018 
1019 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1020 					struct blk_mq_ctx *start)
1021 {
1022 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1023 	struct dispatch_rq_data data = {
1024 		.hctx = hctx,
1025 		.rq   = NULL,
1026 	};
1027 
1028 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1029 			       dispatch_rq_from_ctx, &data);
1030 
1031 	return data.rq;
1032 }
1033 
1034 static inline unsigned int queued_to_index(unsigned int queued)
1035 {
1036 	if (!queued)
1037 		return 0;
1038 
1039 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1040 }
1041 
1042 bool blk_mq_get_driver_tag(struct request *rq)
1043 {
1044 	struct blk_mq_alloc_data data = {
1045 		.q = rq->q,
1046 		.hctx = rq->mq_hctx,
1047 		.flags = BLK_MQ_REQ_NOWAIT,
1048 		.cmd_flags = rq->cmd_flags,
1049 	};
1050 	bool shared;
1051 
1052 	if (rq->tag != -1)
1053 		goto done;
1054 
1055 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1056 		data.flags |= BLK_MQ_REQ_RESERVED;
1057 
1058 	shared = blk_mq_tag_busy(data.hctx);
1059 	rq->tag = blk_mq_get_tag(&data);
1060 	if (rq->tag >= 0) {
1061 		if (shared) {
1062 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1063 			atomic_inc(&data.hctx->nr_active);
1064 		}
1065 		data.hctx->tags->rqs[rq->tag] = rq;
1066 	}
1067 
1068 done:
1069 	return rq->tag != -1;
1070 }
1071 
1072 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1073 				int flags, void *key)
1074 {
1075 	struct blk_mq_hw_ctx *hctx;
1076 
1077 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1078 
1079 	spin_lock(&hctx->dispatch_wait_lock);
1080 	if (!list_empty(&wait->entry)) {
1081 		struct sbitmap_queue *sbq;
1082 
1083 		list_del_init(&wait->entry);
1084 		sbq = &hctx->tags->bitmap_tags;
1085 		atomic_dec(&sbq->ws_active);
1086 	}
1087 	spin_unlock(&hctx->dispatch_wait_lock);
1088 
1089 	blk_mq_run_hw_queue(hctx, true);
1090 	return 1;
1091 }
1092 
1093 /*
1094  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1095  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1096  * restart. For both cases, take care to check the condition again after
1097  * marking us as waiting.
1098  */
1099 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1100 				 struct request *rq)
1101 {
1102 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1103 	struct wait_queue_head *wq;
1104 	wait_queue_entry_t *wait;
1105 	bool ret;
1106 
1107 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1108 		blk_mq_sched_mark_restart_hctx(hctx);
1109 
1110 		/*
1111 		 * It's possible that a tag was freed in the window between the
1112 		 * allocation failure and adding the hardware queue to the wait
1113 		 * queue.
1114 		 *
1115 		 * Don't clear RESTART here, someone else could have set it.
1116 		 * At most this will cost an extra queue run.
1117 		 */
1118 		return blk_mq_get_driver_tag(rq);
1119 	}
1120 
1121 	wait = &hctx->dispatch_wait;
1122 	if (!list_empty_careful(&wait->entry))
1123 		return false;
1124 
1125 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1126 
1127 	spin_lock_irq(&wq->lock);
1128 	spin_lock(&hctx->dispatch_wait_lock);
1129 	if (!list_empty(&wait->entry)) {
1130 		spin_unlock(&hctx->dispatch_wait_lock);
1131 		spin_unlock_irq(&wq->lock);
1132 		return false;
1133 	}
1134 
1135 	atomic_inc(&sbq->ws_active);
1136 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1137 	__add_wait_queue(wq, wait);
1138 
1139 	/*
1140 	 * It's possible that a tag was freed in the window between the
1141 	 * allocation failure and adding the hardware queue to the wait
1142 	 * queue.
1143 	 */
1144 	ret = blk_mq_get_driver_tag(rq);
1145 	if (!ret) {
1146 		spin_unlock(&hctx->dispatch_wait_lock);
1147 		spin_unlock_irq(&wq->lock);
1148 		return false;
1149 	}
1150 
1151 	/*
1152 	 * We got a tag, remove ourselves from the wait queue to ensure
1153 	 * someone else gets the wakeup.
1154 	 */
1155 	list_del_init(&wait->entry);
1156 	atomic_dec(&sbq->ws_active);
1157 	spin_unlock(&hctx->dispatch_wait_lock);
1158 	spin_unlock_irq(&wq->lock);
1159 
1160 	return true;
1161 }
1162 
1163 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1164 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1165 /*
1166  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1167  * - EWMA is one simple way to compute running average value
1168  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1169  * - take 4 as factor for avoiding to get too small(0) result, and this
1170  *   factor doesn't matter because EWMA decreases exponentially
1171  */
1172 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1173 {
1174 	unsigned int ewma;
1175 
1176 	if (hctx->queue->elevator)
1177 		return;
1178 
1179 	ewma = hctx->dispatch_busy;
1180 
1181 	if (!ewma && !busy)
1182 		return;
1183 
1184 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1185 	if (busy)
1186 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1187 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1188 
1189 	hctx->dispatch_busy = ewma;
1190 }
1191 
1192 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1193 
1194 /*
1195  * Returns true if we did some work AND can potentially do more.
1196  */
1197 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1198 			     bool got_budget)
1199 {
1200 	struct blk_mq_hw_ctx *hctx;
1201 	struct request *rq, *nxt;
1202 	bool no_tag = false;
1203 	int errors, queued;
1204 	blk_status_t ret = BLK_STS_OK;
1205 
1206 	if (list_empty(list))
1207 		return false;
1208 
1209 	WARN_ON(!list_is_singular(list) && got_budget);
1210 
1211 	/*
1212 	 * Now process all the entries, sending them to the driver.
1213 	 */
1214 	errors = queued = 0;
1215 	do {
1216 		struct blk_mq_queue_data bd;
1217 
1218 		rq = list_first_entry(list, struct request, queuelist);
1219 
1220 		hctx = rq->mq_hctx;
1221 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1222 			break;
1223 
1224 		if (!blk_mq_get_driver_tag(rq)) {
1225 			/*
1226 			 * The initial allocation attempt failed, so we need to
1227 			 * rerun the hardware queue when a tag is freed. The
1228 			 * waitqueue takes care of that. If the queue is run
1229 			 * before we add this entry back on the dispatch list,
1230 			 * we'll re-run it below.
1231 			 */
1232 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1233 				blk_mq_put_dispatch_budget(hctx);
1234 				/*
1235 				 * For non-shared tags, the RESTART check
1236 				 * will suffice.
1237 				 */
1238 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1239 					no_tag = true;
1240 				break;
1241 			}
1242 		}
1243 
1244 		list_del_init(&rq->queuelist);
1245 
1246 		bd.rq = rq;
1247 
1248 		/*
1249 		 * Flag last if we have no more requests, or if we have more
1250 		 * but can't assign a driver tag to it.
1251 		 */
1252 		if (list_empty(list))
1253 			bd.last = true;
1254 		else {
1255 			nxt = list_first_entry(list, struct request, queuelist);
1256 			bd.last = !blk_mq_get_driver_tag(nxt);
1257 		}
1258 
1259 		ret = q->mq_ops->queue_rq(hctx, &bd);
1260 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1261 			/*
1262 			 * If an I/O scheduler has been configured and we got a
1263 			 * driver tag for the next request already, free it
1264 			 * again.
1265 			 */
1266 			if (!list_empty(list)) {
1267 				nxt = list_first_entry(list, struct request, queuelist);
1268 				blk_mq_put_driver_tag(nxt);
1269 			}
1270 			list_add(&rq->queuelist, list);
1271 			__blk_mq_requeue_request(rq);
1272 			break;
1273 		}
1274 
1275 		if (unlikely(ret != BLK_STS_OK)) {
1276 			errors++;
1277 			blk_mq_end_request(rq, BLK_STS_IOERR);
1278 			continue;
1279 		}
1280 
1281 		queued++;
1282 	} while (!list_empty(list));
1283 
1284 	hctx->dispatched[queued_to_index(queued)]++;
1285 
1286 	/*
1287 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1288 	 * that is where we will continue on next queue run.
1289 	 */
1290 	if (!list_empty(list)) {
1291 		bool needs_restart;
1292 
1293 		/*
1294 		 * If we didn't flush the entire list, we could have told
1295 		 * the driver there was more coming, but that turned out to
1296 		 * be a lie.
1297 		 */
1298 		if (q->mq_ops->commit_rqs)
1299 			q->mq_ops->commit_rqs(hctx);
1300 
1301 		spin_lock(&hctx->lock);
1302 		list_splice_init(list, &hctx->dispatch);
1303 		spin_unlock(&hctx->lock);
1304 
1305 		/*
1306 		 * If SCHED_RESTART was set by the caller of this function and
1307 		 * it is no longer set that means that it was cleared by another
1308 		 * thread and hence that a queue rerun is needed.
1309 		 *
1310 		 * If 'no_tag' is set, that means that we failed getting
1311 		 * a driver tag with an I/O scheduler attached. If our dispatch
1312 		 * waitqueue is no longer active, ensure that we run the queue
1313 		 * AFTER adding our entries back to the list.
1314 		 *
1315 		 * If no I/O scheduler has been configured it is possible that
1316 		 * the hardware queue got stopped and restarted before requests
1317 		 * were pushed back onto the dispatch list. Rerun the queue to
1318 		 * avoid starvation. Notes:
1319 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1320 		 *   been stopped before rerunning a queue.
1321 		 * - Some but not all block drivers stop a queue before
1322 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1323 		 *   and dm-rq.
1324 		 *
1325 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1326 		 * bit is set, run queue after a delay to avoid IO stalls
1327 		 * that could otherwise occur if the queue is idle.
1328 		 */
1329 		needs_restart = blk_mq_sched_needs_restart(hctx);
1330 		if (!needs_restart ||
1331 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1332 			blk_mq_run_hw_queue(hctx, true);
1333 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1334 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1335 
1336 		blk_mq_update_dispatch_busy(hctx, true);
1337 		return false;
1338 	} else
1339 		blk_mq_update_dispatch_busy(hctx, false);
1340 
1341 	/*
1342 	 * If the host/device is unable to accept more work, inform the
1343 	 * caller of that.
1344 	 */
1345 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1346 		return false;
1347 
1348 	return (queued + errors) != 0;
1349 }
1350 
1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1352 {
1353 	int srcu_idx;
1354 
1355 	/*
1356 	 * We should be running this queue from one of the CPUs that
1357 	 * are mapped to it.
1358 	 *
1359 	 * There are at least two related races now between setting
1360 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1361 	 * __blk_mq_run_hw_queue():
1362 	 *
1363 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1364 	 *   but later it becomes online, then this warning is harmless
1365 	 *   at all
1366 	 *
1367 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1368 	 *   but later it becomes offline, then the warning can't be
1369 	 *   triggered, and we depend on blk-mq timeout handler to
1370 	 *   handle dispatched requests to this hctx
1371 	 */
1372 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1373 		cpu_online(hctx->next_cpu)) {
1374 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1375 			raw_smp_processor_id(),
1376 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1377 		dump_stack();
1378 	}
1379 
1380 	/*
1381 	 * We can't run the queue inline with ints disabled. Ensure that
1382 	 * we catch bad users of this early.
1383 	 */
1384 	WARN_ON_ONCE(in_interrupt());
1385 
1386 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1387 
1388 	hctx_lock(hctx, &srcu_idx);
1389 	blk_mq_sched_dispatch_requests(hctx);
1390 	hctx_unlock(hctx, srcu_idx);
1391 }
1392 
1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1394 {
1395 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1396 
1397 	if (cpu >= nr_cpu_ids)
1398 		cpu = cpumask_first(hctx->cpumask);
1399 	return cpu;
1400 }
1401 
1402 /*
1403  * It'd be great if the workqueue API had a way to pass
1404  * in a mask and had some smarts for more clever placement.
1405  * For now we just round-robin here, switching for every
1406  * BLK_MQ_CPU_WORK_BATCH queued items.
1407  */
1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1409 {
1410 	bool tried = false;
1411 	int next_cpu = hctx->next_cpu;
1412 
1413 	if (hctx->queue->nr_hw_queues == 1)
1414 		return WORK_CPU_UNBOUND;
1415 
1416 	if (--hctx->next_cpu_batch <= 0) {
1417 select_cpu:
1418 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1419 				cpu_online_mask);
1420 		if (next_cpu >= nr_cpu_ids)
1421 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1422 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1423 	}
1424 
1425 	/*
1426 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1427 	 * and it should only happen in the path of handling CPU DEAD.
1428 	 */
1429 	if (!cpu_online(next_cpu)) {
1430 		if (!tried) {
1431 			tried = true;
1432 			goto select_cpu;
1433 		}
1434 
1435 		/*
1436 		 * Make sure to re-select CPU next time once after CPUs
1437 		 * in hctx->cpumask become online again.
1438 		 */
1439 		hctx->next_cpu = next_cpu;
1440 		hctx->next_cpu_batch = 1;
1441 		return WORK_CPU_UNBOUND;
1442 	}
1443 
1444 	hctx->next_cpu = next_cpu;
1445 	return next_cpu;
1446 }
1447 
1448 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1449 					unsigned long msecs)
1450 {
1451 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1452 		return;
1453 
1454 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1455 		int cpu = get_cpu();
1456 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1457 			__blk_mq_run_hw_queue(hctx);
1458 			put_cpu();
1459 			return;
1460 		}
1461 
1462 		put_cpu();
1463 	}
1464 
1465 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1466 				    msecs_to_jiffies(msecs));
1467 }
1468 
1469 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1470 {
1471 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1472 }
1473 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1474 
1475 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1476 {
1477 	int srcu_idx;
1478 	bool need_run;
1479 
1480 	/*
1481 	 * When queue is quiesced, we may be switching io scheduler, or
1482 	 * updating nr_hw_queues, or other things, and we can't run queue
1483 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1484 	 *
1485 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1486 	 * quiesced.
1487 	 */
1488 	hctx_lock(hctx, &srcu_idx);
1489 	need_run = !blk_queue_quiesced(hctx->queue) &&
1490 		blk_mq_hctx_has_pending(hctx);
1491 	hctx_unlock(hctx, srcu_idx);
1492 
1493 	if (need_run) {
1494 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1495 		return true;
1496 	}
1497 
1498 	return false;
1499 }
1500 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1501 
1502 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1503 {
1504 	struct blk_mq_hw_ctx *hctx;
1505 	int i;
1506 
1507 	queue_for_each_hw_ctx(q, hctx, i) {
1508 		if (blk_mq_hctx_stopped(hctx))
1509 			continue;
1510 
1511 		blk_mq_run_hw_queue(hctx, async);
1512 	}
1513 }
1514 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1515 
1516 /**
1517  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1518  * @q: request queue.
1519  *
1520  * The caller is responsible for serializing this function against
1521  * blk_mq_{start,stop}_hw_queue().
1522  */
1523 bool blk_mq_queue_stopped(struct request_queue *q)
1524 {
1525 	struct blk_mq_hw_ctx *hctx;
1526 	int i;
1527 
1528 	queue_for_each_hw_ctx(q, hctx, i)
1529 		if (blk_mq_hctx_stopped(hctx))
1530 			return true;
1531 
1532 	return false;
1533 }
1534 EXPORT_SYMBOL(blk_mq_queue_stopped);
1535 
1536 /*
1537  * This function is often used for pausing .queue_rq() by driver when
1538  * there isn't enough resource or some conditions aren't satisfied, and
1539  * BLK_STS_RESOURCE is usually returned.
1540  *
1541  * We do not guarantee that dispatch can be drained or blocked
1542  * after blk_mq_stop_hw_queue() returns. Please use
1543  * blk_mq_quiesce_queue() for that requirement.
1544  */
1545 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1546 {
1547 	cancel_delayed_work(&hctx->run_work);
1548 
1549 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1550 }
1551 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1552 
1553 /*
1554  * This function is often used for pausing .queue_rq() by driver when
1555  * there isn't enough resource or some conditions aren't satisfied, and
1556  * BLK_STS_RESOURCE is usually returned.
1557  *
1558  * We do not guarantee that dispatch can be drained or blocked
1559  * after blk_mq_stop_hw_queues() returns. Please use
1560  * blk_mq_quiesce_queue() for that requirement.
1561  */
1562 void blk_mq_stop_hw_queues(struct request_queue *q)
1563 {
1564 	struct blk_mq_hw_ctx *hctx;
1565 	int i;
1566 
1567 	queue_for_each_hw_ctx(q, hctx, i)
1568 		blk_mq_stop_hw_queue(hctx);
1569 }
1570 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1571 
1572 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1573 {
1574 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1575 
1576 	blk_mq_run_hw_queue(hctx, false);
1577 }
1578 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1579 
1580 void blk_mq_start_hw_queues(struct request_queue *q)
1581 {
1582 	struct blk_mq_hw_ctx *hctx;
1583 	int i;
1584 
1585 	queue_for_each_hw_ctx(q, hctx, i)
1586 		blk_mq_start_hw_queue(hctx);
1587 }
1588 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1589 
1590 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1591 {
1592 	if (!blk_mq_hctx_stopped(hctx))
1593 		return;
1594 
1595 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1596 	blk_mq_run_hw_queue(hctx, async);
1597 }
1598 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1599 
1600 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1601 {
1602 	struct blk_mq_hw_ctx *hctx;
1603 	int i;
1604 
1605 	queue_for_each_hw_ctx(q, hctx, i)
1606 		blk_mq_start_stopped_hw_queue(hctx, async);
1607 }
1608 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1609 
1610 static void blk_mq_run_work_fn(struct work_struct *work)
1611 {
1612 	struct blk_mq_hw_ctx *hctx;
1613 
1614 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1615 
1616 	/*
1617 	 * If we are stopped, don't run the queue.
1618 	 */
1619 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1620 		return;
1621 
1622 	__blk_mq_run_hw_queue(hctx);
1623 }
1624 
1625 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1626 					    struct request *rq,
1627 					    bool at_head)
1628 {
1629 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1630 	enum hctx_type type = hctx->type;
1631 
1632 	lockdep_assert_held(&ctx->lock);
1633 
1634 	trace_block_rq_insert(hctx->queue, rq);
1635 
1636 	if (at_head)
1637 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1638 	else
1639 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1640 }
1641 
1642 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1643 			     bool at_head)
1644 {
1645 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1646 
1647 	lockdep_assert_held(&ctx->lock);
1648 
1649 	__blk_mq_insert_req_list(hctx, rq, at_head);
1650 	blk_mq_hctx_mark_pending(hctx, ctx);
1651 }
1652 
1653 /*
1654  * Should only be used carefully, when the caller knows we want to
1655  * bypass a potential IO scheduler on the target device.
1656  */
1657 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1658 {
1659 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1660 
1661 	spin_lock(&hctx->lock);
1662 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1663 	spin_unlock(&hctx->lock);
1664 
1665 	if (run_queue)
1666 		blk_mq_run_hw_queue(hctx, false);
1667 }
1668 
1669 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1670 			    struct list_head *list)
1671 
1672 {
1673 	struct request *rq;
1674 	enum hctx_type type = hctx->type;
1675 
1676 	/*
1677 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1678 	 * offline now
1679 	 */
1680 	list_for_each_entry(rq, list, queuelist) {
1681 		BUG_ON(rq->mq_ctx != ctx);
1682 		trace_block_rq_insert(hctx->queue, rq);
1683 	}
1684 
1685 	spin_lock(&ctx->lock);
1686 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1687 	blk_mq_hctx_mark_pending(hctx, ctx);
1688 	spin_unlock(&ctx->lock);
1689 }
1690 
1691 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1692 {
1693 	struct request *rqa = container_of(a, struct request, queuelist);
1694 	struct request *rqb = container_of(b, struct request, queuelist);
1695 
1696 	if (rqa->mq_ctx < rqb->mq_ctx)
1697 		return -1;
1698 	else if (rqa->mq_ctx > rqb->mq_ctx)
1699 		return 1;
1700 	else if (rqa->mq_hctx < rqb->mq_hctx)
1701 		return -1;
1702 	else if (rqa->mq_hctx > rqb->mq_hctx)
1703 		return 1;
1704 
1705 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1706 }
1707 
1708 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1709 {
1710 	struct blk_mq_hw_ctx *this_hctx;
1711 	struct blk_mq_ctx *this_ctx;
1712 	struct request_queue *this_q;
1713 	struct request *rq;
1714 	LIST_HEAD(list);
1715 	LIST_HEAD(rq_list);
1716 	unsigned int depth;
1717 
1718 	list_splice_init(&plug->mq_list, &list);
1719 
1720 	if (plug->rq_count > 2 && plug->multiple_queues)
1721 		list_sort(NULL, &list, plug_rq_cmp);
1722 
1723 	plug->rq_count = 0;
1724 
1725 	this_q = NULL;
1726 	this_hctx = NULL;
1727 	this_ctx = NULL;
1728 	depth = 0;
1729 
1730 	while (!list_empty(&list)) {
1731 		rq = list_entry_rq(list.next);
1732 		list_del_init(&rq->queuelist);
1733 		BUG_ON(!rq->q);
1734 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1735 			if (this_hctx) {
1736 				trace_block_unplug(this_q, depth, !from_schedule);
1737 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1738 								&rq_list,
1739 								from_schedule);
1740 			}
1741 
1742 			this_q = rq->q;
1743 			this_ctx = rq->mq_ctx;
1744 			this_hctx = rq->mq_hctx;
1745 			depth = 0;
1746 		}
1747 
1748 		depth++;
1749 		list_add_tail(&rq->queuelist, &rq_list);
1750 	}
1751 
1752 	/*
1753 	 * If 'this_hctx' is set, we know we have entries to complete
1754 	 * on 'rq_list'. Do those.
1755 	 */
1756 	if (this_hctx) {
1757 		trace_block_unplug(this_q, depth, !from_schedule);
1758 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1759 						from_schedule);
1760 	}
1761 }
1762 
1763 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1764 		unsigned int nr_segs)
1765 {
1766 	if (bio->bi_opf & REQ_RAHEAD)
1767 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1768 
1769 	rq->__sector = bio->bi_iter.bi_sector;
1770 	rq->write_hint = bio->bi_write_hint;
1771 	blk_rq_bio_prep(rq, bio, nr_segs);
1772 
1773 	blk_account_io_start(rq, true);
1774 }
1775 
1776 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1777 					    struct request *rq,
1778 					    blk_qc_t *cookie, bool last)
1779 {
1780 	struct request_queue *q = rq->q;
1781 	struct blk_mq_queue_data bd = {
1782 		.rq = rq,
1783 		.last = last,
1784 	};
1785 	blk_qc_t new_cookie;
1786 	blk_status_t ret;
1787 
1788 	new_cookie = request_to_qc_t(hctx, rq);
1789 
1790 	/*
1791 	 * For OK queue, we are done. For error, caller may kill it.
1792 	 * Any other error (busy), just add it to our list as we
1793 	 * previously would have done.
1794 	 */
1795 	ret = q->mq_ops->queue_rq(hctx, &bd);
1796 	switch (ret) {
1797 	case BLK_STS_OK:
1798 		blk_mq_update_dispatch_busy(hctx, false);
1799 		*cookie = new_cookie;
1800 		break;
1801 	case BLK_STS_RESOURCE:
1802 	case BLK_STS_DEV_RESOURCE:
1803 		blk_mq_update_dispatch_busy(hctx, true);
1804 		__blk_mq_requeue_request(rq);
1805 		break;
1806 	default:
1807 		blk_mq_update_dispatch_busy(hctx, false);
1808 		*cookie = BLK_QC_T_NONE;
1809 		break;
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1816 						struct request *rq,
1817 						blk_qc_t *cookie,
1818 						bool bypass_insert, bool last)
1819 {
1820 	struct request_queue *q = rq->q;
1821 	bool run_queue = true;
1822 
1823 	/*
1824 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1825 	 *
1826 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1827 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1828 	 * and avoid driver to try to dispatch again.
1829 	 */
1830 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1831 		run_queue = false;
1832 		bypass_insert = false;
1833 		goto insert;
1834 	}
1835 
1836 	if (q->elevator && !bypass_insert)
1837 		goto insert;
1838 
1839 	if (!blk_mq_get_dispatch_budget(hctx))
1840 		goto insert;
1841 
1842 	if (!blk_mq_get_driver_tag(rq)) {
1843 		blk_mq_put_dispatch_budget(hctx);
1844 		goto insert;
1845 	}
1846 
1847 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1848 insert:
1849 	if (bypass_insert)
1850 		return BLK_STS_RESOURCE;
1851 
1852 	blk_mq_request_bypass_insert(rq, run_queue);
1853 	return BLK_STS_OK;
1854 }
1855 
1856 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1857 		struct request *rq, blk_qc_t *cookie)
1858 {
1859 	blk_status_t ret;
1860 	int srcu_idx;
1861 
1862 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1863 
1864 	hctx_lock(hctx, &srcu_idx);
1865 
1866 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1867 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1868 		blk_mq_request_bypass_insert(rq, true);
1869 	else if (ret != BLK_STS_OK)
1870 		blk_mq_end_request(rq, ret);
1871 
1872 	hctx_unlock(hctx, srcu_idx);
1873 }
1874 
1875 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1876 {
1877 	blk_status_t ret;
1878 	int srcu_idx;
1879 	blk_qc_t unused_cookie;
1880 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1881 
1882 	hctx_lock(hctx, &srcu_idx);
1883 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1884 	hctx_unlock(hctx, srcu_idx);
1885 
1886 	return ret;
1887 }
1888 
1889 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1890 		struct list_head *list)
1891 {
1892 	while (!list_empty(list)) {
1893 		blk_status_t ret;
1894 		struct request *rq = list_first_entry(list, struct request,
1895 				queuelist);
1896 
1897 		list_del_init(&rq->queuelist);
1898 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1899 		if (ret != BLK_STS_OK) {
1900 			if (ret == BLK_STS_RESOURCE ||
1901 					ret == BLK_STS_DEV_RESOURCE) {
1902 				blk_mq_request_bypass_insert(rq,
1903 							list_empty(list));
1904 				break;
1905 			}
1906 			blk_mq_end_request(rq, ret);
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * If we didn't flush the entire list, we could have told
1912 	 * the driver there was more coming, but that turned out to
1913 	 * be a lie.
1914 	 */
1915 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1916 		hctx->queue->mq_ops->commit_rqs(hctx);
1917 }
1918 
1919 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1920 {
1921 	list_add_tail(&rq->queuelist, &plug->mq_list);
1922 	plug->rq_count++;
1923 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1924 		struct request *tmp;
1925 
1926 		tmp = list_first_entry(&plug->mq_list, struct request,
1927 						queuelist);
1928 		if (tmp->q != rq->q)
1929 			plug->multiple_queues = true;
1930 	}
1931 }
1932 
1933 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1934 {
1935 	const int is_sync = op_is_sync(bio->bi_opf);
1936 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1937 	struct blk_mq_alloc_data data = { .flags = 0};
1938 	struct request *rq;
1939 	struct blk_plug *plug;
1940 	struct request *same_queue_rq = NULL;
1941 	unsigned int nr_segs;
1942 	blk_qc_t cookie;
1943 
1944 	blk_queue_bounce(q, &bio);
1945 	__blk_queue_split(q, &bio, &nr_segs);
1946 
1947 	if (!bio_integrity_prep(bio))
1948 		return BLK_QC_T_NONE;
1949 
1950 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1951 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1952 		return BLK_QC_T_NONE;
1953 
1954 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1955 		return BLK_QC_T_NONE;
1956 
1957 	rq_qos_throttle(q, bio);
1958 
1959 	data.cmd_flags = bio->bi_opf;
1960 	rq = blk_mq_get_request(q, bio, &data);
1961 	if (unlikely(!rq)) {
1962 		rq_qos_cleanup(q, bio);
1963 		if (bio->bi_opf & REQ_NOWAIT)
1964 			bio_wouldblock_error(bio);
1965 		return BLK_QC_T_NONE;
1966 	}
1967 
1968 	trace_block_getrq(q, bio, bio->bi_opf);
1969 
1970 	rq_qos_track(q, rq, bio);
1971 
1972 	cookie = request_to_qc_t(data.hctx, rq);
1973 
1974 	blk_mq_bio_to_request(rq, bio, nr_segs);
1975 
1976 	plug = current->plug;
1977 	if (unlikely(is_flush_fua)) {
1978 		/* bypass scheduler for flush rq */
1979 		blk_insert_flush(rq);
1980 		blk_mq_run_hw_queue(data.hctx, true);
1981 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1982 		/*
1983 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1984 		 * we know the driver uses bd->last in a smart fashion.
1985 		 */
1986 		unsigned int request_count = plug->rq_count;
1987 		struct request *last = NULL;
1988 
1989 		if (!request_count)
1990 			trace_block_plug(q);
1991 		else
1992 			last = list_entry_rq(plug->mq_list.prev);
1993 
1994 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1995 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1996 			blk_flush_plug_list(plug, false);
1997 			trace_block_plug(q);
1998 		}
1999 
2000 		blk_add_rq_to_plug(plug, rq);
2001 	} else if (plug && !blk_queue_nomerges(q)) {
2002 		/*
2003 		 * We do limited plugging. If the bio can be merged, do that.
2004 		 * Otherwise the existing request in the plug list will be
2005 		 * issued. So the plug list will have one request at most
2006 		 * The plug list might get flushed before this. If that happens,
2007 		 * the plug list is empty, and same_queue_rq is invalid.
2008 		 */
2009 		if (list_empty(&plug->mq_list))
2010 			same_queue_rq = NULL;
2011 		if (same_queue_rq) {
2012 			list_del_init(&same_queue_rq->queuelist);
2013 			plug->rq_count--;
2014 		}
2015 		blk_add_rq_to_plug(plug, rq);
2016 		trace_block_plug(q);
2017 
2018 		if (same_queue_rq) {
2019 			data.hctx = same_queue_rq->mq_hctx;
2020 			trace_block_unplug(q, 1, true);
2021 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2022 					&cookie);
2023 		}
2024 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2025 			!data.hctx->dispatch_busy)) {
2026 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2027 	} else {
2028 		blk_mq_sched_insert_request(rq, false, true, true);
2029 	}
2030 
2031 	return cookie;
2032 }
2033 
2034 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2035 		     unsigned int hctx_idx)
2036 {
2037 	struct page *page;
2038 
2039 	if (tags->rqs && set->ops->exit_request) {
2040 		int i;
2041 
2042 		for (i = 0; i < tags->nr_tags; i++) {
2043 			struct request *rq = tags->static_rqs[i];
2044 
2045 			if (!rq)
2046 				continue;
2047 			set->ops->exit_request(set, rq, hctx_idx);
2048 			tags->static_rqs[i] = NULL;
2049 		}
2050 	}
2051 
2052 	while (!list_empty(&tags->page_list)) {
2053 		page = list_first_entry(&tags->page_list, struct page, lru);
2054 		list_del_init(&page->lru);
2055 		/*
2056 		 * Remove kmemleak object previously allocated in
2057 		 * blk_mq_alloc_rqs().
2058 		 */
2059 		kmemleak_free(page_address(page));
2060 		__free_pages(page, page->private);
2061 	}
2062 }
2063 
2064 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2065 {
2066 	kfree(tags->rqs);
2067 	tags->rqs = NULL;
2068 	kfree(tags->static_rqs);
2069 	tags->static_rqs = NULL;
2070 
2071 	blk_mq_free_tags(tags);
2072 }
2073 
2074 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2075 					unsigned int hctx_idx,
2076 					unsigned int nr_tags,
2077 					unsigned int reserved_tags)
2078 {
2079 	struct blk_mq_tags *tags;
2080 	int node;
2081 
2082 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2083 	if (node == NUMA_NO_NODE)
2084 		node = set->numa_node;
2085 
2086 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2087 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2088 	if (!tags)
2089 		return NULL;
2090 
2091 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2092 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2093 				 node);
2094 	if (!tags->rqs) {
2095 		blk_mq_free_tags(tags);
2096 		return NULL;
2097 	}
2098 
2099 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2100 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2101 					node);
2102 	if (!tags->static_rqs) {
2103 		kfree(tags->rqs);
2104 		blk_mq_free_tags(tags);
2105 		return NULL;
2106 	}
2107 
2108 	return tags;
2109 }
2110 
2111 static size_t order_to_size(unsigned int order)
2112 {
2113 	return (size_t)PAGE_SIZE << order;
2114 }
2115 
2116 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117 			       unsigned int hctx_idx, int node)
2118 {
2119 	int ret;
2120 
2121 	if (set->ops->init_request) {
2122 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2123 		if (ret)
2124 			return ret;
2125 	}
2126 
2127 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2128 	return 0;
2129 }
2130 
2131 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2132 		     unsigned int hctx_idx, unsigned int depth)
2133 {
2134 	unsigned int i, j, entries_per_page, max_order = 4;
2135 	size_t rq_size, left;
2136 	int node;
2137 
2138 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2139 	if (node == NUMA_NO_NODE)
2140 		node = set->numa_node;
2141 
2142 	INIT_LIST_HEAD(&tags->page_list);
2143 
2144 	/*
2145 	 * rq_size is the size of the request plus driver payload, rounded
2146 	 * to the cacheline size
2147 	 */
2148 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2149 				cache_line_size());
2150 	left = rq_size * depth;
2151 
2152 	for (i = 0; i < depth; ) {
2153 		int this_order = max_order;
2154 		struct page *page;
2155 		int to_do;
2156 		void *p;
2157 
2158 		while (this_order && left < order_to_size(this_order - 1))
2159 			this_order--;
2160 
2161 		do {
2162 			page = alloc_pages_node(node,
2163 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2164 				this_order);
2165 			if (page)
2166 				break;
2167 			if (!this_order--)
2168 				break;
2169 			if (order_to_size(this_order) < rq_size)
2170 				break;
2171 		} while (1);
2172 
2173 		if (!page)
2174 			goto fail;
2175 
2176 		page->private = this_order;
2177 		list_add_tail(&page->lru, &tags->page_list);
2178 
2179 		p = page_address(page);
2180 		/*
2181 		 * Allow kmemleak to scan these pages as they contain pointers
2182 		 * to additional allocations like via ops->init_request().
2183 		 */
2184 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2185 		entries_per_page = order_to_size(this_order) / rq_size;
2186 		to_do = min(entries_per_page, depth - i);
2187 		left -= to_do * rq_size;
2188 		for (j = 0; j < to_do; j++) {
2189 			struct request *rq = p;
2190 
2191 			tags->static_rqs[i] = rq;
2192 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2193 				tags->static_rqs[i] = NULL;
2194 				goto fail;
2195 			}
2196 
2197 			p += rq_size;
2198 			i++;
2199 		}
2200 	}
2201 	return 0;
2202 
2203 fail:
2204 	blk_mq_free_rqs(set, tags, hctx_idx);
2205 	return -ENOMEM;
2206 }
2207 
2208 /*
2209  * 'cpu' is going away. splice any existing rq_list entries from this
2210  * software queue to the hw queue dispatch list, and ensure that it
2211  * gets run.
2212  */
2213 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2214 {
2215 	struct blk_mq_hw_ctx *hctx;
2216 	struct blk_mq_ctx *ctx;
2217 	LIST_HEAD(tmp);
2218 	enum hctx_type type;
2219 
2220 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2221 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2222 	type = hctx->type;
2223 
2224 	spin_lock(&ctx->lock);
2225 	if (!list_empty(&ctx->rq_lists[type])) {
2226 		list_splice_init(&ctx->rq_lists[type], &tmp);
2227 		blk_mq_hctx_clear_pending(hctx, ctx);
2228 	}
2229 	spin_unlock(&ctx->lock);
2230 
2231 	if (list_empty(&tmp))
2232 		return 0;
2233 
2234 	spin_lock(&hctx->lock);
2235 	list_splice_tail_init(&tmp, &hctx->dispatch);
2236 	spin_unlock(&hctx->lock);
2237 
2238 	blk_mq_run_hw_queue(hctx, true);
2239 	return 0;
2240 }
2241 
2242 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2243 {
2244 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2245 					    &hctx->cpuhp_dead);
2246 }
2247 
2248 /* hctx->ctxs will be freed in queue's release handler */
2249 static void blk_mq_exit_hctx(struct request_queue *q,
2250 		struct blk_mq_tag_set *set,
2251 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2252 {
2253 	if (blk_mq_hw_queue_mapped(hctx))
2254 		blk_mq_tag_idle(hctx);
2255 
2256 	if (set->ops->exit_request)
2257 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2258 
2259 	if (set->ops->exit_hctx)
2260 		set->ops->exit_hctx(hctx, hctx_idx);
2261 
2262 	blk_mq_remove_cpuhp(hctx);
2263 
2264 	spin_lock(&q->unused_hctx_lock);
2265 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2266 	spin_unlock(&q->unused_hctx_lock);
2267 }
2268 
2269 static void blk_mq_exit_hw_queues(struct request_queue *q,
2270 		struct blk_mq_tag_set *set, int nr_queue)
2271 {
2272 	struct blk_mq_hw_ctx *hctx;
2273 	unsigned int i;
2274 
2275 	queue_for_each_hw_ctx(q, hctx, i) {
2276 		if (i == nr_queue)
2277 			break;
2278 		blk_mq_debugfs_unregister_hctx(hctx);
2279 		blk_mq_exit_hctx(q, set, hctx, i);
2280 	}
2281 }
2282 
2283 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2284 {
2285 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2286 
2287 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2288 			   __alignof__(struct blk_mq_hw_ctx)) !=
2289 		     sizeof(struct blk_mq_hw_ctx));
2290 
2291 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2292 		hw_ctx_size += sizeof(struct srcu_struct);
2293 
2294 	return hw_ctx_size;
2295 }
2296 
2297 static int blk_mq_init_hctx(struct request_queue *q,
2298 		struct blk_mq_tag_set *set,
2299 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2300 {
2301 	hctx->queue_num = hctx_idx;
2302 
2303 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2304 
2305 	hctx->tags = set->tags[hctx_idx];
2306 
2307 	if (set->ops->init_hctx &&
2308 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2309 		goto unregister_cpu_notifier;
2310 
2311 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2312 				hctx->numa_node))
2313 		goto exit_hctx;
2314 	return 0;
2315 
2316  exit_hctx:
2317 	if (set->ops->exit_hctx)
2318 		set->ops->exit_hctx(hctx, hctx_idx);
2319  unregister_cpu_notifier:
2320 	blk_mq_remove_cpuhp(hctx);
2321 	return -1;
2322 }
2323 
2324 static struct blk_mq_hw_ctx *
2325 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2326 		int node)
2327 {
2328 	struct blk_mq_hw_ctx *hctx;
2329 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2330 
2331 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2332 	if (!hctx)
2333 		goto fail_alloc_hctx;
2334 
2335 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2336 		goto free_hctx;
2337 
2338 	atomic_set(&hctx->nr_active, 0);
2339 	if (node == NUMA_NO_NODE)
2340 		node = set->numa_node;
2341 	hctx->numa_node = node;
2342 
2343 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2344 	spin_lock_init(&hctx->lock);
2345 	INIT_LIST_HEAD(&hctx->dispatch);
2346 	hctx->queue = q;
2347 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2348 
2349 	INIT_LIST_HEAD(&hctx->hctx_list);
2350 
2351 	/*
2352 	 * Allocate space for all possible cpus to avoid allocation at
2353 	 * runtime
2354 	 */
2355 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2356 			gfp, node);
2357 	if (!hctx->ctxs)
2358 		goto free_cpumask;
2359 
2360 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2361 				gfp, node))
2362 		goto free_ctxs;
2363 	hctx->nr_ctx = 0;
2364 
2365 	spin_lock_init(&hctx->dispatch_wait_lock);
2366 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2367 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2368 
2369 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2370 			gfp);
2371 	if (!hctx->fq)
2372 		goto free_bitmap;
2373 
2374 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2375 		init_srcu_struct(hctx->srcu);
2376 	blk_mq_hctx_kobj_init(hctx);
2377 
2378 	return hctx;
2379 
2380  free_bitmap:
2381 	sbitmap_free(&hctx->ctx_map);
2382  free_ctxs:
2383 	kfree(hctx->ctxs);
2384  free_cpumask:
2385 	free_cpumask_var(hctx->cpumask);
2386  free_hctx:
2387 	kfree(hctx);
2388  fail_alloc_hctx:
2389 	return NULL;
2390 }
2391 
2392 static void blk_mq_init_cpu_queues(struct request_queue *q,
2393 				   unsigned int nr_hw_queues)
2394 {
2395 	struct blk_mq_tag_set *set = q->tag_set;
2396 	unsigned int i, j;
2397 
2398 	for_each_possible_cpu(i) {
2399 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2400 		struct blk_mq_hw_ctx *hctx;
2401 		int k;
2402 
2403 		__ctx->cpu = i;
2404 		spin_lock_init(&__ctx->lock);
2405 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2406 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2407 
2408 		__ctx->queue = q;
2409 
2410 		/*
2411 		 * Set local node, IFF we have more than one hw queue. If
2412 		 * not, we remain on the home node of the device
2413 		 */
2414 		for (j = 0; j < set->nr_maps; j++) {
2415 			hctx = blk_mq_map_queue_type(q, j, i);
2416 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2417 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2418 		}
2419 	}
2420 }
2421 
2422 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2423 {
2424 	int ret = 0;
2425 
2426 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2427 					set->queue_depth, set->reserved_tags);
2428 	if (!set->tags[hctx_idx])
2429 		return false;
2430 
2431 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2432 				set->queue_depth);
2433 	if (!ret)
2434 		return true;
2435 
2436 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2437 	set->tags[hctx_idx] = NULL;
2438 	return false;
2439 }
2440 
2441 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2442 					 unsigned int hctx_idx)
2443 {
2444 	if (set->tags && set->tags[hctx_idx]) {
2445 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2446 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2447 		set->tags[hctx_idx] = NULL;
2448 	}
2449 }
2450 
2451 static void blk_mq_map_swqueue(struct request_queue *q)
2452 {
2453 	unsigned int i, j, hctx_idx;
2454 	struct blk_mq_hw_ctx *hctx;
2455 	struct blk_mq_ctx *ctx;
2456 	struct blk_mq_tag_set *set = q->tag_set;
2457 
2458 	/*
2459 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2460 	 */
2461 	mutex_lock(&q->sysfs_lock);
2462 
2463 	queue_for_each_hw_ctx(q, hctx, i) {
2464 		cpumask_clear(hctx->cpumask);
2465 		hctx->nr_ctx = 0;
2466 		hctx->dispatch_from = NULL;
2467 	}
2468 
2469 	/*
2470 	 * Map software to hardware queues.
2471 	 *
2472 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2473 	 */
2474 	for_each_possible_cpu(i) {
2475 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2476 		/* unmapped hw queue can be remapped after CPU topo changed */
2477 		if (!set->tags[hctx_idx] &&
2478 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2479 			/*
2480 			 * If tags initialization fail for some hctx,
2481 			 * that hctx won't be brought online.  In this
2482 			 * case, remap the current ctx to hctx[0] which
2483 			 * is guaranteed to always have tags allocated
2484 			 */
2485 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2486 		}
2487 
2488 		ctx = per_cpu_ptr(q->queue_ctx, i);
2489 		for (j = 0; j < set->nr_maps; j++) {
2490 			if (!set->map[j].nr_queues) {
2491 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2492 						HCTX_TYPE_DEFAULT, i);
2493 				continue;
2494 			}
2495 
2496 			hctx = blk_mq_map_queue_type(q, j, i);
2497 			ctx->hctxs[j] = hctx;
2498 			/*
2499 			 * If the CPU is already set in the mask, then we've
2500 			 * mapped this one already. This can happen if
2501 			 * devices share queues across queue maps.
2502 			 */
2503 			if (cpumask_test_cpu(i, hctx->cpumask))
2504 				continue;
2505 
2506 			cpumask_set_cpu(i, hctx->cpumask);
2507 			hctx->type = j;
2508 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2509 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2510 
2511 			/*
2512 			 * If the nr_ctx type overflows, we have exceeded the
2513 			 * amount of sw queues we can support.
2514 			 */
2515 			BUG_ON(!hctx->nr_ctx);
2516 		}
2517 
2518 		for (; j < HCTX_MAX_TYPES; j++)
2519 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2520 					HCTX_TYPE_DEFAULT, i);
2521 	}
2522 
2523 	mutex_unlock(&q->sysfs_lock);
2524 
2525 	queue_for_each_hw_ctx(q, hctx, i) {
2526 		/*
2527 		 * If no software queues are mapped to this hardware queue,
2528 		 * disable it and free the request entries.
2529 		 */
2530 		if (!hctx->nr_ctx) {
2531 			/* Never unmap queue 0.  We need it as a
2532 			 * fallback in case of a new remap fails
2533 			 * allocation
2534 			 */
2535 			if (i && set->tags[i])
2536 				blk_mq_free_map_and_requests(set, i);
2537 
2538 			hctx->tags = NULL;
2539 			continue;
2540 		}
2541 
2542 		hctx->tags = set->tags[i];
2543 		WARN_ON(!hctx->tags);
2544 
2545 		/*
2546 		 * Set the map size to the number of mapped software queues.
2547 		 * This is more accurate and more efficient than looping
2548 		 * over all possibly mapped software queues.
2549 		 */
2550 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2551 
2552 		/*
2553 		 * Initialize batch roundrobin counts
2554 		 */
2555 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2556 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2557 	}
2558 }
2559 
2560 /*
2561  * Caller needs to ensure that we're either frozen/quiesced, or that
2562  * the queue isn't live yet.
2563  */
2564 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2565 {
2566 	struct blk_mq_hw_ctx *hctx;
2567 	int i;
2568 
2569 	queue_for_each_hw_ctx(q, hctx, i) {
2570 		if (shared)
2571 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2572 		else
2573 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2574 	}
2575 }
2576 
2577 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2578 					bool shared)
2579 {
2580 	struct request_queue *q;
2581 
2582 	lockdep_assert_held(&set->tag_list_lock);
2583 
2584 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2585 		blk_mq_freeze_queue(q);
2586 		queue_set_hctx_shared(q, shared);
2587 		blk_mq_unfreeze_queue(q);
2588 	}
2589 }
2590 
2591 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2592 {
2593 	struct blk_mq_tag_set *set = q->tag_set;
2594 
2595 	mutex_lock(&set->tag_list_lock);
2596 	list_del_rcu(&q->tag_set_list);
2597 	if (list_is_singular(&set->tag_list)) {
2598 		/* just transitioned to unshared */
2599 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2600 		/* update existing queue */
2601 		blk_mq_update_tag_set_depth(set, false);
2602 	}
2603 	mutex_unlock(&set->tag_list_lock);
2604 	INIT_LIST_HEAD(&q->tag_set_list);
2605 }
2606 
2607 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2608 				     struct request_queue *q)
2609 {
2610 	mutex_lock(&set->tag_list_lock);
2611 
2612 	/*
2613 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2614 	 */
2615 	if (!list_empty(&set->tag_list) &&
2616 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2617 		set->flags |= BLK_MQ_F_TAG_SHARED;
2618 		/* update existing queue */
2619 		blk_mq_update_tag_set_depth(set, true);
2620 	}
2621 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2622 		queue_set_hctx_shared(q, true);
2623 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2624 
2625 	mutex_unlock(&set->tag_list_lock);
2626 }
2627 
2628 /* All allocations will be freed in release handler of q->mq_kobj */
2629 static int blk_mq_alloc_ctxs(struct request_queue *q)
2630 {
2631 	struct blk_mq_ctxs *ctxs;
2632 	int cpu;
2633 
2634 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2635 	if (!ctxs)
2636 		return -ENOMEM;
2637 
2638 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2639 	if (!ctxs->queue_ctx)
2640 		goto fail;
2641 
2642 	for_each_possible_cpu(cpu) {
2643 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2644 		ctx->ctxs = ctxs;
2645 	}
2646 
2647 	q->mq_kobj = &ctxs->kobj;
2648 	q->queue_ctx = ctxs->queue_ctx;
2649 
2650 	return 0;
2651  fail:
2652 	kfree(ctxs);
2653 	return -ENOMEM;
2654 }
2655 
2656 /*
2657  * It is the actual release handler for mq, but we do it from
2658  * request queue's release handler for avoiding use-after-free
2659  * and headache because q->mq_kobj shouldn't have been introduced,
2660  * but we can't group ctx/kctx kobj without it.
2661  */
2662 void blk_mq_release(struct request_queue *q)
2663 {
2664 	struct blk_mq_hw_ctx *hctx, *next;
2665 	int i;
2666 
2667 	cancel_delayed_work_sync(&q->requeue_work);
2668 
2669 	queue_for_each_hw_ctx(q, hctx, i)
2670 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2671 
2672 	/* all hctx are in .unused_hctx_list now */
2673 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2674 		list_del_init(&hctx->hctx_list);
2675 		kobject_put(&hctx->kobj);
2676 	}
2677 
2678 	kfree(q->queue_hw_ctx);
2679 
2680 	/*
2681 	 * release .mq_kobj and sw queue's kobject now because
2682 	 * both share lifetime with request queue.
2683 	 */
2684 	blk_mq_sysfs_deinit(q);
2685 }
2686 
2687 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2688 {
2689 	struct request_queue *uninit_q, *q;
2690 
2691 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2692 	if (!uninit_q)
2693 		return ERR_PTR(-ENOMEM);
2694 
2695 	q = blk_mq_init_allocated_queue(set, uninit_q);
2696 	if (IS_ERR(q))
2697 		blk_cleanup_queue(uninit_q);
2698 
2699 	return q;
2700 }
2701 EXPORT_SYMBOL(blk_mq_init_queue);
2702 
2703 /*
2704  * Helper for setting up a queue with mq ops, given queue depth, and
2705  * the passed in mq ops flags.
2706  */
2707 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2708 					   const struct blk_mq_ops *ops,
2709 					   unsigned int queue_depth,
2710 					   unsigned int set_flags)
2711 {
2712 	struct request_queue *q;
2713 	int ret;
2714 
2715 	memset(set, 0, sizeof(*set));
2716 	set->ops = ops;
2717 	set->nr_hw_queues = 1;
2718 	set->nr_maps = 1;
2719 	set->queue_depth = queue_depth;
2720 	set->numa_node = NUMA_NO_NODE;
2721 	set->flags = set_flags;
2722 
2723 	ret = blk_mq_alloc_tag_set(set);
2724 	if (ret)
2725 		return ERR_PTR(ret);
2726 
2727 	q = blk_mq_init_queue(set);
2728 	if (IS_ERR(q)) {
2729 		blk_mq_free_tag_set(set);
2730 		return q;
2731 	}
2732 
2733 	return q;
2734 }
2735 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2736 
2737 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2738 		struct blk_mq_tag_set *set, struct request_queue *q,
2739 		int hctx_idx, int node)
2740 {
2741 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2742 
2743 	/* reuse dead hctx first */
2744 	spin_lock(&q->unused_hctx_lock);
2745 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2746 		if (tmp->numa_node == node) {
2747 			hctx = tmp;
2748 			break;
2749 		}
2750 	}
2751 	if (hctx)
2752 		list_del_init(&hctx->hctx_list);
2753 	spin_unlock(&q->unused_hctx_lock);
2754 
2755 	if (!hctx)
2756 		hctx = blk_mq_alloc_hctx(q, set, node);
2757 	if (!hctx)
2758 		goto fail;
2759 
2760 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2761 		goto free_hctx;
2762 
2763 	return hctx;
2764 
2765  free_hctx:
2766 	kobject_put(&hctx->kobj);
2767  fail:
2768 	return NULL;
2769 }
2770 
2771 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2772 						struct request_queue *q)
2773 {
2774 	int i, j, end;
2775 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2776 
2777 	/* protect against switching io scheduler  */
2778 	mutex_lock(&q->sysfs_lock);
2779 	for (i = 0; i < set->nr_hw_queues; i++) {
2780 		int node;
2781 		struct blk_mq_hw_ctx *hctx;
2782 
2783 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2784 		/*
2785 		 * If the hw queue has been mapped to another numa node,
2786 		 * we need to realloc the hctx. If allocation fails, fallback
2787 		 * to use the previous one.
2788 		 */
2789 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2790 			continue;
2791 
2792 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2793 		if (hctx) {
2794 			if (hctxs[i])
2795 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2796 			hctxs[i] = hctx;
2797 		} else {
2798 			if (hctxs[i])
2799 				pr_warn("Allocate new hctx on node %d fails,\
2800 						fallback to previous one on node %d\n",
2801 						node, hctxs[i]->numa_node);
2802 			else
2803 				break;
2804 		}
2805 	}
2806 	/*
2807 	 * Increasing nr_hw_queues fails. Free the newly allocated
2808 	 * hctxs and keep the previous q->nr_hw_queues.
2809 	 */
2810 	if (i != set->nr_hw_queues) {
2811 		j = q->nr_hw_queues;
2812 		end = i;
2813 	} else {
2814 		j = i;
2815 		end = q->nr_hw_queues;
2816 		q->nr_hw_queues = set->nr_hw_queues;
2817 	}
2818 
2819 	for (; j < end; j++) {
2820 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2821 
2822 		if (hctx) {
2823 			if (hctx->tags)
2824 				blk_mq_free_map_and_requests(set, j);
2825 			blk_mq_exit_hctx(q, set, hctx, j);
2826 			hctxs[j] = NULL;
2827 		}
2828 	}
2829 	mutex_unlock(&q->sysfs_lock);
2830 }
2831 
2832 /*
2833  * Maximum number of hardware queues we support. For single sets, we'll never
2834  * have more than the CPUs (software queues). For multiple sets, the tag_set
2835  * user may have set ->nr_hw_queues larger.
2836  */
2837 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2838 {
2839 	if (set->nr_maps == 1)
2840 		return nr_cpu_ids;
2841 
2842 	return max(set->nr_hw_queues, nr_cpu_ids);
2843 }
2844 
2845 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2846 						  struct request_queue *q)
2847 {
2848 	/* mark the queue as mq asap */
2849 	q->mq_ops = set->ops;
2850 
2851 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2852 					     blk_mq_poll_stats_bkt,
2853 					     BLK_MQ_POLL_STATS_BKTS, q);
2854 	if (!q->poll_cb)
2855 		goto err_exit;
2856 
2857 	if (blk_mq_alloc_ctxs(q))
2858 		goto err_poll;
2859 
2860 	/* init q->mq_kobj and sw queues' kobjects */
2861 	blk_mq_sysfs_init(q);
2862 
2863 	q->nr_queues = nr_hw_queues(set);
2864 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2865 						GFP_KERNEL, set->numa_node);
2866 	if (!q->queue_hw_ctx)
2867 		goto err_sys_init;
2868 
2869 	INIT_LIST_HEAD(&q->unused_hctx_list);
2870 	spin_lock_init(&q->unused_hctx_lock);
2871 
2872 	blk_mq_realloc_hw_ctxs(set, q);
2873 	if (!q->nr_hw_queues)
2874 		goto err_hctxs;
2875 
2876 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2877 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2878 
2879 	q->tag_set = set;
2880 
2881 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2882 	if (set->nr_maps > HCTX_TYPE_POLL &&
2883 	    set->map[HCTX_TYPE_POLL].nr_queues)
2884 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2885 
2886 	q->sg_reserved_size = INT_MAX;
2887 
2888 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2889 	INIT_LIST_HEAD(&q->requeue_list);
2890 	spin_lock_init(&q->requeue_lock);
2891 
2892 	blk_queue_make_request(q, blk_mq_make_request);
2893 
2894 	/*
2895 	 * Do this after blk_queue_make_request() overrides it...
2896 	 */
2897 	q->nr_requests = set->queue_depth;
2898 
2899 	/*
2900 	 * Default to classic polling
2901 	 */
2902 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2903 
2904 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2905 	blk_mq_add_queue_tag_set(set, q);
2906 	blk_mq_map_swqueue(q);
2907 
2908 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2909 		int ret;
2910 
2911 		ret = elevator_init_mq(q);
2912 		if (ret)
2913 			return ERR_PTR(ret);
2914 	}
2915 
2916 	return q;
2917 
2918 err_hctxs:
2919 	kfree(q->queue_hw_ctx);
2920 err_sys_init:
2921 	blk_mq_sysfs_deinit(q);
2922 err_poll:
2923 	blk_stat_free_callback(q->poll_cb);
2924 	q->poll_cb = NULL;
2925 err_exit:
2926 	q->mq_ops = NULL;
2927 	return ERR_PTR(-ENOMEM);
2928 }
2929 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2930 
2931 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2932 void blk_mq_exit_queue(struct request_queue *q)
2933 {
2934 	struct blk_mq_tag_set	*set = q->tag_set;
2935 
2936 	blk_mq_del_queue_tag_set(q);
2937 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2938 }
2939 
2940 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2941 {
2942 	int i;
2943 
2944 	for (i = 0; i < set->nr_hw_queues; i++)
2945 		if (!__blk_mq_alloc_rq_map(set, i))
2946 			goto out_unwind;
2947 
2948 	return 0;
2949 
2950 out_unwind:
2951 	while (--i >= 0)
2952 		blk_mq_free_rq_map(set->tags[i]);
2953 
2954 	return -ENOMEM;
2955 }
2956 
2957 /*
2958  * Allocate the request maps associated with this tag_set. Note that this
2959  * may reduce the depth asked for, if memory is tight. set->queue_depth
2960  * will be updated to reflect the allocated depth.
2961  */
2962 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2963 {
2964 	unsigned int depth;
2965 	int err;
2966 
2967 	depth = set->queue_depth;
2968 	do {
2969 		err = __blk_mq_alloc_rq_maps(set);
2970 		if (!err)
2971 			break;
2972 
2973 		set->queue_depth >>= 1;
2974 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2975 			err = -ENOMEM;
2976 			break;
2977 		}
2978 	} while (set->queue_depth);
2979 
2980 	if (!set->queue_depth || err) {
2981 		pr_err("blk-mq: failed to allocate request map\n");
2982 		return -ENOMEM;
2983 	}
2984 
2985 	if (depth != set->queue_depth)
2986 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2987 						depth, set->queue_depth);
2988 
2989 	return 0;
2990 }
2991 
2992 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2993 {
2994 	if (set->ops->map_queues && !is_kdump_kernel()) {
2995 		int i;
2996 
2997 		/*
2998 		 * transport .map_queues is usually done in the following
2999 		 * way:
3000 		 *
3001 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3002 		 * 	mask = get_cpu_mask(queue)
3003 		 * 	for_each_cpu(cpu, mask)
3004 		 * 		set->map[x].mq_map[cpu] = queue;
3005 		 * }
3006 		 *
3007 		 * When we need to remap, the table has to be cleared for
3008 		 * killing stale mapping since one CPU may not be mapped
3009 		 * to any hw queue.
3010 		 */
3011 		for (i = 0; i < set->nr_maps; i++)
3012 			blk_mq_clear_mq_map(&set->map[i]);
3013 
3014 		return set->ops->map_queues(set);
3015 	} else {
3016 		BUG_ON(set->nr_maps > 1);
3017 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3018 	}
3019 }
3020 
3021 /*
3022  * Alloc a tag set to be associated with one or more request queues.
3023  * May fail with EINVAL for various error conditions. May adjust the
3024  * requested depth down, if it's too large. In that case, the set
3025  * value will be stored in set->queue_depth.
3026  */
3027 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3028 {
3029 	int i, ret;
3030 
3031 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3032 
3033 	if (!set->nr_hw_queues)
3034 		return -EINVAL;
3035 	if (!set->queue_depth)
3036 		return -EINVAL;
3037 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3038 		return -EINVAL;
3039 
3040 	if (!set->ops->queue_rq)
3041 		return -EINVAL;
3042 
3043 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3044 		return -EINVAL;
3045 
3046 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3047 		pr_info("blk-mq: reduced tag depth to %u\n",
3048 			BLK_MQ_MAX_DEPTH);
3049 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3050 	}
3051 
3052 	if (!set->nr_maps)
3053 		set->nr_maps = 1;
3054 	else if (set->nr_maps > HCTX_MAX_TYPES)
3055 		return -EINVAL;
3056 
3057 	/*
3058 	 * If a crashdump is active, then we are potentially in a very
3059 	 * memory constrained environment. Limit us to 1 queue and
3060 	 * 64 tags to prevent using too much memory.
3061 	 */
3062 	if (is_kdump_kernel()) {
3063 		set->nr_hw_queues = 1;
3064 		set->nr_maps = 1;
3065 		set->queue_depth = min(64U, set->queue_depth);
3066 	}
3067 	/*
3068 	 * There is no use for more h/w queues than cpus if we just have
3069 	 * a single map
3070 	 */
3071 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3072 		set->nr_hw_queues = nr_cpu_ids;
3073 
3074 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3075 				 GFP_KERNEL, set->numa_node);
3076 	if (!set->tags)
3077 		return -ENOMEM;
3078 
3079 	ret = -ENOMEM;
3080 	for (i = 0; i < set->nr_maps; i++) {
3081 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3082 						  sizeof(set->map[i].mq_map[0]),
3083 						  GFP_KERNEL, set->numa_node);
3084 		if (!set->map[i].mq_map)
3085 			goto out_free_mq_map;
3086 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3087 	}
3088 
3089 	ret = blk_mq_update_queue_map(set);
3090 	if (ret)
3091 		goto out_free_mq_map;
3092 
3093 	ret = blk_mq_alloc_rq_maps(set);
3094 	if (ret)
3095 		goto out_free_mq_map;
3096 
3097 	mutex_init(&set->tag_list_lock);
3098 	INIT_LIST_HEAD(&set->tag_list);
3099 
3100 	return 0;
3101 
3102 out_free_mq_map:
3103 	for (i = 0; i < set->nr_maps; i++) {
3104 		kfree(set->map[i].mq_map);
3105 		set->map[i].mq_map = NULL;
3106 	}
3107 	kfree(set->tags);
3108 	set->tags = NULL;
3109 	return ret;
3110 }
3111 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3112 
3113 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3114 {
3115 	int i, j;
3116 
3117 	for (i = 0; i < nr_hw_queues(set); i++)
3118 		blk_mq_free_map_and_requests(set, i);
3119 
3120 	for (j = 0; j < set->nr_maps; j++) {
3121 		kfree(set->map[j].mq_map);
3122 		set->map[j].mq_map = NULL;
3123 	}
3124 
3125 	kfree(set->tags);
3126 	set->tags = NULL;
3127 }
3128 EXPORT_SYMBOL(blk_mq_free_tag_set);
3129 
3130 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3131 {
3132 	struct blk_mq_tag_set *set = q->tag_set;
3133 	struct blk_mq_hw_ctx *hctx;
3134 	int i, ret;
3135 
3136 	if (!set)
3137 		return -EINVAL;
3138 
3139 	if (q->nr_requests == nr)
3140 		return 0;
3141 
3142 	blk_mq_freeze_queue(q);
3143 	blk_mq_quiesce_queue(q);
3144 
3145 	ret = 0;
3146 	queue_for_each_hw_ctx(q, hctx, i) {
3147 		if (!hctx->tags)
3148 			continue;
3149 		/*
3150 		 * If we're using an MQ scheduler, just update the scheduler
3151 		 * queue depth. This is similar to what the old code would do.
3152 		 */
3153 		if (!hctx->sched_tags) {
3154 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3155 							false);
3156 		} else {
3157 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3158 							nr, true);
3159 		}
3160 		if (ret)
3161 			break;
3162 		if (q->elevator && q->elevator->type->ops.depth_updated)
3163 			q->elevator->type->ops.depth_updated(hctx);
3164 	}
3165 
3166 	if (!ret)
3167 		q->nr_requests = nr;
3168 
3169 	blk_mq_unquiesce_queue(q);
3170 	blk_mq_unfreeze_queue(q);
3171 
3172 	return ret;
3173 }
3174 
3175 /*
3176  * request_queue and elevator_type pair.
3177  * It is just used by __blk_mq_update_nr_hw_queues to cache
3178  * the elevator_type associated with a request_queue.
3179  */
3180 struct blk_mq_qe_pair {
3181 	struct list_head node;
3182 	struct request_queue *q;
3183 	struct elevator_type *type;
3184 };
3185 
3186 /*
3187  * Cache the elevator_type in qe pair list and switch the
3188  * io scheduler to 'none'
3189  */
3190 static bool blk_mq_elv_switch_none(struct list_head *head,
3191 		struct request_queue *q)
3192 {
3193 	struct blk_mq_qe_pair *qe;
3194 
3195 	if (!q->elevator)
3196 		return true;
3197 
3198 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3199 	if (!qe)
3200 		return false;
3201 
3202 	INIT_LIST_HEAD(&qe->node);
3203 	qe->q = q;
3204 	qe->type = q->elevator->type;
3205 	list_add(&qe->node, head);
3206 
3207 	mutex_lock(&q->sysfs_lock);
3208 	/*
3209 	 * After elevator_switch_mq, the previous elevator_queue will be
3210 	 * released by elevator_release. The reference of the io scheduler
3211 	 * module get by elevator_get will also be put. So we need to get
3212 	 * a reference of the io scheduler module here to prevent it to be
3213 	 * removed.
3214 	 */
3215 	__module_get(qe->type->elevator_owner);
3216 	elevator_switch_mq(q, NULL);
3217 	mutex_unlock(&q->sysfs_lock);
3218 
3219 	return true;
3220 }
3221 
3222 static void blk_mq_elv_switch_back(struct list_head *head,
3223 		struct request_queue *q)
3224 {
3225 	struct blk_mq_qe_pair *qe;
3226 	struct elevator_type *t = NULL;
3227 
3228 	list_for_each_entry(qe, head, node)
3229 		if (qe->q == q) {
3230 			t = qe->type;
3231 			break;
3232 		}
3233 
3234 	if (!t)
3235 		return;
3236 
3237 	list_del(&qe->node);
3238 	kfree(qe);
3239 
3240 	mutex_lock(&q->sysfs_lock);
3241 	elevator_switch_mq(q, t);
3242 	mutex_unlock(&q->sysfs_lock);
3243 }
3244 
3245 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3246 							int nr_hw_queues)
3247 {
3248 	struct request_queue *q;
3249 	LIST_HEAD(head);
3250 	int prev_nr_hw_queues;
3251 
3252 	lockdep_assert_held(&set->tag_list_lock);
3253 
3254 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3255 		nr_hw_queues = nr_cpu_ids;
3256 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3257 		return;
3258 
3259 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3260 		blk_mq_freeze_queue(q);
3261 	/*
3262 	 * Sync with blk_mq_queue_tag_busy_iter.
3263 	 */
3264 	synchronize_rcu();
3265 	/*
3266 	 * Switch IO scheduler to 'none', cleaning up the data associated
3267 	 * with the previous scheduler. We will switch back once we are done
3268 	 * updating the new sw to hw queue mappings.
3269 	 */
3270 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3271 		if (!blk_mq_elv_switch_none(&head, q))
3272 			goto switch_back;
3273 
3274 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3275 		blk_mq_debugfs_unregister_hctxs(q);
3276 		blk_mq_sysfs_unregister(q);
3277 	}
3278 
3279 	prev_nr_hw_queues = set->nr_hw_queues;
3280 	set->nr_hw_queues = nr_hw_queues;
3281 	blk_mq_update_queue_map(set);
3282 fallback:
3283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3284 		blk_mq_realloc_hw_ctxs(set, q);
3285 		if (q->nr_hw_queues != set->nr_hw_queues) {
3286 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3287 					nr_hw_queues, prev_nr_hw_queues);
3288 			set->nr_hw_queues = prev_nr_hw_queues;
3289 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3290 			goto fallback;
3291 		}
3292 		blk_mq_map_swqueue(q);
3293 	}
3294 
3295 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296 		blk_mq_sysfs_register(q);
3297 		blk_mq_debugfs_register_hctxs(q);
3298 	}
3299 
3300 switch_back:
3301 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3302 		blk_mq_elv_switch_back(&head, q);
3303 
3304 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3305 		blk_mq_unfreeze_queue(q);
3306 }
3307 
3308 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3309 {
3310 	mutex_lock(&set->tag_list_lock);
3311 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3312 	mutex_unlock(&set->tag_list_lock);
3313 }
3314 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3315 
3316 /* Enable polling stats and return whether they were already enabled. */
3317 static bool blk_poll_stats_enable(struct request_queue *q)
3318 {
3319 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3320 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3321 		return true;
3322 	blk_stat_add_callback(q, q->poll_cb);
3323 	return false;
3324 }
3325 
3326 static void blk_mq_poll_stats_start(struct request_queue *q)
3327 {
3328 	/*
3329 	 * We don't arm the callback if polling stats are not enabled or the
3330 	 * callback is already active.
3331 	 */
3332 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3333 	    blk_stat_is_active(q->poll_cb))
3334 		return;
3335 
3336 	blk_stat_activate_msecs(q->poll_cb, 100);
3337 }
3338 
3339 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3340 {
3341 	struct request_queue *q = cb->data;
3342 	int bucket;
3343 
3344 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3345 		if (cb->stat[bucket].nr_samples)
3346 			q->poll_stat[bucket] = cb->stat[bucket];
3347 	}
3348 }
3349 
3350 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3351 				       struct blk_mq_hw_ctx *hctx,
3352 				       struct request *rq)
3353 {
3354 	unsigned long ret = 0;
3355 	int bucket;
3356 
3357 	/*
3358 	 * If stats collection isn't on, don't sleep but turn it on for
3359 	 * future users
3360 	 */
3361 	if (!blk_poll_stats_enable(q))
3362 		return 0;
3363 
3364 	/*
3365 	 * As an optimistic guess, use half of the mean service time
3366 	 * for this type of request. We can (and should) make this smarter.
3367 	 * For instance, if the completion latencies are tight, we can
3368 	 * get closer than just half the mean. This is especially
3369 	 * important on devices where the completion latencies are longer
3370 	 * than ~10 usec. We do use the stats for the relevant IO size
3371 	 * if available which does lead to better estimates.
3372 	 */
3373 	bucket = blk_mq_poll_stats_bkt(rq);
3374 	if (bucket < 0)
3375 		return ret;
3376 
3377 	if (q->poll_stat[bucket].nr_samples)
3378 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3379 
3380 	return ret;
3381 }
3382 
3383 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3384 				     struct blk_mq_hw_ctx *hctx,
3385 				     struct request *rq)
3386 {
3387 	struct hrtimer_sleeper hs;
3388 	enum hrtimer_mode mode;
3389 	unsigned int nsecs;
3390 	ktime_t kt;
3391 
3392 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3393 		return false;
3394 
3395 	/*
3396 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3397 	 *
3398 	 *  0:	use half of prev avg
3399 	 * >0:	use this specific value
3400 	 */
3401 	if (q->poll_nsec > 0)
3402 		nsecs = q->poll_nsec;
3403 	else
3404 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3405 
3406 	if (!nsecs)
3407 		return false;
3408 
3409 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3410 
3411 	/*
3412 	 * This will be replaced with the stats tracking code, using
3413 	 * 'avg_completion_time / 2' as the pre-sleep target.
3414 	 */
3415 	kt = nsecs;
3416 
3417 	mode = HRTIMER_MODE_REL;
3418 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3419 	hrtimer_set_expires(&hs.timer, kt);
3420 
3421 	hrtimer_init_sleeper(&hs, current);
3422 	do {
3423 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3424 			break;
3425 		set_current_state(TASK_UNINTERRUPTIBLE);
3426 		hrtimer_start_expires(&hs.timer, mode);
3427 		if (hs.task)
3428 			io_schedule();
3429 		hrtimer_cancel(&hs.timer);
3430 		mode = HRTIMER_MODE_ABS;
3431 	} while (hs.task && !signal_pending(current));
3432 
3433 	__set_current_state(TASK_RUNNING);
3434 	destroy_hrtimer_on_stack(&hs.timer);
3435 	return true;
3436 }
3437 
3438 static bool blk_mq_poll_hybrid(struct request_queue *q,
3439 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3440 {
3441 	struct request *rq;
3442 
3443 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3444 		return false;
3445 
3446 	if (!blk_qc_t_is_internal(cookie))
3447 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3448 	else {
3449 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3450 		/*
3451 		 * With scheduling, if the request has completed, we'll
3452 		 * get a NULL return here, as we clear the sched tag when
3453 		 * that happens. The request still remains valid, like always,
3454 		 * so we should be safe with just the NULL check.
3455 		 */
3456 		if (!rq)
3457 			return false;
3458 	}
3459 
3460 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3461 }
3462 
3463 /**
3464  * blk_poll - poll for IO completions
3465  * @q:  the queue
3466  * @cookie: cookie passed back at IO submission time
3467  * @spin: whether to spin for completions
3468  *
3469  * Description:
3470  *    Poll for completions on the passed in queue. Returns number of
3471  *    completed entries found. If @spin is true, then blk_poll will continue
3472  *    looping until at least one completion is found, unless the task is
3473  *    otherwise marked running (or we need to reschedule).
3474  */
3475 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3476 {
3477 	struct blk_mq_hw_ctx *hctx;
3478 	long state;
3479 
3480 	if (!blk_qc_t_valid(cookie) ||
3481 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3482 		return 0;
3483 
3484 	if (current->plug)
3485 		blk_flush_plug_list(current->plug, false);
3486 
3487 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3488 
3489 	/*
3490 	 * If we sleep, have the caller restart the poll loop to reset
3491 	 * the state. Like for the other success return cases, the
3492 	 * caller is responsible for checking if the IO completed. If
3493 	 * the IO isn't complete, we'll get called again and will go
3494 	 * straight to the busy poll loop.
3495 	 */
3496 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3497 		return 1;
3498 
3499 	hctx->poll_considered++;
3500 
3501 	state = current->state;
3502 	do {
3503 		int ret;
3504 
3505 		hctx->poll_invoked++;
3506 
3507 		ret = q->mq_ops->poll(hctx);
3508 		if (ret > 0) {
3509 			hctx->poll_success++;
3510 			__set_current_state(TASK_RUNNING);
3511 			return ret;
3512 		}
3513 
3514 		if (signal_pending_state(state, current))
3515 			__set_current_state(TASK_RUNNING);
3516 
3517 		if (current->state == TASK_RUNNING)
3518 			return 1;
3519 		if (ret < 0 || !spin)
3520 			break;
3521 		cpu_relax();
3522 	} while (!need_resched());
3523 
3524 	__set_current_state(TASK_RUNNING);
3525 	return 0;
3526 }
3527 EXPORT_SYMBOL_GPL(blk_poll);
3528 
3529 unsigned int blk_mq_rq_cpu(struct request *rq)
3530 {
3531 	return rq->mq_ctx->cpu;
3532 }
3533 EXPORT_SYMBOL(blk_mq_rq_cpu);
3534 
3535 static int __init blk_mq_init(void)
3536 {
3537 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3538 				blk_mq_hctx_notify_dead);
3539 	return 0;
3540 }
3541 subsys_initcall(blk_mq_init);
3542