xref: /openbmc/linux/block/blk-mq.c (revision 0bc92e7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PREEMPT)
298 		rq->rq_flags |= RQF_PREEMPT;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    e->type->ops.limit_depth &&
370 		    !(data->flags & BLK_MQ_REQ_RESERVED))
371 			e->type->ops.limit_depth(data->cmd_flags, data);
372 	}
373 
374 retry:
375 	data->ctx = blk_mq_get_ctx(q);
376 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 	if (!e)
378 		blk_mq_tag_busy(data->hctx);
379 
380 	/*
381 	 * Waiting allocations only fail because of an inactive hctx.  In that
382 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 	 * should have migrated us to an online CPU by now.
384 	 */
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_NO_TAG) {
387 		if (data->flags & BLK_MQ_REQ_NOWAIT)
388 			return NULL;
389 
390 		/*
391 		 * Give up the CPU and sleep for a random short time to ensure
392 		 * that thread using a realtime scheduling class are migrated
393 		 * off the CPU, and thus off the hctx that is going away.
394 		 */
395 		msleep(3);
396 		goto retry;
397 	}
398 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data data = {
405 		.q		= q,
406 		.flags		= flags,
407 		.cmd_flags	= op,
408 	};
409 	struct request *rq;
410 	int ret;
411 
412 	ret = blk_queue_enter(q, flags);
413 	if (ret)
414 		return ERR_PTR(ret);
415 
416 	rq = __blk_mq_alloc_request(&data);
417 	if (!rq)
418 		goto out_queue_exit;
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 out_queue_exit:
424 	blk_queue_exit(q);
425 	return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428 
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 	struct blk_mq_alloc_data data = {
433 		.q		= q,
434 		.flags		= flags,
435 		.cmd_flags	= op,
436 	};
437 	u64 alloc_time_ns = 0;
438 	unsigned int cpu;
439 	unsigned int tag;
440 	int ret;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	ret = -EXDEV;
467 	data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(data.hctx))
469 		goto out_queue_exit;
470 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 	data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	if (!q->elevator)
474 		blk_mq_tag_busy(data.hctx);
475 
476 	ret = -EWOULDBLOCK;
477 	tag = blk_mq_get_tag(&data);
478 	if (tag == BLK_MQ_NO_TAG)
479 		goto out_queue_exit;
480 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481 
482 out_queue_exit:
483 	blk_queue_exit(q);
484 	return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487 
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 	const int sched_tag = rq->internal_tag;
494 
495 	blk_crypto_free_request(rq);
496 	blk_pm_mark_last_busy(rq);
497 	rq->mq_hctx = NULL;
498 	if (rq->tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 	if (sched_tag != BLK_MQ_NO_TAG)
501 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 	blk_mq_sched_restart(hctx);
503 	blk_queue_exit(q);
504 }
505 
506 void blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct elevator_queue *e = q->elevator;
510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512 
513 	if (rq->rq_flags & RQF_ELVPRIV) {
514 		if (e && e->type->ops.finish_request)
515 			e->type->ops.finish_request(rq);
516 		if (rq->elv.icq) {
517 			put_io_context(rq->elv.icq->ioc);
518 			rq->elv.icq = NULL;
519 		}
520 	}
521 
522 	ctx->rq_completed[rq_is_sync(rq)]++;
523 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 		__blk_mq_dec_active_requests(hctx);
525 
526 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 		laptop_io_completion(q->backing_dev_info);
528 
529 	rq_qos_done(q, rq);
530 
531 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 	if (refcount_dec_and_test(&rq->ref))
533 		__blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536 
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 	u64 now = 0;
540 
541 	if (blk_mq_need_time_stamp(rq))
542 		now = ktime_get_ns();
543 
544 	if (rq->rq_flags & RQF_STATS) {
545 		blk_mq_poll_stats_start(rq->q);
546 		blk_stat_add(rq, now);
547 	}
548 
549 	blk_mq_sched_completed_request(rq, now);
550 
551 	blk_account_io_done(rq, now);
552 
553 	if (rq->end_io) {
554 		rq_qos_done(rq->q, rq);
555 		rq->end_io(rq, error);
556 	} else {
557 		blk_mq_free_request(rq);
558 	}
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561 
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 		BUG();
566 	__blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569 
570 /*
571  * Softirq action handler - move entries to local list and loop over them
572  * while passing them to the queue registered handler.
573  */
574 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
575 {
576 	struct list_head *cpu_list, local_list;
577 
578 	local_irq_disable();
579 	cpu_list = this_cpu_ptr(&blk_cpu_done);
580 	list_replace_init(cpu_list, &local_list);
581 	local_irq_enable();
582 
583 	while (!list_empty(&local_list)) {
584 		struct request *rq;
585 
586 		rq = list_entry(local_list.next, struct request, ipi_list);
587 		list_del_init(&rq->ipi_list);
588 		rq->q->mq_ops->complete(rq);
589 	}
590 }
591 
592 static void blk_mq_trigger_softirq(struct request *rq)
593 {
594 	struct list_head *list;
595 	unsigned long flags;
596 
597 	local_irq_save(flags);
598 	list = this_cpu_ptr(&blk_cpu_done);
599 	list_add_tail(&rq->ipi_list, list);
600 
601 	/*
602 	 * If the list only contains our just added request, signal a raise of
603 	 * the softirq.  If there are already entries there, someone already
604 	 * raised the irq but it hasn't run yet.
605 	 */
606 	if (list->next == &rq->ipi_list)
607 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
608 	local_irq_restore(flags);
609 }
610 
611 static int blk_softirq_cpu_dead(unsigned int cpu)
612 {
613 	/*
614 	 * If a CPU goes away, splice its entries to the current CPU
615 	 * and trigger a run of the softirq
616 	 */
617 	local_irq_disable();
618 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
619 			 this_cpu_ptr(&blk_cpu_done));
620 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
621 	local_irq_enable();
622 
623 	return 0;
624 }
625 
626 
627 static void __blk_mq_complete_request_remote(void *data)
628 {
629 	struct request *rq = data;
630 
631 	/*
632 	 * For most of single queue controllers, there is only one irq vector
633 	 * for handling I/O completion, and the only irq's affinity is set
634 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
635 	 * is handled on one specific CPU.
636 	 *
637 	 * So complete I/O requests in softirq context in case of single queue
638 	 * devices to avoid degrading I/O performance due to irqsoff latency.
639 	 */
640 	if (rq->q->nr_hw_queues == 1)
641 		blk_mq_trigger_softirq(rq);
642 	else
643 		rq->q->mq_ops->complete(rq);
644 }
645 
646 static inline bool blk_mq_complete_need_ipi(struct request *rq)
647 {
648 	int cpu = raw_smp_processor_id();
649 
650 	if (!IS_ENABLED(CONFIG_SMP) ||
651 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
652 		return false;
653 	/*
654 	 * With force threaded interrupts enabled, raising softirq from an SMP
655 	 * function call will always result in waking the ksoftirqd thread.
656 	 * This is probably worse than completing the request on a different
657 	 * cache domain.
658 	 */
659 	if (force_irqthreads)
660 		return false;
661 
662 	/* same CPU or cache domain?  Complete locally */
663 	if (cpu == rq->mq_ctx->cpu ||
664 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
665 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
666 		return false;
667 
668 	/* don't try to IPI to an offline CPU */
669 	return cpu_online(rq->mq_ctx->cpu);
670 }
671 
672 bool blk_mq_complete_request_remote(struct request *rq)
673 {
674 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
675 
676 	/*
677 	 * For a polled request, always complete locallly, it's pointless
678 	 * to redirect the completion.
679 	 */
680 	if (rq->cmd_flags & REQ_HIPRI)
681 		return false;
682 
683 	if (blk_mq_complete_need_ipi(rq)) {
684 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
685 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
686 	} else {
687 		if (rq->q->nr_hw_queues > 1)
688 			return false;
689 		blk_mq_trigger_softirq(rq);
690 	}
691 
692 	return true;
693 }
694 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
695 
696 /**
697  * blk_mq_complete_request - end I/O on a request
698  * @rq:		the request being processed
699  *
700  * Description:
701  *	Complete a request by scheduling the ->complete_rq operation.
702  **/
703 void blk_mq_complete_request(struct request *rq)
704 {
705 	if (!blk_mq_complete_request_remote(rq))
706 		rq->q->mq_ops->complete(rq);
707 }
708 EXPORT_SYMBOL(blk_mq_complete_request);
709 
710 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
711 	__releases(hctx->srcu)
712 {
713 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
714 		rcu_read_unlock();
715 	else
716 		srcu_read_unlock(hctx->srcu, srcu_idx);
717 }
718 
719 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
720 	__acquires(hctx->srcu)
721 {
722 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
723 		/* shut up gcc false positive */
724 		*srcu_idx = 0;
725 		rcu_read_lock();
726 	} else
727 		*srcu_idx = srcu_read_lock(hctx->srcu);
728 }
729 
730 /**
731  * blk_mq_start_request - Start processing a request
732  * @rq: Pointer to request to be started
733  *
734  * Function used by device drivers to notify the block layer that a request
735  * is going to be processed now, so blk layer can do proper initializations
736  * such as starting the timeout timer.
737  */
738 void blk_mq_start_request(struct request *rq)
739 {
740 	struct request_queue *q = rq->q;
741 
742 	trace_block_rq_issue(rq);
743 
744 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
745 		rq->io_start_time_ns = ktime_get_ns();
746 		rq->stats_sectors = blk_rq_sectors(rq);
747 		rq->rq_flags |= RQF_STATS;
748 		rq_qos_issue(q, rq);
749 	}
750 
751 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
752 
753 	blk_add_timer(rq);
754 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
755 
756 #ifdef CONFIG_BLK_DEV_INTEGRITY
757 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
758 		q->integrity.profile->prepare_fn(rq);
759 #endif
760 }
761 EXPORT_SYMBOL(blk_mq_start_request);
762 
763 static void __blk_mq_requeue_request(struct request *rq)
764 {
765 	struct request_queue *q = rq->q;
766 
767 	blk_mq_put_driver_tag(rq);
768 
769 	trace_block_rq_requeue(rq);
770 	rq_qos_requeue(q, rq);
771 
772 	if (blk_mq_request_started(rq)) {
773 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
774 		rq->rq_flags &= ~RQF_TIMED_OUT;
775 	}
776 }
777 
778 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
779 {
780 	__blk_mq_requeue_request(rq);
781 
782 	/* this request will be re-inserted to io scheduler queue */
783 	blk_mq_sched_requeue_request(rq);
784 
785 	BUG_ON(!list_empty(&rq->queuelist));
786 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
787 }
788 EXPORT_SYMBOL(blk_mq_requeue_request);
789 
790 static void blk_mq_requeue_work(struct work_struct *work)
791 {
792 	struct request_queue *q =
793 		container_of(work, struct request_queue, requeue_work.work);
794 	LIST_HEAD(rq_list);
795 	struct request *rq, *next;
796 
797 	spin_lock_irq(&q->requeue_lock);
798 	list_splice_init(&q->requeue_list, &rq_list);
799 	spin_unlock_irq(&q->requeue_lock);
800 
801 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
802 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
803 			continue;
804 
805 		rq->rq_flags &= ~RQF_SOFTBARRIER;
806 		list_del_init(&rq->queuelist);
807 		/*
808 		 * If RQF_DONTPREP, rq has contained some driver specific
809 		 * data, so insert it to hctx dispatch list to avoid any
810 		 * merge.
811 		 */
812 		if (rq->rq_flags & RQF_DONTPREP)
813 			blk_mq_request_bypass_insert(rq, false, false);
814 		else
815 			blk_mq_sched_insert_request(rq, true, false, false);
816 	}
817 
818 	while (!list_empty(&rq_list)) {
819 		rq = list_entry(rq_list.next, struct request, queuelist);
820 		list_del_init(&rq->queuelist);
821 		blk_mq_sched_insert_request(rq, false, false, false);
822 	}
823 
824 	blk_mq_run_hw_queues(q, false);
825 }
826 
827 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
828 				bool kick_requeue_list)
829 {
830 	struct request_queue *q = rq->q;
831 	unsigned long flags;
832 
833 	/*
834 	 * We abuse this flag that is otherwise used by the I/O scheduler to
835 	 * request head insertion from the workqueue.
836 	 */
837 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
838 
839 	spin_lock_irqsave(&q->requeue_lock, flags);
840 	if (at_head) {
841 		rq->rq_flags |= RQF_SOFTBARRIER;
842 		list_add(&rq->queuelist, &q->requeue_list);
843 	} else {
844 		list_add_tail(&rq->queuelist, &q->requeue_list);
845 	}
846 	spin_unlock_irqrestore(&q->requeue_lock, flags);
847 
848 	if (kick_requeue_list)
849 		blk_mq_kick_requeue_list(q);
850 }
851 
852 void blk_mq_kick_requeue_list(struct request_queue *q)
853 {
854 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
855 }
856 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
857 
858 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
859 				    unsigned long msecs)
860 {
861 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
862 				    msecs_to_jiffies(msecs));
863 }
864 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
865 
866 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
867 {
868 	if (tag < tags->nr_tags) {
869 		prefetch(tags->rqs[tag]);
870 		return tags->rqs[tag];
871 	}
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(blk_mq_tag_to_rq);
876 
877 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
878 			       void *priv, bool reserved)
879 {
880 	/*
881 	 * If we find a request that isn't idle and the queue matches,
882 	 * we know the queue is busy. Return false to stop the iteration.
883 	 */
884 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
885 		bool *busy = priv;
886 
887 		*busy = true;
888 		return false;
889 	}
890 
891 	return true;
892 }
893 
894 bool blk_mq_queue_inflight(struct request_queue *q)
895 {
896 	bool busy = false;
897 
898 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
899 	return busy;
900 }
901 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
902 
903 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
904 {
905 	req->rq_flags |= RQF_TIMED_OUT;
906 	if (req->q->mq_ops->timeout) {
907 		enum blk_eh_timer_return ret;
908 
909 		ret = req->q->mq_ops->timeout(req, reserved);
910 		if (ret == BLK_EH_DONE)
911 			return;
912 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
913 	}
914 
915 	blk_add_timer(req);
916 }
917 
918 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
919 {
920 	unsigned long deadline;
921 
922 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
923 		return false;
924 	if (rq->rq_flags & RQF_TIMED_OUT)
925 		return false;
926 
927 	deadline = READ_ONCE(rq->deadline);
928 	if (time_after_eq(jiffies, deadline))
929 		return true;
930 
931 	if (*next == 0)
932 		*next = deadline;
933 	else if (time_after(*next, deadline))
934 		*next = deadline;
935 	return false;
936 }
937 
938 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
939 		struct request *rq, void *priv, bool reserved)
940 {
941 	unsigned long *next = priv;
942 
943 	/*
944 	 * Just do a quick check if it is expired before locking the request in
945 	 * so we're not unnecessarilly synchronizing across CPUs.
946 	 */
947 	if (!blk_mq_req_expired(rq, next))
948 		return true;
949 
950 	/*
951 	 * We have reason to believe the request may be expired. Take a
952 	 * reference on the request to lock this request lifetime into its
953 	 * currently allocated context to prevent it from being reallocated in
954 	 * the event the completion by-passes this timeout handler.
955 	 *
956 	 * If the reference was already released, then the driver beat the
957 	 * timeout handler to posting a natural completion.
958 	 */
959 	if (!refcount_inc_not_zero(&rq->ref))
960 		return true;
961 
962 	/*
963 	 * The request is now locked and cannot be reallocated underneath the
964 	 * timeout handler's processing. Re-verify this exact request is truly
965 	 * expired; if it is not expired, then the request was completed and
966 	 * reallocated as a new request.
967 	 */
968 	if (blk_mq_req_expired(rq, next))
969 		blk_mq_rq_timed_out(rq, reserved);
970 
971 	if (is_flush_rq(rq, hctx))
972 		rq->end_io(rq, 0);
973 	else if (refcount_dec_and_test(&rq->ref))
974 		__blk_mq_free_request(rq);
975 
976 	return true;
977 }
978 
979 static void blk_mq_timeout_work(struct work_struct *work)
980 {
981 	struct request_queue *q =
982 		container_of(work, struct request_queue, timeout_work);
983 	unsigned long next = 0;
984 	struct blk_mq_hw_ctx *hctx;
985 	int i;
986 
987 	/* A deadlock might occur if a request is stuck requiring a
988 	 * timeout at the same time a queue freeze is waiting
989 	 * completion, since the timeout code would not be able to
990 	 * acquire the queue reference here.
991 	 *
992 	 * That's why we don't use blk_queue_enter here; instead, we use
993 	 * percpu_ref_tryget directly, because we need to be able to
994 	 * obtain a reference even in the short window between the queue
995 	 * starting to freeze, by dropping the first reference in
996 	 * blk_freeze_queue_start, and the moment the last request is
997 	 * consumed, marked by the instant q_usage_counter reaches
998 	 * zero.
999 	 */
1000 	if (!percpu_ref_tryget(&q->q_usage_counter))
1001 		return;
1002 
1003 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1004 
1005 	if (next != 0) {
1006 		mod_timer(&q->timeout, next);
1007 	} else {
1008 		/*
1009 		 * Request timeouts are handled as a forward rolling timer. If
1010 		 * we end up here it means that no requests are pending and
1011 		 * also that no request has been pending for a while. Mark
1012 		 * each hctx as idle.
1013 		 */
1014 		queue_for_each_hw_ctx(q, hctx, i) {
1015 			/* the hctx may be unmapped, so check it here */
1016 			if (blk_mq_hw_queue_mapped(hctx))
1017 				blk_mq_tag_idle(hctx);
1018 		}
1019 	}
1020 	blk_queue_exit(q);
1021 }
1022 
1023 struct flush_busy_ctx_data {
1024 	struct blk_mq_hw_ctx *hctx;
1025 	struct list_head *list;
1026 };
1027 
1028 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1029 {
1030 	struct flush_busy_ctx_data *flush_data = data;
1031 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1032 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 	enum hctx_type type = hctx->type;
1034 
1035 	spin_lock(&ctx->lock);
1036 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1037 	sbitmap_clear_bit(sb, bitnr);
1038 	spin_unlock(&ctx->lock);
1039 	return true;
1040 }
1041 
1042 /*
1043  * Process software queues that have been marked busy, splicing them
1044  * to the for-dispatch
1045  */
1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1047 {
1048 	struct flush_busy_ctx_data data = {
1049 		.hctx = hctx,
1050 		.list = list,
1051 	};
1052 
1053 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1054 }
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1056 
1057 struct dispatch_rq_data {
1058 	struct blk_mq_hw_ctx *hctx;
1059 	struct request *rq;
1060 };
1061 
1062 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1063 		void *data)
1064 {
1065 	struct dispatch_rq_data *dispatch_data = data;
1066 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1067 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1068 	enum hctx_type type = hctx->type;
1069 
1070 	spin_lock(&ctx->lock);
1071 	if (!list_empty(&ctx->rq_lists[type])) {
1072 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1073 		list_del_init(&dispatch_data->rq->queuelist);
1074 		if (list_empty(&ctx->rq_lists[type]))
1075 			sbitmap_clear_bit(sb, bitnr);
1076 	}
1077 	spin_unlock(&ctx->lock);
1078 
1079 	return !dispatch_data->rq;
1080 }
1081 
1082 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1083 					struct blk_mq_ctx *start)
1084 {
1085 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1086 	struct dispatch_rq_data data = {
1087 		.hctx = hctx,
1088 		.rq   = NULL,
1089 	};
1090 
1091 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1092 			       dispatch_rq_from_ctx, &data);
1093 
1094 	return data.rq;
1095 }
1096 
1097 static inline unsigned int queued_to_index(unsigned int queued)
1098 {
1099 	if (!queued)
1100 		return 0;
1101 
1102 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1103 }
1104 
1105 static bool __blk_mq_get_driver_tag(struct request *rq)
1106 {
1107 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1108 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1109 	int tag;
1110 
1111 	blk_mq_tag_busy(rq->mq_hctx);
1112 
1113 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114 		bt = rq->mq_hctx->tags->breserved_tags;
1115 		tag_offset = 0;
1116 	} else {
1117 		if (!hctx_may_queue(rq->mq_hctx, bt))
1118 			return false;
1119 	}
1120 
1121 	tag = __sbitmap_queue_get(bt);
1122 	if (tag == BLK_MQ_NO_TAG)
1123 		return false;
1124 
1125 	rq->tag = tag + tag_offset;
1126 	return true;
1127 }
1128 
1129 static bool blk_mq_get_driver_tag(struct request *rq)
1130 {
1131 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1132 
1133 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1134 		return false;
1135 
1136 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1137 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1138 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1139 		__blk_mq_inc_active_requests(hctx);
1140 	}
1141 	hctx->tags->rqs[rq->tag] = rq;
1142 	return true;
1143 }
1144 
1145 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1146 				int flags, void *key)
1147 {
1148 	struct blk_mq_hw_ctx *hctx;
1149 
1150 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1151 
1152 	spin_lock(&hctx->dispatch_wait_lock);
1153 	if (!list_empty(&wait->entry)) {
1154 		struct sbitmap_queue *sbq;
1155 
1156 		list_del_init(&wait->entry);
1157 		sbq = hctx->tags->bitmap_tags;
1158 		atomic_dec(&sbq->ws_active);
1159 	}
1160 	spin_unlock(&hctx->dispatch_wait_lock);
1161 
1162 	blk_mq_run_hw_queue(hctx, true);
1163 	return 1;
1164 }
1165 
1166 /*
1167  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169  * restart. For both cases, take care to check the condition again after
1170  * marking us as waiting.
1171  */
1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1173 				 struct request *rq)
1174 {
1175 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1176 	struct wait_queue_head *wq;
1177 	wait_queue_entry_t *wait;
1178 	bool ret;
1179 
1180 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1181 		blk_mq_sched_mark_restart_hctx(hctx);
1182 
1183 		/*
1184 		 * It's possible that a tag was freed in the window between the
1185 		 * allocation failure and adding the hardware queue to the wait
1186 		 * queue.
1187 		 *
1188 		 * Don't clear RESTART here, someone else could have set it.
1189 		 * At most this will cost an extra queue run.
1190 		 */
1191 		return blk_mq_get_driver_tag(rq);
1192 	}
1193 
1194 	wait = &hctx->dispatch_wait;
1195 	if (!list_empty_careful(&wait->entry))
1196 		return false;
1197 
1198 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1199 
1200 	spin_lock_irq(&wq->lock);
1201 	spin_lock(&hctx->dispatch_wait_lock);
1202 	if (!list_empty(&wait->entry)) {
1203 		spin_unlock(&hctx->dispatch_wait_lock);
1204 		spin_unlock_irq(&wq->lock);
1205 		return false;
1206 	}
1207 
1208 	atomic_inc(&sbq->ws_active);
1209 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1210 	__add_wait_queue(wq, wait);
1211 
1212 	/*
1213 	 * It's possible that a tag was freed in the window between the
1214 	 * allocation failure and adding the hardware queue to the wait
1215 	 * queue.
1216 	 */
1217 	ret = blk_mq_get_driver_tag(rq);
1218 	if (!ret) {
1219 		spin_unlock(&hctx->dispatch_wait_lock);
1220 		spin_unlock_irq(&wq->lock);
1221 		return false;
1222 	}
1223 
1224 	/*
1225 	 * We got a tag, remove ourselves from the wait queue to ensure
1226 	 * someone else gets the wakeup.
1227 	 */
1228 	list_del_init(&wait->entry);
1229 	atomic_dec(&sbq->ws_active);
1230 	spin_unlock(&hctx->dispatch_wait_lock);
1231 	spin_unlock_irq(&wq->lock);
1232 
1233 	return true;
1234 }
1235 
1236 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1237 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1238 /*
1239  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1240  * - EWMA is one simple way to compute running average value
1241  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1242  * - take 4 as factor for avoiding to get too small(0) result, and this
1243  *   factor doesn't matter because EWMA decreases exponentially
1244  */
1245 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1246 {
1247 	unsigned int ewma;
1248 
1249 	if (hctx->queue->elevator)
1250 		return;
1251 
1252 	ewma = hctx->dispatch_busy;
1253 
1254 	if (!ewma && !busy)
1255 		return;
1256 
1257 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1258 	if (busy)
1259 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1260 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1261 
1262 	hctx->dispatch_busy = ewma;
1263 }
1264 
1265 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1266 
1267 static void blk_mq_handle_dev_resource(struct request *rq,
1268 				       struct list_head *list)
1269 {
1270 	struct request *next =
1271 		list_first_entry_or_null(list, struct request, queuelist);
1272 
1273 	/*
1274 	 * If an I/O scheduler has been configured and we got a driver tag for
1275 	 * the next request already, free it.
1276 	 */
1277 	if (next)
1278 		blk_mq_put_driver_tag(next);
1279 
1280 	list_add(&rq->queuelist, list);
1281 	__blk_mq_requeue_request(rq);
1282 }
1283 
1284 static void blk_mq_handle_zone_resource(struct request *rq,
1285 					struct list_head *zone_list)
1286 {
1287 	/*
1288 	 * If we end up here it is because we cannot dispatch a request to a
1289 	 * specific zone due to LLD level zone-write locking or other zone
1290 	 * related resource not being available. In this case, set the request
1291 	 * aside in zone_list for retrying it later.
1292 	 */
1293 	list_add(&rq->queuelist, zone_list);
1294 	__blk_mq_requeue_request(rq);
1295 }
1296 
1297 enum prep_dispatch {
1298 	PREP_DISPATCH_OK,
1299 	PREP_DISPATCH_NO_TAG,
1300 	PREP_DISPATCH_NO_BUDGET,
1301 };
1302 
1303 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1304 						  bool need_budget)
1305 {
1306 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1307 
1308 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1309 		blk_mq_put_driver_tag(rq);
1310 		return PREP_DISPATCH_NO_BUDGET;
1311 	}
1312 
1313 	if (!blk_mq_get_driver_tag(rq)) {
1314 		/*
1315 		 * The initial allocation attempt failed, so we need to
1316 		 * rerun the hardware queue when a tag is freed. The
1317 		 * waitqueue takes care of that. If the queue is run
1318 		 * before we add this entry back on the dispatch list,
1319 		 * we'll re-run it below.
1320 		 */
1321 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1322 			/*
1323 			 * All budgets not got from this function will be put
1324 			 * together during handling partial dispatch
1325 			 */
1326 			if (need_budget)
1327 				blk_mq_put_dispatch_budget(rq->q);
1328 			return PREP_DISPATCH_NO_TAG;
1329 		}
1330 	}
1331 
1332 	return PREP_DISPATCH_OK;
1333 }
1334 
1335 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1336 static void blk_mq_release_budgets(struct request_queue *q,
1337 		unsigned int nr_budgets)
1338 {
1339 	int i;
1340 
1341 	for (i = 0; i < nr_budgets; i++)
1342 		blk_mq_put_dispatch_budget(q);
1343 }
1344 
1345 /*
1346  * Returns true if we did some work AND can potentially do more.
1347  */
1348 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1349 			     unsigned int nr_budgets)
1350 {
1351 	enum prep_dispatch prep;
1352 	struct request_queue *q = hctx->queue;
1353 	struct request *rq, *nxt;
1354 	int errors, queued;
1355 	blk_status_t ret = BLK_STS_OK;
1356 	LIST_HEAD(zone_list);
1357 
1358 	if (list_empty(list))
1359 		return false;
1360 
1361 	/*
1362 	 * Now process all the entries, sending them to the driver.
1363 	 */
1364 	errors = queued = 0;
1365 	do {
1366 		struct blk_mq_queue_data bd;
1367 
1368 		rq = list_first_entry(list, struct request, queuelist);
1369 
1370 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1371 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1372 		if (prep != PREP_DISPATCH_OK)
1373 			break;
1374 
1375 		list_del_init(&rq->queuelist);
1376 
1377 		bd.rq = rq;
1378 
1379 		/*
1380 		 * Flag last if we have no more requests, or if we have more
1381 		 * but can't assign a driver tag to it.
1382 		 */
1383 		if (list_empty(list))
1384 			bd.last = true;
1385 		else {
1386 			nxt = list_first_entry(list, struct request, queuelist);
1387 			bd.last = !blk_mq_get_driver_tag(nxt);
1388 		}
1389 
1390 		/*
1391 		 * once the request is queued to lld, no need to cover the
1392 		 * budget any more
1393 		 */
1394 		if (nr_budgets)
1395 			nr_budgets--;
1396 		ret = q->mq_ops->queue_rq(hctx, &bd);
1397 		switch (ret) {
1398 		case BLK_STS_OK:
1399 			queued++;
1400 			break;
1401 		case BLK_STS_RESOURCE:
1402 		case BLK_STS_DEV_RESOURCE:
1403 			blk_mq_handle_dev_resource(rq, list);
1404 			goto out;
1405 		case BLK_STS_ZONE_RESOURCE:
1406 			/*
1407 			 * Move the request to zone_list and keep going through
1408 			 * the dispatch list to find more requests the drive can
1409 			 * accept.
1410 			 */
1411 			blk_mq_handle_zone_resource(rq, &zone_list);
1412 			break;
1413 		default:
1414 			errors++;
1415 			blk_mq_end_request(rq, ret);
1416 		}
1417 	} while (!list_empty(list));
1418 out:
1419 	if (!list_empty(&zone_list))
1420 		list_splice_tail_init(&zone_list, list);
1421 
1422 	hctx->dispatched[queued_to_index(queued)]++;
1423 
1424 	/* If we didn't flush the entire list, we could have told the driver
1425 	 * there was more coming, but that turned out to be a lie.
1426 	 */
1427 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1428 		q->mq_ops->commit_rqs(hctx);
1429 	/*
1430 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1431 	 * that is where we will continue on next queue run.
1432 	 */
1433 	if (!list_empty(list)) {
1434 		bool needs_restart;
1435 		/* For non-shared tags, the RESTART check will suffice */
1436 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1437 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1438 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1439 
1440 		blk_mq_release_budgets(q, nr_budgets);
1441 
1442 		spin_lock(&hctx->lock);
1443 		list_splice_tail_init(list, &hctx->dispatch);
1444 		spin_unlock(&hctx->lock);
1445 
1446 		/*
1447 		 * Order adding requests to hctx->dispatch and checking
1448 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1449 		 * in blk_mq_sched_restart(). Avoid restart code path to
1450 		 * miss the new added requests to hctx->dispatch, meantime
1451 		 * SCHED_RESTART is observed here.
1452 		 */
1453 		smp_mb();
1454 
1455 		/*
1456 		 * If SCHED_RESTART was set by the caller of this function and
1457 		 * it is no longer set that means that it was cleared by another
1458 		 * thread and hence that a queue rerun is needed.
1459 		 *
1460 		 * If 'no_tag' is set, that means that we failed getting
1461 		 * a driver tag with an I/O scheduler attached. If our dispatch
1462 		 * waitqueue is no longer active, ensure that we run the queue
1463 		 * AFTER adding our entries back to the list.
1464 		 *
1465 		 * If no I/O scheduler has been configured it is possible that
1466 		 * the hardware queue got stopped and restarted before requests
1467 		 * were pushed back onto the dispatch list. Rerun the queue to
1468 		 * avoid starvation. Notes:
1469 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1470 		 *   been stopped before rerunning a queue.
1471 		 * - Some but not all block drivers stop a queue before
1472 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1473 		 *   and dm-rq.
1474 		 *
1475 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1476 		 * bit is set, run queue after a delay to avoid IO stalls
1477 		 * that could otherwise occur if the queue is idle.  We'll do
1478 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1479 		 */
1480 		needs_restart = blk_mq_sched_needs_restart(hctx);
1481 		if (!needs_restart ||
1482 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1483 			blk_mq_run_hw_queue(hctx, true);
1484 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1485 					   no_budget_avail))
1486 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1487 
1488 		blk_mq_update_dispatch_busy(hctx, true);
1489 		return false;
1490 	} else
1491 		blk_mq_update_dispatch_busy(hctx, false);
1492 
1493 	return (queued + errors) != 0;
1494 }
1495 
1496 /**
1497  * __blk_mq_run_hw_queue - Run a hardware queue.
1498  * @hctx: Pointer to the hardware queue to run.
1499  *
1500  * Send pending requests to the hardware.
1501  */
1502 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1503 {
1504 	int srcu_idx;
1505 
1506 	/*
1507 	 * We can't run the queue inline with ints disabled. Ensure that
1508 	 * we catch bad users of this early.
1509 	 */
1510 	WARN_ON_ONCE(in_interrupt());
1511 
1512 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1513 
1514 	hctx_lock(hctx, &srcu_idx);
1515 	blk_mq_sched_dispatch_requests(hctx);
1516 	hctx_unlock(hctx, srcu_idx);
1517 }
1518 
1519 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1522 
1523 	if (cpu >= nr_cpu_ids)
1524 		cpu = cpumask_first(hctx->cpumask);
1525 	return cpu;
1526 }
1527 
1528 /*
1529  * It'd be great if the workqueue API had a way to pass
1530  * in a mask and had some smarts for more clever placement.
1531  * For now we just round-robin here, switching for every
1532  * BLK_MQ_CPU_WORK_BATCH queued items.
1533  */
1534 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536 	bool tried = false;
1537 	int next_cpu = hctx->next_cpu;
1538 
1539 	if (hctx->queue->nr_hw_queues == 1)
1540 		return WORK_CPU_UNBOUND;
1541 
1542 	if (--hctx->next_cpu_batch <= 0) {
1543 select_cpu:
1544 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1545 				cpu_online_mask);
1546 		if (next_cpu >= nr_cpu_ids)
1547 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1548 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1549 	}
1550 
1551 	/*
1552 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1553 	 * and it should only happen in the path of handling CPU DEAD.
1554 	 */
1555 	if (!cpu_online(next_cpu)) {
1556 		if (!tried) {
1557 			tried = true;
1558 			goto select_cpu;
1559 		}
1560 
1561 		/*
1562 		 * Make sure to re-select CPU next time once after CPUs
1563 		 * in hctx->cpumask become online again.
1564 		 */
1565 		hctx->next_cpu = next_cpu;
1566 		hctx->next_cpu_batch = 1;
1567 		return WORK_CPU_UNBOUND;
1568 	}
1569 
1570 	hctx->next_cpu = next_cpu;
1571 	return next_cpu;
1572 }
1573 
1574 /**
1575  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1576  * @hctx: Pointer to the hardware queue to run.
1577  * @async: If we want to run the queue asynchronously.
1578  * @msecs: Milliseconds of delay to wait before running the queue.
1579  *
1580  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1581  * with a delay of @msecs.
1582  */
1583 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1584 					unsigned long msecs)
1585 {
1586 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1587 		return;
1588 
1589 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1590 		int cpu = get_cpu();
1591 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1592 			__blk_mq_run_hw_queue(hctx);
1593 			put_cpu();
1594 			return;
1595 		}
1596 
1597 		put_cpu();
1598 	}
1599 
1600 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1601 				    msecs_to_jiffies(msecs));
1602 }
1603 
1604 /**
1605  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1606  * @hctx: Pointer to the hardware queue to run.
1607  * @msecs: Milliseconds of delay to wait before running the queue.
1608  *
1609  * Run a hardware queue asynchronously with a delay of @msecs.
1610  */
1611 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1612 {
1613 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1614 }
1615 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1616 
1617 /**
1618  * blk_mq_run_hw_queue - Start to run a hardware queue.
1619  * @hctx: Pointer to the hardware queue to run.
1620  * @async: If we want to run the queue asynchronously.
1621  *
1622  * Check if the request queue is not in a quiesced state and if there are
1623  * pending requests to be sent. If this is true, run the queue to send requests
1624  * to hardware.
1625  */
1626 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1627 {
1628 	int srcu_idx;
1629 	bool need_run;
1630 
1631 	/*
1632 	 * When queue is quiesced, we may be switching io scheduler, or
1633 	 * updating nr_hw_queues, or other things, and we can't run queue
1634 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1635 	 *
1636 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1637 	 * quiesced.
1638 	 */
1639 	hctx_lock(hctx, &srcu_idx);
1640 	need_run = !blk_queue_quiesced(hctx->queue) &&
1641 		blk_mq_hctx_has_pending(hctx);
1642 	hctx_unlock(hctx, srcu_idx);
1643 
1644 	if (need_run)
1645 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1646 }
1647 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1648 
1649 /**
1650  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1651  * @q: Pointer to the request queue to run.
1652  * @async: If we want to run the queue asynchronously.
1653  */
1654 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1655 {
1656 	struct blk_mq_hw_ctx *hctx;
1657 	int i;
1658 
1659 	queue_for_each_hw_ctx(q, hctx, i) {
1660 		if (blk_mq_hctx_stopped(hctx))
1661 			continue;
1662 
1663 		blk_mq_run_hw_queue(hctx, async);
1664 	}
1665 }
1666 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1667 
1668 /**
1669  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1670  * @q: Pointer to the request queue to run.
1671  * @msecs: Milliseconds of delay to wait before running the queues.
1672  */
1673 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1674 {
1675 	struct blk_mq_hw_ctx *hctx;
1676 	int i;
1677 
1678 	queue_for_each_hw_ctx(q, hctx, i) {
1679 		if (blk_mq_hctx_stopped(hctx))
1680 			continue;
1681 
1682 		blk_mq_delay_run_hw_queue(hctx, msecs);
1683 	}
1684 }
1685 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1686 
1687 /**
1688  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1689  * @q: request queue.
1690  *
1691  * The caller is responsible for serializing this function against
1692  * blk_mq_{start,stop}_hw_queue().
1693  */
1694 bool blk_mq_queue_stopped(struct request_queue *q)
1695 {
1696 	struct blk_mq_hw_ctx *hctx;
1697 	int i;
1698 
1699 	queue_for_each_hw_ctx(q, hctx, i)
1700 		if (blk_mq_hctx_stopped(hctx))
1701 			return true;
1702 
1703 	return false;
1704 }
1705 EXPORT_SYMBOL(blk_mq_queue_stopped);
1706 
1707 /*
1708  * This function is often used for pausing .queue_rq() by driver when
1709  * there isn't enough resource or some conditions aren't satisfied, and
1710  * BLK_STS_RESOURCE is usually returned.
1711  *
1712  * We do not guarantee that dispatch can be drained or blocked
1713  * after blk_mq_stop_hw_queue() returns. Please use
1714  * blk_mq_quiesce_queue() for that requirement.
1715  */
1716 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1717 {
1718 	cancel_delayed_work(&hctx->run_work);
1719 
1720 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1721 }
1722 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1723 
1724 /*
1725  * This function is often used for pausing .queue_rq() by driver when
1726  * there isn't enough resource or some conditions aren't satisfied, and
1727  * BLK_STS_RESOURCE is usually returned.
1728  *
1729  * We do not guarantee that dispatch can be drained or blocked
1730  * after blk_mq_stop_hw_queues() returns. Please use
1731  * blk_mq_quiesce_queue() for that requirement.
1732  */
1733 void blk_mq_stop_hw_queues(struct request_queue *q)
1734 {
1735 	struct blk_mq_hw_ctx *hctx;
1736 	int i;
1737 
1738 	queue_for_each_hw_ctx(q, hctx, i)
1739 		blk_mq_stop_hw_queue(hctx);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1742 
1743 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1744 {
1745 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1746 
1747 	blk_mq_run_hw_queue(hctx, false);
1748 }
1749 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1750 
1751 void blk_mq_start_hw_queues(struct request_queue *q)
1752 {
1753 	struct blk_mq_hw_ctx *hctx;
1754 	int i;
1755 
1756 	queue_for_each_hw_ctx(q, hctx, i)
1757 		blk_mq_start_hw_queue(hctx);
1758 }
1759 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1760 
1761 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1762 {
1763 	if (!blk_mq_hctx_stopped(hctx))
1764 		return;
1765 
1766 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1767 	blk_mq_run_hw_queue(hctx, async);
1768 }
1769 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1770 
1771 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1772 {
1773 	struct blk_mq_hw_ctx *hctx;
1774 	int i;
1775 
1776 	queue_for_each_hw_ctx(q, hctx, i)
1777 		blk_mq_start_stopped_hw_queue(hctx, async);
1778 }
1779 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1780 
1781 static void blk_mq_run_work_fn(struct work_struct *work)
1782 {
1783 	struct blk_mq_hw_ctx *hctx;
1784 
1785 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1786 
1787 	/*
1788 	 * If we are stopped, don't run the queue.
1789 	 */
1790 	if (blk_mq_hctx_stopped(hctx))
1791 		return;
1792 
1793 	__blk_mq_run_hw_queue(hctx);
1794 }
1795 
1796 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1797 					    struct request *rq,
1798 					    bool at_head)
1799 {
1800 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1801 	enum hctx_type type = hctx->type;
1802 
1803 	lockdep_assert_held(&ctx->lock);
1804 
1805 	trace_block_rq_insert(rq);
1806 
1807 	if (at_head)
1808 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1809 	else
1810 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1811 }
1812 
1813 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1814 			     bool at_head)
1815 {
1816 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1817 
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	__blk_mq_insert_req_list(hctx, rq, at_head);
1821 	blk_mq_hctx_mark_pending(hctx, ctx);
1822 }
1823 
1824 /**
1825  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1826  * @rq: Pointer to request to be inserted.
1827  * @at_head: true if the request should be inserted at the head of the list.
1828  * @run_queue: If we should run the hardware queue after inserting the request.
1829  *
1830  * Should only be used carefully, when the caller knows we want to
1831  * bypass a potential IO scheduler on the target device.
1832  */
1833 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1834 				  bool run_queue)
1835 {
1836 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1837 
1838 	spin_lock(&hctx->lock);
1839 	if (at_head)
1840 		list_add(&rq->queuelist, &hctx->dispatch);
1841 	else
1842 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1843 	spin_unlock(&hctx->lock);
1844 
1845 	if (run_queue)
1846 		blk_mq_run_hw_queue(hctx, false);
1847 }
1848 
1849 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1850 			    struct list_head *list)
1851 
1852 {
1853 	struct request *rq;
1854 	enum hctx_type type = hctx->type;
1855 
1856 	/*
1857 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1858 	 * offline now
1859 	 */
1860 	list_for_each_entry(rq, list, queuelist) {
1861 		BUG_ON(rq->mq_ctx != ctx);
1862 		trace_block_rq_insert(rq);
1863 	}
1864 
1865 	spin_lock(&ctx->lock);
1866 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1867 	blk_mq_hctx_mark_pending(hctx, ctx);
1868 	spin_unlock(&ctx->lock);
1869 }
1870 
1871 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1872 {
1873 	struct request *rqa = container_of(a, struct request, queuelist);
1874 	struct request *rqb = container_of(b, struct request, queuelist);
1875 
1876 	if (rqa->mq_ctx != rqb->mq_ctx)
1877 		return rqa->mq_ctx > rqb->mq_ctx;
1878 	if (rqa->mq_hctx != rqb->mq_hctx)
1879 		return rqa->mq_hctx > rqb->mq_hctx;
1880 
1881 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1882 }
1883 
1884 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1885 {
1886 	LIST_HEAD(list);
1887 
1888 	if (list_empty(&plug->mq_list))
1889 		return;
1890 	list_splice_init(&plug->mq_list, &list);
1891 
1892 	if (plug->rq_count > 2 && plug->multiple_queues)
1893 		list_sort(NULL, &list, plug_rq_cmp);
1894 
1895 	plug->rq_count = 0;
1896 
1897 	do {
1898 		struct list_head rq_list;
1899 		struct request *rq, *head_rq = list_entry_rq(list.next);
1900 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1901 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1902 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1903 		unsigned int depth = 1;
1904 
1905 		list_for_each_continue(pos, &list) {
1906 			rq = list_entry_rq(pos);
1907 			BUG_ON(!rq->q);
1908 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1909 				break;
1910 			depth++;
1911 		}
1912 
1913 		list_cut_before(&rq_list, &list, pos);
1914 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1915 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1916 						from_schedule);
1917 	} while(!list_empty(&list));
1918 }
1919 
1920 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1921 		unsigned int nr_segs)
1922 {
1923 	int err;
1924 
1925 	if (bio->bi_opf & REQ_RAHEAD)
1926 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1927 
1928 	rq->__sector = bio->bi_iter.bi_sector;
1929 	rq->write_hint = bio->bi_write_hint;
1930 	blk_rq_bio_prep(rq, bio, nr_segs);
1931 
1932 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1933 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1934 	WARN_ON_ONCE(err);
1935 
1936 	blk_account_io_start(rq);
1937 }
1938 
1939 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1940 					    struct request *rq,
1941 					    blk_qc_t *cookie, bool last)
1942 {
1943 	struct request_queue *q = rq->q;
1944 	struct blk_mq_queue_data bd = {
1945 		.rq = rq,
1946 		.last = last,
1947 	};
1948 	blk_qc_t new_cookie;
1949 	blk_status_t ret;
1950 
1951 	new_cookie = request_to_qc_t(hctx, rq);
1952 
1953 	/*
1954 	 * For OK queue, we are done. For error, caller may kill it.
1955 	 * Any other error (busy), just add it to our list as we
1956 	 * previously would have done.
1957 	 */
1958 	ret = q->mq_ops->queue_rq(hctx, &bd);
1959 	switch (ret) {
1960 	case BLK_STS_OK:
1961 		blk_mq_update_dispatch_busy(hctx, false);
1962 		*cookie = new_cookie;
1963 		break;
1964 	case BLK_STS_RESOURCE:
1965 	case BLK_STS_DEV_RESOURCE:
1966 		blk_mq_update_dispatch_busy(hctx, true);
1967 		__blk_mq_requeue_request(rq);
1968 		break;
1969 	default:
1970 		blk_mq_update_dispatch_busy(hctx, false);
1971 		*cookie = BLK_QC_T_NONE;
1972 		break;
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1979 						struct request *rq,
1980 						blk_qc_t *cookie,
1981 						bool bypass_insert, bool last)
1982 {
1983 	struct request_queue *q = rq->q;
1984 	bool run_queue = true;
1985 
1986 	/*
1987 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1988 	 *
1989 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1990 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1991 	 * and avoid driver to try to dispatch again.
1992 	 */
1993 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1994 		run_queue = false;
1995 		bypass_insert = false;
1996 		goto insert;
1997 	}
1998 
1999 	if (q->elevator && !bypass_insert)
2000 		goto insert;
2001 
2002 	if (!blk_mq_get_dispatch_budget(q))
2003 		goto insert;
2004 
2005 	if (!blk_mq_get_driver_tag(rq)) {
2006 		blk_mq_put_dispatch_budget(q);
2007 		goto insert;
2008 	}
2009 
2010 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2011 insert:
2012 	if (bypass_insert)
2013 		return BLK_STS_RESOURCE;
2014 
2015 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2016 
2017 	return BLK_STS_OK;
2018 }
2019 
2020 /**
2021  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2022  * @hctx: Pointer of the associated hardware queue.
2023  * @rq: Pointer to request to be sent.
2024  * @cookie: Request queue cookie.
2025  *
2026  * If the device has enough resources to accept a new request now, send the
2027  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2028  * we can try send it another time in the future. Requests inserted at this
2029  * queue have higher priority.
2030  */
2031 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2032 		struct request *rq, blk_qc_t *cookie)
2033 {
2034 	blk_status_t ret;
2035 	int srcu_idx;
2036 
2037 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2038 
2039 	hctx_lock(hctx, &srcu_idx);
2040 
2041 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2042 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2043 		blk_mq_request_bypass_insert(rq, false, true);
2044 	else if (ret != BLK_STS_OK)
2045 		blk_mq_end_request(rq, ret);
2046 
2047 	hctx_unlock(hctx, srcu_idx);
2048 }
2049 
2050 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2051 {
2052 	blk_status_t ret;
2053 	int srcu_idx;
2054 	blk_qc_t unused_cookie;
2055 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2056 
2057 	hctx_lock(hctx, &srcu_idx);
2058 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2059 	hctx_unlock(hctx, srcu_idx);
2060 
2061 	return ret;
2062 }
2063 
2064 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2065 		struct list_head *list)
2066 {
2067 	int queued = 0;
2068 	int errors = 0;
2069 
2070 	while (!list_empty(list)) {
2071 		blk_status_t ret;
2072 		struct request *rq = list_first_entry(list, struct request,
2073 				queuelist);
2074 
2075 		list_del_init(&rq->queuelist);
2076 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2077 		if (ret != BLK_STS_OK) {
2078 			if (ret == BLK_STS_RESOURCE ||
2079 					ret == BLK_STS_DEV_RESOURCE) {
2080 				blk_mq_request_bypass_insert(rq, false,
2081 							list_empty(list));
2082 				break;
2083 			}
2084 			blk_mq_end_request(rq, ret);
2085 			errors++;
2086 		} else
2087 			queued++;
2088 	}
2089 
2090 	/*
2091 	 * If we didn't flush the entire list, we could have told
2092 	 * the driver there was more coming, but that turned out to
2093 	 * be a lie.
2094 	 */
2095 	if ((!list_empty(list) || errors) &&
2096 	     hctx->queue->mq_ops->commit_rqs && queued)
2097 		hctx->queue->mq_ops->commit_rqs(hctx);
2098 }
2099 
2100 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2101 {
2102 	list_add_tail(&rq->queuelist, &plug->mq_list);
2103 	plug->rq_count++;
2104 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2105 		struct request *tmp;
2106 
2107 		tmp = list_first_entry(&plug->mq_list, struct request,
2108 						queuelist);
2109 		if (tmp->q != rq->q)
2110 			plug->multiple_queues = true;
2111 	}
2112 }
2113 
2114 /**
2115  * blk_mq_submit_bio - Create and send a request to block device.
2116  * @bio: Bio pointer.
2117  *
2118  * Builds up a request structure from @q and @bio and send to the device. The
2119  * request may not be queued directly to hardware if:
2120  * * This request can be merged with another one
2121  * * We want to place request at plug queue for possible future merging
2122  * * There is an IO scheduler active at this queue
2123  *
2124  * It will not queue the request if there is an error with the bio, or at the
2125  * request creation.
2126  *
2127  * Returns: Request queue cookie.
2128  */
2129 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2130 {
2131 	struct request_queue *q = bio->bi_disk->queue;
2132 	const int is_sync = op_is_sync(bio->bi_opf);
2133 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2134 	struct blk_mq_alloc_data data = {
2135 		.q		= q,
2136 	};
2137 	struct request *rq;
2138 	struct blk_plug *plug;
2139 	struct request *same_queue_rq = NULL;
2140 	unsigned int nr_segs;
2141 	blk_qc_t cookie;
2142 	blk_status_t ret;
2143 	bool hipri;
2144 
2145 	blk_queue_bounce(q, &bio);
2146 	__blk_queue_split(&bio, &nr_segs);
2147 
2148 	if (!bio_integrity_prep(bio))
2149 		goto queue_exit;
2150 
2151 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2152 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2153 		goto queue_exit;
2154 
2155 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2156 		goto queue_exit;
2157 
2158 	rq_qos_throttle(q, bio);
2159 
2160 	hipri = bio->bi_opf & REQ_HIPRI;
2161 
2162 	data.cmd_flags = bio->bi_opf;
2163 	rq = __blk_mq_alloc_request(&data);
2164 	if (unlikely(!rq)) {
2165 		rq_qos_cleanup(q, bio);
2166 		if (bio->bi_opf & REQ_NOWAIT)
2167 			bio_wouldblock_error(bio);
2168 		goto queue_exit;
2169 	}
2170 
2171 	trace_block_getrq(bio);
2172 
2173 	rq_qos_track(q, rq, bio);
2174 
2175 	cookie = request_to_qc_t(data.hctx, rq);
2176 
2177 	blk_mq_bio_to_request(rq, bio, nr_segs);
2178 
2179 	ret = blk_crypto_init_request(rq);
2180 	if (ret != BLK_STS_OK) {
2181 		bio->bi_status = ret;
2182 		bio_endio(bio);
2183 		blk_mq_free_request(rq);
2184 		return BLK_QC_T_NONE;
2185 	}
2186 
2187 	plug = blk_mq_plug(q, bio);
2188 	if (unlikely(is_flush_fua)) {
2189 		/* Bypass scheduler for flush requests */
2190 		blk_insert_flush(rq);
2191 		blk_mq_run_hw_queue(data.hctx, true);
2192 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2193 				!blk_queue_nonrot(q))) {
2194 		/*
2195 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2196 		 * we know the driver uses bd->last in a smart fashion.
2197 		 *
2198 		 * Use normal plugging if this disk is slow HDD, as sequential
2199 		 * IO may benefit a lot from plug merging.
2200 		 */
2201 		unsigned int request_count = plug->rq_count;
2202 		struct request *last = NULL;
2203 
2204 		if (!request_count)
2205 			trace_block_plug(q);
2206 		else
2207 			last = list_entry_rq(plug->mq_list.prev);
2208 
2209 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2210 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2211 			blk_flush_plug_list(plug, false);
2212 			trace_block_plug(q);
2213 		}
2214 
2215 		blk_add_rq_to_plug(plug, rq);
2216 	} else if (q->elevator) {
2217 		/* Insert the request at the IO scheduler queue */
2218 		blk_mq_sched_insert_request(rq, false, true, true);
2219 	} else if (plug && !blk_queue_nomerges(q)) {
2220 		/*
2221 		 * We do limited plugging. If the bio can be merged, do that.
2222 		 * Otherwise the existing request in the plug list will be
2223 		 * issued. So the plug list will have one request at most
2224 		 * The plug list might get flushed before this. If that happens,
2225 		 * the plug list is empty, and same_queue_rq is invalid.
2226 		 */
2227 		if (list_empty(&plug->mq_list))
2228 			same_queue_rq = NULL;
2229 		if (same_queue_rq) {
2230 			list_del_init(&same_queue_rq->queuelist);
2231 			plug->rq_count--;
2232 		}
2233 		blk_add_rq_to_plug(plug, rq);
2234 		trace_block_plug(q);
2235 
2236 		if (same_queue_rq) {
2237 			data.hctx = same_queue_rq->mq_hctx;
2238 			trace_block_unplug(q, 1, true);
2239 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2240 					&cookie);
2241 		}
2242 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2243 			!data.hctx->dispatch_busy) {
2244 		/*
2245 		 * There is no scheduler and we can try to send directly
2246 		 * to the hardware.
2247 		 */
2248 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2249 	} else {
2250 		/* Default case. */
2251 		blk_mq_sched_insert_request(rq, false, true, true);
2252 	}
2253 
2254 	if (!hipri)
2255 		return BLK_QC_T_NONE;
2256 	return cookie;
2257 queue_exit:
2258 	blk_queue_exit(q);
2259 	return BLK_QC_T_NONE;
2260 }
2261 
2262 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2263 		     unsigned int hctx_idx)
2264 {
2265 	struct page *page;
2266 
2267 	if (tags->rqs && set->ops->exit_request) {
2268 		int i;
2269 
2270 		for (i = 0; i < tags->nr_tags; i++) {
2271 			struct request *rq = tags->static_rqs[i];
2272 
2273 			if (!rq)
2274 				continue;
2275 			set->ops->exit_request(set, rq, hctx_idx);
2276 			tags->static_rqs[i] = NULL;
2277 		}
2278 	}
2279 
2280 	while (!list_empty(&tags->page_list)) {
2281 		page = list_first_entry(&tags->page_list, struct page, lru);
2282 		list_del_init(&page->lru);
2283 		/*
2284 		 * Remove kmemleak object previously allocated in
2285 		 * blk_mq_alloc_rqs().
2286 		 */
2287 		kmemleak_free(page_address(page));
2288 		__free_pages(page, page->private);
2289 	}
2290 }
2291 
2292 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2293 {
2294 	kfree(tags->rqs);
2295 	tags->rqs = NULL;
2296 	kfree(tags->static_rqs);
2297 	tags->static_rqs = NULL;
2298 
2299 	blk_mq_free_tags(tags, flags);
2300 }
2301 
2302 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2303 					unsigned int hctx_idx,
2304 					unsigned int nr_tags,
2305 					unsigned int reserved_tags,
2306 					unsigned int flags)
2307 {
2308 	struct blk_mq_tags *tags;
2309 	int node;
2310 
2311 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2312 	if (node == NUMA_NO_NODE)
2313 		node = set->numa_node;
2314 
2315 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2316 	if (!tags)
2317 		return NULL;
2318 
2319 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2320 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2321 				 node);
2322 	if (!tags->rqs) {
2323 		blk_mq_free_tags(tags, flags);
2324 		return NULL;
2325 	}
2326 
2327 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2328 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2329 					node);
2330 	if (!tags->static_rqs) {
2331 		kfree(tags->rqs);
2332 		blk_mq_free_tags(tags, flags);
2333 		return NULL;
2334 	}
2335 
2336 	return tags;
2337 }
2338 
2339 static size_t order_to_size(unsigned int order)
2340 {
2341 	return (size_t)PAGE_SIZE << order;
2342 }
2343 
2344 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2345 			       unsigned int hctx_idx, int node)
2346 {
2347 	int ret;
2348 
2349 	if (set->ops->init_request) {
2350 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2351 		if (ret)
2352 			return ret;
2353 	}
2354 
2355 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2356 	return 0;
2357 }
2358 
2359 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2360 		     unsigned int hctx_idx, unsigned int depth)
2361 {
2362 	unsigned int i, j, entries_per_page, max_order = 4;
2363 	size_t rq_size, left;
2364 	int node;
2365 
2366 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2367 	if (node == NUMA_NO_NODE)
2368 		node = set->numa_node;
2369 
2370 	INIT_LIST_HEAD(&tags->page_list);
2371 
2372 	/*
2373 	 * rq_size is the size of the request plus driver payload, rounded
2374 	 * to the cacheline size
2375 	 */
2376 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2377 				cache_line_size());
2378 	left = rq_size * depth;
2379 
2380 	for (i = 0; i < depth; ) {
2381 		int this_order = max_order;
2382 		struct page *page;
2383 		int to_do;
2384 		void *p;
2385 
2386 		while (this_order && left < order_to_size(this_order - 1))
2387 			this_order--;
2388 
2389 		do {
2390 			page = alloc_pages_node(node,
2391 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2392 				this_order);
2393 			if (page)
2394 				break;
2395 			if (!this_order--)
2396 				break;
2397 			if (order_to_size(this_order) < rq_size)
2398 				break;
2399 		} while (1);
2400 
2401 		if (!page)
2402 			goto fail;
2403 
2404 		page->private = this_order;
2405 		list_add_tail(&page->lru, &tags->page_list);
2406 
2407 		p = page_address(page);
2408 		/*
2409 		 * Allow kmemleak to scan these pages as they contain pointers
2410 		 * to additional allocations like via ops->init_request().
2411 		 */
2412 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2413 		entries_per_page = order_to_size(this_order) / rq_size;
2414 		to_do = min(entries_per_page, depth - i);
2415 		left -= to_do * rq_size;
2416 		for (j = 0; j < to_do; j++) {
2417 			struct request *rq = p;
2418 
2419 			tags->static_rqs[i] = rq;
2420 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2421 				tags->static_rqs[i] = NULL;
2422 				goto fail;
2423 			}
2424 
2425 			p += rq_size;
2426 			i++;
2427 		}
2428 	}
2429 	return 0;
2430 
2431 fail:
2432 	blk_mq_free_rqs(set, tags, hctx_idx);
2433 	return -ENOMEM;
2434 }
2435 
2436 struct rq_iter_data {
2437 	struct blk_mq_hw_ctx *hctx;
2438 	bool has_rq;
2439 };
2440 
2441 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2442 {
2443 	struct rq_iter_data *iter_data = data;
2444 
2445 	if (rq->mq_hctx != iter_data->hctx)
2446 		return true;
2447 	iter_data->has_rq = true;
2448 	return false;
2449 }
2450 
2451 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2452 {
2453 	struct blk_mq_tags *tags = hctx->sched_tags ?
2454 			hctx->sched_tags : hctx->tags;
2455 	struct rq_iter_data data = {
2456 		.hctx	= hctx,
2457 	};
2458 
2459 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2460 	return data.has_rq;
2461 }
2462 
2463 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2464 		struct blk_mq_hw_ctx *hctx)
2465 {
2466 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2467 		return false;
2468 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2469 		return false;
2470 	return true;
2471 }
2472 
2473 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2474 {
2475 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2476 			struct blk_mq_hw_ctx, cpuhp_online);
2477 
2478 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2479 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2480 		return 0;
2481 
2482 	/*
2483 	 * Prevent new request from being allocated on the current hctx.
2484 	 *
2485 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2486 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2487 	 * seen once we return from the tag allocator.
2488 	 */
2489 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2490 	smp_mb__after_atomic();
2491 
2492 	/*
2493 	 * Try to grab a reference to the queue and wait for any outstanding
2494 	 * requests.  If we could not grab a reference the queue has been
2495 	 * frozen and there are no requests.
2496 	 */
2497 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2498 		while (blk_mq_hctx_has_requests(hctx))
2499 			msleep(5);
2500 		percpu_ref_put(&hctx->queue->q_usage_counter);
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2507 {
2508 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2509 			struct blk_mq_hw_ctx, cpuhp_online);
2510 
2511 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2512 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2513 	return 0;
2514 }
2515 
2516 /*
2517  * 'cpu' is going away. splice any existing rq_list entries from this
2518  * software queue to the hw queue dispatch list, and ensure that it
2519  * gets run.
2520  */
2521 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2522 {
2523 	struct blk_mq_hw_ctx *hctx;
2524 	struct blk_mq_ctx *ctx;
2525 	LIST_HEAD(tmp);
2526 	enum hctx_type type;
2527 
2528 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2529 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2530 		return 0;
2531 
2532 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2533 	type = hctx->type;
2534 
2535 	spin_lock(&ctx->lock);
2536 	if (!list_empty(&ctx->rq_lists[type])) {
2537 		list_splice_init(&ctx->rq_lists[type], &tmp);
2538 		blk_mq_hctx_clear_pending(hctx, ctx);
2539 	}
2540 	spin_unlock(&ctx->lock);
2541 
2542 	if (list_empty(&tmp))
2543 		return 0;
2544 
2545 	spin_lock(&hctx->lock);
2546 	list_splice_tail_init(&tmp, &hctx->dispatch);
2547 	spin_unlock(&hctx->lock);
2548 
2549 	blk_mq_run_hw_queue(hctx, true);
2550 	return 0;
2551 }
2552 
2553 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2554 {
2555 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2556 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2557 						    &hctx->cpuhp_online);
2558 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2559 					    &hctx->cpuhp_dead);
2560 }
2561 
2562 /* hctx->ctxs will be freed in queue's release handler */
2563 static void blk_mq_exit_hctx(struct request_queue *q,
2564 		struct blk_mq_tag_set *set,
2565 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2566 {
2567 	if (blk_mq_hw_queue_mapped(hctx))
2568 		blk_mq_tag_idle(hctx);
2569 
2570 	if (set->ops->exit_request)
2571 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2572 
2573 	if (set->ops->exit_hctx)
2574 		set->ops->exit_hctx(hctx, hctx_idx);
2575 
2576 	blk_mq_remove_cpuhp(hctx);
2577 
2578 	spin_lock(&q->unused_hctx_lock);
2579 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2580 	spin_unlock(&q->unused_hctx_lock);
2581 }
2582 
2583 static void blk_mq_exit_hw_queues(struct request_queue *q,
2584 		struct blk_mq_tag_set *set, int nr_queue)
2585 {
2586 	struct blk_mq_hw_ctx *hctx;
2587 	unsigned int i;
2588 
2589 	queue_for_each_hw_ctx(q, hctx, i) {
2590 		if (i == nr_queue)
2591 			break;
2592 		blk_mq_debugfs_unregister_hctx(hctx);
2593 		blk_mq_exit_hctx(q, set, hctx, i);
2594 	}
2595 }
2596 
2597 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2598 {
2599 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2600 
2601 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2602 			   __alignof__(struct blk_mq_hw_ctx)) !=
2603 		     sizeof(struct blk_mq_hw_ctx));
2604 
2605 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2606 		hw_ctx_size += sizeof(struct srcu_struct);
2607 
2608 	return hw_ctx_size;
2609 }
2610 
2611 static int blk_mq_init_hctx(struct request_queue *q,
2612 		struct blk_mq_tag_set *set,
2613 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2614 {
2615 	hctx->queue_num = hctx_idx;
2616 
2617 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2618 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2619 				&hctx->cpuhp_online);
2620 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2621 
2622 	hctx->tags = set->tags[hctx_idx];
2623 
2624 	if (set->ops->init_hctx &&
2625 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2626 		goto unregister_cpu_notifier;
2627 
2628 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2629 				hctx->numa_node))
2630 		goto exit_hctx;
2631 	return 0;
2632 
2633  exit_hctx:
2634 	if (set->ops->exit_hctx)
2635 		set->ops->exit_hctx(hctx, hctx_idx);
2636  unregister_cpu_notifier:
2637 	blk_mq_remove_cpuhp(hctx);
2638 	return -1;
2639 }
2640 
2641 static struct blk_mq_hw_ctx *
2642 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2643 		int node)
2644 {
2645 	struct blk_mq_hw_ctx *hctx;
2646 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2647 
2648 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2649 	if (!hctx)
2650 		goto fail_alloc_hctx;
2651 
2652 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2653 		goto free_hctx;
2654 
2655 	atomic_set(&hctx->nr_active, 0);
2656 	atomic_set(&hctx->elevator_queued, 0);
2657 	if (node == NUMA_NO_NODE)
2658 		node = set->numa_node;
2659 	hctx->numa_node = node;
2660 
2661 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2662 	spin_lock_init(&hctx->lock);
2663 	INIT_LIST_HEAD(&hctx->dispatch);
2664 	hctx->queue = q;
2665 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2666 
2667 	INIT_LIST_HEAD(&hctx->hctx_list);
2668 
2669 	/*
2670 	 * Allocate space for all possible cpus to avoid allocation at
2671 	 * runtime
2672 	 */
2673 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2674 			gfp, node);
2675 	if (!hctx->ctxs)
2676 		goto free_cpumask;
2677 
2678 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2679 				gfp, node))
2680 		goto free_ctxs;
2681 	hctx->nr_ctx = 0;
2682 
2683 	spin_lock_init(&hctx->dispatch_wait_lock);
2684 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2685 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2686 
2687 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2688 	if (!hctx->fq)
2689 		goto free_bitmap;
2690 
2691 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2692 		init_srcu_struct(hctx->srcu);
2693 	blk_mq_hctx_kobj_init(hctx);
2694 
2695 	return hctx;
2696 
2697  free_bitmap:
2698 	sbitmap_free(&hctx->ctx_map);
2699  free_ctxs:
2700 	kfree(hctx->ctxs);
2701  free_cpumask:
2702 	free_cpumask_var(hctx->cpumask);
2703  free_hctx:
2704 	kfree(hctx);
2705  fail_alloc_hctx:
2706 	return NULL;
2707 }
2708 
2709 static void blk_mq_init_cpu_queues(struct request_queue *q,
2710 				   unsigned int nr_hw_queues)
2711 {
2712 	struct blk_mq_tag_set *set = q->tag_set;
2713 	unsigned int i, j;
2714 
2715 	for_each_possible_cpu(i) {
2716 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2717 		struct blk_mq_hw_ctx *hctx;
2718 		int k;
2719 
2720 		__ctx->cpu = i;
2721 		spin_lock_init(&__ctx->lock);
2722 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2723 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2724 
2725 		__ctx->queue = q;
2726 
2727 		/*
2728 		 * Set local node, IFF we have more than one hw queue. If
2729 		 * not, we remain on the home node of the device
2730 		 */
2731 		for (j = 0; j < set->nr_maps; j++) {
2732 			hctx = blk_mq_map_queue_type(q, j, i);
2733 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2734 				hctx->numa_node = cpu_to_node(i);
2735 		}
2736 	}
2737 }
2738 
2739 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2740 					int hctx_idx)
2741 {
2742 	unsigned int flags = set->flags;
2743 	int ret = 0;
2744 
2745 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2746 					set->queue_depth, set->reserved_tags, flags);
2747 	if (!set->tags[hctx_idx])
2748 		return false;
2749 
2750 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2751 				set->queue_depth);
2752 	if (!ret)
2753 		return true;
2754 
2755 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2756 	set->tags[hctx_idx] = NULL;
2757 	return false;
2758 }
2759 
2760 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2761 					 unsigned int hctx_idx)
2762 {
2763 	unsigned int flags = set->flags;
2764 
2765 	if (set->tags && set->tags[hctx_idx]) {
2766 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2767 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2768 		set->tags[hctx_idx] = NULL;
2769 	}
2770 }
2771 
2772 static void blk_mq_map_swqueue(struct request_queue *q)
2773 {
2774 	unsigned int i, j, hctx_idx;
2775 	struct blk_mq_hw_ctx *hctx;
2776 	struct blk_mq_ctx *ctx;
2777 	struct blk_mq_tag_set *set = q->tag_set;
2778 
2779 	queue_for_each_hw_ctx(q, hctx, i) {
2780 		cpumask_clear(hctx->cpumask);
2781 		hctx->nr_ctx = 0;
2782 		hctx->dispatch_from = NULL;
2783 	}
2784 
2785 	/*
2786 	 * Map software to hardware queues.
2787 	 *
2788 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2789 	 */
2790 	for_each_possible_cpu(i) {
2791 
2792 		ctx = per_cpu_ptr(q->queue_ctx, i);
2793 		for (j = 0; j < set->nr_maps; j++) {
2794 			if (!set->map[j].nr_queues) {
2795 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2796 						HCTX_TYPE_DEFAULT, i);
2797 				continue;
2798 			}
2799 			hctx_idx = set->map[j].mq_map[i];
2800 			/* unmapped hw queue can be remapped after CPU topo changed */
2801 			if (!set->tags[hctx_idx] &&
2802 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2803 				/*
2804 				 * If tags initialization fail for some hctx,
2805 				 * that hctx won't be brought online.  In this
2806 				 * case, remap the current ctx to hctx[0] which
2807 				 * is guaranteed to always have tags allocated
2808 				 */
2809 				set->map[j].mq_map[i] = 0;
2810 			}
2811 
2812 			hctx = blk_mq_map_queue_type(q, j, i);
2813 			ctx->hctxs[j] = hctx;
2814 			/*
2815 			 * If the CPU is already set in the mask, then we've
2816 			 * mapped this one already. This can happen if
2817 			 * devices share queues across queue maps.
2818 			 */
2819 			if (cpumask_test_cpu(i, hctx->cpumask))
2820 				continue;
2821 
2822 			cpumask_set_cpu(i, hctx->cpumask);
2823 			hctx->type = j;
2824 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2825 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2826 
2827 			/*
2828 			 * If the nr_ctx type overflows, we have exceeded the
2829 			 * amount of sw queues we can support.
2830 			 */
2831 			BUG_ON(!hctx->nr_ctx);
2832 		}
2833 
2834 		for (; j < HCTX_MAX_TYPES; j++)
2835 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2836 					HCTX_TYPE_DEFAULT, i);
2837 	}
2838 
2839 	queue_for_each_hw_ctx(q, hctx, i) {
2840 		/*
2841 		 * If no software queues are mapped to this hardware queue,
2842 		 * disable it and free the request entries.
2843 		 */
2844 		if (!hctx->nr_ctx) {
2845 			/* Never unmap queue 0.  We need it as a
2846 			 * fallback in case of a new remap fails
2847 			 * allocation
2848 			 */
2849 			if (i && set->tags[i])
2850 				blk_mq_free_map_and_requests(set, i);
2851 
2852 			hctx->tags = NULL;
2853 			continue;
2854 		}
2855 
2856 		hctx->tags = set->tags[i];
2857 		WARN_ON(!hctx->tags);
2858 
2859 		/*
2860 		 * Set the map size to the number of mapped software queues.
2861 		 * This is more accurate and more efficient than looping
2862 		 * over all possibly mapped software queues.
2863 		 */
2864 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2865 
2866 		/*
2867 		 * Initialize batch roundrobin counts
2868 		 */
2869 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2870 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2871 	}
2872 }
2873 
2874 /*
2875  * Caller needs to ensure that we're either frozen/quiesced, or that
2876  * the queue isn't live yet.
2877  */
2878 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2879 {
2880 	struct blk_mq_hw_ctx *hctx;
2881 	int i;
2882 
2883 	queue_for_each_hw_ctx(q, hctx, i) {
2884 		if (shared)
2885 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2886 		else
2887 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2888 	}
2889 }
2890 
2891 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2892 					 bool shared)
2893 {
2894 	struct request_queue *q;
2895 
2896 	lockdep_assert_held(&set->tag_list_lock);
2897 
2898 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2899 		blk_mq_freeze_queue(q);
2900 		queue_set_hctx_shared(q, shared);
2901 		blk_mq_unfreeze_queue(q);
2902 	}
2903 }
2904 
2905 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2906 {
2907 	struct blk_mq_tag_set *set = q->tag_set;
2908 
2909 	mutex_lock(&set->tag_list_lock);
2910 	list_del(&q->tag_set_list);
2911 	if (list_is_singular(&set->tag_list)) {
2912 		/* just transitioned to unshared */
2913 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2914 		/* update existing queue */
2915 		blk_mq_update_tag_set_shared(set, false);
2916 	}
2917 	mutex_unlock(&set->tag_list_lock);
2918 	INIT_LIST_HEAD(&q->tag_set_list);
2919 }
2920 
2921 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2922 				     struct request_queue *q)
2923 {
2924 	mutex_lock(&set->tag_list_lock);
2925 
2926 	/*
2927 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2928 	 */
2929 	if (!list_empty(&set->tag_list) &&
2930 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2931 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2932 		/* update existing queue */
2933 		blk_mq_update_tag_set_shared(set, true);
2934 	}
2935 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2936 		queue_set_hctx_shared(q, true);
2937 	list_add_tail(&q->tag_set_list, &set->tag_list);
2938 
2939 	mutex_unlock(&set->tag_list_lock);
2940 }
2941 
2942 /* All allocations will be freed in release handler of q->mq_kobj */
2943 static int blk_mq_alloc_ctxs(struct request_queue *q)
2944 {
2945 	struct blk_mq_ctxs *ctxs;
2946 	int cpu;
2947 
2948 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2949 	if (!ctxs)
2950 		return -ENOMEM;
2951 
2952 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2953 	if (!ctxs->queue_ctx)
2954 		goto fail;
2955 
2956 	for_each_possible_cpu(cpu) {
2957 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2958 		ctx->ctxs = ctxs;
2959 	}
2960 
2961 	q->mq_kobj = &ctxs->kobj;
2962 	q->queue_ctx = ctxs->queue_ctx;
2963 
2964 	return 0;
2965  fail:
2966 	kfree(ctxs);
2967 	return -ENOMEM;
2968 }
2969 
2970 /*
2971  * It is the actual release handler for mq, but we do it from
2972  * request queue's release handler for avoiding use-after-free
2973  * and headache because q->mq_kobj shouldn't have been introduced,
2974  * but we can't group ctx/kctx kobj without it.
2975  */
2976 void blk_mq_release(struct request_queue *q)
2977 {
2978 	struct blk_mq_hw_ctx *hctx, *next;
2979 	int i;
2980 
2981 	queue_for_each_hw_ctx(q, hctx, i)
2982 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2983 
2984 	/* all hctx are in .unused_hctx_list now */
2985 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2986 		list_del_init(&hctx->hctx_list);
2987 		kobject_put(&hctx->kobj);
2988 	}
2989 
2990 	kfree(q->queue_hw_ctx);
2991 
2992 	/*
2993 	 * release .mq_kobj and sw queue's kobject now because
2994 	 * both share lifetime with request queue.
2995 	 */
2996 	blk_mq_sysfs_deinit(q);
2997 }
2998 
2999 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3000 		void *queuedata)
3001 {
3002 	struct request_queue *uninit_q, *q;
3003 
3004 	uninit_q = blk_alloc_queue(set->numa_node);
3005 	if (!uninit_q)
3006 		return ERR_PTR(-ENOMEM);
3007 	uninit_q->queuedata = queuedata;
3008 
3009 	/*
3010 	 * Initialize the queue without an elevator. device_add_disk() will do
3011 	 * the initialization.
3012 	 */
3013 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3014 	if (IS_ERR(q))
3015 		blk_cleanup_queue(uninit_q);
3016 
3017 	return q;
3018 }
3019 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3020 
3021 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3022 {
3023 	return blk_mq_init_queue_data(set, NULL);
3024 }
3025 EXPORT_SYMBOL(blk_mq_init_queue);
3026 
3027 /*
3028  * Helper for setting up a queue with mq ops, given queue depth, and
3029  * the passed in mq ops flags.
3030  */
3031 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3032 					   const struct blk_mq_ops *ops,
3033 					   unsigned int queue_depth,
3034 					   unsigned int set_flags)
3035 {
3036 	struct request_queue *q;
3037 	int ret;
3038 
3039 	memset(set, 0, sizeof(*set));
3040 	set->ops = ops;
3041 	set->nr_hw_queues = 1;
3042 	set->nr_maps = 1;
3043 	set->queue_depth = queue_depth;
3044 	set->numa_node = NUMA_NO_NODE;
3045 	set->flags = set_flags;
3046 
3047 	ret = blk_mq_alloc_tag_set(set);
3048 	if (ret)
3049 		return ERR_PTR(ret);
3050 
3051 	q = blk_mq_init_queue(set);
3052 	if (IS_ERR(q)) {
3053 		blk_mq_free_tag_set(set);
3054 		return q;
3055 	}
3056 
3057 	return q;
3058 }
3059 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3060 
3061 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3062 		struct blk_mq_tag_set *set, struct request_queue *q,
3063 		int hctx_idx, int node)
3064 {
3065 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3066 
3067 	/* reuse dead hctx first */
3068 	spin_lock(&q->unused_hctx_lock);
3069 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3070 		if (tmp->numa_node == node) {
3071 			hctx = tmp;
3072 			break;
3073 		}
3074 	}
3075 	if (hctx)
3076 		list_del_init(&hctx->hctx_list);
3077 	spin_unlock(&q->unused_hctx_lock);
3078 
3079 	if (!hctx)
3080 		hctx = blk_mq_alloc_hctx(q, set, node);
3081 	if (!hctx)
3082 		goto fail;
3083 
3084 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3085 		goto free_hctx;
3086 
3087 	return hctx;
3088 
3089  free_hctx:
3090 	kobject_put(&hctx->kobj);
3091  fail:
3092 	return NULL;
3093 }
3094 
3095 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3096 						struct request_queue *q)
3097 {
3098 	int i, j, end;
3099 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3100 
3101 	if (q->nr_hw_queues < set->nr_hw_queues) {
3102 		struct blk_mq_hw_ctx **new_hctxs;
3103 
3104 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3105 				       sizeof(*new_hctxs), GFP_KERNEL,
3106 				       set->numa_node);
3107 		if (!new_hctxs)
3108 			return;
3109 		if (hctxs)
3110 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3111 			       sizeof(*hctxs));
3112 		q->queue_hw_ctx = new_hctxs;
3113 		kfree(hctxs);
3114 		hctxs = new_hctxs;
3115 	}
3116 
3117 	/* protect against switching io scheduler  */
3118 	mutex_lock(&q->sysfs_lock);
3119 	for (i = 0; i < set->nr_hw_queues; i++) {
3120 		int node;
3121 		struct blk_mq_hw_ctx *hctx;
3122 
3123 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3124 		/*
3125 		 * If the hw queue has been mapped to another numa node,
3126 		 * we need to realloc the hctx. If allocation fails, fallback
3127 		 * to use the previous one.
3128 		 */
3129 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3130 			continue;
3131 
3132 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3133 		if (hctx) {
3134 			if (hctxs[i])
3135 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3136 			hctxs[i] = hctx;
3137 		} else {
3138 			if (hctxs[i])
3139 				pr_warn("Allocate new hctx on node %d fails,\
3140 						fallback to previous one on node %d\n",
3141 						node, hctxs[i]->numa_node);
3142 			else
3143 				break;
3144 		}
3145 	}
3146 	/*
3147 	 * Increasing nr_hw_queues fails. Free the newly allocated
3148 	 * hctxs and keep the previous q->nr_hw_queues.
3149 	 */
3150 	if (i != set->nr_hw_queues) {
3151 		j = q->nr_hw_queues;
3152 		end = i;
3153 	} else {
3154 		j = i;
3155 		end = q->nr_hw_queues;
3156 		q->nr_hw_queues = set->nr_hw_queues;
3157 	}
3158 
3159 	for (; j < end; j++) {
3160 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3161 
3162 		if (hctx) {
3163 			if (hctx->tags)
3164 				blk_mq_free_map_and_requests(set, j);
3165 			blk_mq_exit_hctx(q, set, hctx, j);
3166 			hctxs[j] = NULL;
3167 		}
3168 	}
3169 	mutex_unlock(&q->sysfs_lock);
3170 }
3171 
3172 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3173 						  struct request_queue *q,
3174 						  bool elevator_init)
3175 {
3176 	/* mark the queue as mq asap */
3177 	q->mq_ops = set->ops;
3178 
3179 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3180 					     blk_mq_poll_stats_bkt,
3181 					     BLK_MQ_POLL_STATS_BKTS, q);
3182 	if (!q->poll_cb)
3183 		goto err_exit;
3184 
3185 	if (blk_mq_alloc_ctxs(q))
3186 		goto err_poll;
3187 
3188 	/* init q->mq_kobj and sw queues' kobjects */
3189 	blk_mq_sysfs_init(q);
3190 
3191 	INIT_LIST_HEAD(&q->unused_hctx_list);
3192 	spin_lock_init(&q->unused_hctx_lock);
3193 
3194 	blk_mq_realloc_hw_ctxs(set, q);
3195 	if (!q->nr_hw_queues)
3196 		goto err_hctxs;
3197 
3198 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3199 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3200 
3201 	q->tag_set = set;
3202 
3203 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3204 	if (set->nr_maps > HCTX_TYPE_POLL &&
3205 	    set->map[HCTX_TYPE_POLL].nr_queues)
3206 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3207 
3208 	q->sg_reserved_size = INT_MAX;
3209 
3210 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3211 	INIT_LIST_HEAD(&q->requeue_list);
3212 	spin_lock_init(&q->requeue_lock);
3213 
3214 	q->nr_requests = set->queue_depth;
3215 
3216 	/*
3217 	 * Default to classic polling
3218 	 */
3219 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3220 
3221 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3222 	blk_mq_add_queue_tag_set(set, q);
3223 	blk_mq_map_swqueue(q);
3224 
3225 	if (elevator_init)
3226 		elevator_init_mq(q);
3227 
3228 	return q;
3229 
3230 err_hctxs:
3231 	kfree(q->queue_hw_ctx);
3232 	q->nr_hw_queues = 0;
3233 	blk_mq_sysfs_deinit(q);
3234 err_poll:
3235 	blk_stat_free_callback(q->poll_cb);
3236 	q->poll_cb = NULL;
3237 err_exit:
3238 	q->mq_ops = NULL;
3239 	return ERR_PTR(-ENOMEM);
3240 }
3241 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3242 
3243 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3244 void blk_mq_exit_queue(struct request_queue *q)
3245 {
3246 	struct blk_mq_tag_set	*set = q->tag_set;
3247 
3248 	blk_mq_del_queue_tag_set(q);
3249 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3250 }
3251 
3252 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3253 {
3254 	int i;
3255 
3256 	for (i = 0; i < set->nr_hw_queues; i++) {
3257 		if (!__blk_mq_alloc_map_and_request(set, i))
3258 			goto out_unwind;
3259 		cond_resched();
3260 	}
3261 
3262 	return 0;
3263 
3264 out_unwind:
3265 	while (--i >= 0)
3266 		blk_mq_free_map_and_requests(set, i);
3267 
3268 	return -ENOMEM;
3269 }
3270 
3271 /*
3272  * Allocate the request maps associated with this tag_set. Note that this
3273  * may reduce the depth asked for, if memory is tight. set->queue_depth
3274  * will be updated to reflect the allocated depth.
3275  */
3276 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3277 {
3278 	unsigned int depth;
3279 	int err;
3280 
3281 	depth = set->queue_depth;
3282 	do {
3283 		err = __blk_mq_alloc_rq_maps(set);
3284 		if (!err)
3285 			break;
3286 
3287 		set->queue_depth >>= 1;
3288 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3289 			err = -ENOMEM;
3290 			break;
3291 		}
3292 	} while (set->queue_depth);
3293 
3294 	if (!set->queue_depth || err) {
3295 		pr_err("blk-mq: failed to allocate request map\n");
3296 		return -ENOMEM;
3297 	}
3298 
3299 	if (depth != set->queue_depth)
3300 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3301 						depth, set->queue_depth);
3302 
3303 	return 0;
3304 }
3305 
3306 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3307 {
3308 	/*
3309 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3310 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3311 	 * number of hardware queues.
3312 	 */
3313 	if (set->nr_maps == 1)
3314 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3315 
3316 	if (set->ops->map_queues && !is_kdump_kernel()) {
3317 		int i;
3318 
3319 		/*
3320 		 * transport .map_queues is usually done in the following
3321 		 * way:
3322 		 *
3323 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3324 		 * 	mask = get_cpu_mask(queue)
3325 		 * 	for_each_cpu(cpu, mask)
3326 		 * 		set->map[x].mq_map[cpu] = queue;
3327 		 * }
3328 		 *
3329 		 * When we need to remap, the table has to be cleared for
3330 		 * killing stale mapping since one CPU may not be mapped
3331 		 * to any hw queue.
3332 		 */
3333 		for (i = 0; i < set->nr_maps; i++)
3334 			blk_mq_clear_mq_map(&set->map[i]);
3335 
3336 		return set->ops->map_queues(set);
3337 	} else {
3338 		BUG_ON(set->nr_maps > 1);
3339 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3340 	}
3341 }
3342 
3343 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3344 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3345 {
3346 	struct blk_mq_tags **new_tags;
3347 
3348 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3349 		return 0;
3350 
3351 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3352 				GFP_KERNEL, set->numa_node);
3353 	if (!new_tags)
3354 		return -ENOMEM;
3355 
3356 	if (set->tags)
3357 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3358 		       sizeof(*set->tags));
3359 	kfree(set->tags);
3360 	set->tags = new_tags;
3361 	set->nr_hw_queues = new_nr_hw_queues;
3362 
3363 	return 0;
3364 }
3365 
3366 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3367 				int new_nr_hw_queues)
3368 {
3369 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3370 }
3371 
3372 /*
3373  * Alloc a tag set to be associated with one or more request queues.
3374  * May fail with EINVAL for various error conditions. May adjust the
3375  * requested depth down, if it's too large. In that case, the set
3376  * value will be stored in set->queue_depth.
3377  */
3378 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3379 {
3380 	int i, ret;
3381 
3382 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3383 
3384 	if (!set->nr_hw_queues)
3385 		return -EINVAL;
3386 	if (!set->queue_depth)
3387 		return -EINVAL;
3388 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3389 		return -EINVAL;
3390 
3391 	if (!set->ops->queue_rq)
3392 		return -EINVAL;
3393 
3394 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3395 		return -EINVAL;
3396 
3397 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3398 		pr_info("blk-mq: reduced tag depth to %u\n",
3399 			BLK_MQ_MAX_DEPTH);
3400 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3401 	}
3402 
3403 	if (!set->nr_maps)
3404 		set->nr_maps = 1;
3405 	else if (set->nr_maps > HCTX_MAX_TYPES)
3406 		return -EINVAL;
3407 
3408 	/*
3409 	 * If a crashdump is active, then we are potentially in a very
3410 	 * memory constrained environment. Limit us to 1 queue and
3411 	 * 64 tags to prevent using too much memory.
3412 	 */
3413 	if (is_kdump_kernel()) {
3414 		set->nr_hw_queues = 1;
3415 		set->nr_maps = 1;
3416 		set->queue_depth = min(64U, set->queue_depth);
3417 	}
3418 	/*
3419 	 * There is no use for more h/w queues than cpus if we just have
3420 	 * a single map
3421 	 */
3422 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3423 		set->nr_hw_queues = nr_cpu_ids;
3424 
3425 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3426 		return -ENOMEM;
3427 
3428 	ret = -ENOMEM;
3429 	for (i = 0; i < set->nr_maps; i++) {
3430 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3431 						  sizeof(set->map[i].mq_map[0]),
3432 						  GFP_KERNEL, set->numa_node);
3433 		if (!set->map[i].mq_map)
3434 			goto out_free_mq_map;
3435 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3436 	}
3437 
3438 	ret = blk_mq_update_queue_map(set);
3439 	if (ret)
3440 		goto out_free_mq_map;
3441 
3442 	ret = blk_mq_alloc_map_and_requests(set);
3443 	if (ret)
3444 		goto out_free_mq_map;
3445 
3446 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3447 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3448 
3449 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3450 			ret = -ENOMEM;
3451 			goto out_free_mq_rq_maps;
3452 		}
3453 	}
3454 
3455 	mutex_init(&set->tag_list_lock);
3456 	INIT_LIST_HEAD(&set->tag_list);
3457 
3458 	return 0;
3459 
3460 out_free_mq_rq_maps:
3461 	for (i = 0; i < set->nr_hw_queues; i++)
3462 		blk_mq_free_map_and_requests(set, i);
3463 out_free_mq_map:
3464 	for (i = 0; i < set->nr_maps; i++) {
3465 		kfree(set->map[i].mq_map);
3466 		set->map[i].mq_map = NULL;
3467 	}
3468 	kfree(set->tags);
3469 	set->tags = NULL;
3470 	return ret;
3471 }
3472 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3473 
3474 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3475 {
3476 	int i, j;
3477 
3478 	for (i = 0; i < set->nr_hw_queues; i++)
3479 		blk_mq_free_map_and_requests(set, i);
3480 
3481 	if (blk_mq_is_sbitmap_shared(set->flags))
3482 		blk_mq_exit_shared_sbitmap(set);
3483 
3484 	for (j = 0; j < set->nr_maps; j++) {
3485 		kfree(set->map[j].mq_map);
3486 		set->map[j].mq_map = NULL;
3487 	}
3488 
3489 	kfree(set->tags);
3490 	set->tags = NULL;
3491 }
3492 EXPORT_SYMBOL(blk_mq_free_tag_set);
3493 
3494 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3495 {
3496 	struct blk_mq_tag_set *set = q->tag_set;
3497 	struct blk_mq_hw_ctx *hctx;
3498 	int i, ret;
3499 
3500 	if (!set)
3501 		return -EINVAL;
3502 
3503 	if (q->nr_requests == nr)
3504 		return 0;
3505 
3506 	blk_mq_freeze_queue(q);
3507 	blk_mq_quiesce_queue(q);
3508 
3509 	ret = 0;
3510 	queue_for_each_hw_ctx(q, hctx, i) {
3511 		if (!hctx->tags)
3512 			continue;
3513 		/*
3514 		 * If we're using an MQ scheduler, just update the scheduler
3515 		 * queue depth. This is similar to what the old code would do.
3516 		 */
3517 		if (!hctx->sched_tags) {
3518 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3519 							false);
3520 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3521 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3522 		} else {
3523 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3524 							nr, true);
3525 		}
3526 		if (ret)
3527 			break;
3528 		if (q->elevator && q->elevator->type->ops.depth_updated)
3529 			q->elevator->type->ops.depth_updated(hctx);
3530 	}
3531 
3532 	if (!ret)
3533 		q->nr_requests = nr;
3534 
3535 	blk_mq_unquiesce_queue(q);
3536 	blk_mq_unfreeze_queue(q);
3537 
3538 	return ret;
3539 }
3540 
3541 /*
3542  * request_queue and elevator_type pair.
3543  * It is just used by __blk_mq_update_nr_hw_queues to cache
3544  * the elevator_type associated with a request_queue.
3545  */
3546 struct blk_mq_qe_pair {
3547 	struct list_head node;
3548 	struct request_queue *q;
3549 	struct elevator_type *type;
3550 };
3551 
3552 /*
3553  * Cache the elevator_type in qe pair list and switch the
3554  * io scheduler to 'none'
3555  */
3556 static bool blk_mq_elv_switch_none(struct list_head *head,
3557 		struct request_queue *q)
3558 {
3559 	struct blk_mq_qe_pair *qe;
3560 
3561 	if (!q->elevator)
3562 		return true;
3563 
3564 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3565 	if (!qe)
3566 		return false;
3567 
3568 	INIT_LIST_HEAD(&qe->node);
3569 	qe->q = q;
3570 	qe->type = q->elevator->type;
3571 	list_add(&qe->node, head);
3572 
3573 	mutex_lock(&q->sysfs_lock);
3574 	/*
3575 	 * After elevator_switch_mq, the previous elevator_queue will be
3576 	 * released by elevator_release. The reference of the io scheduler
3577 	 * module get by elevator_get will also be put. So we need to get
3578 	 * a reference of the io scheduler module here to prevent it to be
3579 	 * removed.
3580 	 */
3581 	__module_get(qe->type->elevator_owner);
3582 	elevator_switch_mq(q, NULL);
3583 	mutex_unlock(&q->sysfs_lock);
3584 
3585 	return true;
3586 }
3587 
3588 static void blk_mq_elv_switch_back(struct list_head *head,
3589 		struct request_queue *q)
3590 {
3591 	struct blk_mq_qe_pair *qe;
3592 	struct elevator_type *t = NULL;
3593 
3594 	list_for_each_entry(qe, head, node)
3595 		if (qe->q == q) {
3596 			t = qe->type;
3597 			break;
3598 		}
3599 
3600 	if (!t)
3601 		return;
3602 
3603 	list_del(&qe->node);
3604 	kfree(qe);
3605 
3606 	mutex_lock(&q->sysfs_lock);
3607 	elevator_switch_mq(q, t);
3608 	mutex_unlock(&q->sysfs_lock);
3609 }
3610 
3611 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3612 							int nr_hw_queues)
3613 {
3614 	struct request_queue *q;
3615 	LIST_HEAD(head);
3616 	int prev_nr_hw_queues;
3617 
3618 	lockdep_assert_held(&set->tag_list_lock);
3619 
3620 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3621 		nr_hw_queues = nr_cpu_ids;
3622 	if (nr_hw_queues < 1)
3623 		return;
3624 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3625 		return;
3626 
3627 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3628 		blk_mq_freeze_queue(q);
3629 	/*
3630 	 * Switch IO scheduler to 'none', cleaning up the data associated
3631 	 * with the previous scheduler. We will switch back once we are done
3632 	 * updating the new sw to hw queue mappings.
3633 	 */
3634 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3635 		if (!blk_mq_elv_switch_none(&head, q))
3636 			goto switch_back;
3637 
3638 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3639 		blk_mq_debugfs_unregister_hctxs(q);
3640 		blk_mq_sysfs_unregister(q);
3641 	}
3642 
3643 	prev_nr_hw_queues = set->nr_hw_queues;
3644 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3645 	    0)
3646 		goto reregister;
3647 
3648 	set->nr_hw_queues = nr_hw_queues;
3649 fallback:
3650 	blk_mq_update_queue_map(set);
3651 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3652 		blk_mq_realloc_hw_ctxs(set, q);
3653 		if (q->nr_hw_queues != set->nr_hw_queues) {
3654 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3655 					nr_hw_queues, prev_nr_hw_queues);
3656 			set->nr_hw_queues = prev_nr_hw_queues;
3657 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3658 			goto fallback;
3659 		}
3660 		blk_mq_map_swqueue(q);
3661 	}
3662 
3663 reregister:
3664 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3665 		blk_mq_sysfs_register(q);
3666 		blk_mq_debugfs_register_hctxs(q);
3667 	}
3668 
3669 switch_back:
3670 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3671 		blk_mq_elv_switch_back(&head, q);
3672 
3673 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3674 		blk_mq_unfreeze_queue(q);
3675 }
3676 
3677 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3678 {
3679 	mutex_lock(&set->tag_list_lock);
3680 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3681 	mutex_unlock(&set->tag_list_lock);
3682 }
3683 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3684 
3685 /* Enable polling stats and return whether they were already enabled. */
3686 static bool blk_poll_stats_enable(struct request_queue *q)
3687 {
3688 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3689 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3690 		return true;
3691 	blk_stat_add_callback(q, q->poll_cb);
3692 	return false;
3693 }
3694 
3695 static void blk_mq_poll_stats_start(struct request_queue *q)
3696 {
3697 	/*
3698 	 * We don't arm the callback if polling stats are not enabled or the
3699 	 * callback is already active.
3700 	 */
3701 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3702 	    blk_stat_is_active(q->poll_cb))
3703 		return;
3704 
3705 	blk_stat_activate_msecs(q->poll_cb, 100);
3706 }
3707 
3708 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3709 {
3710 	struct request_queue *q = cb->data;
3711 	int bucket;
3712 
3713 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3714 		if (cb->stat[bucket].nr_samples)
3715 			q->poll_stat[bucket] = cb->stat[bucket];
3716 	}
3717 }
3718 
3719 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3720 				       struct request *rq)
3721 {
3722 	unsigned long ret = 0;
3723 	int bucket;
3724 
3725 	/*
3726 	 * If stats collection isn't on, don't sleep but turn it on for
3727 	 * future users
3728 	 */
3729 	if (!blk_poll_stats_enable(q))
3730 		return 0;
3731 
3732 	/*
3733 	 * As an optimistic guess, use half of the mean service time
3734 	 * for this type of request. We can (and should) make this smarter.
3735 	 * For instance, if the completion latencies are tight, we can
3736 	 * get closer than just half the mean. This is especially
3737 	 * important on devices where the completion latencies are longer
3738 	 * than ~10 usec. We do use the stats for the relevant IO size
3739 	 * if available which does lead to better estimates.
3740 	 */
3741 	bucket = blk_mq_poll_stats_bkt(rq);
3742 	if (bucket < 0)
3743 		return ret;
3744 
3745 	if (q->poll_stat[bucket].nr_samples)
3746 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3747 
3748 	return ret;
3749 }
3750 
3751 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3752 				     struct request *rq)
3753 {
3754 	struct hrtimer_sleeper hs;
3755 	enum hrtimer_mode mode;
3756 	unsigned int nsecs;
3757 	ktime_t kt;
3758 
3759 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3760 		return false;
3761 
3762 	/*
3763 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3764 	 *
3765 	 *  0:	use half of prev avg
3766 	 * >0:	use this specific value
3767 	 */
3768 	if (q->poll_nsec > 0)
3769 		nsecs = q->poll_nsec;
3770 	else
3771 		nsecs = blk_mq_poll_nsecs(q, rq);
3772 
3773 	if (!nsecs)
3774 		return false;
3775 
3776 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3777 
3778 	/*
3779 	 * This will be replaced with the stats tracking code, using
3780 	 * 'avg_completion_time / 2' as the pre-sleep target.
3781 	 */
3782 	kt = nsecs;
3783 
3784 	mode = HRTIMER_MODE_REL;
3785 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3786 	hrtimer_set_expires(&hs.timer, kt);
3787 
3788 	do {
3789 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3790 			break;
3791 		set_current_state(TASK_UNINTERRUPTIBLE);
3792 		hrtimer_sleeper_start_expires(&hs, mode);
3793 		if (hs.task)
3794 			io_schedule();
3795 		hrtimer_cancel(&hs.timer);
3796 		mode = HRTIMER_MODE_ABS;
3797 	} while (hs.task && !signal_pending(current));
3798 
3799 	__set_current_state(TASK_RUNNING);
3800 	destroy_hrtimer_on_stack(&hs.timer);
3801 	return true;
3802 }
3803 
3804 static bool blk_mq_poll_hybrid(struct request_queue *q,
3805 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3806 {
3807 	struct request *rq;
3808 
3809 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3810 		return false;
3811 
3812 	if (!blk_qc_t_is_internal(cookie))
3813 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3814 	else {
3815 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3816 		/*
3817 		 * With scheduling, if the request has completed, we'll
3818 		 * get a NULL return here, as we clear the sched tag when
3819 		 * that happens. The request still remains valid, like always,
3820 		 * so we should be safe with just the NULL check.
3821 		 */
3822 		if (!rq)
3823 			return false;
3824 	}
3825 
3826 	return blk_mq_poll_hybrid_sleep(q, rq);
3827 }
3828 
3829 /**
3830  * blk_poll - poll for IO completions
3831  * @q:  the queue
3832  * @cookie: cookie passed back at IO submission time
3833  * @spin: whether to spin for completions
3834  *
3835  * Description:
3836  *    Poll for completions on the passed in queue. Returns number of
3837  *    completed entries found. If @spin is true, then blk_poll will continue
3838  *    looping until at least one completion is found, unless the task is
3839  *    otherwise marked running (or we need to reschedule).
3840  */
3841 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3842 {
3843 	struct blk_mq_hw_ctx *hctx;
3844 	long state;
3845 
3846 	if (!blk_qc_t_valid(cookie) ||
3847 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3848 		return 0;
3849 
3850 	if (current->plug)
3851 		blk_flush_plug_list(current->plug, false);
3852 
3853 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3854 
3855 	/*
3856 	 * If we sleep, have the caller restart the poll loop to reset
3857 	 * the state. Like for the other success return cases, the
3858 	 * caller is responsible for checking if the IO completed. If
3859 	 * the IO isn't complete, we'll get called again and will go
3860 	 * straight to the busy poll loop. If specified not to spin,
3861 	 * we also should not sleep.
3862 	 */
3863 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3864 		return 1;
3865 
3866 	hctx->poll_considered++;
3867 
3868 	state = current->state;
3869 	do {
3870 		int ret;
3871 
3872 		hctx->poll_invoked++;
3873 
3874 		ret = q->mq_ops->poll(hctx);
3875 		if (ret > 0) {
3876 			hctx->poll_success++;
3877 			__set_current_state(TASK_RUNNING);
3878 			return ret;
3879 		}
3880 
3881 		if (signal_pending_state(state, current))
3882 			__set_current_state(TASK_RUNNING);
3883 
3884 		if (current->state == TASK_RUNNING)
3885 			return 1;
3886 		if (ret < 0 || !spin)
3887 			break;
3888 		cpu_relax();
3889 	} while (!need_resched());
3890 
3891 	__set_current_state(TASK_RUNNING);
3892 	return 0;
3893 }
3894 EXPORT_SYMBOL_GPL(blk_poll);
3895 
3896 unsigned int blk_mq_rq_cpu(struct request *rq)
3897 {
3898 	return rq->mq_ctx->cpu;
3899 }
3900 EXPORT_SYMBOL(blk_mq_rq_cpu);
3901 
3902 static int __init blk_mq_init(void)
3903 {
3904 	int i;
3905 
3906 	for_each_possible_cpu(i)
3907 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3908 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3909 
3910 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3911 				  "block/softirq:dead", NULL,
3912 				  blk_softirq_cpu_dead);
3913 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3914 				blk_mq_hctx_notify_dead);
3915 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3916 				blk_mq_hctx_notify_online,
3917 				blk_mq_hctx_notify_offline);
3918 	return 0;
3919 }
3920 subsys_initcall(blk_mq_init);
3921