xref: /openbmc/linux/block/blk-mq.c (revision 09de5cd2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138 		mi->inflight[rq_data_dir(rq)]++;
139 
140 	return true;
141 }
142 
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144 		struct block_device *part)
145 {
146 	struct mq_inflight mi = { .part = part };
147 
148 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149 
150 	return mi.inflight[0] + mi.inflight[1];
151 }
152 
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 		unsigned int inflight[2])
155 {
156 	struct mq_inflight mi = { .part = part };
157 
158 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 	inflight[0] = mi.inflight[0];
160 	inflight[1] = mi.inflight[1];
161 }
162 
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165 	mutex_lock(&q->mq_freeze_lock);
166 	if (++q->mq_freeze_depth == 1) {
167 		percpu_ref_kill(&q->q_usage_counter);
168 		mutex_unlock(&q->mq_freeze_lock);
169 		if (queue_is_mq(q))
170 			blk_mq_run_hw_queues(q, false);
171 	} else {
172 		mutex_unlock(&q->mq_freeze_lock);
173 	}
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176 
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182 
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 				     unsigned long timeout)
185 {
186 	return wait_event_timeout(q->mq_freeze_wq,
187 					percpu_ref_is_zero(&q->q_usage_counter),
188 					timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191 
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198 	/*
199 	 * In the !blk_mq case we are only calling this to kill the
200 	 * q_usage_counter, otherwise this increases the freeze depth
201 	 * and waits for it to return to zero.  For this reason there is
202 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 	 * exported to drivers as the only user for unfreeze is blk_mq.
204 	 */
205 	blk_freeze_queue_start(q);
206 	blk_mq_freeze_queue_wait(q);
207 }
208 
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211 	/*
212 	 * ...just an alias to keep freeze and unfreeze actions balanced
213 	 * in the blk_mq_* namespace
214 	 */
215 	blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218 
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221 	mutex_lock(&q->mq_freeze_lock);
222 	if (force_atomic)
223 		q->q_usage_counter.data->force_atomic = true;
224 	q->mq_freeze_depth--;
225 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 	if (!q->mq_freeze_depth) {
227 		percpu_ref_resurrect(&q->q_usage_counter);
228 		wake_up_all(&q->mq_freeze_wq);
229 	}
230 	mutex_unlock(&q->mq_freeze_lock);
231 }
232 
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235 	__blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238 
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&q->queue_lock, flags);
248 	if (!q->quiesce_depth++)
249 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 	spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253 
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263 	if (blk_queue_has_srcu(q))
264 		synchronize_srcu(q->srcu);
265 	else
266 		synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269 
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281 	blk_mq_quiesce_queue_nowait(q);
282 	blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285 
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295 	unsigned long flags;
296 	bool run_queue = false;
297 
298 	spin_lock_irqsave(&q->queue_lock, flags);
299 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300 		;
301 	} else if (!--q->quiesce_depth) {
302 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303 		run_queue = true;
304 	}
305 	spin_unlock_irqrestore(&q->queue_lock, flags);
306 
307 	/* dispatch requests which are inserted during quiescing */
308 	if (run_queue)
309 		blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312 
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	unsigned long i;
317 
318 	queue_for_each_hw_ctx(q, hctx, i)
319 		if (blk_mq_hw_queue_mapped(hctx))
320 			blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322 
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325 	memset(rq, 0, sizeof(*rq));
326 
327 	INIT_LIST_HEAD(&rq->queuelist);
328 	rq->q = q;
329 	rq->__sector = (sector_t) -1;
330 	INIT_HLIST_NODE(&rq->hash);
331 	RB_CLEAR_NODE(&rq->rb_node);
332 	rq->tag = BLK_MQ_NO_TAG;
333 	rq->internal_tag = BLK_MQ_NO_TAG;
334 	rq->start_time_ns = ktime_get_ns();
335 	rq->part = NULL;
336 	blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339 
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343 	struct blk_mq_ctx *ctx = data->ctx;
344 	struct blk_mq_hw_ctx *hctx = data->hctx;
345 	struct request_queue *q = data->q;
346 	struct request *rq = tags->static_rqs[tag];
347 
348 	rq->q = q;
349 	rq->mq_ctx = ctx;
350 	rq->mq_hctx = hctx;
351 	rq->cmd_flags = data->cmd_flags;
352 
353 	if (data->flags & BLK_MQ_REQ_PM)
354 		data->rq_flags |= RQF_PM;
355 	if (blk_queue_io_stat(q))
356 		data->rq_flags |= RQF_IO_STAT;
357 	rq->rq_flags = data->rq_flags;
358 
359 	if (!(data->rq_flags & RQF_ELV)) {
360 		rq->tag = tag;
361 		rq->internal_tag = BLK_MQ_NO_TAG;
362 	} else {
363 		rq->tag = BLK_MQ_NO_TAG;
364 		rq->internal_tag = tag;
365 	}
366 	rq->timeout = 0;
367 
368 	if (blk_mq_need_time_stamp(rq))
369 		rq->start_time_ns = ktime_get_ns();
370 	else
371 		rq->start_time_ns = 0;
372 	rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 	rq->alloc_time_ns = alloc_time_ns;
375 #endif
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_ELV) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (!op_is_flush(data->cmd_flags) &&
398 		    e->type->ops.prepare_request) {
399 			e->type->ops.prepare_request(rq);
400 			rq->rq_flags |= RQF_ELVPRIV;
401 		}
402 	}
403 
404 	return rq;
405 }
406 
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409 		u64 alloc_time_ns)
410 {
411 	unsigned int tag, tag_offset;
412 	struct blk_mq_tags *tags;
413 	struct request *rq;
414 	unsigned long tag_mask;
415 	int i, nr = 0;
416 
417 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418 	if (unlikely(!tag_mask))
419 		return NULL;
420 
421 	tags = blk_mq_tags_from_data(data);
422 	for (i = 0; tag_mask; i++) {
423 		if (!(tag_mask & (1UL << i)))
424 			continue;
425 		tag = tag_offset + i;
426 		prefetch(tags->static_rqs[tag]);
427 		tag_mask &= ~(1UL << i);
428 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429 		rq_list_add(data->cached_rq, rq);
430 		nr++;
431 	}
432 	/* caller already holds a reference, add for remainder */
433 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434 	data->nr_tags -= nr;
435 
436 	return rq_list_pop(data->cached_rq);
437 }
438 
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441 	struct request_queue *q = data->q;
442 	u64 alloc_time_ns = 0;
443 	struct request *rq;
444 	unsigned int tag;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	if (data->cmd_flags & REQ_NOWAIT)
451 		data->flags |= BLK_MQ_REQ_NOWAIT;
452 
453 	if (q->elevator) {
454 		struct elevator_queue *e = q->elevator;
455 
456 		data->rq_flags |= RQF_ELV;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list. Don't include reserved tags in the
461 		 * limiting, as it isn't useful.
462 		 */
463 		if (!op_is_flush(data->cmd_flags) &&
464 		    !blk_op_is_passthrough(data->cmd_flags) &&
465 		    e->type->ops.limit_depth &&
466 		    !(data->flags & BLK_MQ_REQ_RESERVED))
467 			e->type->ops.limit_depth(data->cmd_flags, data);
468 	}
469 
470 retry:
471 	data->ctx = blk_mq_get_ctx(q);
472 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473 	if (!(data->rq_flags & RQF_ELV))
474 		blk_mq_tag_busy(data->hctx);
475 
476 	/*
477 	 * Try batched alloc if we want more than 1 tag.
478 	 */
479 	if (data->nr_tags > 1) {
480 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481 		if (rq)
482 			return rq;
483 		data->nr_tags = 1;
484 	}
485 
486 	/*
487 	 * Waiting allocations only fail because of an inactive hctx.  In that
488 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
489 	 * should have migrated us to an online CPU by now.
490 	 */
491 	tag = blk_mq_get_tag(data);
492 	if (tag == BLK_MQ_NO_TAG) {
493 		if (data->flags & BLK_MQ_REQ_NOWAIT)
494 			return NULL;
495 		/*
496 		 * Give up the CPU and sleep for a random short time to
497 		 * ensure that thread using a realtime scheduling class
498 		 * are migrated off the CPU, and thus off the hctx that
499 		 * is going away.
500 		 */
501 		msleep(3);
502 		goto retry;
503 	}
504 
505 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 					alloc_time_ns);
507 }
508 
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510 		blk_mq_req_flags_t flags)
511 {
512 	struct blk_mq_alloc_data data = {
513 		.q		= q,
514 		.flags		= flags,
515 		.cmd_flags	= op,
516 		.nr_tags	= 1,
517 	};
518 	struct request *rq;
519 	int ret;
520 
521 	ret = blk_queue_enter(q, flags);
522 	if (ret)
523 		return ERR_PTR(ret);
524 
525 	rq = __blk_mq_alloc_requests(&data);
526 	if (!rq)
527 		goto out_queue_exit;
528 	rq->__data_len = 0;
529 	rq->__sector = (sector_t) -1;
530 	rq->bio = rq->biotail = NULL;
531 	return rq;
532 out_queue_exit:
533 	blk_queue_exit(q);
534 	return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537 
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541 	struct blk_mq_alloc_data data = {
542 		.q		= q,
543 		.flags		= flags,
544 		.cmd_flags	= op,
545 		.nr_tags	= 1,
546 	};
547 	u64 alloc_time_ns = 0;
548 	unsigned int cpu;
549 	unsigned int tag;
550 	int ret;
551 
552 	/* alloc_time includes depth and tag waits */
553 	if (blk_queue_rq_alloc_time(q))
554 		alloc_time_ns = ktime_get_ns();
555 
556 	/*
557 	 * If the tag allocator sleeps we could get an allocation for a
558 	 * different hardware context.  No need to complicate the low level
559 	 * allocator for this for the rare use case of a command tied to
560 	 * a specific queue.
561 	 */
562 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563 		return ERR_PTR(-EINVAL);
564 
565 	if (hctx_idx >= q->nr_hw_queues)
566 		return ERR_PTR(-EIO);
567 
568 	ret = blk_queue_enter(q, flags);
569 	if (ret)
570 		return ERR_PTR(ret);
571 
572 	/*
573 	 * Check if the hardware context is actually mapped to anything.
574 	 * If not tell the caller that it should skip this queue.
575 	 */
576 	ret = -EXDEV;
577 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
578 	if (!blk_mq_hw_queue_mapped(data.hctx))
579 		goto out_queue_exit;
580 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581 	data.ctx = __blk_mq_get_ctx(q, cpu);
582 
583 	if (!q->elevator)
584 		blk_mq_tag_busy(data.hctx);
585 	else
586 		data.rq_flags |= RQF_ELV;
587 
588 	ret = -EWOULDBLOCK;
589 	tag = blk_mq_get_tag(&data);
590 	if (tag == BLK_MQ_NO_TAG)
591 		goto out_queue_exit;
592 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593 					alloc_time_ns);
594 
595 out_queue_exit:
596 	blk_queue_exit(q);
597 	return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600 
601 static void __blk_mq_free_request(struct request *rq)
602 {
603 	struct request_queue *q = rq->q;
604 	struct blk_mq_ctx *ctx = rq->mq_ctx;
605 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606 	const int sched_tag = rq->internal_tag;
607 
608 	blk_crypto_free_request(rq);
609 	blk_pm_mark_last_busy(rq);
610 	rq->mq_hctx = NULL;
611 	if (rq->tag != BLK_MQ_NO_TAG)
612 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613 	if (sched_tag != BLK_MQ_NO_TAG)
614 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615 	blk_mq_sched_restart(hctx);
616 	blk_queue_exit(q);
617 }
618 
619 void blk_mq_free_request(struct request *rq)
620 {
621 	struct request_queue *q = rq->q;
622 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623 
624 	if ((rq->rq_flags & RQF_ELVPRIV) &&
625 	    q->elevator->type->ops.finish_request)
626 		q->elevator->type->ops.finish_request(rq);
627 
628 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
629 		__blk_mq_dec_active_requests(hctx);
630 
631 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632 		laptop_io_completion(q->disk->bdi);
633 
634 	rq_qos_done(q, rq);
635 
636 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637 	if (req_ref_put_and_test(rq))
638 		__blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641 
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644 	struct request *rq;
645 
646 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647 		blk_mq_free_request(rq);
648 }
649 
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653 		rq->q->disk ? rq->q->disk->disk_name : "?",
654 		(unsigned long long) rq->cmd_flags);
655 
656 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657 	       (unsigned long long)blk_rq_pos(rq),
658 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663 
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665 			  unsigned int nbytes, blk_status_t error)
666 {
667 	if (unlikely(error)) {
668 		bio->bi_status = error;
669 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670 		/*
671 		 * Partial zone append completions cannot be supported as the
672 		 * BIO fragments may end up not being written sequentially.
673 		 */
674 		if (bio->bi_iter.bi_size != nbytes)
675 			bio->bi_status = BLK_STS_IOERR;
676 		else
677 			bio->bi_iter.bi_sector = rq->__sector;
678 	}
679 
680 	bio_advance(bio, nbytes);
681 
682 	if (unlikely(rq->rq_flags & RQF_QUIET))
683 		bio_set_flag(bio, BIO_QUIET);
684 	/* don't actually finish bio if it's part of flush sequence */
685 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686 		bio_endio(bio);
687 }
688 
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691 	if (req->part && blk_do_io_stat(req)) {
692 		const int sgrp = op_stat_group(req_op(req));
693 
694 		part_stat_lock();
695 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696 		part_stat_unlock();
697 	}
698 }
699 
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702 	printk_ratelimited(KERN_ERR
703 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704 		"phys_seg %u prio class %u\n",
705 		blk_status_to_str(status),
706 		req->q->disk ? req->q->disk->disk_name : "?",
707 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708 		req->cmd_flags & ~REQ_OP_MASK,
709 		req->nr_phys_segments,
710 		IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712 
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720 	int total_bytes = blk_rq_bytes(req);
721 	struct bio *bio = req->bio;
722 
723 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724 
725 	if (!bio)
726 		return;
727 
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730 		req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732 
733 	blk_account_io_completion(req, total_bytes);
734 
735 	do {
736 		struct bio *next = bio->bi_next;
737 
738 		/* Completion has already been traced */
739 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740 
741 		if (req_op(req) == REQ_OP_ZONE_APPEND)
742 			bio->bi_iter.bi_sector = req->__sector;
743 
744 		if (!is_flush)
745 			bio_endio(bio);
746 		bio = next;
747 	} while (bio);
748 
749 	/*
750 	 * Reset counters so that the request stacking driver
751 	 * can find how many bytes remain in the request
752 	 * later.
753 	 */
754 	req->bio = NULL;
755 	req->__data_len = 0;
756 }
757 
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781 		unsigned int nr_bytes)
782 {
783 	int total_bytes;
784 
785 	trace_block_rq_complete(req, error, nr_bytes);
786 
787 	if (!req->bio)
788 		return false;
789 
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792 	    error == BLK_STS_OK)
793 		req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795 
796 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
797 		     !(req->rq_flags & RQF_QUIET)) &&
798 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
799 		blk_print_req_error(req, error);
800 		trace_block_rq_error(req, error, nr_bytes);
801 	}
802 
803 	blk_account_io_completion(req, nr_bytes);
804 
805 	total_bytes = 0;
806 	while (req->bio) {
807 		struct bio *bio = req->bio;
808 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809 
810 		if (bio_bytes == bio->bi_iter.bi_size)
811 			req->bio = bio->bi_next;
812 
813 		/* Completion has already been traced */
814 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815 		req_bio_endio(req, bio, bio_bytes, error);
816 
817 		total_bytes += bio_bytes;
818 		nr_bytes -= bio_bytes;
819 
820 		if (!nr_bytes)
821 			break;
822 	}
823 
824 	/*
825 	 * completely done
826 	 */
827 	if (!req->bio) {
828 		/*
829 		 * Reset counters so that the request stacking driver
830 		 * can find how many bytes remain in the request
831 		 * later.
832 		 */
833 		req->__data_len = 0;
834 		return false;
835 	}
836 
837 	req->__data_len -= total_bytes;
838 
839 	/* update sector only for requests with clear definition of sector */
840 	if (!blk_rq_is_passthrough(req))
841 		req->__sector += total_bytes >> 9;
842 
843 	/* mixed attributes always follow the first bio */
844 	if (req->rq_flags & RQF_MIXED_MERGE) {
845 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
846 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847 	}
848 
849 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850 		/*
851 		 * If total number of sectors is less than the first segment
852 		 * size, something has gone terribly wrong.
853 		 */
854 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855 			blk_dump_rq_flags(req, "request botched");
856 			req->__data_len = blk_rq_cur_bytes(req);
857 		}
858 
859 		/* recalculate the number of segments */
860 		req->nr_phys_segments = blk_recalc_rq_segments(req);
861 	}
862 
863 	return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866 
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869 	const int sgrp = op_stat_group(req_op(req));
870 
871 	part_stat_lock();
872 	update_io_ticks(req->part, jiffies, true);
873 	part_stat_inc(req->part, ios[sgrp]);
874 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875 	part_stat_unlock();
876 }
877 
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880 	/*
881 	 * Account IO completion.  flush_rq isn't accounted as a
882 	 * normal IO on queueing nor completion.  Accounting the
883 	 * containing request is enough.
884 	 */
885 	if (blk_do_io_stat(req) && req->part &&
886 	    !(req->rq_flags & RQF_FLUSH_SEQ))
887 		__blk_account_io_done(req, now);
888 }
889 
890 static void __blk_account_io_start(struct request *rq)
891 {
892 	/*
893 	 * All non-passthrough requests are created from a bio with one
894 	 * exception: when a flush command that is part of a flush sequence
895 	 * generated by the state machine in blk-flush.c is cloned onto the
896 	 * lower device by dm-multipath we can get here without a bio.
897 	 */
898 	if (rq->bio)
899 		rq->part = rq->bio->bi_bdev;
900 	else
901 		rq->part = rq->q->disk->part0;
902 
903 	part_stat_lock();
904 	update_io_ticks(rq->part, jiffies, false);
905 	part_stat_unlock();
906 }
907 
908 static inline void blk_account_io_start(struct request *req)
909 {
910 	if (blk_do_io_stat(req))
911 		__blk_account_io_start(req);
912 }
913 
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916 	if (rq->rq_flags & RQF_STATS) {
917 		blk_mq_poll_stats_start(rq->q);
918 		blk_stat_add(rq, now);
919 	}
920 
921 	blk_mq_sched_completed_request(rq, now);
922 	blk_account_io_done(rq, now);
923 }
924 
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927 	if (blk_mq_need_time_stamp(rq))
928 		__blk_mq_end_request_acct(rq, ktime_get_ns());
929 
930 	if (rq->end_io) {
931 		rq_qos_done(rq->q, rq);
932 		rq->end_io(rq, error);
933 	} else {
934 		blk_mq_free_request(rq);
935 	}
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938 
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942 		BUG();
943 	__blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946 
947 #define TAG_COMP_BATCH		32
948 
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950 					  int *tag_array, int nr_tags)
951 {
952 	struct request_queue *q = hctx->queue;
953 
954 	/*
955 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
956 	 * update hctx->nr_active in batch
957 	 */
958 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959 		__blk_mq_sub_active_requests(hctx, nr_tags);
960 
961 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964 
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967 	int tags[TAG_COMP_BATCH], nr_tags = 0;
968 	struct blk_mq_hw_ctx *cur_hctx = NULL;
969 	struct request *rq;
970 	u64 now = 0;
971 
972 	if (iob->need_ts)
973 		now = ktime_get_ns();
974 
975 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976 		prefetch(rq->bio);
977 		prefetch(rq->rq_next);
978 
979 		blk_complete_request(rq);
980 		if (iob->need_ts)
981 			__blk_mq_end_request_acct(rq, now);
982 
983 		rq_qos_done(rq->q, rq);
984 
985 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986 		if (!req_ref_put_and_test(rq))
987 			continue;
988 
989 		blk_crypto_free_request(rq);
990 		blk_pm_mark_last_busy(rq);
991 
992 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993 			if (cur_hctx)
994 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995 			nr_tags = 0;
996 			cur_hctx = rq->mq_hctx;
997 		}
998 		tags[nr_tags++] = rq->tag;
999 	}
1000 
1001 	if (nr_tags)
1002 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005 
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009 	struct request *rq, *next;
1010 
1011 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012 		rq->q->mq_ops->complete(rq);
1013 }
1014 
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019 
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023 	return 0;
1024 }
1025 
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030 
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033 	int cpu = raw_smp_processor_id();
1034 
1035 	if (!IS_ENABLED(CONFIG_SMP) ||
1036 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037 		return false;
1038 	/*
1039 	 * With force threaded interrupts enabled, raising softirq from an SMP
1040 	 * function call will always result in waking the ksoftirqd thread.
1041 	 * This is probably worse than completing the request on a different
1042 	 * cache domain.
1043 	 */
1044 	if (force_irqthreads())
1045 		return false;
1046 
1047 	/* same CPU or cache domain?  Complete locally */
1048 	if (cpu == rq->mq_ctx->cpu ||
1049 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051 		return false;
1052 
1053 	/* don't try to IPI to an offline CPU */
1054 	return cpu_online(rq->mq_ctx->cpu);
1055 }
1056 
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059 	struct llist_head *list;
1060 	unsigned int cpu;
1061 
1062 	cpu = rq->mq_ctx->cpu;
1063 	list = &per_cpu(blk_cpu_done, cpu);
1064 	if (llist_add(&rq->ipi_list, list)) {
1065 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066 		smp_call_function_single_async(cpu, &rq->csd);
1067 	}
1068 }
1069 
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072 	struct llist_head *list;
1073 
1074 	preempt_disable();
1075 	list = this_cpu_ptr(&blk_cpu_done);
1076 	if (llist_add(&rq->ipi_list, list))
1077 		raise_softirq(BLOCK_SOFTIRQ);
1078 	preempt_enable();
1079 }
1080 
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084 
1085 	/*
1086 	 * For a polled request, always complete locallly, it's pointless
1087 	 * to redirect the completion.
1088 	 */
1089 	if (rq->cmd_flags & REQ_POLLED)
1090 		return false;
1091 
1092 	if (blk_mq_complete_need_ipi(rq)) {
1093 		blk_mq_complete_send_ipi(rq);
1094 		return true;
1095 	}
1096 
1097 	if (rq->q->nr_hw_queues == 1) {
1098 		blk_mq_raise_softirq(rq);
1099 		return true;
1100 	}
1101 	return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104 
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:		the request being processed
1108  *
1109  * Description:
1110  *	Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114 	if (!blk_mq_complete_request_remote(rq))
1115 		rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118 
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129 	struct request_queue *q = rq->q;
1130 
1131 	trace_block_rq_issue(rq);
1132 
1133 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134 		rq->io_start_time_ns = ktime_get_ns();
1135 		rq->stats_sectors = blk_rq_sectors(rq);
1136 		rq->rq_flags |= RQF_STATS;
1137 		rq_qos_issue(q, rq);
1138 	}
1139 
1140 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1141 
1142 	blk_add_timer(rq);
1143 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1144 
1145 #ifdef CONFIG_BLK_DEV_INTEGRITY
1146 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1147 		q->integrity.profile->prepare_fn(rq);
1148 #endif
1149 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1150 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1151 }
1152 EXPORT_SYMBOL(blk_mq_start_request);
1153 
1154 /**
1155  * blk_end_sync_rq - executes a completion event on a request
1156  * @rq: request to complete
1157  * @error: end I/O status of the request
1158  */
1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1160 {
1161 	struct completion *waiting = rq->end_io_data;
1162 
1163 	rq->end_io_data = (void *)(uintptr_t)error;
1164 
1165 	/*
1166 	 * complete last, if this is a stack request the process (and thus
1167 	 * the rq pointer) could be invalid right after this complete()
1168 	 */
1169 	complete(waiting);
1170 }
1171 
1172 /**
1173  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1174  * @rq:		request to insert
1175  * @at_head:    insert request at head or tail of queue
1176  * @done:	I/O completion handler
1177  *
1178  * Description:
1179  *    Insert a fully prepared request at the back of the I/O scheduler queue
1180  *    for execution.  Don't wait for completion.
1181  *
1182  * Note:
1183  *    This function will invoke @done directly if the queue is dead.
1184  */
1185 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1186 {
1187 	WARN_ON(irqs_disabled());
1188 	WARN_ON(!blk_rq_is_passthrough(rq));
1189 
1190 	rq->end_io = done;
1191 
1192 	blk_account_io_start(rq);
1193 
1194 	/*
1195 	 * don't check dying flag for MQ because the request won't
1196 	 * be reused after dying flag is set
1197 	 */
1198 	blk_mq_sched_insert_request(rq, at_head, true, false);
1199 }
1200 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1201 
1202 static bool blk_rq_is_poll(struct request *rq)
1203 {
1204 	if (!rq->mq_hctx)
1205 		return false;
1206 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1207 		return false;
1208 	if (WARN_ON_ONCE(!rq->bio))
1209 		return false;
1210 	return true;
1211 }
1212 
1213 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1214 {
1215 	do {
1216 		bio_poll(rq->bio, NULL, 0);
1217 		cond_resched();
1218 	} while (!completion_done(wait));
1219 }
1220 
1221 /**
1222  * blk_execute_rq - insert a request into queue for execution
1223  * @rq:		request to insert
1224  * @at_head:    insert request at head or tail of queue
1225  *
1226  * Description:
1227  *    Insert a fully prepared request at the back of the I/O scheduler queue
1228  *    for execution and wait for completion.
1229  * Return: The blk_status_t result provided to blk_mq_end_request().
1230  */
1231 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1232 {
1233 	DECLARE_COMPLETION_ONSTACK(wait);
1234 	unsigned long hang_check;
1235 
1236 	rq->end_io_data = &wait;
1237 	blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1238 
1239 	/* Prevent hang_check timer from firing at us during very long I/O */
1240 	hang_check = sysctl_hung_task_timeout_secs;
1241 
1242 	if (blk_rq_is_poll(rq))
1243 		blk_rq_poll_completion(rq, &wait);
1244 	else if (hang_check)
1245 		while (!wait_for_completion_io_timeout(&wait,
1246 				hang_check * (HZ/2)))
1247 			;
1248 	else
1249 		wait_for_completion_io(&wait);
1250 
1251 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1252 }
1253 EXPORT_SYMBOL(blk_execute_rq);
1254 
1255 static void __blk_mq_requeue_request(struct request *rq)
1256 {
1257 	struct request_queue *q = rq->q;
1258 
1259 	blk_mq_put_driver_tag(rq);
1260 
1261 	trace_block_rq_requeue(rq);
1262 	rq_qos_requeue(q, rq);
1263 
1264 	if (blk_mq_request_started(rq)) {
1265 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1266 		rq->rq_flags &= ~RQF_TIMED_OUT;
1267 	}
1268 }
1269 
1270 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1271 {
1272 	__blk_mq_requeue_request(rq);
1273 
1274 	/* this request will be re-inserted to io scheduler queue */
1275 	blk_mq_sched_requeue_request(rq);
1276 
1277 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1278 }
1279 EXPORT_SYMBOL(blk_mq_requeue_request);
1280 
1281 static void blk_mq_requeue_work(struct work_struct *work)
1282 {
1283 	struct request_queue *q =
1284 		container_of(work, struct request_queue, requeue_work.work);
1285 	LIST_HEAD(rq_list);
1286 	struct request *rq, *next;
1287 
1288 	spin_lock_irq(&q->requeue_lock);
1289 	list_splice_init(&q->requeue_list, &rq_list);
1290 	spin_unlock_irq(&q->requeue_lock);
1291 
1292 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1293 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1294 			continue;
1295 
1296 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1297 		list_del_init(&rq->queuelist);
1298 		/*
1299 		 * If RQF_DONTPREP, rq has contained some driver specific
1300 		 * data, so insert it to hctx dispatch list to avoid any
1301 		 * merge.
1302 		 */
1303 		if (rq->rq_flags & RQF_DONTPREP)
1304 			blk_mq_request_bypass_insert(rq, false, false);
1305 		else
1306 			blk_mq_sched_insert_request(rq, true, false, false);
1307 	}
1308 
1309 	while (!list_empty(&rq_list)) {
1310 		rq = list_entry(rq_list.next, struct request, queuelist);
1311 		list_del_init(&rq->queuelist);
1312 		blk_mq_sched_insert_request(rq, false, false, false);
1313 	}
1314 
1315 	blk_mq_run_hw_queues(q, false);
1316 }
1317 
1318 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1319 				bool kick_requeue_list)
1320 {
1321 	struct request_queue *q = rq->q;
1322 	unsigned long flags;
1323 
1324 	/*
1325 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1326 	 * request head insertion from the workqueue.
1327 	 */
1328 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1329 
1330 	spin_lock_irqsave(&q->requeue_lock, flags);
1331 	if (at_head) {
1332 		rq->rq_flags |= RQF_SOFTBARRIER;
1333 		list_add(&rq->queuelist, &q->requeue_list);
1334 	} else {
1335 		list_add_tail(&rq->queuelist, &q->requeue_list);
1336 	}
1337 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1338 
1339 	if (kick_requeue_list)
1340 		blk_mq_kick_requeue_list(q);
1341 }
1342 
1343 void blk_mq_kick_requeue_list(struct request_queue *q)
1344 {
1345 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1346 }
1347 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1348 
1349 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1350 				    unsigned long msecs)
1351 {
1352 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1353 				    msecs_to_jiffies(msecs));
1354 }
1355 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1356 
1357 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1358 			       bool reserved)
1359 {
1360 	/*
1361 	 * If we find a request that isn't idle we know the queue is busy
1362 	 * as it's checked in the iter.
1363 	 * Return false to stop the iteration.
1364 	 */
1365 	if (blk_mq_request_started(rq)) {
1366 		bool *busy = priv;
1367 
1368 		*busy = true;
1369 		return false;
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 bool blk_mq_queue_inflight(struct request_queue *q)
1376 {
1377 	bool busy = false;
1378 
1379 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1380 	return busy;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1383 
1384 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1385 {
1386 	req->rq_flags |= RQF_TIMED_OUT;
1387 	if (req->q->mq_ops->timeout) {
1388 		enum blk_eh_timer_return ret;
1389 
1390 		ret = req->q->mq_ops->timeout(req, reserved);
1391 		if (ret == BLK_EH_DONE)
1392 			return;
1393 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1394 	}
1395 
1396 	blk_add_timer(req);
1397 }
1398 
1399 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1400 {
1401 	unsigned long deadline;
1402 
1403 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1404 		return false;
1405 	if (rq->rq_flags & RQF_TIMED_OUT)
1406 		return false;
1407 
1408 	deadline = READ_ONCE(rq->deadline);
1409 	if (time_after_eq(jiffies, deadline))
1410 		return true;
1411 
1412 	if (*next == 0)
1413 		*next = deadline;
1414 	else if (time_after(*next, deadline))
1415 		*next = deadline;
1416 	return false;
1417 }
1418 
1419 void blk_mq_put_rq_ref(struct request *rq)
1420 {
1421 	if (is_flush_rq(rq))
1422 		rq->end_io(rq, 0);
1423 	else if (req_ref_put_and_test(rq))
1424 		__blk_mq_free_request(rq);
1425 }
1426 
1427 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1428 {
1429 	unsigned long *next = priv;
1430 
1431 	/*
1432 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1433 	 * be reallocated underneath the timeout handler's processing, then
1434 	 * the expire check is reliable. If the request is not expired, then
1435 	 * it was completed and reallocated as a new request after returning
1436 	 * from blk_mq_check_expired().
1437 	 */
1438 	if (blk_mq_req_expired(rq, next))
1439 		blk_mq_rq_timed_out(rq, reserved);
1440 	return true;
1441 }
1442 
1443 static void blk_mq_timeout_work(struct work_struct *work)
1444 {
1445 	struct request_queue *q =
1446 		container_of(work, struct request_queue, timeout_work);
1447 	unsigned long next = 0;
1448 	struct blk_mq_hw_ctx *hctx;
1449 	unsigned long i;
1450 
1451 	/* A deadlock might occur if a request is stuck requiring a
1452 	 * timeout at the same time a queue freeze is waiting
1453 	 * completion, since the timeout code would not be able to
1454 	 * acquire the queue reference here.
1455 	 *
1456 	 * That's why we don't use blk_queue_enter here; instead, we use
1457 	 * percpu_ref_tryget directly, because we need to be able to
1458 	 * obtain a reference even in the short window between the queue
1459 	 * starting to freeze, by dropping the first reference in
1460 	 * blk_freeze_queue_start, and the moment the last request is
1461 	 * consumed, marked by the instant q_usage_counter reaches
1462 	 * zero.
1463 	 */
1464 	if (!percpu_ref_tryget(&q->q_usage_counter))
1465 		return;
1466 
1467 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1468 
1469 	if (next != 0) {
1470 		mod_timer(&q->timeout, next);
1471 	} else {
1472 		/*
1473 		 * Request timeouts are handled as a forward rolling timer. If
1474 		 * we end up here it means that no requests are pending and
1475 		 * also that no request has been pending for a while. Mark
1476 		 * each hctx as idle.
1477 		 */
1478 		queue_for_each_hw_ctx(q, hctx, i) {
1479 			/* the hctx may be unmapped, so check it here */
1480 			if (blk_mq_hw_queue_mapped(hctx))
1481 				blk_mq_tag_idle(hctx);
1482 		}
1483 	}
1484 	blk_queue_exit(q);
1485 }
1486 
1487 struct flush_busy_ctx_data {
1488 	struct blk_mq_hw_ctx *hctx;
1489 	struct list_head *list;
1490 };
1491 
1492 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1493 {
1494 	struct flush_busy_ctx_data *flush_data = data;
1495 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1496 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1497 	enum hctx_type type = hctx->type;
1498 
1499 	spin_lock(&ctx->lock);
1500 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1501 	sbitmap_clear_bit(sb, bitnr);
1502 	spin_unlock(&ctx->lock);
1503 	return true;
1504 }
1505 
1506 /*
1507  * Process software queues that have been marked busy, splicing them
1508  * to the for-dispatch
1509  */
1510 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1511 {
1512 	struct flush_busy_ctx_data data = {
1513 		.hctx = hctx,
1514 		.list = list,
1515 	};
1516 
1517 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1518 }
1519 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1520 
1521 struct dispatch_rq_data {
1522 	struct blk_mq_hw_ctx *hctx;
1523 	struct request *rq;
1524 };
1525 
1526 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1527 		void *data)
1528 {
1529 	struct dispatch_rq_data *dispatch_data = data;
1530 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1531 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1532 	enum hctx_type type = hctx->type;
1533 
1534 	spin_lock(&ctx->lock);
1535 	if (!list_empty(&ctx->rq_lists[type])) {
1536 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1537 		list_del_init(&dispatch_data->rq->queuelist);
1538 		if (list_empty(&ctx->rq_lists[type]))
1539 			sbitmap_clear_bit(sb, bitnr);
1540 	}
1541 	spin_unlock(&ctx->lock);
1542 
1543 	return !dispatch_data->rq;
1544 }
1545 
1546 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1547 					struct blk_mq_ctx *start)
1548 {
1549 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1550 	struct dispatch_rq_data data = {
1551 		.hctx = hctx,
1552 		.rq   = NULL,
1553 	};
1554 
1555 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1556 			       dispatch_rq_from_ctx, &data);
1557 
1558 	return data.rq;
1559 }
1560 
1561 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1562 {
1563 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1564 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1565 	int tag;
1566 
1567 	blk_mq_tag_busy(rq->mq_hctx);
1568 
1569 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1570 		bt = &rq->mq_hctx->tags->breserved_tags;
1571 		tag_offset = 0;
1572 	} else {
1573 		if (!hctx_may_queue(rq->mq_hctx, bt))
1574 			return false;
1575 	}
1576 
1577 	tag = __sbitmap_queue_get(bt);
1578 	if (tag == BLK_MQ_NO_TAG)
1579 		return false;
1580 
1581 	rq->tag = tag + tag_offset;
1582 	return true;
1583 }
1584 
1585 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1586 {
1587 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1588 		return false;
1589 
1590 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1591 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1592 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1593 		__blk_mq_inc_active_requests(hctx);
1594 	}
1595 	hctx->tags->rqs[rq->tag] = rq;
1596 	return true;
1597 }
1598 
1599 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1600 				int flags, void *key)
1601 {
1602 	struct blk_mq_hw_ctx *hctx;
1603 
1604 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1605 
1606 	spin_lock(&hctx->dispatch_wait_lock);
1607 	if (!list_empty(&wait->entry)) {
1608 		struct sbitmap_queue *sbq;
1609 
1610 		list_del_init(&wait->entry);
1611 		sbq = &hctx->tags->bitmap_tags;
1612 		atomic_dec(&sbq->ws_active);
1613 	}
1614 	spin_unlock(&hctx->dispatch_wait_lock);
1615 
1616 	blk_mq_run_hw_queue(hctx, true);
1617 	return 1;
1618 }
1619 
1620 /*
1621  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1622  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1623  * restart. For both cases, take care to check the condition again after
1624  * marking us as waiting.
1625  */
1626 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1627 				 struct request *rq)
1628 {
1629 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1630 	struct wait_queue_head *wq;
1631 	wait_queue_entry_t *wait;
1632 	bool ret;
1633 
1634 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1635 		blk_mq_sched_mark_restart_hctx(hctx);
1636 
1637 		/*
1638 		 * It's possible that a tag was freed in the window between the
1639 		 * allocation failure and adding the hardware queue to the wait
1640 		 * queue.
1641 		 *
1642 		 * Don't clear RESTART here, someone else could have set it.
1643 		 * At most this will cost an extra queue run.
1644 		 */
1645 		return blk_mq_get_driver_tag(rq);
1646 	}
1647 
1648 	wait = &hctx->dispatch_wait;
1649 	if (!list_empty_careful(&wait->entry))
1650 		return false;
1651 
1652 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1653 
1654 	spin_lock_irq(&wq->lock);
1655 	spin_lock(&hctx->dispatch_wait_lock);
1656 	if (!list_empty(&wait->entry)) {
1657 		spin_unlock(&hctx->dispatch_wait_lock);
1658 		spin_unlock_irq(&wq->lock);
1659 		return false;
1660 	}
1661 
1662 	atomic_inc(&sbq->ws_active);
1663 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1664 	__add_wait_queue(wq, wait);
1665 
1666 	/*
1667 	 * It's possible that a tag was freed in the window between the
1668 	 * allocation failure and adding the hardware queue to the wait
1669 	 * queue.
1670 	 */
1671 	ret = blk_mq_get_driver_tag(rq);
1672 	if (!ret) {
1673 		spin_unlock(&hctx->dispatch_wait_lock);
1674 		spin_unlock_irq(&wq->lock);
1675 		return false;
1676 	}
1677 
1678 	/*
1679 	 * We got a tag, remove ourselves from the wait queue to ensure
1680 	 * someone else gets the wakeup.
1681 	 */
1682 	list_del_init(&wait->entry);
1683 	atomic_dec(&sbq->ws_active);
1684 	spin_unlock(&hctx->dispatch_wait_lock);
1685 	spin_unlock_irq(&wq->lock);
1686 
1687 	return true;
1688 }
1689 
1690 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1691 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1692 /*
1693  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1694  * - EWMA is one simple way to compute running average value
1695  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1696  * - take 4 as factor for avoiding to get too small(0) result, and this
1697  *   factor doesn't matter because EWMA decreases exponentially
1698  */
1699 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1700 {
1701 	unsigned int ewma;
1702 
1703 	ewma = hctx->dispatch_busy;
1704 
1705 	if (!ewma && !busy)
1706 		return;
1707 
1708 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1709 	if (busy)
1710 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1711 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1712 
1713 	hctx->dispatch_busy = ewma;
1714 }
1715 
1716 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1717 
1718 static void blk_mq_handle_dev_resource(struct request *rq,
1719 				       struct list_head *list)
1720 {
1721 	struct request *next =
1722 		list_first_entry_or_null(list, struct request, queuelist);
1723 
1724 	/*
1725 	 * If an I/O scheduler has been configured and we got a driver tag for
1726 	 * the next request already, free it.
1727 	 */
1728 	if (next)
1729 		blk_mq_put_driver_tag(next);
1730 
1731 	list_add(&rq->queuelist, list);
1732 	__blk_mq_requeue_request(rq);
1733 }
1734 
1735 static void blk_mq_handle_zone_resource(struct request *rq,
1736 					struct list_head *zone_list)
1737 {
1738 	/*
1739 	 * If we end up here it is because we cannot dispatch a request to a
1740 	 * specific zone due to LLD level zone-write locking or other zone
1741 	 * related resource not being available. In this case, set the request
1742 	 * aside in zone_list for retrying it later.
1743 	 */
1744 	list_add(&rq->queuelist, zone_list);
1745 	__blk_mq_requeue_request(rq);
1746 }
1747 
1748 enum prep_dispatch {
1749 	PREP_DISPATCH_OK,
1750 	PREP_DISPATCH_NO_TAG,
1751 	PREP_DISPATCH_NO_BUDGET,
1752 };
1753 
1754 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1755 						  bool need_budget)
1756 {
1757 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1758 	int budget_token = -1;
1759 
1760 	if (need_budget) {
1761 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1762 		if (budget_token < 0) {
1763 			blk_mq_put_driver_tag(rq);
1764 			return PREP_DISPATCH_NO_BUDGET;
1765 		}
1766 		blk_mq_set_rq_budget_token(rq, budget_token);
1767 	}
1768 
1769 	if (!blk_mq_get_driver_tag(rq)) {
1770 		/*
1771 		 * The initial allocation attempt failed, so we need to
1772 		 * rerun the hardware queue when a tag is freed. The
1773 		 * waitqueue takes care of that. If the queue is run
1774 		 * before we add this entry back on the dispatch list,
1775 		 * we'll re-run it below.
1776 		 */
1777 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1778 			/*
1779 			 * All budgets not got from this function will be put
1780 			 * together during handling partial dispatch
1781 			 */
1782 			if (need_budget)
1783 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1784 			return PREP_DISPATCH_NO_TAG;
1785 		}
1786 	}
1787 
1788 	return PREP_DISPATCH_OK;
1789 }
1790 
1791 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1792 static void blk_mq_release_budgets(struct request_queue *q,
1793 		struct list_head *list)
1794 {
1795 	struct request *rq;
1796 
1797 	list_for_each_entry(rq, list, queuelist) {
1798 		int budget_token = blk_mq_get_rq_budget_token(rq);
1799 
1800 		if (budget_token >= 0)
1801 			blk_mq_put_dispatch_budget(q, budget_token);
1802 	}
1803 }
1804 
1805 /*
1806  * Returns true if we did some work AND can potentially do more.
1807  */
1808 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1809 			     unsigned int nr_budgets)
1810 {
1811 	enum prep_dispatch prep;
1812 	struct request_queue *q = hctx->queue;
1813 	struct request *rq, *nxt;
1814 	int errors, queued;
1815 	blk_status_t ret = BLK_STS_OK;
1816 	LIST_HEAD(zone_list);
1817 	bool needs_resource = false;
1818 
1819 	if (list_empty(list))
1820 		return false;
1821 
1822 	/*
1823 	 * Now process all the entries, sending them to the driver.
1824 	 */
1825 	errors = queued = 0;
1826 	do {
1827 		struct blk_mq_queue_data bd;
1828 
1829 		rq = list_first_entry(list, struct request, queuelist);
1830 
1831 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1832 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1833 		if (prep != PREP_DISPATCH_OK)
1834 			break;
1835 
1836 		list_del_init(&rq->queuelist);
1837 
1838 		bd.rq = rq;
1839 
1840 		/*
1841 		 * Flag last if we have no more requests, or if we have more
1842 		 * but can't assign a driver tag to it.
1843 		 */
1844 		if (list_empty(list))
1845 			bd.last = true;
1846 		else {
1847 			nxt = list_first_entry(list, struct request, queuelist);
1848 			bd.last = !blk_mq_get_driver_tag(nxt);
1849 		}
1850 
1851 		/*
1852 		 * once the request is queued to lld, no need to cover the
1853 		 * budget any more
1854 		 */
1855 		if (nr_budgets)
1856 			nr_budgets--;
1857 		ret = q->mq_ops->queue_rq(hctx, &bd);
1858 		switch (ret) {
1859 		case BLK_STS_OK:
1860 			queued++;
1861 			break;
1862 		case BLK_STS_RESOURCE:
1863 			needs_resource = true;
1864 			fallthrough;
1865 		case BLK_STS_DEV_RESOURCE:
1866 			blk_mq_handle_dev_resource(rq, list);
1867 			goto out;
1868 		case BLK_STS_ZONE_RESOURCE:
1869 			/*
1870 			 * Move the request to zone_list and keep going through
1871 			 * the dispatch list to find more requests the drive can
1872 			 * accept.
1873 			 */
1874 			blk_mq_handle_zone_resource(rq, &zone_list);
1875 			needs_resource = true;
1876 			break;
1877 		default:
1878 			errors++;
1879 			blk_mq_end_request(rq, ret);
1880 		}
1881 	} while (!list_empty(list));
1882 out:
1883 	if (!list_empty(&zone_list))
1884 		list_splice_tail_init(&zone_list, list);
1885 
1886 	/* If we didn't flush the entire list, we could have told the driver
1887 	 * there was more coming, but that turned out to be a lie.
1888 	 */
1889 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1890 		q->mq_ops->commit_rqs(hctx);
1891 	/*
1892 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1893 	 * that is where we will continue on next queue run.
1894 	 */
1895 	if (!list_empty(list)) {
1896 		bool needs_restart;
1897 		/* For non-shared tags, the RESTART check will suffice */
1898 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1899 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1900 
1901 		if (nr_budgets)
1902 			blk_mq_release_budgets(q, list);
1903 
1904 		spin_lock(&hctx->lock);
1905 		list_splice_tail_init(list, &hctx->dispatch);
1906 		spin_unlock(&hctx->lock);
1907 
1908 		/*
1909 		 * Order adding requests to hctx->dispatch and checking
1910 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1911 		 * in blk_mq_sched_restart(). Avoid restart code path to
1912 		 * miss the new added requests to hctx->dispatch, meantime
1913 		 * SCHED_RESTART is observed here.
1914 		 */
1915 		smp_mb();
1916 
1917 		/*
1918 		 * If SCHED_RESTART was set by the caller of this function and
1919 		 * it is no longer set that means that it was cleared by another
1920 		 * thread and hence that a queue rerun is needed.
1921 		 *
1922 		 * If 'no_tag' is set, that means that we failed getting
1923 		 * a driver tag with an I/O scheduler attached. If our dispatch
1924 		 * waitqueue is no longer active, ensure that we run the queue
1925 		 * AFTER adding our entries back to the list.
1926 		 *
1927 		 * If no I/O scheduler has been configured it is possible that
1928 		 * the hardware queue got stopped and restarted before requests
1929 		 * were pushed back onto the dispatch list. Rerun the queue to
1930 		 * avoid starvation. Notes:
1931 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1932 		 *   been stopped before rerunning a queue.
1933 		 * - Some but not all block drivers stop a queue before
1934 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1935 		 *   and dm-rq.
1936 		 *
1937 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1938 		 * bit is set, run queue after a delay to avoid IO stalls
1939 		 * that could otherwise occur if the queue is idle.  We'll do
1940 		 * similar if we couldn't get budget or couldn't lock a zone
1941 		 * and SCHED_RESTART is set.
1942 		 */
1943 		needs_restart = blk_mq_sched_needs_restart(hctx);
1944 		if (prep == PREP_DISPATCH_NO_BUDGET)
1945 			needs_resource = true;
1946 		if (!needs_restart ||
1947 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1948 			blk_mq_run_hw_queue(hctx, true);
1949 		else if (needs_restart && needs_resource)
1950 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1951 
1952 		blk_mq_update_dispatch_busy(hctx, true);
1953 		return false;
1954 	} else
1955 		blk_mq_update_dispatch_busy(hctx, false);
1956 
1957 	return (queued + errors) != 0;
1958 }
1959 
1960 /**
1961  * __blk_mq_run_hw_queue - Run a hardware queue.
1962  * @hctx: Pointer to the hardware queue to run.
1963  *
1964  * Send pending requests to the hardware.
1965  */
1966 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1967 {
1968 	/*
1969 	 * We can't run the queue inline with ints disabled. Ensure that
1970 	 * we catch bad users of this early.
1971 	 */
1972 	WARN_ON_ONCE(in_interrupt());
1973 
1974 	blk_mq_run_dispatch_ops(hctx->queue,
1975 			blk_mq_sched_dispatch_requests(hctx));
1976 }
1977 
1978 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1979 {
1980 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1981 
1982 	if (cpu >= nr_cpu_ids)
1983 		cpu = cpumask_first(hctx->cpumask);
1984 	return cpu;
1985 }
1986 
1987 /*
1988  * It'd be great if the workqueue API had a way to pass
1989  * in a mask and had some smarts for more clever placement.
1990  * For now we just round-robin here, switching for every
1991  * BLK_MQ_CPU_WORK_BATCH queued items.
1992  */
1993 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1994 {
1995 	bool tried = false;
1996 	int next_cpu = hctx->next_cpu;
1997 
1998 	if (hctx->queue->nr_hw_queues == 1)
1999 		return WORK_CPU_UNBOUND;
2000 
2001 	if (--hctx->next_cpu_batch <= 0) {
2002 select_cpu:
2003 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2004 				cpu_online_mask);
2005 		if (next_cpu >= nr_cpu_ids)
2006 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2007 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2008 	}
2009 
2010 	/*
2011 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2012 	 * and it should only happen in the path of handling CPU DEAD.
2013 	 */
2014 	if (!cpu_online(next_cpu)) {
2015 		if (!tried) {
2016 			tried = true;
2017 			goto select_cpu;
2018 		}
2019 
2020 		/*
2021 		 * Make sure to re-select CPU next time once after CPUs
2022 		 * in hctx->cpumask become online again.
2023 		 */
2024 		hctx->next_cpu = next_cpu;
2025 		hctx->next_cpu_batch = 1;
2026 		return WORK_CPU_UNBOUND;
2027 	}
2028 
2029 	hctx->next_cpu = next_cpu;
2030 	return next_cpu;
2031 }
2032 
2033 /**
2034  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2035  * @hctx: Pointer to the hardware queue to run.
2036  * @async: If we want to run the queue asynchronously.
2037  * @msecs: Milliseconds of delay to wait before running the queue.
2038  *
2039  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2040  * with a delay of @msecs.
2041  */
2042 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2043 					unsigned long msecs)
2044 {
2045 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2046 		return;
2047 
2048 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2049 		int cpu = get_cpu();
2050 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2051 			__blk_mq_run_hw_queue(hctx);
2052 			put_cpu();
2053 			return;
2054 		}
2055 
2056 		put_cpu();
2057 	}
2058 
2059 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2060 				    msecs_to_jiffies(msecs));
2061 }
2062 
2063 /**
2064  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2065  * @hctx: Pointer to the hardware queue to run.
2066  * @msecs: Milliseconds of delay to wait before running the queue.
2067  *
2068  * Run a hardware queue asynchronously with a delay of @msecs.
2069  */
2070 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2071 {
2072 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2073 }
2074 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2075 
2076 /**
2077  * blk_mq_run_hw_queue - Start to run a hardware queue.
2078  * @hctx: Pointer to the hardware queue to run.
2079  * @async: If we want to run the queue asynchronously.
2080  *
2081  * Check if the request queue is not in a quiesced state and if there are
2082  * pending requests to be sent. If this is true, run the queue to send requests
2083  * to hardware.
2084  */
2085 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087 	bool need_run;
2088 
2089 	/*
2090 	 * When queue is quiesced, we may be switching io scheduler, or
2091 	 * updating nr_hw_queues, or other things, and we can't run queue
2092 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2093 	 *
2094 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2095 	 * quiesced.
2096 	 */
2097 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2098 		need_run = !blk_queue_quiesced(hctx->queue) &&
2099 		blk_mq_hctx_has_pending(hctx));
2100 
2101 	if (need_run)
2102 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2103 }
2104 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2105 
2106 /*
2107  * Is the request queue handled by an IO scheduler that does not respect
2108  * hardware queues when dispatching?
2109  */
2110 static bool blk_mq_has_sqsched(struct request_queue *q)
2111 {
2112 	struct elevator_queue *e = q->elevator;
2113 
2114 	if (e && e->type->ops.dispatch_request &&
2115 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2116 		return true;
2117 	return false;
2118 }
2119 
2120 /*
2121  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2122  * scheduler.
2123  */
2124 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2125 {
2126 	struct blk_mq_hw_ctx *hctx;
2127 
2128 	/*
2129 	 * If the IO scheduler does not respect hardware queues when
2130 	 * dispatching, we just don't bother with multiple HW queues and
2131 	 * dispatch from hctx for the current CPU since running multiple queues
2132 	 * just causes lock contention inside the scheduler and pointless cache
2133 	 * bouncing.
2134 	 */
2135 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2136 				     raw_smp_processor_id());
2137 	if (!blk_mq_hctx_stopped(hctx))
2138 		return hctx;
2139 	return NULL;
2140 }
2141 
2142 /**
2143  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2144  * @q: Pointer to the request queue to run.
2145  * @async: If we want to run the queue asynchronously.
2146  */
2147 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2148 {
2149 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2150 	unsigned long i;
2151 
2152 	sq_hctx = NULL;
2153 	if (blk_mq_has_sqsched(q))
2154 		sq_hctx = blk_mq_get_sq_hctx(q);
2155 	queue_for_each_hw_ctx(q, hctx, i) {
2156 		if (blk_mq_hctx_stopped(hctx))
2157 			continue;
2158 		/*
2159 		 * Dispatch from this hctx either if there's no hctx preferred
2160 		 * by IO scheduler or if it has requests that bypass the
2161 		 * scheduler.
2162 		 */
2163 		if (!sq_hctx || sq_hctx == hctx ||
2164 		    !list_empty_careful(&hctx->dispatch))
2165 			blk_mq_run_hw_queue(hctx, async);
2166 	}
2167 }
2168 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2169 
2170 /**
2171  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2172  * @q: Pointer to the request queue to run.
2173  * @msecs: Milliseconds of delay to wait before running the queues.
2174  */
2175 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2176 {
2177 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2178 	unsigned long i;
2179 
2180 	sq_hctx = NULL;
2181 	if (blk_mq_has_sqsched(q))
2182 		sq_hctx = blk_mq_get_sq_hctx(q);
2183 	queue_for_each_hw_ctx(q, hctx, i) {
2184 		if (blk_mq_hctx_stopped(hctx))
2185 			continue;
2186 		/*
2187 		 * If there is already a run_work pending, leave the
2188 		 * pending delay untouched. Otherwise, a hctx can stall
2189 		 * if another hctx is re-delaying the other's work
2190 		 * before the work executes.
2191 		 */
2192 		if (delayed_work_pending(&hctx->run_work))
2193 			continue;
2194 		/*
2195 		 * Dispatch from this hctx either if there's no hctx preferred
2196 		 * by IO scheduler or if it has requests that bypass the
2197 		 * scheduler.
2198 		 */
2199 		if (!sq_hctx || sq_hctx == hctx ||
2200 		    !list_empty_careful(&hctx->dispatch))
2201 			blk_mq_delay_run_hw_queue(hctx, msecs);
2202 	}
2203 }
2204 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2205 
2206 /**
2207  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2208  * @q: request queue.
2209  *
2210  * The caller is responsible for serializing this function against
2211  * blk_mq_{start,stop}_hw_queue().
2212  */
2213 bool blk_mq_queue_stopped(struct request_queue *q)
2214 {
2215 	struct blk_mq_hw_ctx *hctx;
2216 	unsigned long i;
2217 
2218 	queue_for_each_hw_ctx(q, hctx, i)
2219 		if (blk_mq_hctx_stopped(hctx))
2220 			return true;
2221 
2222 	return false;
2223 }
2224 EXPORT_SYMBOL(blk_mq_queue_stopped);
2225 
2226 /*
2227  * This function is often used for pausing .queue_rq() by driver when
2228  * there isn't enough resource or some conditions aren't satisfied, and
2229  * BLK_STS_RESOURCE is usually returned.
2230  *
2231  * We do not guarantee that dispatch can be drained or blocked
2232  * after blk_mq_stop_hw_queue() returns. Please use
2233  * blk_mq_quiesce_queue() for that requirement.
2234  */
2235 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2236 {
2237 	cancel_delayed_work(&hctx->run_work);
2238 
2239 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2240 }
2241 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2242 
2243 /*
2244  * This function is often used for pausing .queue_rq() by driver when
2245  * there isn't enough resource or some conditions aren't satisfied, and
2246  * BLK_STS_RESOURCE is usually returned.
2247  *
2248  * We do not guarantee that dispatch can be drained or blocked
2249  * after blk_mq_stop_hw_queues() returns. Please use
2250  * blk_mq_quiesce_queue() for that requirement.
2251  */
2252 void blk_mq_stop_hw_queues(struct request_queue *q)
2253 {
2254 	struct blk_mq_hw_ctx *hctx;
2255 	unsigned long i;
2256 
2257 	queue_for_each_hw_ctx(q, hctx, i)
2258 		blk_mq_stop_hw_queue(hctx);
2259 }
2260 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2261 
2262 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2263 {
2264 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2265 
2266 	blk_mq_run_hw_queue(hctx, false);
2267 }
2268 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2269 
2270 void blk_mq_start_hw_queues(struct request_queue *q)
2271 {
2272 	struct blk_mq_hw_ctx *hctx;
2273 	unsigned long i;
2274 
2275 	queue_for_each_hw_ctx(q, hctx, i)
2276 		blk_mq_start_hw_queue(hctx);
2277 }
2278 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2279 
2280 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2281 {
2282 	if (!blk_mq_hctx_stopped(hctx))
2283 		return;
2284 
2285 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2286 	blk_mq_run_hw_queue(hctx, async);
2287 }
2288 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2289 
2290 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2291 {
2292 	struct blk_mq_hw_ctx *hctx;
2293 	unsigned long i;
2294 
2295 	queue_for_each_hw_ctx(q, hctx, i)
2296 		blk_mq_start_stopped_hw_queue(hctx, async);
2297 }
2298 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2299 
2300 static void blk_mq_run_work_fn(struct work_struct *work)
2301 {
2302 	struct blk_mq_hw_ctx *hctx;
2303 
2304 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2305 
2306 	/*
2307 	 * If we are stopped, don't run the queue.
2308 	 */
2309 	if (blk_mq_hctx_stopped(hctx))
2310 		return;
2311 
2312 	__blk_mq_run_hw_queue(hctx);
2313 }
2314 
2315 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2316 					    struct request *rq,
2317 					    bool at_head)
2318 {
2319 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2320 	enum hctx_type type = hctx->type;
2321 
2322 	lockdep_assert_held(&ctx->lock);
2323 
2324 	trace_block_rq_insert(rq);
2325 
2326 	if (at_head)
2327 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2328 	else
2329 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2330 }
2331 
2332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2333 			     bool at_head)
2334 {
2335 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	__blk_mq_insert_req_list(hctx, rq, at_head);
2340 	blk_mq_hctx_mark_pending(hctx, ctx);
2341 }
2342 
2343 /**
2344  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2345  * @rq: Pointer to request to be inserted.
2346  * @at_head: true if the request should be inserted at the head of the list.
2347  * @run_queue: If we should run the hardware queue after inserting the request.
2348  *
2349  * Should only be used carefully, when the caller knows we want to
2350  * bypass a potential IO scheduler on the target device.
2351  */
2352 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2353 				  bool run_queue)
2354 {
2355 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2356 
2357 	spin_lock(&hctx->lock);
2358 	if (at_head)
2359 		list_add(&rq->queuelist, &hctx->dispatch);
2360 	else
2361 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2362 	spin_unlock(&hctx->lock);
2363 
2364 	if (run_queue)
2365 		blk_mq_run_hw_queue(hctx, false);
2366 }
2367 
2368 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2369 			    struct list_head *list)
2370 
2371 {
2372 	struct request *rq;
2373 	enum hctx_type type = hctx->type;
2374 
2375 	/*
2376 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2377 	 * offline now
2378 	 */
2379 	list_for_each_entry(rq, list, queuelist) {
2380 		BUG_ON(rq->mq_ctx != ctx);
2381 		trace_block_rq_insert(rq);
2382 	}
2383 
2384 	spin_lock(&ctx->lock);
2385 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2386 	blk_mq_hctx_mark_pending(hctx, ctx);
2387 	spin_unlock(&ctx->lock);
2388 }
2389 
2390 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2391 			      bool from_schedule)
2392 {
2393 	if (hctx->queue->mq_ops->commit_rqs) {
2394 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2395 		hctx->queue->mq_ops->commit_rqs(hctx);
2396 	}
2397 	*queued = 0;
2398 }
2399 
2400 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2401 		unsigned int nr_segs)
2402 {
2403 	int err;
2404 
2405 	if (bio->bi_opf & REQ_RAHEAD)
2406 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2407 
2408 	rq->__sector = bio->bi_iter.bi_sector;
2409 	blk_rq_bio_prep(rq, bio, nr_segs);
2410 
2411 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2412 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2413 	WARN_ON_ONCE(err);
2414 
2415 	blk_account_io_start(rq);
2416 }
2417 
2418 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2419 					    struct request *rq, bool last)
2420 {
2421 	struct request_queue *q = rq->q;
2422 	struct blk_mq_queue_data bd = {
2423 		.rq = rq,
2424 		.last = last,
2425 	};
2426 	blk_status_t ret;
2427 
2428 	/*
2429 	 * For OK queue, we are done. For error, caller may kill it.
2430 	 * Any other error (busy), just add it to our list as we
2431 	 * previously would have done.
2432 	 */
2433 	ret = q->mq_ops->queue_rq(hctx, &bd);
2434 	switch (ret) {
2435 	case BLK_STS_OK:
2436 		blk_mq_update_dispatch_busy(hctx, false);
2437 		break;
2438 	case BLK_STS_RESOURCE:
2439 	case BLK_STS_DEV_RESOURCE:
2440 		blk_mq_update_dispatch_busy(hctx, true);
2441 		__blk_mq_requeue_request(rq);
2442 		break;
2443 	default:
2444 		blk_mq_update_dispatch_busy(hctx, false);
2445 		break;
2446 	}
2447 
2448 	return ret;
2449 }
2450 
2451 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2452 						struct request *rq,
2453 						bool bypass_insert, bool last)
2454 {
2455 	struct request_queue *q = rq->q;
2456 	bool run_queue = true;
2457 	int budget_token;
2458 
2459 	/*
2460 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2461 	 *
2462 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2463 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2464 	 * and avoid driver to try to dispatch again.
2465 	 */
2466 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2467 		run_queue = false;
2468 		bypass_insert = false;
2469 		goto insert;
2470 	}
2471 
2472 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2473 		goto insert;
2474 
2475 	budget_token = blk_mq_get_dispatch_budget(q);
2476 	if (budget_token < 0)
2477 		goto insert;
2478 
2479 	blk_mq_set_rq_budget_token(rq, budget_token);
2480 
2481 	if (!blk_mq_get_driver_tag(rq)) {
2482 		blk_mq_put_dispatch_budget(q, budget_token);
2483 		goto insert;
2484 	}
2485 
2486 	return __blk_mq_issue_directly(hctx, rq, last);
2487 insert:
2488 	if (bypass_insert)
2489 		return BLK_STS_RESOURCE;
2490 
2491 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2492 
2493 	return BLK_STS_OK;
2494 }
2495 
2496 /**
2497  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2498  * @hctx: Pointer of the associated hardware queue.
2499  * @rq: Pointer to request to be sent.
2500  *
2501  * If the device has enough resources to accept a new request now, send the
2502  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2503  * we can try send it another time in the future. Requests inserted at this
2504  * queue have higher priority.
2505  */
2506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2507 		struct request *rq)
2508 {
2509 	blk_status_t ret =
2510 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2511 
2512 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2513 		blk_mq_request_bypass_insert(rq, false, true);
2514 	else if (ret != BLK_STS_OK)
2515 		blk_mq_end_request(rq, ret);
2516 }
2517 
2518 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2519 {
2520 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2521 }
2522 
2523 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2524 {
2525 	struct blk_mq_hw_ctx *hctx = NULL;
2526 	struct request *rq;
2527 	int queued = 0;
2528 	int errors = 0;
2529 
2530 	while ((rq = rq_list_pop(&plug->mq_list))) {
2531 		bool last = rq_list_empty(plug->mq_list);
2532 		blk_status_t ret;
2533 
2534 		if (hctx != rq->mq_hctx) {
2535 			if (hctx)
2536 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2537 			hctx = rq->mq_hctx;
2538 		}
2539 
2540 		ret = blk_mq_request_issue_directly(rq, last);
2541 		switch (ret) {
2542 		case BLK_STS_OK:
2543 			queued++;
2544 			break;
2545 		case BLK_STS_RESOURCE:
2546 		case BLK_STS_DEV_RESOURCE:
2547 			blk_mq_request_bypass_insert(rq, false, last);
2548 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2549 			return;
2550 		default:
2551 			blk_mq_end_request(rq, ret);
2552 			errors++;
2553 			break;
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * If we didn't flush the entire list, we could have told the driver
2559 	 * there was more coming, but that turned out to be a lie.
2560 	 */
2561 	if (errors)
2562 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2563 }
2564 
2565 static void __blk_mq_flush_plug_list(struct request_queue *q,
2566 				     struct blk_plug *plug)
2567 {
2568 	if (blk_queue_quiesced(q))
2569 		return;
2570 	q->mq_ops->queue_rqs(&plug->mq_list);
2571 }
2572 
2573 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2574 {
2575 	struct blk_mq_hw_ctx *this_hctx = NULL;
2576 	struct blk_mq_ctx *this_ctx = NULL;
2577 	struct request *requeue_list = NULL;
2578 	unsigned int depth = 0;
2579 	LIST_HEAD(list);
2580 
2581 	do {
2582 		struct request *rq = rq_list_pop(&plug->mq_list);
2583 
2584 		if (!this_hctx) {
2585 			this_hctx = rq->mq_hctx;
2586 			this_ctx = rq->mq_ctx;
2587 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2588 			rq_list_add(&requeue_list, rq);
2589 			continue;
2590 		}
2591 		list_add_tail(&rq->queuelist, &list);
2592 		depth++;
2593 	} while (!rq_list_empty(plug->mq_list));
2594 
2595 	plug->mq_list = requeue_list;
2596 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2597 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2598 }
2599 
2600 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2601 {
2602 	struct request *rq;
2603 
2604 	if (rq_list_empty(plug->mq_list))
2605 		return;
2606 	plug->rq_count = 0;
2607 
2608 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2609 		struct request_queue *q;
2610 
2611 		rq = rq_list_peek(&plug->mq_list);
2612 		q = rq->q;
2613 
2614 		/*
2615 		 * Peek first request and see if we have a ->queue_rqs() hook.
2616 		 * If we do, we can dispatch the whole plug list in one go. We
2617 		 * already know at this point that all requests belong to the
2618 		 * same queue, caller must ensure that's the case.
2619 		 *
2620 		 * Since we pass off the full list to the driver at this point,
2621 		 * we do not increment the active request count for the queue.
2622 		 * Bypass shared tags for now because of that.
2623 		 */
2624 		if (q->mq_ops->queue_rqs &&
2625 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2626 			blk_mq_run_dispatch_ops(q,
2627 				__blk_mq_flush_plug_list(q, plug));
2628 			if (rq_list_empty(plug->mq_list))
2629 				return;
2630 		}
2631 
2632 		blk_mq_run_dispatch_ops(q,
2633 				blk_mq_plug_issue_direct(plug, false));
2634 		if (rq_list_empty(plug->mq_list))
2635 			return;
2636 	}
2637 
2638 	do {
2639 		blk_mq_dispatch_plug_list(plug, from_schedule);
2640 	} while (!rq_list_empty(plug->mq_list));
2641 }
2642 
2643 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2644 		struct list_head *list)
2645 {
2646 	int queued = 0;
2647 	int errors = 0;
2648 
2649 	while (!list_empty(list)) {
2650 		blk_status_t ret;
2651 		struct request *rq = list_first_entry(list, struct request,
2652 				queuelist);
2653 
2654 		list_del_init(&rq->queuelist);
2655 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2656 		if (ret != BLK_STS_OK) {
2657 			if (ret == BLK_STS_RESOURCE ||
2658 					ret == BLK_STS_DEV_RESOURCE) {
2659 				blk_mq_request_bypass_insert(rq, false,
2660 							list_empty(list));
2661 				break;
2662 			}
2663 			blk_mq_end_request(rq, ret);
2664 			errors++;
2665 		} else
2666 			queued++;
2667 	}
2668 
2669 	/*
2670 	 * If we didn't flush the entire list, we could have told
2671 	 * the driver there was more coming, but that turned out to
2672 	 * be a lie.
2673 	 */
2674 	if ((!list_empty(list) || errors) &&
2675 	     hctx->queue->mq_ops->commit_rqs && queued)
2676 		hctx->queue->mq_ops->commit_rqs(hctx);
2677 }
2678 
2679 /*
2680  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2681  * queues. This is important for md arrays to benefit from merging
2682  * requests.
2683  */
2684 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2685 {
2686 	if (plug->multiple_queues)
2687 		return BLK_MAX_REQUEST_COUNT * 2;
2688 	return BLK_MAX_REQUEST_COUNT;
2689 }
2690 
2691 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2692 {
2693 	struct request *last = rq_list_peek(&plug->mq_list);
2694 
2695 	if (!plug->rq_count) {
2696 		trace_block_plug(rq->q);
2697 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2698 		   (!blk_queue_nomerges(rq->q) &&
2699 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2700 		blk_mq_flush_plug_list(plug, false);
2701 		trace_block_plug(rq->q);
2702 	}
2703 
2704 	if (!plug->multiple_queues && last && last->q != rq->q)
2705 		plug->multiple_queues = true;
2706 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2707 		plug->has_elevator = true;
2708 	rq->rq_next = NULL;
2709 	rq_list_add(&plug->mq_list, rq);
2710 	plug->rq_count++;
2711 }
2712 
2713 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2714 				     struct bio *bio, unsigned int nr_segs)
2715 {
2716 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2717 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2718 			return true;
2719 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2720 			return true;
2721 	}
2722 	return false;
2723 }
2724 
2725 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2726 					       struct blk_plug *plug,
2727 					       struct bio *bio,
2728 					       unsigned int nsegs)
2729 {
2730 	struct blk_mq_alloc_data data = {
2731 		.q		= q,
2732 		.nr_tags	= 1,
2733 		.cmd_flags	= bio->bi_opf,
2734 	};
2735 	struct request *rq;
2736 
2737 	if (unlikely(bio_queue_enter(bio)))
2738 		return NULL;
2739 
2740 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2741 		goto queue_exit;
2742 
2743 	rq_qos_throttle(q, bio);
2744 
2745 	if (plug) {
2746 		data.nr_tags = plug->nr_ios;
2747 		plug->nr_ios = 1;
2748 		data.cached_rq = &plug->cached_rq;
2749 	}
2750 
2751 	rq = __blk_mq_alloc_requests(&data);
2752 	if (rq)
2753 		return rq;
2754 	rq_qos_cleanup(q, bio);
2755 	if (bio->bi_opf & REQ_NOWAIT)
2756 		bio_wouldblock_error(bio);
2757 queue_exit:
2758 	blk_queue_exit(q);
2759 	return NULL;
2760 }
2761 
2762 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2763 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2764 {
2765 	struct request *rq;
2766 
2767 	if (!plug)
2768 		return NULL;
2769 	rq = rq_list_peek(&plug->cached_rq);
2770 	if (!rq || rq->q != q)
2771 		return NULL;
2772 
2773 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2774 		*bio = NULL;
2775 		return NULL;
2776 	}
2777 
2778 	rq_qos_throttle(q, *bio);
2779 
2780 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2781 		return NULL;
2782 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2783 		return NULL;
2784 
2785 	rq->cmd_flags = (*bio)->bi_opf;
2786 	plug->cached_rq = rq_list_next(rq);
2787 	INIT_LIST_HEAD(&rq->queuelist);
2788 	return rq;
2789 }
2790 
2791 /**
2792  * blk_mq_submit_bio - Create and send a request to block device.
2793  * @bio: Bio pointer.
2794  *
2795  * Builds up a request structure from @q and @bio and send to the device. The
2796  * request may not be queued directly to hardware if:
2797  * * This request can be merged with another one
2798  * * We want to place request at plug queue for possible future merging
2799  * * There is an IO scheduler active at this queue
2800  *
2801  * It will not queue the request if there is an error with the bio, or at the
2802  * request creation.
2803  */
2804 void blk_mq_submit_bio(struct bio *bio)
2805 {
2806 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2807 	struct blk_plug *plug = blk_mq_plug(q, bio);
2808 	const int is_sync = op_is_sync(bio->bi_opf);
2809 	struct request *rq;
2810 	unsigned int nr_segs = 1;
2811 	blk_status_t ret;
2812 
2813 	blk_queue_bounce(q, &bio);
2814 	if (blk_may_split(q, bio))
2815 		__blk_queue_split(q, &bio, &nr_segs);
2816 
2817 	if (!bio_integrity_prep(bio))
2818 		return;
2819 
2820 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2821 	if (!rq) {
2822 		if (!bio)
2823 			return;
2824 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2825 		if (unlikely(!rq))
2826 			return;
2827 	}
2828 
2829 	trace_block_getrq(bio);
2830 
2831 	rq_qos_track(q, rq, bio);
2832 
2833 	blk_mq_bio_to_request(rq, bio, nr_segs);
2834 
2835 	ret = blk_crypto_init_request(rq);
2836 	if (ret != BLK_STS_OK) {
2837 		bio->bi_status = ret;
2838 		bio_endio(bio);
2839 		blk_mq_free_request(rq);
2840 		return;
2841 	}
2842 
2843 	if (op_is_flush(bio->bi_opf)) {
2844 		blk_insert_flush(rq);
2845 		return;
2846 	}
2847 
2848 	if (plug)
2849 		blk_add_rq_to_plug(plug, rq);
2850 	else if ((rq->rq_flags & RQF_ELV) ||
2851 		 (rq->mq_hctx->dispatch_busy &&
2852 		  (q->nr_hw_queues == 1 || !is_sync)))
2853 		blk_mq_sched_insert_request(rq, false, true, true);
2854 	else
2855 		blk_mq_run_dispatch_ops(rq->q,
2856 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2857 }
2858 
2859 #ifdef CONFIG_BLK_MQ_STACKING
2860 /**
2861  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2862  * @rq: the request being queued
2863  */
2864 blk_status_t blk_insert_cloned_request(struct request *rq)
2865 {
2866 	struct request_queue *q = rq->q;
2867 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2868 	blk_status_t ret;
2869 
2870 	if (blk_rq_sectors(rq) > max_sectors) {
2871 		/*
2872 		 * SCSI device does not have a good way to return if
2873 		 * Write Same/Zero is actually supported. If a device rejects
2874 		 * a non-read/write command (discard, write same,etc.) the
2875 		 * low-level device driver will set the relevant queue limit to
2876 		 * 0 to prevent blk-lib from issuing more of the offending
2877 		 * operations. Commands queued prior to the queue limit being
2878 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2879 		 * errors being propagated to upper layers.
2880 		 */
2881 		if (max_sectors == 0)
2882 			return BLK_STS_NOTSUPP;
2883 
2884 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2885 			__func__, blk_rq_sectors(rq), max_sectors);
2886 		return BLK_STS_IOERR;
2887 	}
2888 
2889 	/*
2890 	 * The queue settings related to segment counting may differ from the
2891 	 * original queue.
2892 	 */
2893 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2894 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2895 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2896 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2897 		return BLK_STS_IOERR;
2898 	}
2899 
2900 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2901 		return BLK_STS_IOERR;
2902 
2903 	if (blk_crypto_insert_cloned_request(rq))
2904 		return BLK_STS_IOERR;
2905 
2906 	blk_account_io_start(rq);
2907 
2908 	/*
2909 	 * Since we have a scheduler attached on the top device,
2910 	 * bypass a potential scheduler on the bottom device for
2911 	 * insert.
2912 	 */
2913 	blk_mq_run_dispatch_ops(q,
2914 			ret = blk_mq_request_issue_directly(rq, true));
2915 	if (ret)
2916 		blk_account_io_done(rq, ktime_get_ns());
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2920 
2921 /**
2922  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2923  * @rq: the clone request to be cleaned up
2924  *
2925  * Description:
2926  *     Free all bios in @rq for a cloned request.
2927  */
2928 void blk_rq_unprep_clone(struct request *rq)
2929 {
2930 	struct bio *bio;
2931 
2932 	while ((bio = rq->bio) != NULL) {
2933 		rq->bio = bio->bi_next;
2934 
2935 		bio_put(bio);
2936 	}
2937 }
2938 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2939 
2940 /**
2941  * blk_rq_prep_clone - Helper function to setup clone request
2942  * @rq: the request to be setup
2943  * @rq_src: original request to be cloned
2944  * @bs: bio_set that bios for clone are allocated from
2945  * @gfp_mask: memory allocation mask for bio
2946  * @bio_ctr: setup function to be called for each clone bio.
2947  *           Returns %0 for success, non %0 for failure.
2948  * @data: private data to be passed to @bio_ctr
2949  *
2950  * Description:
2951  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2952  *     Also, pages which the original bios are pointing to are not copied
2953  *     and the cloned bios just point same pages.
2954  *     So cloned bios must be completed before original bios, which means
2955  *     the caller must complete @rq before @rq_src.
2956  */
2957 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2958 		      struct bio_set *bs, gfp_t gfp_mask,
2959 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2960 		      void *data)
2961 {
2962 	struct bio *bio, *bio_src;
2963 
2964 	if (!bs)
2965 		bs = &fs_bio_set;
2966 
2967 	__rq_for_each_bio(bio_src, rq_src) {
2968 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2969 				      bs);
2970 		if (!bio)
2971 			goto free_and_out;
2972 
2973 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2974 			goto free_and_out;
2975 
2976 		if (rq->bio) {
2977 			rq->biotail->bi_next = bio;
2978 			rq->biotail = bio;
2979 		} else {
2980 			rq->bio = rq->biotail = bio;
2981 		}
2982 		bio = NULL;
2983 	}
2984 
2985 	/* Copy attributes of the original request to the clone request. */
2986 	rq->__sector = blk_rq_pos(rq_src);
2987 	rq->__data_len = blk_rq_bytes(rq_src);
2988 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2989 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2990 		rq->special_vec = rq_src->special_vec;
2991 	}
2992 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2993 	rq->ioprio = rq_src->ioprio;
2994 
2995 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2996 		goto free_and_out;
2997 
2998 	return 0;
2999 
3000 free_and_out:
3001 	if (bio)
3002 		bio_put(bio);
3003 	blk_rq_unprep_clone(rq);
3004 
3005 	return -ENOMEM;
3006 }
3007 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3008 #endif /* CONFIG_BLK_MQ_STACKING */
3009 
3010 /*
3011  * Steal bios from a request and add them to a bio list.
3012  * The request must not have been partially completed before.
3013  */
3014 void blk_steal_bios(struct bio_list *list, struct request *rq)
3015 {
3016 	if (rq->bio) {
3017 		if (list->tail)
3018 			list->tail->bi_next = rq->bio;
3019 		else
3020 			list->head = rq->bio;
3021 		list->tail = rq->biotail;
3022 
3023 		rq->bio = NULL;
3024 		rq->biotail = NULL;
3025 	}
3026 
3027 	rq->__data_len = 0;
3028 }
3029 EXPORT_SYMBOL_GPL(blk_steal_bios);
3030 
3031 static size_t order_to_size(unsigned int order)
3032 {
3033 	return (size_t)PAGE_SIZE << order;
3034 }
3035 
3036 /* called before freeing request pool in @tags */
3037 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3038 				    struct blk_mq_tags *tags)
3039 {
3040 	struct page *page;
3041 	unsigned long flags;
3042 
3043 	/* There is no need to clear a driver tags own mapping */
3044 	if (drv_tags == tags)
3045 		return;
3046 
3047 	list_for_each_entry(page, &tags->page_list, lru) {
3048 		unsigned long start = (unsigned long)page_address(page);
3049 		unsigned long end = start + order_to_size(page->private);
3050 		int i;
3051 
3052 		for (i = 0; i < drv_tags->nr_tags; i++) {
3053 			struct request *rq = drv_tags->rqs[i];
3054 			unsigned long rq_addr = (unsigned long)rq;
3055 
3056 			if (rq_addr >= start && rq_addr < end) {
3057 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3058 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3059 			}
3060 		}
3061 	}
3062 
3063 	/*
3064 	 * Wait until all pending iteration is done.
3065 	 *
3066 	 * Request reference is cleared and it is guaranteed to be observed
3067 	 * after the ->lock is released.
3068 	 */
3069 	spin_lock_irqsave(&drv_tags->lock, flags);
3070 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3071 }
3072 
3073 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3074 		     unsigned int hctx_idx)
3075 {
3076 	struct blk_mq_tags *drv_tags;
3077 	struct page *page;
3078 
3079 	if (list_empty(&tags->page_list))
3080 		return;
3081 
3082 	if (blk_mq_is_shared_tags(set->flags))
3083 		drv_tags = set->shared_tags;
3084 	else
3085 		drv_tags = set->tags[hctx_idx];
3086 
3087 	if (tags->static_rqs && set->ops->exit_request) {
3088 		int i;
3089 
3090 		for (i = 0; i < tags->nr_tags; i++) {
3091 			struct request *rq = tags->static_rqs[i];
3092 
3093 			if (!rq)
3094 				continue;
3095 			set->ops->exit_request(set, rq, hctx_idx);
3096 			tags->static_rqs[i] = NULL;
3097 		}
3098 	}
3099 
3100 	blk_mq_clear_rq_mapping(drv_tags, tags);
3101 
3102 	while (!list_empty(&tags->page_list)) {
3103 		page = list_first_entry(&tags->page_list, struct page, lru);
3104 		list_del_init(&page->lru);
3105 		/*
3106 		 * Remove kmemleak object previously allocated in
3107 		 * blk_mq_alloc_rqs().
3108 		 */
3109 		kmemleak_free(page_address(page));
3110 		__free_pages(page, page->private);
3111 	}
3112 }
3113 
3114 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3115 {
3116 	kfree(tags->rqs);
3117 	tags->rqs = NULL;
3118 	kfree(tags->static_rqs);
3119 	tags->static_rqs = NULL;
3120 
3121 	blk_mq_free_tags(tags);
3122 }
3123 
3124 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3125 		unsigned int hctx_idx)
3126 {
3127 	int i;
3128 
3129 	for (i = 0; i < set->nr_maps; i++) {
3130 		unsigned int start = set->map[i].queue_offset;
3131 		unsigned int end = start + set->map[i].nr_queues;
3132 
3133 		if (hctx_idx >= start && hctx_idx < end)
3134 			break;
3135 	}
3136 
3137 	if (i >= set->nr_maps)
3138 		i = HCTX_TYPE_DEFAULT;
3139 
3140 	return i;
3141 }
3142 
3143 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3144 		unsigned int hctx_idx)
3145 {
3146 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3147 
3148 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3149 }
3150 
3151 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3152 					       unsigned int hctx_idx,
3153 					       unsigned int nr_tags,
3154 					       unsigned int reserved_tags)
3155 {
3156 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3157 	struct blk_mq_tags *tags;
3158 
3159 	if (node == NUMA_NO_NODE)
3160 		node = set->numa_node;
3161 
3162 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3163 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3164 	if (!tags)
3165 		return NULL;
3166 
3167 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3168 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3169 				 node);
3170 	if (!tags->rqs) {
3171 		blk_mq_free_tags(tags);
3172 		return NULL;
3173 	}
3174 
3175 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3176 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3177 					node);
3178 	if (!tags->static_rqs) {
3179 		kfree(tags->rqs);
3180 		blk_mq_free_tags(tags);
3181 		return NULL;
3182 	}
3183 
3184 	return tags;
3185 }
3186 
3187 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3188 			       unsigned int hctx_idx, int node)
3189 {
3190 	int ret;
3191 
3192 	if (set->ops->init_request) {
3193 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3194 		if (ret)
3195 			return ret;
3196 	}
3197 
3198 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3199 	return 0;
3200 }
3201 
3202 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3203 			    struct blk_mq_tags *tags,
3204 			    unsigned int hctx_idx, unsigned int depth)
3205 {
3206 	unsigned int i, j, entries_per_page, max_order = 4;
3207 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3208 	size_t rq_size, left;
3209 
3210 	if (node == NUMA_NO_NODE)
3211 		node = set->numa_node;
3212 
3213 	INIT_LIST_HEAD(&tags->page_list);
3214 
3215 	/*
3216 	 * rq_size is the size of the request plus driver payload, rounded
3217 	 * to the cacheline size
3218 	 */
3219 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3220 				cache_line_size());
3221 	left = rq_size * depth;
3222 
3223 	for (i = 0; i < depth; ) {
3224 		int this_order = max_order;
3225 		struct page *page;
3226 		int to_do;
3227 		void *p;
3228 
3229 		while (this_order && left < order_to_size(this_order - 1))
3230 			this_order--;
3231 
3232 		do {
3233 			page = alloc_pages_node(node,
3234 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3235 				this_order);
3236 			if (page)
3237 				break;
3238 			if (!this_order--)
3239 				break;
3240 			if (order_to_size(this_order) < rq_size)
3241 				break;
3242 		} while (1);
3243 
3244 		if (!page)
3245 			goto fail;
3246 
3247 		page->private = this_order;
3248 		list_add_tail(&page->lru, &tags->page_list);
3249 
3250 		p = page_address(page);
3251 		/*
3252 		 * Allow kmemleak to scan these pages as they contain pointers
3253 		 * to additional allocations like via ops->init_request().
3254 		 */
3255 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3256 		entries_per_page = order_to_size(this_order) / rq_size;
3257 		to_do = min(entries_per_page, depth - i);
3258 		left -= to_do * rq_size;
3259 		for (j = 0; j < to_do; j++) {
3260 			struct request *rq = p;
3261 
3262 			tags->static_rqs[i] = rq;
3263 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3264 				tags->static_rqs[i] = NULL;
3265 				goto fail;
3266 			}
3267 
3268 			p += rq_size;
3269 			i++;
3270 		}
3271 	}
3272 	return 0;
3273 
3274 fail:
3275 	blk_mq_free_rqs(set, tags, hctx_idx);
3276 	return -ENOMEM;
3277 }
3278 
3279 struct rq_iter_data {
3280 	struct blk_mq_hw_ctx *hctx;
3281 	bool has_rq;
3282 };
3283 
3284 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3285 {
3286 	struct rq_iter_data *iter_data = data;
3287 
3288 	if (rq->mq_hctx != iter_data->hctx)
3289 		return true;
3290 	iter_data->has_rq = true;
3291 	return false;
3292 }
3293 
3294 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3295 {
3296 	struct blk_mq_tags *tags = hctx->sched_tags ?
3297 			hctx->sched_tags : hctx->tags;
3298 	struct rq_iter_data data = {
3299 		.hctx	= hctx,
3300 	};
3301 
3302 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3303 	return data.has_rq;
3304 }
3305 
3306 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3307 		struct blk_mq_hw_ctx *hctx)
3308 {
3309 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3310 		return false;
3311 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3312 		return false;
3313 	return true;
3314 }
3315 
3316 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3317 {
3318 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3319 			struct blk_mq_hw_ctx, cpuhp_online);
3320 
3321 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3322 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3323 		return 0;
3324 
3325 	/*
3326 	 * Prevent new request from being allocated on the current hctx.
3327 	 *
3328 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3329 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3330 	 * seen once we return from the tag allocator.
3331 	 */
3332 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3333 	smp_mb__after_atomic();
3334 
3335 	/*
3336 	 * Try to grab a reference to the queue and wait for any outstanding
3337 	 * requests.  If we could not grab a reference the queue has been
3338 	 * frozen and there are no requests.
3339 	 */
3340 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3341 		while (blk_mq_hctx_has_requests(hctx))
3342 			msleep(5);
3343 		percpu_ref_put(&hctx->queue->q_usage_counter);
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3350 {
3351 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3352 			struct blk_mq_hw_ctx, cpuhp_online);
3353 
3354 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3355 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3356 	return 0;
3357 }
3358 
3359 /*
3360  * 'cpu' is going away. splice any existing rq_list entries from this
3361  * software queue to the hw queue dispatch list, and ensure that it
3362  * gets run.
3363  */
3364 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3365 {
3366 	struct blk_mq_hw_ctx *hctx;
3367 	struct blk_mq_ctx *ctx;
3368 	LIST_HEAD(tmp);
3369 	enum hctx_type type;
3370 
3371 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3372 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3373 		return 0;
3374 
3375 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3376 	type = hctx->type;
3377 
3378 	spin_lock(&ctx->lock);
3379 	if (!list_empty(&ctx->rq_lists[type])) {
3380 		list_splice_init(&ctx->rq_lists[type], &tmp);
3381 		blk_mq_hctx_clear_pending(hctx, ctx);
3382 	}
3383 	spin_unlock(&ctx->lock);
3384 
3385 	if (list_empty(&tmp))
3386 		return 0;
3387 
3388 	spin_lock(&hctx->lock);
3389 	list_splice_tail_init(&tmp, &hctx->dispatch);
3390 	spin_unlock(&hctx->lock);
3391 
3392 	blk_mq_run_hw_queue(hctx, true);
3393 	return 0;
3394 }
3395 
3396 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3397 {
3398 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3399 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3400 						    &hctx->cpuhp_online);
3401 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3402 					    &hctx->cpuhp_dead);
3403 }
3404 
3405 /*
3406  * Before freeing hw queue, clearing the flush request reference in
3407  * tags->rqs[] for avoiding potential UAF.
3408  */
3409 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3410 		unsigned int queue_depth, struct request *flush_rq)
3411 {
3412 	int i;
3413 	unsigned long flags;
3414 
3415 	/* The hw queue may not be mapped yet */
3416 	if (!tags)
3417 		return;
3418 
3419 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3420 
3421 	for (i = 0; i < queue_depth; i++)
3422 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3423 
3424 	/*
3425 	 * Wait until all pending iteration is done.
3426 	 *
3427 	 * Request reference is cleared and it is guaranteed to be observed
3428 	 * after the ->lock is released.
3429 	 */
3430 	spin_lock_irqsave(&tags->lock, flags);
3431 	spin_unlock_irqrestore(&tags->lock, flags);
3432 }
3433 
3434 /* hctx->ctxs will be freed in queue's release handler */
3435 static void blk_mq_exit_hctx(struct request_queue *q,
3436 		struct blk_mq_tag_set *set,
3437 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3438 {
3439 	struct request *flush_rq = hctx->fq->flush_rq;
3440 
3441 	if (blk_mq_hw_queue_mapped(hctx))
3442 		blk_mq_tag_idle(hctx);
3443 
3444 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3445 			set->queue_depth, flush_rq);
3446 	if (set->ops->exit_request)
3447 		set->ops->exit_request(set, flush_rq, hctx_idx);
3448 
3449 	if (set->ops->exit_hctx)
3450 		set->ops->exit_hctx(hctx, hctx_idx);
3451 
3452 	blk_mq_remove_cpuhp(hctx);
3453 
3454 	xa_erase(&q->hctx_table, hctx_idx);
3455 
3456 	spin_lock(&q->unused_hctx_lock);
3457 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3458 	spin_unlock(&q->unused_hctx_lock);
3459 }
3460 
3461 static void blk_mq_exit_hw_queues(struct request_queue *q,
3462 		struct blk_mq_tag_set *set, int nr_queue)
3463 {
3464 	struct blk_mq_hw_ctx *hctx;
3465 	unsigned long i;
3466 
3467 	queue_for_each_hw_ctx(q, hctx, i) {
3468 		if (i == nr_queue)
3469 			break;
3470 		blk_mq_exit_hctx(q, set, hctx, i);
3471 	}
3472 }
3473 
3474 static int blk_mq_init_hctx(struct request_queue *q,
3475 		struct blk_mq_tag_set *set,
3476 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3477 {
3478 	hctx->queue_num = hctx_idx;
3479 
3480 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3481 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3482 				&hctx->cpuhp_online);
3483 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3484 
3485 	hctx->tags = set->tags[hctx_idx];
3486 
3487 	if (set->ops->init_hctx &&
3488 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3489 		goto unregister_cpu_notifier;
3490 
3491 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3492 				hctx->numa_node))
3493 		goto exit_hctx;
3494 
3495 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3496 		goto exit_flush_rq;
3497 
3498 	return 0;
3499 
3500  exit_flush_rq:
3501 	if (set->ops->exit_request)
3502 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3503  exit_hctx:
3504 	if (set->ops->exit_hctx)
3505 		set->ops->exit_hctx(hctx, hctx_idx);
3506  unregister_cpu_notifier:
3507 	blk_mq_remove_cpuhp(hctx);
3508 	return -1;
3509 }
3510 
3511 static struct blk_mq_hw_ctx *
3512 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3513 		int node)
3514 {
3515 	struct blk_mq_hw_ctx *hctx;
3516 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3517 
3518 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3519 	if (!hctx)
3520 		goto fail_alloc_hctx;
3521 
3522 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3523 		goto free_hctx;
3524 
3525 	atomic_set(&hctx->nr_active, 0);
3526 	if (node == NUMA_NO_NODE)
3527 		node = set->numa_node;
3528 	hctx->numa_node = node;
3529 
3530 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3531 	spin_lock_init(&hctx->lock);
3532 	INIT_LIST_HEAD(&hctx->dispatch);
3533 	hctx->queue = q;
3534 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3535 
3536 	INIT_LIST_HEAD(&hctx->hctx_list);
3537 
3538 	/*
3539 	 * Allocate space for all possible cpus to avoid allocation at
3540 	 * runtime
3541 	 */
3542 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3543 			gfp, node);
3544 	if (!hctx->ctxs)
3545 		goto free_cpumask;
3546 
3547 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3548 				gfp, node, false, false))
3549 		goto free_ctxs;
3550 	hctx->nr_ctx = 0;
3551 
3552 	spin_lock_init(&hctx->dispatch_wait_lock);
3553 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3554 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3555 
3556 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3557 	if (!hctx->fq)
3558 		goto free_bitmap;
3559 
3560 	blk_mq_hctx_kobj_init(hctx);
3561 
3562 	return hctx;
3563 
3564  free_bitmap:
3565 	sbitmap_free(&hctx->ctx_map);
3566  free_ctxs:
3567 	kfree(hctx->ctxs);
3568  free_cpumask:
3569 	free_cpumask_var(hctx->cpumask);
3570  free_hctx:
3571 	kfree(hctx);
3572  fail_alloc_hctx:
3573 	return NULL;
3574 }
3575 
3576 static void blk_mq_init_cpu_queues(struct request_queue *q,
3577 				   unsigned int nr_hw_queues)
3578 {
3579 	struct blk_mq_tag_set *set = q->tag_set;
3580 	unsigned int i, j;
3581 
3582 	for_each_possible_cpu(i) {
3583 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3584 		struct blk_mq_hw_ctx *hctx;
3585 		int k;
3586 
3587 		__ctx->cpu = i;
3588 		spin_lock_init(&__ctx->lock);
3589 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3590 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3591 
3592 		__ctx->queue = q;
3593 
3594 		/*
3595 		 * Set local node, IFF we have more than one hw queue. If
3596 		 * not, we remain on the home node of the device
3597 		 */
3598 		for (j = 0; j < set->nr_maps; j++) {
3599 			hctx = blk_mq_map_queue_type(q, j, i);
3600 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3601 				hctx->numa_node = cpu_to_node(i);
3602 		}
3603 	}
3604 }
3605 
3606 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3607 					     unsigned int hctx_idx,
3608 					     unsigned int depth)
3609 {
3610 	struct blk_mq_tags *tags;
3611 	int ret;
3612 
3613 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3614 	if (!tags)
3615 		return NULL;
3616 
3617 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3618 	if (ret) {
3619 		blk_mq_free_rq_map(tags);
3620 		return NULL;
3621 	}
3622 
3623 	return tags;
3624 }
3625 
3626 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3627 				       int hctx_idx)
3628 {
3629 	if (blk_mq_is_shared_tags(set->flags)) {
3630 		set->tags[hctx_idx] = set->shared_tags;
3631 
3632 		return true;
3633 	}
3634 
3635 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3636 						       set->queue_depth);
3637 
3638 	return set->tags[hctx_idx];
3639 }
3640 
3641 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3642 			     struct blk_mq_tags *tags,
3643 			     unsigned int hctx_idx)
3644 {
3645 	if (tags) {
3646 		blk_mq_free_rqs(set, tags, hctx_idx);
3647 		blk_mq_free_rq_map(tags);
3648 	}
3649 }
3650 
3651 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3652 				      unsigned int hctx_idx)
3653 {
3654 	if (!blk_mq_is_shared_tags(set->flags))
3655 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3656 
3657 	set->tags[hctx_idx] = NULL;
3658 }
3659 
3660 static void blk_mq_map_swqueue(struct request_queue *q)
3661 {
3662 	unsigned int j, hctx_idx;
3663 	unsigned long i;
3664 	struct blk_mq_hw_ctx *hctx;
3665 	struct blk_mq_ctx *ctx;
3666 	struct blk_mq_tag_set *set = q->tag_set;
3667 
3668 	queue_for_each_hw_ctx(q, hctx, i) {
3669 		cpumask_clear(hctx->cpumask);
3670 		hctx->nr_ctx = 0;
3671 		hctx->dispatch_from = NULL;
3672 	}
3673 
3674 	/*
3675 	 * Map software to hardware queues.
3676 	 *
3677 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3678 	 */
3679 	for_each_possible_cpu(i) {
3680 
3681 		ctx = per_cpu_ptr(q->queue_ctx, i);
3682 		for (j = 0; j < set->nr_maps; j++) {
3683 			if (!set->map[j].nr_queues) {
3684 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3685 						HCTX_TYPE_DEFAULT, i);
3686 				continue;
3687 			}
3688 			hctx_idx = set->map[j].mq_map[i];
3689 			/* unmapped hw queue can be remapped after CPU topo changed */
3690 			if (!set->tags[hctx_idx] &&
3691 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3692 				/*
3693 				 * If tags initialization fail for some hctx,
3694 				 * that hctx won't be brought online.  In this
3695 				 * case, remap the current ctx to hctx[0] which
3696 				 * is guaranteed to always have tags allocated
3697 				 */
3698 				set->map[j].mq_map[i] = 0;
3699 			}
3700 
3701 			hctx = blk_mq_map_queue_type(q, j, i);
3702 			ctx->hctxs[j] = hctx;
3703 			/*
3704 			 * If the CPU is already set in the mask, then we've
3705 			 * mapped this one already. This can happen if
3706 			 * devices share queues across queue maps.
3707 			 */
3708 			if (cpumask_test_cpu(i, hctx->cpumask))
3709 				continue;
3710 
3711 			cpumask_set_cpu(i, hctx->cpumask);
3712 			hctx->type = j;
3713 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3714 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3715 
3716 			/*
3717 			 * If the nr_ctx type overflows, we have exceeded the
3718 			 * amount of sw queues we can support.
3719 			 */
3720 			BUG_ON(!hctx->nr_ctx);
3721 		}
3722 
3723 		for (; j < HCTX_MAX_TYPES; j++)
3724 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3725 					HCTX_TYPE_DEFAULT, i);
3726 	}
3727 
3728 	queue_for_each_hw_ctx(q, hctx, i) {
3729 		/*
3730 		 * If no software queues are mapped to this hardware queue,
3731 		 * disable it and free the request entries.
3732 		 */
3733 		if (!hctx->nr_ctx) {
3734 			/* Never unmap queue 0.  We need it as a
3735 			 * fallback in case of a new remap fails
3736 			 * allocation
3737 			 */
3738 			if (i)
3739 				__blk_mq_free_map_and_rqs(set, i);
3740 
3741 			hctx->tags = NULL;
3742 			continue;
3743 		}
3744 
3745 		hctx->tags = set->tags[i];
3746 		WARN_ON(!hctx->tags);
3747 
3748 		/*
3749 		 * Set the map size to the number of mapped software queues.
3750 		 * This is more accurate and more efficient than looping
3751 		 * over all possibly mapped software queues.
3752 		 */
3753 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3754 
3755 		/*
3756 		 * Initialize batch roundrobin counts
3757 		 */
3758 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3759 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3760 	}
3761 }
3762 
3763 /*
3764  * Caller needs to ensure that we're either frozen/quiesced, or that
3765  * the queue isn't live yet.
3766  */
3767 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3768 {
3769 	struct blk_mq_hw_ctx *hctx;
3770 	unsigned long i;
3771 
3772 	queue_for_each_hw_ctx(q, hctx, i) {
3773 		if (shared) {
3774 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3775 		} else {
3776 			blk_mq_tag_idle(hctx);
3777 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3778 		}
3779 	}
3780 }
3781 
3782 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3783 					 bool shared)
3784 {
3785 	struct request_queue *q;
3786 
3787 	lockdep_assert_held(&set->tag_list_lock);
3788 
3789 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3790 		blk_mq_freeze_queue(q);
3791 		queue_set_hctx_shared(q, shared);
3792 		blk_mq_unfreeze_queue(q);
3793 	}
3794 }
3795 
3796 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3797 {
3798 	struct blk_mq_tag_set *set = q->tag_set;
3799 
3800 	mutex_lock(&set->tag_list_lock);
3801 	list_del(&q->tag_set_list);
3802 	if (list_is_singular(&set->tag_list)) {
3803 		/* just transitioned to unshared */
3804 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3805 		/* update existing queue */
3806 		blk_mq_update_tag_set_shared(set, false);
3807 	}
3808 	mutex_unlock(&set->tag_list_lock);
3809 	INIT_LIST_HEAD(&q->tag_set_list);
3810 }
3811 
3812 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3813 				     struct request_queue *q)
3814 {
3815 	mutex_lock(&set->tag_list_lock);
3816 
3817 	/*
3818 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3819 	 */
3820 	if (!list_empty(&set->tag_list) &&
3821 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3822 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3823 		/* update existing queue */
3824 		blk_mq_update_tag_set_shared(set, true);
3825 	}
3826 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3827 		queue_set_hctx_shared(q, true);
3828 	list_add_tail(&q->tag_set_list, &set->tag_list);
3829 
3830 	mutex_unlock(&set->tag_list_lock);
3831 }
3832 
3833 /* All allocations will be freed in release handler of q->mq_kobj */
3834 static int blk_mq_alloc_ctxs(struct request_queue *q)
3835 {
3836 	struct blk_mq_ctxs *ctxs;
3837 	int cpu;
3838 
3839 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3840 	if (!ctxs)
3841 		return -ENOMEM;
3842 
3843 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3844 	if (!ctxs->queue_ctx)
3845 		goto fail;
3846 
3847 	for_each_possible_cpu(cpu) {
3848 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3849 		ctx->ctxs = ctxs;
3850 	}
3851 
3852 	q->mq_kobj = &ctxs->kobj;
3853 	q->queue_ctx = ctxs->queue_ctx;
3854 
3855 	return 0;
3856  fail:
3857 	kfree(ctxs);
3858 	return -ENOMEM;
3859 }
3860 
3861 /*
3862  * It is the actual release handler for mq, but we do it from
3863  * request queue's release handler for avoiding use-after-free
3864  * and headache because q->mq_kobj shouldn't have been introduced,
3865  * but we can't group ctx/kctx kobj without it.
3866  */
3867 void blk_mq_release(struct request_queue *q)
3868 {
3869 	struct blk_mq_hw_ctx *hctx, *next;
3870 	unsigned long i;
3871 
3872 	queue_for_each_hw_ctx(q, hctx, i)
3873 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3874 
3875 	/* all hctx are in .unused_hctx_list now */
3876 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3877 		list_del_init(&hctx->hctx_list);
3878 		kobject_put(&hctx->kobj);
3879 	}
3880 
3881 	xa_destroy(&q->hctx_table);
3882 
3883 	/*
3884 	 * release .mq_kobj and sw queue's kobject now because
3885 	 * both share lifetime with request queue.
3886 	 */
3887 	blk_mq_sysfs_deinit(q);
3888 }
3889 
3890 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3891 		void *queuedata)
3892 {
3893 	struct request_queue *q;
3894 	int ret;
3895 
3896 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3897 	if (!q)
3898 		return ERR_PTR(-ENOMEM);
3899 	q->queuedata = queuedata;
3900 	ret = blk_mq_init_allocated_queue(set, q);
3901 	if (ret) {
3902 		blk_cleanup_queue(q);
3903 		return ERR_PTR(ret);
3904 	}
3905 	return q;
3906 }
3907 
3908 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3909 {
3910 	return blk_mq_init_queue_data(set, NULL);
3911 }
3912 EXPORT_SYMBOL(blk_mq_init_queue);
3913 
3914 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3915 		struct lock_class_key *lkclass)
3916 {
3917 	struct request_queue *q;
3918 	struct gendisk *disk;
3919 
3920 	q = blk_mq_init_queue_data(set, queuedata);
3921 	if (IS_ERR(q))
3922 		return ERR_CAST(q);
3923 
3924 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3925 	if (!disk) {
3926 		blk_cleanup_queue(q);
3927 		return ERR_PTR(-ENOMEM);
3928 	}
3929 	return disk;
3930 }
3931 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3932 
3933 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3934 		struct blk_mq_tag_set *set, struct request_queue *q,
3935 		int hctx_idx, int node)
3936 {
3937 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3938 
3939 	/* reuse dead hctx first */
3940 	spin_lock(&q->unused_hctx_lock);
3941 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3942 		if (tmp->numa_node == node) {
3943 			hctx = tmp;
3944 			break;
3945 		}
3946 	}
3947 	if (hctx)
3948 		list_del_init(&hctx->hctx_list);
3949 	spin_unlock(&q->unused_hctx_lock);
3950 
3951 	if (!hctx)
3952 		hctx = blk_mq_alloc_hctx(q, set, node);
3953 	if (!hctx)
3954 		goto fail;
3955 
3956 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3957 		goto free_hctx;
3958 
3959 	return hctx;
3960 
3961  free_hctx:
3962 	kobject_put(&hctx->kobj);
3963  fail:
3964 	return NULL;
3965 }
3966 
3967 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3968 						struct request_queue *q)
3969 {
3970 	struct blk_mq_hw_ctx *hctx;
3971 	unsigned long i, j;
3972 
3973 	/* protect against switching io scheduler  */
3974 	mutex_lock(&q->sysfs_lock);
3975 	for (i = 0; i < set->nr_hw_queues; i++) {
3976 		int old_node;
3977 		int node = blk_mq_get_hctx_node(set, i);
3978 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3979 
3980 		if (old_hctx) {
3981 			old_node = old_hctx->numa_node;
3982 			blk_mq_exit_hctx(q, set, old_hctx, i);
3983 		}
3984 
3985 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3986 			if (!old_hctx)
3987 				break;
3988 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3989 					node, old_node);
3990 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3991 			WARN_ON_ONCE(!hctx);
3992 		}
3993 	}
3994 	/*
3995 	 * Increasing nr_hw_queues fails. Free the newly allocated
3996 	 * hctxs and keep the previous q->nr_hw_queues.
3997 	 */
3998 	if (i != set->nr_hw_queues) {
3999 		j = q->nr_hw_queues;
4000 	} else {
4001 		j = i;
4002 		q->nr_hw_queues = set->nr_hw_queues;
4003 	}
4004 
4005 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4006 		blk_mq_exit_hctx(q, set, hctx, j);
4007 	mutex_unlock(&q->sysfs_lock);
4008 }
4009 
4010 static void blk_mq_update_poll_flag(struct request_queue *q)
4011 {
4012 	struct blk_mq_tag_set *set = q->tag_set;
4013 
4014 	if (set->nr_maps > HCTX_TYPE_POLL &&
4015 	    set->map[HCTX_TYPE_POLL].nr_queues)
4016 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4017 	else
4018 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4019 }
4020 
4021 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4022 		struct request_queue *q)
4023 {
4024 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4025 			!!(set->flags & BLK_MQ_F_BLOCKING));
4026 
4027 	/* mark the queue as mq asap */
4028 	q->mq_ops = set->ops;
4029 
4030 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4031 					     blk_mq_poll_stats_bkt,
4032 					     BLK_MQ_POLL_STATS_BKTS, q);
4033 	if (!q->poll_cb)
4034 		goto err_exit;
4035 
4036 	if (blk_mq_alloc_ctxs(q))
4037 		goto err_poll;
4038 
4039 	/* init q->mq_kobj and sw queues' kobjects */
4040 	blk_mq_sysfs_init(q);
4041 
4042 	INIT_LIST_HEAD(&q->unused_hctx_list);
4043 	spin_lock_init(&q->unused_hctx_lock);
4044 
4045 	xa_init(&q->hctx_table);
4046 
4047 	blk_mq_realloc_hw_ctxs(set, q);
4048 	if (!q->nr_hw_queues)
4049 		goto err_hctxs;
4050 
4051 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4052 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4053 
4054 	q->tag_set = set;
4055 
4056 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4057 	blk_mq_update_poll_flag(q);
4058 
4059 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4060 	INIT_LIST_HEAD(&q->requeue_list);
4061 	spin_lock_init(&q->requeue_lock);
4062 
4063 	q->nr_requests = set->queue_depth;
4064 
4065 	/*
4066 	 * Default to classic polling
4067 	 */
4068 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4069 
4070 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4071 	blk_mq_add_queue_tag_set(set, q);
4072 	blk_mq_map_swqueue(q);
4073 	return 0;
4074 
4075 err_hctxs:
4076 	xa_destroy(&q->hctx_table);
4077 	q->nr_hw_queues = 0;
4078 	blk_mq_sysfs_deinit(q);
4079 err_poll:
4080 	blk_stat_free_callback(q->poll_cb);
4081 	q->poll_cb = NULL;
4082 err_exit:
4083 	q->mq_ops = NULL;
4084 	return -ENOMEM;
4085 }
4086 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4087 
4088 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4089 void blk_mq_exit_queue(struct request_queue *q)
4090 {
4091 	struct blk_mq_tag_set *set = q->tag_set;
4092 
4093 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4094 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4095 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4096 	blk_mq_del_queue_tag_set(q);
4097 }
4098 
4099 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4100 {
4101 	int i;
4102 
4103 	if (blk_mq_is_shared_tags(set->flags)) {
4104 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4105 						BLK_MQ_NO_HCTX_IDX,
4106 						set->queue_depth);
4107 		if (!set->shared_tags)
4108 			return -ENOMEM;
4109 	}
4110 
4111 	for (i = 0; i < set->nr_hw_queues; i++) {
4112 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4113 			goto out_unwind;
4114 		cond_resched();
4115 	}
4116 
4117 	return 0;
4118 
4119 out_unwind:
4120 	while (--i >= 0)
4121 		__blk_mq_free_map_and_rqs(set, i);
4122 
4123 	if (blk_mq_is_shared_tags(set->flags)) {
4124 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4125 					BLK_MQ_NO_HCTX_IDX);
4126 	}
4127 
4128 	return -ENOMEM;
4129 }
4130 
4131 /*
4132  * Allocate the request maps associated with this tag_set. Note that this
4133  * may reduce the depth asked for, if memory is tight. set->queue_depth
4134  * will be updated to reflect the allocated depth.
4135  */
4136 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4137 {
4138 	unsigned int depth;
4139 	int err;
4140 
4141 	depth = set->queue_depth;
4142 	do {
4143 		err = __blk_mq_alloc_rq_maps(set);
4144 		if (!err)
4145 			break;
4146 
4147 		set->queue_depth >>= 1;
4148 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4149 			err = -ENOMEM;
4150 			break;
4151 		}
4152 	} while (set->queue_depth);
4153 
4154 	if (!set->queue_depth || err) {
4155 		pr_err("blk-mq: failed to allocate request map\n");
4156 		return -ENOMEM;
4157 	}
4158 
4159 	if (depth != set->queue_depth)
4160 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4161 						depth, set->queue_depth);
4162 
4163 	return 0;
4164 }
4165 
4166 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4167 {
4168 	/*
4169 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4170 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4171 	 * number of hardware queues.
4172 	 */
4173 	if (set->nr_maps == 1)
4174 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4175 
4176 	if (set->ops->map_queues && !is_kdump_kernel()) {
4177 		int i;
4178 
4179 		/*
4180 		 * transport .map_queues is usually done in the following
4181 		 * way:
4182 		 *
4183 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4184 		 * 	mask = get_cpu_mask(queue)
4185 		 * 	for_each_cpu(cpu, mask)
4186 		 * 		set->map[x].mq_map[cpu] = queue;
4187 		 * }
4188 		 *
4189 		 * When we need to remap, the table has to be cleared for
4190 		 * killing stale mapping since one CPU may not be mapped
4191 		 * to any hw queue.
4192 		 */
4193 		for (i = 0; i < set->nr_maps; i++)
4194 			blk_mq_clear_mq_map(&set->map[i]);
4195 
4196 		return set->ops->map_queues(set);
4197 	} else {
4198 		BUG_ON(set->nr_maps > 1);
4199 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4200 	}
4201 }
4202 
4203 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4204 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4205 {
4206 	struct blk_mq_tags **new_tags;
4207 
4208 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4209 		return 0;
4210 
4211 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4212 				GFP_KERNEL, set->numa_node);
4213 	if (!new_tags)
4214 		return -ENOMEM;
4215 
4216 	if (set->tags)
4217 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4218 		       sizeof(*set->tags));
4219 	kfree(set->tags);
4220 	set->tags = new_tags;
4221 	set->nr_hw_queues = new_nr_hw_queues;
4222 
4223 	return 0;
4224 }
4225 
4226 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4227 				int new_nr_hw_queues)
4228 {
4229 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4230 }
4231 
4232 /*
4233  * Alloc a tag set to be associated with one or more request queues.
4234  * May fail with EINVAL for various error conditions. May adjust the
4235  * requested depth down, if it's too large. In that case, the set
4236  * value will be stored in set->queue_depth.
4237  */
4238 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4239 {
4240 	int i, ret;
4241 
4242 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4243 
4244 	if (!set->nr_hw_queues)
4245 		return -EINVAL;
4246 	if (!set->queue_depth)
4247 		return -EINVAL;
4248 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4249 		return -EINVAL;
4250 
4251 	if (!set->ops->queue_rq)
4252 		return -EINVAL;
4253 
4254 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4255 		return -EINVAL;
4256 
4257 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4258 		pr_info("blk-mq: reduced tag depth to %u\n",
4259 			BLK_MQ_MAX_DEPTH);
4260 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4261 	}
4262 
4263 	if (!set->nr_maps)
4264 		set->nr_maps = 1;
4265 	else if (set->nr_maps > HCTX_MAX_TYPES)
4266 		return -EINVAL;
4267 
4268 	/*
4269 	 * If a crashdump is active, then we are potentially in a very
4270 	 * memory constrained environment. Limit us to 1 queue and
4271 	 * 64 tags to prevent using too much memory.
4272 	 */
4273 	if (is_kdump_kernel()) {
4274 		set->nr_hw_queues = 1;
4275 		set->nr_maps = 1;
4276 		set->queue_depth = min(64U, set->queue_depth);
4277 	}
4278 	/*
4279 	 * There is no use for more h/w queues than cpus if we just have
4280 	 * a single map
4281 	 */
4282 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4283 		set->nr_hw_queues = nr_cpu_ids;
4284 
4285 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4286 		return -ENOMEM;
4287 
4288 	ret = -ENOMEM;
4289 	for (i = 0; i < set->nr_maps; i++) {
4290 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4291 						  sizeof(set->map[i].mq_map[0]),
4292 						  GFP_KERNEL, set->numa_node);
4293 		if (!set->map[i].mq_map)
4294 			goto out_free_mq_map;
4295 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4296 	}
4297 
4298 	ret = blk_mq_update_queue_map(set);
4299 	if (ret)
4300 		goto out_free_mq_map;
4301 
4302 	ret = blk_mq_alloc_set_map_and_rqs(set);
4303 	if (ret)
4304 		goto out_free_mq_map;
4305 
4306 	mutex_init(&set->tag_list_lock);
4307 	INIT_LIST_HEAD(&set->tag_list);
4308 
4309 	return 0;
4310 
4311 out_free_mq_map:
4312 	for (i = 0; i < set->nr_maps; i++) {
4313 		kfree(set->map[i].mq_map);
4314 		set->map[i].mq_map = NULL;
4315 	}
4316 	kfree(set->tags);
4317 	set->tags = NULL;
4318 	return ret;
4319 }
4320 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4321 
4322 /* allocate and initialize a tagset for a simple single-queue device */
4323 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4324 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4325 		unsigned int set_flags)
4326 {
4327 	memset(set, 0, sizeof(*set));
4328 	set->ops = ops;
4329 	set->nr_hw_queues = 1;
4330 	set->nr_maps = 1;
4331 	set->queue_depth = queue_depth;
4332 	set->numa_node = NUMA_NO_NODE;
4333 	set->flags = set_flags;
4334 	return blk_mq_alloc_tag_set(set);
4335 }
4336 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4337 
4338 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4339 {
4340 	int i, j;
4341 
4342 	for (i = 0; i < set->nr_hw_queues; i++)
4343 		__blk_mq_free_map_and_rqs(set, i);
4344 
4345 	if (blk_mq_is_shared_tags(set->flags)) {
4346 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4347 					BLK_MQ_NO_HCTX_IDX);
4348 	}
4349 
4350 	for (j = 0; j < set->nr_maps; j++) {
4351 		kfree(set->map[j].mq_map);
4352 		set->map[j].mq_map = NULL;
4353 	}
4354 
4355 	kfree(set->tags);
4356 	set->tags = NULL;
4357 }
4358 EXPORT_SYMBOL(blk_mq_free_tag_set);
4359 
4360 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4361 {
4362 	struct blk_mq_tag_set *set = q->tag_set;
4363 	struct blk_mq_hw_ctx *hctx;
4364 	int ret;
4365 	unsigned long i;
4366 
4367 	if (!set)
4368 		return -EINVAL;
4369 
4370 	if (q->nr_requests == nr)
4371 		return 0;
4372 
4373 	blk_mq_freeze_queue(q);
4374 	blk_mq_quiesce_queue(q);
4375 
4376 	ret = 0;
4377 	queue_for_each_hw_ctx(q, hctx, i) {
4378 		if (!hctx->tags)
4379 			continue;
4380 		/*
4381 		 * If we're using an MQ scheduler, just update the scheduler
4382 		 * queue depth. This is similar to what the old code would do.
4383 		 */
4384 		if (hctx->sched_tags) {
4385 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4386 						      nr, true);
4387 		} else {
4388 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4389 						      false);
4390 		}
4391 		if (ret)
4392 			break;
4393 		if (q->elevator && q->elevator->type->ops.depth_updated)
4394 			q->elevator->type->ops.depth_updated(hctx);
4395 	}
4396 	if (!ret) {
4397 		q->nr_requests = nr;
4398 		if (blk_mq_is_shared_tags(set->flags)) {
4399 			if (q->elevator)
4400 				blk_mq_tag_update_sched_shared_tags(q);
4401 			else
4402 				blk_mq_tag_resize_shared_tags(set, nr);
4403 		}
4404 	}
4405 
4406 	blk_mq_unquiesce_queue(q);
4407 	blk_mq_unfreeze_queue(q);
4408 
4409 	return ret;
4410 }
4411 
4412 /*
4413  * request_queue and elevator_type pair.
4414  * It is just used by __blk_mq_update_nr_hw_queues to cache
4415  * the elevator_type associated with a request_queue.
4416  */
4417 struct blk_mq_qe_pair {
4418 	struct list_head node;
4419 	struct request_queue *q;
4420 	struct elevator_type *type;
4421 };
4422 
4423 /*
4424  * Cache the elevator_type in qe pair list and switch the
4425  * io scheduler to 'none'
4426  */
4427 static bool blk_mq_elv_switch_none(struct list_head *head,
4428 		struct request_queue *q)
4429 {
4430 	struct blk_mq_qe_pair *qe;
4431 
4432 	if (!q->elevator)
4433 		return true;
4434 
4435 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4436 	if (!qe)
4437 		return false;
4438 
4439 	INIT_LIST_HEAD(&qe->node);
4440 	qe->q = q;
4441 	qe->type = q->elevator->type;
4442 	list_add(&qe->node, head);
4443 
4444 	mutex_lock(&q->sysfs_lock);
4445 	/*
4446 	 * After elevator_switch_mq, the previous elevator_queue will be
4447 	 * released by elevator_release. The reference of the io scheduler
4448 	 * module get by elevator_get will also be put. So we need to get
4449 	 * a reference of the io scheduler module here to prevent it to be
4450 	 * removed.
4451 	 */
4452 	__module_get(qe->type->elevator_owner);
4453 	elevator_switch_mq(q, NULL);
4454 	mutex_unlock(&q->sysfs_lock);
4455 
4456 	return true;
4457 }
4458 
4459 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4460 						struct request_queue *q)
4461 {
4462 	struct blk_mq_qe_pair *qe;
4463 
4464 	list_for_each_entry(qe, head, node)
4465 		if (qe->q == q)
4466 			return qe;
4467 
4468 	return NULL;
4469 }
4470 
4471 static void blk_mq_elv_switch_back(struct list_head *head,
4472 				  struct request_queue *q)
4473 {
4474 	struct blk_mq_qe_pair *qe;
4475 	struct elevator_type *t;
4476 
4477 	qe = blk_lookup_qe_pair(head, q);
4478 	if (!qe)
4479 		return;
4480 	t = qe->type;
4481 	list_del(&qe->node);
4482 	kfree(qe);
4483 
4484 	mutex_lock(&q->sysfs_lock);
4485 	elevator_switch_mq(q, t);
4486 	mutex_unlock(&q->sysfs_lock);
4487 }
4488 
4489 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4490 							int nr_hw_queues)
4491 {
4492 	struct request_queue *q;
4493 	LIST_HEAD(head);
4494 	int prev_nr_hw_queues;
4495 
4496 	lockdep_assert_held(&set->tag_list_lock);
4497 
4498 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4499 		nr_hw_queues = nr_cpu_ids;
4500 	if (nr_hw_queues < 1)
4501 		return;
4502 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4503 		return;
4504 
4505 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4506 		blk_mq_freeze_queue(q);
4507 	/*
4508 	 * Switch IO scheduler to 'none', cleaning up the data associated
4509 	 * with the previous scheduler. We will switch back once we are done
4510 	 * updating the new sw to hw queue mappings.
4511 	 */
4512 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4513 		if (!blk_mq_elv_switch_none(&head, q))
4514 			goto switch_back;
4515 
4516 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4517 		blk_mq_debugfs_unregister_hctxs(q);
4518 		blk_mq_sysfs_unregister(q);
4519 	}
4520 
4521 	prev_nr_hw_queues = set->nr_hw_queues;
4522 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4523 	    0)
4524 		goto reregister;
4525 
4526 	set->nr_hw_queues = nr_hw_queues;
4527 fallback:
4528 	blk_mq_update_queue_map(set);
4529 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4530 		blk_mq_realloc_hw_ctxs(set, q);
4531 		blk_mq_update_poll_flag(q);
4532 		if (q->nr_hw_queues != set->nr_hw_queues) {
4533 			int i = prev_nr_hw_queues;
4534 
4535 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4536 					nr_hw_queues, prev_nr_hw_queues);
4537 			for (; i < set->nr_hw_queues; i++)
4538 				__blk_mq_free_map_and_rqs(set, i);
4539 
4540 			set->nr_hw_queues = prev_nr_hw_queues;
4541 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4542 			goto fallback;
4543 		}
4544 		blk_mq_map_swqueue(q);
4545 	}
4546 
4547 reregister:
4548 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4549 		blk_mq_sysfs_register(q);
4550 		blk_mq_debugfs_register_hctxs(q);
4551 	}
4552 
4553 switch_back:
4554 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4555 		blk_mq_elv_switch_back(&head, q);
4556 
4557 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4558 		blk_mq_unfreeze_queue(q);
4559 }
4560 
4561 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4562 {
4563 	mutex_lock(&set->tag_list_lock);
4564 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4565 	mutex_unlock(&set->tag_list_lock);
4566 }
4567 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4568 
4569 /* Enable polling stats and return whether they were already enabled. */
4570 static bool blk_poll_stats_enable(struct request_queue *q)
4571 {
4572 	if (q->poll_stat)
4573 		return true;
4574 
4575 	return blk_stats_alloc_enable(q);
4576 }
4577 
4578 static void blk_mq_poll_stats_start(struct request_queue *q)
4579 {
4580 	/*
4581 	 * We don't arm the callback if polling stats are not enabled or the
4582 	 * callback is already active.
4583 	 */
4584 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4585 		return;
4586 
4587 	blk_stat_activate_msecs(q->poll_cb, 100);
4588 }
4589 
4590 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4591 {
4592 	struct request_queue *q = cb->data;
4593 	int bucket;
4594 
4595 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4596 		if (cb->stat[bucket].nr_samples)
4597 			q->poll_stat[bucket] = cb->stat[bucket];
4598 	}
4599 }
4600 
4601 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4602 				       struct request *rq)
4603 {
4604 	unsigned long ret = 0;
4605 	int bucket;
4606 
4607 	/*
4608 	 * If stats collection isn't on, don't sleep but turn it on for
4609 	 * future users
4610 	 */
4611 	if (!blk_poll_stats_enable(q))
4612 		return 0;
4613 
4614 	/*
4615 	 * As an optimistic guess, use half of the mean service time
4616 	 * for this type of request. We can (and should) make this smarter.
4617 	 * For instance, if the completion latencies are tight, we can
4618 	 * get closer than just half the mean. This is especially
4619 	 * important on devices where the completion latencies are longer
4620 	 * than ~10 usec. We do use the stats for the relevant IO size
4621 	 * if available which does lead to better estimates.
4622 	 */
4623 	bucket = blk_mq_poll_stats_bkt(rq);
4624 	if (bucket < 0)
4625 		return ret;
4626 
4627 	if (q->poll_stat[bucket].nr_samples)
4628 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4629 
4630 	return ret;
4631 }
4632 
4633 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4634 {
4635 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4636 	struct request *rq = blk_qc_to_rq(hctx, qc);
4637 	struct hrtimer_sleeper hs;
4638 	enum hrtimer_mode mode;
4639 	unsigned int nsecs;
4640 	ktime_t kt;
4641 
4642 	/*
4643 	 * If a request has completed on queue that uses an I/O scheduler, we
4644 	 * won't get back a request from blk_qc_to_rq.
4645 	 */
4646 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4647 		return false;
4648 
4649 	/*
4650 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4651 	 *
4652 	 *  0:	use half of prev avg
4653 	 * >0:	use this specific value
4654 	 */
4655 	if (q->poll_nsec > 0)
4656 		nsecs = q->poll_nsec;
4657 	else
4658 		nsecs = blk_mq_poll_nsecs(q, rq);
4659 
4660 	if (!nsecs)
4661 		return false;
4662 
4663 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4664 
4665 	/*
4666 	 * This will be replaced with the stats tracking code, using
4667 	 * 'avg_completion_time / 2' as the pre-sleep target.
4668 	 */
4669 	kt = nsecs;
4670 
4671 	mode = HRTIMER_MODE_REL;
4672 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4673 	hrtimer_set_expires(&hs.timer, kt);
4674 
4675 	do {
4676 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4677 			break;
4678 		set_current_state(TASK_UNINTERRUPTIBLE);
4679 		hrtimer_sleeper_start_expires(&hs, mode);
4680 		if (hs.task)
4681 			io_schedule();
4682 		hrtimer_cancel(&hs.timer);
4683 		mode = HRTIMER_MODE_ABS;
4684 	} while (hs.task && !signal_pending(current));
4685 
4686 	__set_current_state(TASK_RUNNING);
4687 	destroy_hrtimer_on_stack(&hs.timer);
4688 
4689 	/*
4690 	 * If we sleep, have the caller restart the poll loop to reset the
4691 	 * state.  Like for the other success return cases, the caller is
4692 	 * responsible for checking if the IO completed.  If the IO isn't
4693 	 * complete, we'll get called again and will go straight to the busy
4694 	 * poll loop.
4695 	 */
4696 	return true;
4697 }
4698 
4699 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4700 			       struct io_comp_batch *iob, unsigned int flags)
4701 {
4702 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4703 	long state = get_current_state();
4704 	int ret;
4705 
4706 	do {
4707 		ret = q->mq_ops->poll(hctx, iob);
4708 		if (ret > 0) {
4709 			__set_current_state(TASK_RUNNING);
4710 			return ret;
4711 		}
4712 
4713 		if (signal_pending_state(state, current))
4714 			__set_current_state(TASK_RUNNING);
4715 		if (task_is_running(current))
4716 			return 1;
4717 
4718 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4719 			break;
4720 		cpu_relax();
4721 	} while (!need_resched());
4722 
4723 	__set_current_state(TASK_RUNNING);
4724 	return 0;
4725 }
4726 
4727 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4728 		unsigned int flags)
4729 {
4730 	if (!(flags & BLK_POLL_NOSLEEP) &&
4731 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4732 		if (blk_mq_poll_hybrid(q, cookie))
4733 			return 1;
4734 	}
4735 	return blk_mq_poll_classic(q, cookie, iob, flags);
4736 }
4737 
4738 unsigned int blk_mq_rq_cpu(struct request *rq)
4739 {
4740 	return rq->mq_ctx->cpu;
4741 }
4742 EXPORT_SYMBOL(blk_mq_rq_cpu);
4743 
4744 void blk_mq_cancel_work_sync(struct request_queue *q)
4745 {
4746 	if (queue_is_mq(q)) {
4747 		struct blk_mq_hw_ctx *hctx;
4748 		unsigned long i;
4749 
4750 		cancel_delayed_work_sync(&q->requeue_work);
4751 
4752 		queue_for_each_hw_ctx(q, hctx, i)
4753 			cancel_delayed_work_sync(&hctx->run_work);
4754 	}
4755 }
4756 
4757 static int __init blk_mq_init(void)
4758 {
4759 	int i;
4760 
4761 	for_each_possible_cpu(i)
4762 		init_llist_head(&per_cpu(blk_cpu_done, i));
4763 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4764 
4765 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4766 				  "block/softirq:dead", NULL,
4767 				  blk_softirq_cpu_dead);
4768 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4769 				blk_mq_hctx_notify_dead);
4770 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4771 				blk_mq_hctx_notify_online,
4772 				blk_mq_hctx_notify_offline);
4773 	return 0;
4774 }
4775 subsys_initcall(blk_mq_init);
4776