xref: /openbmc/linux/block/blk-mq.c (revision 0883c2c0)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 		unsigned int flags)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248 
249 	rq = __blk_mq_alloc_request(&alloc_data, rw);
250 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 		__blk_mq_run_hw_queue(hctx);
252 		blk_mq_put_ctx(ctx);
253 
254 		ctx = blk_mq_get_ctx(q);
255 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
258 		ctx = alloc_data.ctx;
259 	}
260 	blk_mq_put_ctx(ctx);
261 	if (!rq) {
262 		blk_queue_exit(q);
263 		return ERR_PTR(-EWOULDBLOCK);
264 	}
265 	return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268 
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 				  struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 	const int tag = rq->tag;
273 	struct request_queue *q = rq->q;
274 
275 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 		atomic_dec(&hctx->nr_active);
277 	rq->cmd_flags = 0;
278 
279 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 	blk_queue_exit(q);
282 }
283 
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 	struct blk_mq_ctx *ctx = rq->mq_ctx;
287 
288 	ctx->rq_completed[rq_is_sync(rq)]++;
289 	__blk_mq_free_request(hctx, ctx, rq);
290 
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293 
294 void blk_mq_free_request(struct request *rq)
295 {
296 	struct blk_mq_hw_ctx *hctx;
297 	struct request_queue *q = rq->q;
298 
299 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 	blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303 
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 	blk_account_io_done(rq);
307 
308 	if (rq->end_io) {
309 		rq->end_io(rq, error);
310 	} else {
311 		if (unlikely(blk_bidi_rq(rq)))
312 			blk_mq_free_request(rq->next_rq);
313 		blk_mq_free_request(rq);
314 	}
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317 
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 		BUG();
322 	__blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325 
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 	struct request *rq = data;
329 
330 	rq->q->softirq_done_fn(rq);
331 }
332 
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 	struct blk_mq_ctx *ctx = rq->mq_ctx;
336 	bool shared = false;
337 	int cpu;
338 
339 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 		rq->q->softirq_done_fn(rq);
341 		return;
342 	}
343 
344 	cpu = get_cpu();
345 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 		shared = cpus_share_cache(cpu, ctx->cpu);
347 
348 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 		rq->csd.func = __blk_mq_complete_request_remote;
350 		rq->csd.info = rq;
351 		rq->csd.flags = 0;
352 		smp_call_function_single_async(ctx->cpu, &rq->csd);
353 	} else {
354 		rq->q->softirq_done_fn(rq);
355 	}
356 	put_cpu();
357 }
358 
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 	struct request_queue *q = rq->q;
362 
363 	if (!q->softirq_done_fn)
364 		blk_mq_end_request(rq, rq->errors);
365 	else
366 		blk_mq_ipi_complete_request(rq);
367 }
368 
369 /**
370  * blk_mq_complete_request - end I/O on a request
371  * @rq:		the request being processed
372  *
373  * Description:
374  *	Ends all I/O on a request. It does not handle partial completions.
375  *	The actual completion happens out-of-order, through a IPI handler.
376  **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 	struct request_queue *q = rq->q;
380 
381 	if (unlikely(blk_should_fake_timeout(q)))
382 		return;
383 	if (!blk_mark_rq_complete(rq)) {
384 		rq->errors = error;
385 		__blk_mq_complete_request(rq);
386 	}
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389 
390 int blk_mq_request_started(struct request *rq)
391 {
392 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395 
396 void blk_mq_start_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	trace_block_rq_issue(q, rq);
401 
402 	rq->resid_len = blk_rq_bytes(rq);
403 	if (unlikely(blk_bidi_rq(rq)))
404 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405 
406 	blk_add_timer(rq);
407 
408 	/*
409 	 * Ensure that ->deadline is visible before set the started
410 	 * flag and clear the completed flag.
411 	 */
412 	smp_mb__before_atomic();
413 
414 	/*
415 	 * Mark us as started and clear complete. Complete might have been
416 	 * set if requeue raced with timeout, which then marked it as
417 	 * complete. So be sure to clear complete again when we start
418 	 * the request, otherwise we'll ignore the completion event.
419 	 */
420 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 
425 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 		/*
427 		 * Make sure space for the drain appears.  We know we can do
428 		 * this because max_hw_segments has been adjusted to be one
429 		 * fewer than the device can handle.
430 		 */
431 		rq->nr_phys_segments++;
432 	}
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435 
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 	struct request_queue *q = rq->q;
439 
440 	trace_block_rq_requeue(q, rq);
441 
442 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 		if (q->dma_drain_size && blk_rq_bytes(rq))
444 			rq->nr_phys_segments--;
445 	}
446 }
447 
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 	__blk_mq_requeue_request(rq);
451 
452 	BUG_ON(blk_queued_rq(rq));
453 	blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456 
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 	struct request_queue *q =
460 		container_of(work, struct request_queue, requeue_work);
461 	LIST_HEAD(rq_list);
462 	struct request *rq, *next;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&q->requeue_lock, flags);
466 	list_splice_init(&q->requeue_list, &rq_list);
467 	spin_unlock_irqrestore(&q->requeue_lock, flags);
468 
469 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 			continue;
472 
473 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 		list_del_init(&rq->queuelist);
475 		blk_mq_insert_request(rq, true, false, false);
476 	}
477 
478 	while (!list_empty(&rq_list)) {
479 		rq = list_entry(rq_list.next, struct request, queuelist);
480 		list_del_init(&rq->queuelist);
481 		blk_mq_insert_request(rq, false, false, false);
482 	}
483 
484 	/*
485 	 * Use the start variant of queue running here, so that running
486 	 * the requeue work will kick stopped queues.
487 	 */
488 	blk_mq_start_hw_queues(q);
489 }
490 
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 	struct request_queue *q = rq->q;
494 	unsigned long flags;
495 
496 	/*
497 	 * We abuse this flag that is otherwise used by the I/O scheduler to
498 	 * request head insertation from the workqueue.
499 	 */
500 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501 
502 	spin_lock_irqsave(&q->requeue_lock, flags);
503 	if (at_head) {
504 		rq->cmd_flags |= REQ_SOFTBARRIER;
505 		list_add(&rq->queuelist, &q->requeue_list);
506 	} else {
507 		list_add_tail(&rq->queuelist, &q->requeue_list);
508 	}
509 	spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512 
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 	cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518 
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 	kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524 
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 	unsigned long flags;
528 	LIST_HEAD(rq_list);
529 
530 	spin_lock_irqsave(&q->requeue_lock, flags);
531 	list_splice_init(&q->requeue_list, &rq_list);
532 	spin_unlock_irqrestore(&q->requeue_lock, flags);
533 
534 	while (!list_empty(&rq_list)) {
535 		struct request *rq;
536 
537 		rq = list_first_entry(&rq_list, struct request, queuelist);
538 		list_del_init(&rq->queuelist);
539 		rq->errors = -EIO;
540 		blk_mq_end_request(rq, rq->errors);
541 	}
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544 
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 	if (tag < tags->nr_tags)
548 		return tags->rqs[tag];
549 
550 	return NULL;
551 }
552 EXPORT_SYMBOL(blk_mq_tag_to_rq);
553 
554 struct blk_mq_timeout_data {
555 	unsigned long next;
556 	unsigned int next_set;
557 };
558 
559 void blk_mq_rq_timed_out(struct request *req, bool reserved)
560 {
561 	struct blk_mq_ops *ops = req->q->mq_ops;
562 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
563 
564 	/*
565 	 * We know that complete is set at this point. If STARTED isn't set
566 	 * anymore, then the request isn't active and the "timeout" should
567 	 * just be ignored. This can happen due to the bitflag ordering.
568 	 * Timeout first checks if STARTED is set, and if it is, assumes
569 	 * the request is active. But if we race with completion, then
570 	 * we both flags will get cleared. So check here again, and ignore
571 	 * a timeout event with a request that isn't active.
572 	 */
573 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
574 		return;
575 
576 	if (ops->timeout)
577 		ret = ops->timeout(req, reserved);
578 
579 	switch (ret) {
580 	case BLK_EH_HANDLED:
581 		__blk_mq_complete_request(req);
582 		break;
583 	case BLK_EH_RESET_TIMER:
584 		blk_add_timer(req);
585 		blk_clear_rq_complete(req);
586 		break;
587 	case BLK_EH_NOT_HANDLED:
588 		break;
589 	default:
590 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
591 		break;
592 	}
593 }
594 
595 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
596 		struct request *rq, void *priv, bool reserved)
597 {
598 	struct blk_mq_timeout_data *data = priv;
599 
600 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
601 		/*
602 		 * If a request wasn't started before the queue was
603 		 * marked dying, kill it here or it'll go unnoticed.
604 		 */
605 		if (unlikely(blk_queue_dying(rq->q))) {
606 			rq->errors = -EIO;
607 			blk_mq_end_request(rq, rq->errors);
608 		}
609 		return;
610 	}
611 
612 	if (time_after_eq(jiffies, rq->deadline)) {
613 		if (!blk_mark_rq_complete(rq))
614 			blk_mq_rq_timed_out(rq, reserved);
615 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
616 		data->next = rq->deadline;
617 		data->next_set = 1;
618 	}
619 }
620 
621 static void blk_mq_timeout_work(struct work_struct *work)
622 {
623 	struct request_queue *q =
624 		container_of(work, struct request_queue, timeout_work);
625 	struct blk_mq_timeout_data data = {
626 		.next		= 0,
627 		.next_set	= 0,
628 	};
629 	int i;
630 
631 	if (blk_queue_enter(q, true))
632 		return;
633 
634 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
635 
636 	if (data.next_set) {
637 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
638 		mod_timer(&q->timeout, data.next);
639 	} else {
640 		struct blk_mq_hw_ctx *hctx;
641 
642 		queue_for_each_hw_ctx(q, hctx, i) {
643 			/* the hctx may be unmapped, so check it here */
644 			if (blk_mq_hw_queue_mapped(hctx))
645 				blk_mq_tag_idle(hctx);
646 		}
647 	}
648 	blk_queue_exit(q);
649 }
650 
651 /*
652  * Reverse check our software queue for entries that we could potentially
653  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
654  * too much time checking for merges.
655  */
656 static bool blk_mq_attempt_merge(struct request_queue *q,
657 				 struct blk_mq_ctx *ctx, struct bio *bio)
658 {
659 	struct request *rq;
660 	int checked = 8;
661 
662 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
663 		int el_ret;
664 
665 		if (!checked--)
666 			break;
667 
668 		if (!blk_rq_merge_ok(rq, bio))
669 			continue;
670 
671 		el_ret = blk_try_merge(rq, bio);
672 		if (el_ret == ELEVATOR_BACK_MERGE) {
673 			if (bio_attempt_back_merge(q, rq, bio)) {
674 				ctx->rq_merged++;
675 				return true;
676 			}
677 			break;
678 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
679 			if (bio_attempt_front_merge(q, rq, bio)) {
680 				ctx->rq_merged++;
681 				return true;
682 			}
683 			break;
684 		}
685 	}
686 
687 	return false;
688 }
689 
690 /*
691  * Process software queues that have been marked busy, splicing them
692  * to the for-dispatch
693  */
694 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
695 {
696 	struct blk_mq_ctx *ctx;
697 	int i;
698 
699 	for (i = 0; i < hctx->ctx_map.size; i++) {
700 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
701 		unsigned int off, bit;
702 
703 		if (!bm->word)
704 			continue;
705 
706 		bit = 0;
707 		off = i * hctx->ctx_map.bits_per_word;
708 		do {
709 			bit = find_next_bit(&bm->word, bm->depth, bit);
710 			if (bit >= bm->depth)
711 				break;
712 
713 			ctx = hctx->ctxs[bit + off];
714 			clear_bit(bit, &bm->word);
715 			spin_lock(&ctx->lock);
716 			list_splice_tail_init(&ctx->rq_list, list);
717 			spin_unlock(&ctx->lock);
718 
719 			bit++;
720 		} while (1);
721 	}
722 }
723 
724 /*
725  * Run this hardware queue, pulling any software queues mapped to it in.
726  * Note that this function currently has various problems around ordering
727  * of IO. In particular, we'd like FIFO behaviour on handling existing
728  * items on the hctx->dispatch list. Ignore that for now.
729  */
730 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
731 {
732 	struct request_queue *q = hctx->queue;
733 	struct request *rq;
734 	LIST_HEAD(rq_list);
735 	LIST_HEAD(driver_list);
736 	struct list_head *dptr;
737 	int queued;
738 
739 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
740 
741 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
742 		return;
743 
744 	hctx->run++;
745 
746 	/*
747 	 * Touch any software queue that has pending entries.
748 	 */
749 	flush_busy_ctxs(hctx, &rq_list);
750 
751 	/*
752 	 * If we have previous entries on our dispatch list, grab them
753 	 * and stuff them at the front for more fair dispatch.
754 	 */
755 	if (!list_empty_careful(&hctx->dispatch)) {
756 		spin_lock(&hctx->lock);
757 		if (!list_empty(&hctx->dispatch))
758 			list_splice_init(&hctx->dispatch, &rq_list);
759 		spin_unlock(&hctx->lock);
760 	}
761 
762 	/*
763 	 * Start off with dptr being NULL, so we start the first request
764 	 * immediately, even if we have more pending.
765 	 */
766 	dptr = NULL;
767 
768 	/*
769 	 * Now process all the entries, sending them to the driver.
770 	 */
771 	queued = 0;
772 	while (!list_empty(&rq_list)) {
773 		struct blk_mq_queue_data bd;
774 		int ret;
775 
776 		rq = list_first_entry(&rq_list, struct request, queuelist);
777 		list_del_init(&rq->queuelist);
778 
779 		bd.rq = rq;
780 		bd.list = dptr;
781 		bd.last = list_empty(&rq_list);
782 
783 		ret = q->mq_ops->queue_rq(hctx, &bd);
784 		switch (ret) {
785 		case BLK_MQ_RQ_QUEUE_OK:
786 			queued++;
787 			continue;
788 		case BLK_MQ_RQ_QUEUE_BUSY:
789 			list_add(&rq->queuelist, &rq_list);
790 			__blk_mq_requeue_request(rq);
791 			break;
792 		default:
793 			pr_err("blk-mq: bad return on queue: %d\n", ret);
794 		case BLK_MQ_RQ_QUEUE_ERROR:
795 			rq->errors = -EIO;
796 			blk_mq_end_request(rq, rq->errors);
797 			break;
798 		}
799 
800 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
801 			break;
802 
803 		/*
804 		 * We've done the first request. If we have more than 1
805 		 * left in the list, set dptr to defer issue.
806 		 */
807 		if (!dptr && rq_list.next != rq_list.prev)
808 			dptr = &driver_list;
809 	}
810 
811 	if (!queued)
812 		hctx->dispatched[0]++;
813 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
814 		hctx->dispatched[ilog2(queued) + 1]++;
815 
816 	/*
817 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
818 	 * that is where we will continue on next queue run.
819 	 */
820 	if (!list_empty(&rq_list)) {
821 		spin_lock(&hctx->lock);
822 		list_splice(&rq_list, &hctx->dispatch);
823 		spin_unlock(&hctx->lock);
824 		/*
825 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
826 		 * it's possible the queue is stopped and restarted again
827 		 * before this. Queue restart will dispatch requests. And since
828 		 * requests in rq_list aren't added into hctx->dispatch yet,
829 		 * the requests in rq_list might get lost.
830 		 *
831 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
832 		 **/
833 		blk_mq_run_hw_queue(hctx, true);
834 	}
835 }
836 
837 /*
838  * It'd be great if the workqueue API had a way to pass
839  * in a mask and had some smarts for more clever placement.
840  * For now we just round-robin here, switching for every
841  * BLK_MQ_CPU_WORK_BATCH queued items.
842  */
843 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
844 {
845 	if (hctx->queue->nr_hw_queues == 1)
846 		return WORK_CPU_UNBOUND;
847 
848 	if (--hctx->next_cpu_batch <= 0) {
849 		int cpu = hctx->next_cpu, next_cpu;
850 
851 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
852 		if (next_cpu >= nr_cpu_ids)
853 			next_cpu = cpumask_first(hctx->cpumask);
854 
855 		hctx->next_cpu = next_cpu;
856 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
857 
858 		return cpu;
859 	}
860 
861 	return hctx->next_cpu;
862 }
863 
864 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
865 {
866 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
867 	    !blk_mq_hw_queue_mapped(hctx)))
868 		return;
869 
870 	if (!async) {
871 		int cpu = get_cpu();
872 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
873 			__blk_mq_run_hw_queue(hctx);
874 			put_cpu();
875 			return;
876 		}
877 
878 		put_cpu();
879 	}
880 
881 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
882 			&hctx->run_work, 0);
883 }
884 
885 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
886 {
887 	struct blk_mq_hw_ctx *hctx;
888 	int i;
889 
890 	queue_for_each_hw_ctx(q, hctx, i) {
891 		if ((!blk_mq_hctx_has_pending(hctx) &&
892 		    list_empty_careful(&hctx->dispatch)) ||
893 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
894 			continue;
895 
896 		blk_mq_run_hw_queue(hctx, async);
897 	}
898 }
899 EXPORT_SYMBOL(blk_mq_run_hw_queues);
900 
901 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
902 {
903 	cancel_delayed_work(&hctx->run_work);
904 	cancel_delayed_work(&hctx->delay_work);
905 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
906 }
907 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
908 
909 void blk_mq_stop_hw_queues(struct request_queue *q)
910 {
911 	struct blk_mq_hw_ctx *hctx;
912 	int i;
913 
914 	queue_for_each_hw_ctx(q, hctx, i)
915 		blk_mq_stop_hw_queue(hctx);
916 }
917 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
918 
919 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
920 {
921 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
922 
923 	blk_mq_run_hw_queue(hctx, false);
924 }
925 EXPORT_SYMBOL(blk_mq_start_hw_queue);
926 
927 void blk_mq_start_hw_queues(struct request_queue *q)
928 {
929 	struct blk_mq_hw_ctx *hctx;
930 	int i;
931 
932 	queue_for_each_hw_ctx(q, hctx, i)
933 		blk_mq_start_hw_queue(hctx);
934 }
935 EXPORT_SYMBOL(blk_mq_start_hw_queues);
936 
937 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
938 {
939 	struct blk_mq_hw_ctx *hctx;
940 	int i;
941 
942 	queue_for_each_hw_ctx(q, hctx, i) {
943 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
944 			continue;
945 
946 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
947 		blk_mq_run_hw_queue(hctx, async);
948 	}
949 }
950 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
951 
952 static void blk_mq_run_work_fn(struct work_struct *work)
953 {
954 	struct blk_mq_hw_ctx *hctx;
955 
956 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
957 
958 	__blk_mq_run_hw_queue(hctx);
959 }
960 
961 static void blk_mq_delay_work_fn(struct work_struct *work)
962 {
963 	struct blk_mq_hw_ctx *hctx;
964 
965 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
966 
967 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
968 		__blk_mq_run_hw_queue(hctx);
969 }
970 
971 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
972 {
973 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
974 		return;
975 
976 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
977 			&hctx->delay_work, msecs_to_jiffies(msecs));
978 }
979 EXPORT_SYMBOL(blk_mq_delay_queue);
980 
981 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
982 					    struct blk_mq_ctx *ctx,
983 					    struct request *rq,
984 					    bool at_head)
985 {
986 	trace_block_rq_insert(hctx->queue, rq);
987 
988 	if (at_head)
989 		list_add(&rq->queuelist, &ctx->rq_list);
990 	else
991 		list_add_tail(&rq->queuelist, &ctx->rq_list);
992 }
993 
994 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
995 				    struct request *rq, bool at_head)
996 {
997 	struct blk_mq_ctx *ctx = rq->mq_ctx;
998 
999 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1000 	blk_mq_hctx_mark_pending(hctx, ctx);
1001 }
1002 
1003 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1004 		bool async)
1005 {
1006 	struct request_queue *q = rq->q;
1007 	struct blk_mq_hw_ctx *hctx;
1008 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1009 
1010 	current_ctx = blk_mq_get_ctx(q);
1011 	if (!cpu_online(ctx->cpu))
1012 		rq->mq_ctx = ctx = current_ctx;
1013 
1014 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1015 
1016 	spin_lock(&ctx->lock);
1017 	__blk_mq_insert_request(hctx, rq, at_head);
1018 	spin_unlock(&ctx->lock);
1019 
1020 	if (run_queue)
1021 		blk_mq_run_hw_queue(hctx, async);
1022 
1023 	blk_mq_put_ctx(current_ctx);
1024 }
1025 
1026 static void blk_mq_insert_requests(struct request_queue *q,
1027 				     struct blk_mq_ctx *ctx,
1028 				     struct list_head *list,
1029 				     int depth,
1030 				     bool from_schedule)
1031 
1032 {
1033 	struct blk_mq_hw_ctx *hctx;
1034 	struct blk_mq_ctx *current_ctx;
1035 
1036 	trace_block_unplug(q, depth, !from_schedule);
1037 
1038 	current_ctx = blk_mq_get_ctx(q);
1039 
1040 	if (!cpu_online(ctx->cpu))
1041 		ctx = current_ctx;
1042 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1043 
1044 	/*
1045 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1046 	 * offline now
1047 	 */
1048 	spin_lock(&ctx->lock);
1049 	while (!list_empty(list)) {
1050 		struct request *rq;
1051 
1052 		rq = list_first_entry(list, struct request, queuelist);
1053 		list_del_init(&rq->queuelist);
1054 		rq->mq_ctx = ctx;
1055 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1056 	}
1057 	blk_mq_hctx_mark_pending(hctx, ctx);
1058 	spin_unlock(&ctx->lock);
1059 
1060 	blk_mq_run_hw_queue(hctx, from_schedule);
1061 	blk_mq_put_ctx(current_ctx);
1062 }
1063 
1064 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1065 {
1066 	struct request *rqa = container_of(a, struct request, queuelist);
1067 	struct request *rqb = container_of(b, struct request, queuelist);
1068 
1069 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1070 		 (rqa->mq_ctx == rqb->mq_ctx &&
1071 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1072 }
1073 
1074 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1075 {
1076 	struct blk_mq_ctx *this_ctx;
1077 	struct request_queue *this_q;
1078 	struct request *rq;
1079 	LIST_HEAD(list);
1080 	LIST_HEAD(ctx_list);
1081 	unsigned int depth;
1082 
1083 	list_splice_init(&plug->mq_list, &list);
1084 
1085 	list_sort(NULL, &list, plug_ctx_cmp);
1086 
1087 	this_q = NULL;
1088 	this_ctx = NULL;
1089 	depth = 0;
1090 
1091 	while (!list_empty(&list)) {
1092 		rq = list_entry_rq(list.next);
1093 		list_del_init(&rq->queuelist);
1094 		BUG_ON(!rq->q);
1095 		if (rq->mq_ctx != this_ctx) {
1096 			if (this_ctx) {
1097 				blk_mq_insert_requests(this_q, this_ctx,
1098 							&ctx_list, depth,
1099 							from_schedule);
1100 			}
1101 
1102 			this_ctx = rq->mq_ctx;
1103 			this_q = rq->q;
1104 			depth = 0;
1105 		}
1106 
1107 		depth++;
1108 		list_add_tail(&rq->queuelist, &ctx_list);
1109 	}
1110 
1111 	/*
1112 	 * If 'this_ctx' is set, we know we have entries to complete
1113 	 * on 'ctx_list'. Do those.
1114 	 */
1115 	if (this_ctx) {
1116 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1117 				       from_schedule);
1118 	}
1119 }
1120 
1121 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1122 {
1123 	init_request_from_bio(rq, bio);
1124 
1125 	blk_account_io_start(rq, 1);
1126 }
1127 
1128 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1129 {
1130 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1131 		!blk_queue_nomerges(hctx->queue);
1132 }
1133 
1134 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1135 					 struct blk_mq_ctx *ctx,
1136 					 struct request *rq, struct bio *bio)
1137 {
1138 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1139 		blk_mq_bio_to_request(rq, bio);
1140 		spin_lock(&ctx->lock);
1141 insert_rq:
1142 		__blk_mq_insert_request(hctx, rq, false);
1143 		spin_unlock(&ctx->lock);
1144 		return false;
1145 	} else {
1146 		struct request_queue *q = hctx->queue;
1147 
1148 		spin_lock(&ctx->lock);
1149 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1150 			blk_mq_bio_to_request(rq, bio);
1151 			goto insert_rq;
1152 		}
1153 
1154 		spin_unlock(&ctx->lock);
1155 		__blk_mq_free_request(hctx, ctx, rq);
1156 		return true;
1157 	}
1158 }
1159 
1160 struct blk_map_ctx {
1161 	struct blk_mq_hw_ctx *hctx;
1162 	struct blk_mq_ctx *ctx;
1163 };
1164 
1165 static struct request *blk_mq_map_request(struct request_queue *q,
1166 					  struct bio *bio,
1167 					  struct blk_map_ctx *data)
1168 {
1169 	struct blk_mq_hw_ctx *hctx;
1170 	struct blk_mq_ctx *ctx;
1171 	struct request *rq;
1172 	int rw = bio_data_dir(bio);
1173 	struct blk_mq_alloc_data alloc_data;
1174 
1175 	blk_queue_enter_live(q);
1176 	ctx = blk_mq_get_ctx(q);
1177 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1178 
1179 	if (rw_is_sync(bio->bi_rw))
1180 		rw |= REQ_SYNC;
1181 
1182 	trace_block_getrq(q, bio, rw);
1183 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1184 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1185 	if (unlikely(!rq)) {
1186 		__blk_mq_run_hw_queue(hctx);
1187 		blk_mq_put_ctx(ctx);
1188 		trace_block_sleeprq(q, bio, rw);
1189 
1190 		ctx = blk_mq_get_ctx(q);
1191 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1192 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1193 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1194 		ctx = alloc_data.ctx;
1195 		hctx = alloc_data.hctx;
1196 	}
1197 
1198 	hctx->queued++;
1199 	data->hctx = hctx;
1200 	data->ctx = ctx;
1201 	return rq;
1202 }
1203 
1204 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1205 {
1206 	int ret;
1207 	struct request_queue *q = rq->q;
1208 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1209 			rq->mq_ctx->cpu);
1210 	struct blk_mq_queue_data bd = {
1211 		.rq = rq,
1212 		.list = NULL,
1213 		.last = 1
1214 	};
1215 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1216 
1217 	/*
1218 	 * For OK queue, we are done. For error, kill it. Any other
1219 	 * error (busy), just add it to our list as we previously
1220 	 * would have done
1221 	 */
1222 	ret = q->mq_ops->queue_rq(hctx, &bd);
1223 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1224 		*cookie = new_cookie;
1225 		return 0;
1226 	}
1227 
1228 	__blk_mq_requeue_request(rq);
1229 
1230 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1231 		*cookie = BLK_QC_T_NONE;
1232 		rq->errors = -EIO;
1233 		blk_mq_end_request(rq, rq->errors);
1234 		return 0;
1235 	}
1236 
1237 	return -1;
1238 }
1239 
1240 /*
1241  * Multiple hardware queue variant. This will not use per-process plugs,
1242  * but will attempt to bypass the hctx queueing if we can go straight to
1243  * hardware for SYNC IO.
1244  */
1245 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1246 {
1247 	const int is_sync = rw_is_sync(bio->bi_rw);
1248 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249 	struct blk_map_ctx data;
1250 	struct request *rq;
1251 	unsigned int request_count = 0;
1252 	struct blk_plug *plug;
1253 	struct request *same_queue_rq = NULL;
1254 	blk_qc_t cookie;
1255 
1256 	blk_queue_bounce(q, &bio);
1257 
1258 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1259 		bio_io_error(bio);
1260 		return BLK_QC_T_NONE;
1261 	}
1262 
1263 	blk_queue_split(q, &bio, q->bio_split);
1264 
1265 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1266 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1267 		return BLK_QC_T_NONE;
1268 
1269 	rq = blk_mq_map_request(q, bio, &data);
1270 	if (unlikely(!rq))
1271 		return BLK_QC_T_NONE;
1272 
1273 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1274 
1275 	if (unlikely(is_flush_fua)) {
1276 		blk_mq_bio_to_request(rq, bio);
1277 		blk_insert_flush(rq);
1278 		goto run_queue;
1279 	}
1280 
1281 	plug = current->plug;
1282 	/*
1283 	 * If the driver supports defer issued based on 'last', then
1284 	 * queue it up like normal since we can potentially save some
1285 	 * CPU this way.
1286 	 */
1287 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1288 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1289 		struct request *old_rq = NULL;
1290 
1291 		blk_mq_bio_to_request(rq, bio);
1292 
1293 		/*
1294 		 * We do limited pluging. If the bio can be merged, do that.
1295 		 * Otherwise the existing request in the plug list will be
1296 		 * issued. So the plug list will have one request at most
1297 		 */
1298 		if (plug) {
1299 			/*
1300 			 * The plug list might get flushed before this. If that
1301 			 * happens, same_queue_rq is invalid and plug list is
1302 			 * empty
1303 			 */
1304 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1305 				old_rq = same_queue_rq;
1306 				list_del_init(&old_rq->queuelist);
1307 			}
1308 			list_add_tail(&rq->queuelist, &plug->mq_list);
1309 		} else /* is_sync */
1310 			old_rq = rq;
1311 		blk_mq_put_ctx(data.ctx);
1312 		if (!old_rq)
1313 			goto done;
1314 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1315 			goto done;
1316 		blk_mq_insert_request(old_rq, false, true, true);
1317 		goto done;
1318 	}
1319 
1320 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 		/*
1322 		 * For a SYNC request, send it to the hardware immediately. For
1323 		 * an ASYNC request, just ensure that we run it later on. The
1324 		 * latter allows for merging opportunities and more efficient
1325 		 * dispatching.
1326 		 */
1327 run_queue:
1328 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 	}
1330 	blk_mq_put_ctx(data.ctx);
1331 done:
1332 	return cookie;
1333 }
1334 
1335 /*
1336  * Single hardware queue variant. This will attempt to use any per-process
1337  * plug for merging and IO deferral.
1338  */
1339 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 	const int is_sync = rw_is_sync(bio->bi_rw);
1342 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 	struct blk_plug *plug;
1344 	unsigned int request_count = 0;
1345 	struct blk_map_ctx data;
1346 	struct request *rq;
1347 	blk_qc_t cookie;
1348 
1349 	blk_queue_bounce(q, &bio);
1350 
1351 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1352 		bio_io_error(bio);
1353 		return BLK_QC_T_NONE;
1354 	}
1355 
1356 	blk_queue_split(q, &bio, q->bio_split);
1357 
1358 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1359 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1360 			return BLK_QC_T_NONE;
1361 	} else
1362 		request_count = blk_plug_queued_count(q);
1363 
1364 	rq = blk_mq_map_request(q, bio, &data);
1365 	if (unlikely(!rq))
1366 		return BLK_QC_T_NONE;
1367 
1368 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1369 
1370 	if (unlikely(is_flush_fua)) {
1371 		blk_mq_bio_to_request(rq, bio);
1372 		blk_insert_flush(rq);
1373 		goto run_queue;
1374 	}
1375 
1376 	/*
1377 	 * A task plug currently exists. Since this is completely lockless,
1378 	 * utilize that to temporarily store requests until the task is
1379 	 * either done or scheduled away.
1380 	 */
1381 	plug = current->plug;
1382 	if (plug) {
1383 		blk_mq_bio_to_request(rq, bio);
1384 		if (!request_count)
1385 			trace_block_plug(q);
1386 
1387 		blk_mq_put_ctx(data.ctx);
1388 
1389 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 			blk_flush_plug_list(plug, false);
1391 			trace_block_plug(q);
1392 		}
1393 
1394 		list_add_tail(&rq->queuelist, &plug->mq_list);
1395 		return cookie;
1396 	}
1397 
1398 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1399 		/*
1400 		 * For a SYNC request, send it to the hardware immediately. For
1401 		 * an ASYNC request, just ensure that we run it later on. The
1402 		 * latter allows for merging opportunities and more efficient
1403 		 * dispatching.
1404 		 */
1405 run_queue:
1406 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1407 	}
1408 
1409 	blk_mq_put_ctx(data.ctx);
1410 	return cookie;
1411 }
1412 
1413 /*
1414  * Default mapping to a software queue, since we use one per CPU.
1415  */
1416 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1417 {
1418 	return q->queue_hw_ctx[q->mq_map[cpu]];
1419 }
1420 EXPORT_SYMBOL(blk_mq_map_queue);
1421 
1422 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1423 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1424 {
1425 	struct page *page;
1426 
1427 	if (tags->rqs && set->ops->exit_request) {
1428 		int i;
1429 
1430 		for (i = 0; i < tags->nr_tags; i++) {
1431 			if (!tags->rqs[i])
1432 				continue;
1433 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1434 						hctx_idx, i);
1435 			tags->rqs[i] = NULL;
1436 		}
1437 	}
1438 
1439 	while (!list_empty(&tags->page_list)) {
1440 		page = list_first_entry(&tags->page_list, struct page, lru);
1441 		list_del_init(&page->lru);
1442 		/*
1443 		 * Remove kmemleak object previously allocated in
1444 		 * blk_mq_init_rq_map().
1445 		 */
1446 		kmemleak_free(page_address(page));
1447 		__free_pages(page, page->private);
1448 	}
1449 
1450 	kfree(tags->rqs);
1451 
1452 	blk_mq_free_tags(tags);
1453 }
1454 
1455 static size_t order_to_size(unsigned int order)
1456 {
1457 	return (size_t)PAGE_SIZE << order;
1458 }
1459 
1460 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1461 		unsigned int hctx_idx)
1462 {
1463 	struct blk_mq_tags *tags;
1464 	unsigned int i, j, entries_per_page, max_order = 4;
1465 	size_t rq_size, left;
1466 
1467 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1468 				set->numa_node,
1469 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1470 	if (!tags)
1471 		return NULL;
1472 
1473 	INIT_LIST_HEAD(&tags->page_list);
1474 
1475 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1476 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1477 				 set->numa_node);
1478 	if (!tags->rqs) {
1479 		blk_mq_free_tags(tags);
1480 		return NULL;
1481 	}
1482 
1483 	/*
1484 	 * rq_size is the size of the request plus driver payload, rounded
1485 	 * to the cacheline size
1486 	 */
1487 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1488 				cache_line_size());
1489 	left = rq_size * set->queue_depth;
1490 
1491 	for (i = 0; i < set->queue_depth; ) {
1492 		int this_order = max_order;
1493 		struct page *page;
1494 		int to_do;
1495 		void *p;
1496 
1497 		while (this_order && left < order_to_size(this_order - 1))
1498 			this_order--;
1499 
1500 		do {
1501 			page = alloc_pages_node(set->numa_node,
1502 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1503 				this_order);
1504 			if (page)
1505 				break;
1506 			if (!this_order--)
1507 				break;
1508 			if (order_to_size(this_order) < rq_size)
1509 				break;
1510 		} while (1);
1511 
1512 		if (!page)
1513 			goto fail;
1514 
1515 		page->private = this_order;
1516 		list_add_tail(&page->lru, &tags->page_list);
1517 
1518 		p = page_address(page);
1519 		/*
1520 		 * Allow kmemleak to scan these pages as they contain pointers
1521 		 * to additional allocations like via ops->init_request().
1522 		 */
1523 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1524 		entries_per_page = order_to_size(this_order) / rq_size;
1525 		to_do = min(entries_per_page, set->queue_depth - i);
1526 		left -= to_do * rq_size;
1527 		for (j = 0; j < to_do; j++) {
1528 			tags->rqs[i] = p;
1529 			if (set->ops->init_request) {
1530 				if (set->ops->init_request(set->driver_data,
1531 						tags->rqs[i], hctx_idx, i,
1532 						set->numa_node)) {
1533 					tags->rqs[i] = NULL;
1534 					goto fail;
1535 				}
1536 			}
1537 
1538 			p += rq_size;
1539 			i++;
1540 		}
1541 	}
1542 	return tags;
1543 
1544 fail:
1545 	blk_mq_free_rq_map(set, tags, hctx_idx);
1546 	return NULL;
1547 }
1548 
1549 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1550 {
1551 	kfree(bitmap->map);
1552 }
1553 
1554 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1555 {
1556 	unsigned int bpw = 8, total, num_maps, i;
1557 
1558 	bitmap->bits_per_word = bpw;
1559 
1560 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1561 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1562 					GFP_KERNEL, node);
1563 	if (!bitmap->map)
1564 		return -ENOMEM;
1565 
1566 	total = nr_cpu_ids;
1567 	for (i = 0; i < num_maps; i++) {
1568 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1569 		total -= bitmap->map[i].depth;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1576 {
1577 	struct request_queue *q = hctx->queue;
1578 	struct blk_mq_ctx *ctx;
1579 	LIST_HEAD(tmp);
1580 
1581 	/*
1582 	 * Move ctx entries to new CPU, if this one is going away.
1583 	 */
1584 	ctx = __blk_mq_get_ctx(q, cpu);
1585 
1586 	spin_lock(&ctx->lock);
1587 	if (!list_empty(&ctx->rq_list)) {
1588 		list_splice_init(&ctx->rq_list, &tmp);
1589 		blk_mq_hctx_clear_pending(hctx, ctx);
1590 	}
1591 	spin_unlock(&ctx->lock);
1592 
1593 	if (list_empty(&tmp))
1594 		return NOTIFY_OK;
1595 
1596 	ctx = blk_mq_get_ctx(q);
1597 	spin_lock(&ctx->lock);
1598 
1599 	while (!list_empty(&tmp)) {
1600 		struct request *rq;
1601 
1602 		rq = list_first_entry(&tmp, struct request, queuelist);
1603 		rq->mq_ctx = ctx;
1604 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1605 	}
1606 
1607 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1608 	blk_mq_hctx_mark_pending(hctx, ctx);
1609 
1610 	spin_unlock(&ctx->lock);
1611 
1612 	blk_mq_run_hw_queue(hctx, true);
1613 	blk_mq_put_ctx(ctx);
1614 	return NOTIFY_OK;
1615 }
1616 
1617 static int blk_mq_hctx_notify(void *data, unsigned long action,
1618 			      unsigned int cpu)
1619 {
1620 	struct blk_mq_hw_ctx *hctx = data;
1621 
1622 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1623 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1624 
1625 	/*
1626 	 * In case of CPU online, tags may be reallocated
1627 	 * in blk_mq_map_swqueue() after mapping is updated.
1628 	 */
1629 
1630 	return NOTIFY_OK;
1631 }
1632 
1633 /* hctx->ctxs will be freed in queue's release handler */
1634 static void blk_mq_exit_hctx(struct request_queue *q,
1635 		struct blk_mq_tag_set *set,
1636 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1637 {
1638 	unsigned flush_start_tag = set->queue_depth;
1639 
1640 	blk_mq_tag_idle(hctx);
1641 
1642 	if (set->ops->exit_request)
1643 		set->ops->exit_request(set->driver_data,
1644 				       hctx->fq->flush_rq, hctx_idx,
1645 				       flush_start_tag + hctx_idx);
1646 
1647 	if (set->ops->exit_hctx)
1648 		set->ops->exit_hctx(hctx, hctx_idx);
1649 
1650 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1651 	blk_free_flush_queue(hctx->fq);
1652 	blk_mq_free_bitmap(&hctx->ctx_map);
1653 }
1654 
1655 static void blk_mq_exit_hw_queues(struct request_queue *q,
1656 		struct blk_mq_tag_set *set, int nr_queue)
1657 {
1658 	struct blk_mq_hw_ctx *hctx;
1659 	unsigned int i;
1660 
1661 	queue_for_each_hw_ctx(q, hctx, i) {
1662 		if (i == nr_queue)
1663 			break;
1664 		blk_mq_exit_hctx(q, set, hctx, i);
1665 	}
1666 }
1667 
1668 static void blk_mq_free_hw_queues(struct request_queue *q,
1669 		struct blk_mq_tag_set *set)
1670 {
1671 	struct blk_mq_hw_ctx *hctx;
1672 	unsigned int i;
1673 
1674 	queue_for_each_hw_ctx(q, hctx, i)
1675 		free_cpumask_var(hctx->cpumask);
1676 }
1677 
1678 static int blk_mq_init_hctx(struct request_queue *q,
1679 		struct blk_mq_tag_set *set,
1680 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1681 {
1682 	int node;
1683 	unsigned flush_start_tag = set->queue_depth;
1684 
1685 	node = hctx->numa_node;
1686 	if (node == NUMA_NO_NODE)
1687 		node = hctx->numa_node = set->numa_node;
1688 
1689 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1690 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1691 	spin_lock_init(&hctx->lock);
1692 	INIT_LIST_HEAD(&hctx->dispatch);
1693 	hctx->queue = q;
1694 	hctx->queue_num = hctx_idx;
1695 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1696 
1697 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1698 					blk_mq_hctx_notify, hctx);
1699 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1700 
1701 	hctx->tags = set->tags[hctx_idx];
1702 
1703 	/*
1704 	 * Allocate space for all possible cpus to avoid allocation at
1705 	 * runtime
1706 	 */
1707 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1708 					GFP_KERNEL, node);
1709 	if (!hctx->ctxs)
1710 		goto unregister_cpu_notifier;
1711 
1712 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1713 		goto free_ctxs;
1714 
1715 	hctx->nr_ctx = 0;
1716 
1717 	if (set->ops->init_hctx &&
1718 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1719 		goto free_bitmap;
1720 
1721 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1722 	if (!hctx->fq)
1723 		goto exit_hctx;
1724 
1725 	if (set->ops->init_request &&
1726 	    set->ops->init_request(set->driver_data,
1727 				   hctx->fq->flush_rq, hctx_idx,
1728 				   flush_start_tag + hctx_idx, node))
1729 		goto free_fq;
1730 
1731 	return 0;
1732 
1733  free_fq:
1734 	kfree(hctx->fq);
1735  exit_hctx:
1736 	if (set->ops->exit_hctx)
1737 		set->ops->exit_hctx(hctx, hctx_idx);
1738  free_bitmap:
1739 	blk_mq_free_bitmap(&hctx->ctx_map);
1740  free_ctxs:
1741 	kfree(hctx->ctxs);
1742  unregister_cpu_notifier:
1743 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1744 
1745 	return -1;
1746 }
1747 
1748 static void blk_mq_init_cpu_queues(struct request_queue *q,
1749 				   unsigned int nr_hw_queues)
1750 {
1751 	unsigned int i;
1752 
1753 	for_each_possible_cpu(i) {
1754 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1755 		struct blk_mq_hw_ctx *hctx;
1756 
1757 		memset(__ctx, 0, sizeof(*__ctx));
1758 		__ctx->cpu = i;
1759 		spin_lock_init(&__ctx->lock);
1760 		INIT_LIST_HEAD(&__ctx->rq_list);
1761 		__ctx->queue = q;
1762 
1763 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1764 		if (!cpu_online(i))
1765 			continue;
1766 
1767 		hctx = q->mq_ops->map_queue(q, i);
1768 
1769 		/*
1770 		 * Set local node, IFF we have more than one hw queue. If
1771 		 * not, we remain on the home node of the device
1772 		 */
1773 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1774 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1775 	}
1776 }
1777 
1778 static void blk_mq_map_swqueue(struct request_queue *q,
1779 			       const struct cpumask *online_mask)
1780 {
1781 	unsigned int i;
1782 	struct blk_mq_hw_ctx *hctx;
1783 	struct blk_mq_ctx *ctx;
1784 	struct blk_mq_tag_set *set = q->tag_set;
1785 
1786 	/*
1787 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1788 	 */
1789 	mutex_lock(&q->sysfs_lock);
1790 
1791 	queue_for_each_hw_ctx(q, hctx, i) {
1792 		cpumask_clear(hctx->cpumask);
1793 		hctx->nr_ctx = 0;
1794 	}
1795 
1796 	/*
1797 	 * Map software to hardware queues
1798 	 */
1799 	for_each_possible_cpu(i) {
1800 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1801 		if (!cpumask_test_cpu(i, online_mask))
1802 			continue;
1803 
1804 		ctx = per_cpu_ptr(q->queue_ctx, i);
1805 		hctx = q->mq_ops->map_queue(q, i);
1806 
1807 		cpumask_set_cpu(i, hctx->cpumask);
1808 		ctx->index_hw = hctx->nr_ctx;
1809 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1810 	}
1811 
1812 	mutex_unlock(&q->sysfs_lock);
1813 
1814 	queue_for_each_hw_ctx(q, hctx, i) {
1815 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1816 
1817 		/*
1818 		 * If no software queues are mapped to this hardware queue,
1819 		 * disable it and free the request entries.
1820 		 */
1821 		if (!hctx->nr_ctx) {
1822 			if (set->tags[i]) {
1823 				blk_mq_free_rq_map(set, set->tags[i], i);
1824 				set->tags[i] = NULL;
1825 			}
1826 			hctx->tags = NULL;
1827 			continue;
1828 		}
1829 
1830 		/* unmapped hw queue can be remapped after CPU topo changed */
1831 		if (!set->tags[i])
1832 			set->tags[i] = blk_mq_init_rq_map(set, i);
1833 		hctx->tags = set->tags[i];
1834 		WARN_ON(!hctx->tags);
1835 
1836 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1837 		/*
1838 		 * Set the map size to the number of mapped software queues.
1839 		 * This is more accurate and more efficient than looping
1840 		 * over all possibly mapped software queues.
1841 		 */
1842 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1843 
1844 		/*
1845 		 * Initialize batch roundrobin counts
1846 		 */
1847 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1848 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1849 	}
1850 }
1851 
1852 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1853 {
1854 	struct blk_mq_hw_ctx *hctx;
1855 	int i;
1856 
1857 	queue_for_each_hw_ctx(q, hctx, i) {
1858 		if (shared)
1859 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1860 		else
1861 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1862 	}
1863 }
1864 
1865 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1866 {
1867 	struct request_queue *q;
1868 
1869 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1870 		blk_mq_freeze_queue(q);
1871 		queue_set_hctx_shared(q, shared);
1872 		blk_mq_unfreeze_queue(q);
1873 	}
1874 }
1875 
1876 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1877 {
1878 	struct blk_mq_tag_set *set = q->tag_set;
1879 
1880 	mutex_lock(&set->tag_list_lock);
1881 	list_del_init(&q->tag_set_list);
1882 	if (list_is_singular(&set->tag_list)) {
1883 		/* just transitioned to unshared */
1884 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1885 		/* update existing queue */
1886 		blk_mq_update_tag_set_depth(set, false);
1887 	}
1888 	mutex_unlock(&set->tag_list_lock);
1889 }
1890 
1891 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1892 				     struct request_queue *q)
1893 {
1894 	q->tag_set = set;
1895 
1896 	mutex_lock(&set->tag_list_lock);
1897 
1898 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1899 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1900 		set->flags |= BLK_MQ_F_TAG_SHARED;
1901 		/* update existing queue */
1902 		blk_mq_update_tag_set_depth(set, true);
1903 	}
1904 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1905 		queue_set_hctx_shared(q, true);
1906 	list_add_tail(&q->tag_set_list, &set->tag_list);
1907 
1908 	mutex_unlock(&set->tag_list_lock);
1909 }
1910 
1911 /*
1912  * It is the actual release handler for mq, but we do it from
1913  * request queue's release handler for avoiding use-after-free
1914  * and headache because q->mq_kobj shouldn't have been introduced,
1915  * but we can't group ctx/kctx kobj without it.
1916  */
1917 void blk_mq_release(struct request_queue *q)
1918 {
1919 	struct blk_mq_hw_ctx *hctx;
1920 	unsigned int i;
1921 
1922 	/* hctx kobj stays in hctx */
1923 	queue_for_each_hw_ctx(q, hctx, i) {
1924 		if (!hctx)
1925 			continue;
1926 		kfree(hctx->ctxs);
1927 		kfree(hctx);
1928 	}
1929 
1930 	kfree(q->mq_map);
1931 	q->mq_map = NULL;
1932 
1933 	kfree(q->queue_hw_ctx);
1934 
1935 	/* ctx kobj stays in queue_ctx */
1936 	free_percpu(q->queue_ctx);
1937 }
1938 
1939 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1940 {
1941 	struct request_queue *uninit_q, *q;
1942 
1943 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1944 	if (!uninit_q)
1945 		return ERR_PTR(-ENOMEM);
1946 
1947 	q = blk_mq_init_allocated_queue(set, uninit_q);
1948 	if (IS_ERR(q))
1949 		blk_cleanup_queue(uninit_q);
1950 
1951 	return q;
1952 }
1953 EXPORT_SYMBOL(blk_mq_init_queue);
1954 
1955 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1956 						struct request_queue *q)
1957 {
1958 	int i, j;
1959 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1960 
1961 	blk_mq_sysfs_unregister(q);
1962 	for (i = 0; i < set->nr_hw_queues; i++) {
1963 		int node;
1964 
1965 		if (hctxs[i])
1966 			continue;
1967 
1968 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1969 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1970 					GFP_KERNEL, node);
1971 		if (!hctxs[i])
1972 			break;
1973 
1974 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1975 						node)) {
1976 			kfree(hctxs[i]);
1977 			hctxs[i] = NULL;
1978 			break;
1979 		}
1980 
1981 		atomic_set(&hctxs[i]->nr_active, 0);
1982 		hctxs[i]->numa_node = node;
1983 		hctxs[i]->queue_num = i;
1984 
1985 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1986 			free_cpumask_var(hctxs[i]->cpumask);
1987 			kfree(hctxs[i]);
1988 			hctxs[i] = NULL;
1989 			break;
1990 		}
1991 		blk_mq_hctx_kobj_init(hctxs[i]);
1992 	}
1993 	for (j = i; j < q->nr_hw_queues; j++) {
1994 		struct blk_mq_hw_ctx *hctx = hctxs[j];
1995 
1996 		if (hctx) {
1997 			if (hctx->tags) {
1998 				blk_mq_free_rq_map(set, hctx->tags, j);
1999 				set->tags[j] = NULL;
2000 			}
2001 			blk_mq_exit_hctx(q, set, hctx, j);
2002 			free_cpumask_var(hctx->cpumask);
2003 			kobject_put(&hctx->kobj);
2004 			kfree(hctx->ctxs);
2005 			kfree(hctx);
2006 			hctxs[j] = NULL;
2007 
2008 		}
2009 	}
2010 	q->nr_hw_queues = i;
2011 	blk_mq_sysfs_register(q);
2012 }
2013 
2014 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2015 						  struct request_queue *q)
2016 {
2017 	/* mark the queue as mq asap */
2018 	q->mq_ops = set->ops;
2019 
2020 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2021 	if (!q->queue_ctx)
2022 		goto err_exit;
2023 
2024 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2025 						GFP_KERNEL, set->numa_node);
2026 	if (!q->queue_hw_ctx)
2027 		goto err_percpu;
2028 
2029 	q->mq_map = blk_mq_make_queue_map(set);
2030 	if (!q->mq_map)
2031 		goto err_map;
2032 
2033 	blk_mq_realloc_hw_ctxs(set, q);
2034 	if (!q->nr_hw_queues)
2035 		goto err_hctxs;
2036 
2037 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2038 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2039 
2040 	q->nr_queues = nr_cpu_ids;
2041 
2042 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2043 
2044 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2045 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2046 
2047 	q->sg_reserved_size = INT_MAX;
2048 
2049 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2050 	INIT_LIST_HEAD(&q->requeue_list);
2051 	spin_lock_init(&q->requeue_lock);
2052 
2053 	if (q->nr_hw_queues > 1)
2054 		blk_queue_make_request(q, blk_mq_make_request);
2055 	else
2056 		blk_queue_make_request(q, blk_sq_make_request);
2057 
2058 	/*
2059 	 * Do this after blk_queue_make_request() overrides it...
2060 	 */
2061 	q->nr_requests = set->queue_depth;
2062 
2063 	if (set->ops->complete)
2064 		blk_queue_softirq_done(q, set->ops->complete);
2065 
2066 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2067 
2068 	get_online_cpus();
2069 	mutex_lock(&all_q_mutex);
2070 
2071 	list_add_tail(&q->all_q_node, &all_q_list);
2072 	blk_mq_add_queue_tag_set(set, q);
2073 	blk_mq_map_swqueue(q, cpu_online_mask);
2074 
2075 	mutex_unlock(&all_q_mutex);
2076 	put_online_cpus();
2077 
2078 	return q;
2079 
2080 err_hctxs:
2081 	kfree(q->mq_map);
2082 err_map:
2083 	kfree(q->queue_hw_ctx);
2084 err_percpu:
2085 	free_percpu(q->queue_ctx);
2086 err_exit:
2087 	q->mq_ops = NULL;
2088 	return ERR_PTR(-ENOMEM);
2089 }
2090 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2091 
2092 void blk_mq_free_queue(struct request_queue *q)
2093 {
2094 	struct blk_mq_tag_set	*set = q->tag_set;
2095 
2096 	mutex_lock(&all_q_mutex);
2097 	list_del_init(&q->all_q_node);
2098 	mutex_unlock(&all_q_mutex);
2099 
2100 	blk_mq_del_queue_tag_set(q);
2101 
2102 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2103 	blk_mq_free_hw_queues(q, set);
2104 }
2105 
2106 /* Basically redo blk_mq_init_queue with queue frozen */
2107 static void blk_mq_queue_reinit(struct request_queue *q,
2108 				const struct cpumask *online_mask)
2109 {
2110 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2111 
2112 	blk_mq_sysfs_unregister(q);
2113 
2114 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2115 
2116 	/*
2117 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2118 	 * we should change hctx numa_node according to new topology (this
2119 	 * involves free and re-allocate memory, worthy doing?)
2120 	 */
2121 
2122 	blk_mq_map_swqueue(q, online_mask);
2123 
2124 	blk_mq_sysfs_register(q);
2125 }
2126 
2127 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2128 				      unsigned long action, void *hcpu)
2129 {
2130 	struct request_queue *q;
2131 	int cpu = (unsigned long)hcpu;
2132 	/*
2133 	 * New online cpumask which is going to be set in this hotplug event.
2134 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2135 	 * one-by-one and dynamically allocating this could result in a failure.
2136 	 */
2137 	static struct cpumask online_new;
2138 
2139 	/*
2140 	 * Before hotadded cpu starts handling requests, new mappings must
2141 	 * be established.  Otherwise, these requests in hw queue might
2142 	 * never be dispatched.
2143 	 *
2144 	 * For example, there is a single hw queue (hctx) and two CPU queues
2145 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2146 	 *
2147 	 * Now CPU1 is just onlined and a request is inserted into
2148 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2149 	 * still zero.
2150 	 *
2151 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2152 	 * set in pending bitmap and tries to retrieve requests in
2153 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2154 	 * so the request in ctx1->rq_list is ignored.
2155 	 */
2156 	switch (action & ~CPU_TASKS_FROZEN) {
2157 	case CPU_DEAD:
2158 	case CPU_UP_CANCELED:
2159 		cpumask_copy(&online_new, cpu_online_mask);
2160 		break;
2161 	case CPU_UP_PREPARE:
2162 		cpumask_copy(&online_new, cpu_online_mask);
2163 		cpumask_set_cpu(cpu, &online_new);
2164 		break;
2165 	default:
2166 		return NOTIFY_OK;
2167 	}
2168 
2169 	mutex_lock(&all_q_mutex);
2170 
2171 	/*
2172 	 * We need to freeze and reinit all existing queues.  Freezing
2173 	 * involves synchronous wait for an RCU grace period and doing it
2174 	 * one by one may take a long time.  Start freezing all queues in
2175 	 * one swoop and then wait for the completions so that freezing can
2176 	 * take place in parallel.
2177 	 */
2178 	list_for_each_entry(q, &all_q_list, all_q_node)
2179 		blk_mq_freeze_queue_start(q);
2180 	list_for_each_entry(q, &all_q_list, all_q_node) {
2181 		blk_mq_freeze_queue_wait(q);
2182 
2183 		/*
2184 		 * timeout handler can't touch hw queue during the
2185 		 * reinitialization
2186 		 */
2187 		del_timer_sync(&q->timeout);
2188 	}
2189 
2190 	list_for_each_entry(q, &all_q_list, all_q_node)
2191 		blk_mq_queue_reinit(q, &online_new);
2192 
2193 	list_for_each_entry(q, &all_q_list, all_q_node)
2194 		blk_mq_unfreeze_queue(q);
2195 
2196 	mutex_unlock(&all_q_mutex);
2197 	return NOTIFY_OK;
2198 }
2199 
2200 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2201 {
2202 	int i;
2203 
2204 	for (i = 0; i < set->nr_hw_queues; i++) {
2205 		set->tags[i] = blk_mq_init_rq_map(set, i);
2206 		if (!set->tags[i])
2207 			goto out_unwind;
2208 	}
2209 
2210 	return 0;
2211 
2212 out_unwind:
2213 	while (--i >= 0)
2214 		blk_mq_free_rq_map(set, set->tags[i], i);
2215 
2216 	return -ENOMEM;
2217 }
2218 
2219 /*
2220  * Allocate the request maps associated with this tag_set. Note that this
2221  * may reduce the depth asked for, if memory is tight. set->queue_depth
2222  * will be updated to reflect the allocated depth.
2223  */
2224 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2225 {
2226 	unsigned int depth;
2227 	int err;
2228 
2229 	depth = set->queue_depth;
2230 	do {
2231 		err = __blk_mq_alloc_rq_maps(set);
2232 		if (!err)
2233 			break;
2234 
2235 		set->queue_depth >>= 1;
2236 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2237 			err = -ENOMEM;
2238 			break;
2239 		}
2240 	} while (set->queue_depth);
2241 
2242 	if (!set->queue_depth || err) {
2243 		pr_err("blk-mq: failed to allocate request map\n");
2244 		return -ENOMEM;
2245 	}
2246 
2247 	if (depth != set->queue_depth)
2248 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2249 						depth, set->queue_depth);
2250 
2251 	return 0;
2252 }
2253 
2254 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2255 {
2256 	return tags->cpumask;
2257 }
2258 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2259 
2260 /*
2261  * Alloc a tag set to be associated with one or more request queues.
2262  * May fail with EINVAL for various error conditions. May adjust the
2263  * requested depth down, if if it too large. In that case, the set
2264  * value will be stored in set->queue_depth.
2265  */
2266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2267 {
2268 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2269 
2270 	if (!set->nr_hw_queues)
2271 		return -EINVAL;
2272 	if (!set->queue_depth)
2273 		return -EINVAL;
2274 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2275 		return -EINVAL;
2276 
2277 	if (!set->ops->queue_rq || !set->ops->map_queue)
2278 		return -EINVAL;
2279 
2280 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2281 		pr_info("blk-mq: reduced tag depth to %u\n",
2282 			BLK_MQ_MAX_DEPTH);
2283 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2284 	}
2285 
2286 	/*
2287 	 * If a crashdump is active, then we are potentially in a very
2288 	 * memory constrained environment. Limit us to 1 queue and
2289 	 * 64 tags to prevent using too much memory.
2290 	 */
2291 	if (is_kdump_kernel()) {
2292 		set->nr_hw_queues = 1;
2293 		set->queue_depth = min(64U, set->queue_depth);
2294 	}
2295 	/*
2296 	 * There is no use for more h/w queues than cpus.
2297 	 */
2298 	if (set->nr_hw_queues > nr_cpu_ids)
2299 		set->nr_hw_queues = nr_cpu_ids;
2300 
2301 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2302 				 GFP_KERNEL, set->numa_node);
2303 	if (!set->tags)
2304 		return -ENOMEM;
2305 
2306 	if (blk_mq_alloc_rq_maps(set))
2307 		goto enomem;
2308 
2309 	mutex_init(&set->tag_list_lock);
2310 	INIT_LIST_HEAD(&set->tag_list);
2311 
2312 	return 0;
2313 enomem:
2314 	kfree(set->tags);
2315 	set->tags = NULL;
2316 	return -ENOMEM;
2317 }
2318 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2319 
2320 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2321 {
2322 	int i;
2323 
2324 	for (i = 0; i < nr_cpu_ids; i++) {
2325 		if (set->tags[i])
2326 			blk_mq_free_rq_map(set, set->tags[i], i);
2327 	}
2328 
2329 	kfree(set->tags);
2330 	set->tags = NULL;
2331 }
2332 EXPORT_SYMBOL(blk_mq_free_tag_set);
2333 
2334 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2335 {
2336 	struct blk_mq_tag_set *set = q->tag_set;
2337 	struct blk_mq_hw_ctx *hctx;
2338 	int i, ret;
2339 
2340 	if (!set || nr > set->queue_depth)
2341 		return -EINVAL;
2342 
2343 	ret = 0;
2344 	queue_for_each_hw_ctx(q, hctx, i) {
2345 		if (!hctx->tags)
2346 			continue;
2347 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2348 		if (ret)
2349 			break;
2350 	}
2351 
2352 	if (!ret)
2353 		q->nr_requests = nr;
2354 
2355 	return ret;
2356 }
2357 
2358 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2359 {
2360 	struct request_queue *q;
2361 
2362 	if (nr_hw_queues > nr_cpu_ids)
2363 		nr_hw_queues = nr_cpu_ids;
2364 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2365 		return;
2366 
2367 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2368 		blk_mq_freeze_queue(q);
2369 
2370 	set->nr_hw_queues = nr_hw_queues;
2371 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2372 		blk_mq_realloc_hw_ctxs(set, q);
2373 
2374 		if (q->nr_hw_queues > 1)
2375 			blk_queue_make_request(q, blk_mq_make_request);
2376 		else
2377 			blk_queue_make_request(q, blk_sq_make_request);
2378 
2379 		blk_mq_queue_reinit(q, cpu_online_mask);
2380 	}
2381 
2382 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2383 		blk_mq_unfreeze_queue(q);
2384 }
2385 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2386 
2387 void blk_mq_disable_hotplug(void)
2388 {
2389 	mutex_lock(&all_q_mutex);
2390 }
2391 
2392 void blk_mq_enable_hotplug(void)
2393 {
2394 	mutex_unlock(&all_q_mutex);
2395 }
2396 
2397 static int __init blk_mq_init(void)
2398 {
2399 	blk_mq_cpu_init();
2400 
2401 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2402 
2403 	return 0;
2404 }
2405 subsys_initcall(blk_mq_init);
2406