1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 49 struct list_head *list); 50 51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 52 blk_qc_t qc) 53 { 54 return xa_load(&q->hctx_table, qc); 55 } 56 57 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 58 { 59 return rq->mq_hctx->queue_num; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct block_device *part; 95 unsigned int inflight[2]; 96 }; 97 98 static bool blk_mq_check_inflight(struct request *rq, void *priv) 99 { 100 struct mq_inflight *mi = priv; 101 102 if (rq->part && blk_do_io_stat(rq) && 103 (!mi->part->bd_partno || rq->part == mi->part) && 104 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 105 mi->inflight[rq_data_dir(rq)]++; 106 107 return true; 108 } 109 110 unsigned int blk_mq_in_flight(struct request_queue *q, 111 struct block_device *part) 112 { 113 struct mq_inflight mi = { .part = part }; 114 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 117 return mi.inflight[0] + mi.inflight[1]; 118 } 119 120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 121 unsigned int inflight[2]) 122 { 123 struct mq_inflight mi = { .part = part }; 124 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 126 inflight[0] = mi.inflight[0]; 127 inflight[1] = mi.inflight[1]; 128 } 129 130 void blk_freeze_queue_start(struct request_queue *q) 131 { 132 mutex_lock(&q->mq_freeze_lock); 133 if (++q->mq_freeze_depth == 1) { 134 percpu_ref_kill(&q->q_usage_counter); 135 mutex_unlock(&q->mq_freeze_lock); 136 if (queue_is_mq(q)) 137 blk_mq_run_hw_queues(q, false); 138 } else { 139 mutex_unlock(&q->mq_freeze_lock); 140 } 141 } 142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 143 144 void blk_mq_freeze_queue_wait(struct request_queue *q) 145 { 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 149 150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 151 unsigned long timeout) 152 { 153 return wait_event_timeout(q->mq_freeze_wq, 154 percpu_ref_is_zero(&q->q_usage_counter), 155 timeout); 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 158 159 /* 160 * Guarantee no request is in use, so we can change any data structure of 161 * the queue afterward. 162 */ 163 void blk_freeze_queue(struct request_queue *q) 164 { 165 /* 166 * In the !blk_mq case we are only calling this to kill the 167 * q_usage_counter, otherwise this increases the freeze depth 168 * and waits for it to return to zero. For this reason there is 169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 170 * exported to drivers as the only user for unfreeze is blk_mq. 171 */ 172 blk_freeze_queue_start(q); 173 blk_mq_freeze_queue_wait(q); 174 } 175 176 void blk_mq_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * ...just an alias to keep freeze and unfreeze actions balanced 180 * in the blk_mq_* namespace 181 */ 182 blk_freeze_queue(q); 183 } 184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 185 186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 187 { 188 mutex_lock(&q->mq_freeze_lock); 189 if (force_atomic) 190 q->q_usage_counter.data->force_atomic = true; 191 q->mq_freeze_depth--; 192 WARN_ON_ONCE(q->mq_freeze_depth < 0); 193 if (!q->mq_freeze_depth) { 194 percpu_ref_resurrect(&q->q_usage_counter); 195 wake_up_all(&q->mq_freeze_wq); 196 } 197 mutex_unlock(&q->mq_freeze_lock); 198 } 199 200 void blk_mq_unfreeze_queue(struct request_queue *q) 201 { 202 __blk_mq_unfreeze_queue(q, false); 203 } 204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 205 206 /* 207 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 208 * mpt3sas driver such that this function can be removed. 209 */ 210 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 211 { 212 unsigned long flags; 213 214 spin_lock_irqsave(&q->queue_lock, flags); 215 if (!q->quiesce_depth++) 216 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 217 spin_unlock_irqrestore(&q->queue_lock, flags); 218 } 219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 220 221 /** 222 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 223 * @set: tag_set to wait on 224 * 225 * Note: it is driver's responsibility for making sure that quiesce has 226 * been started on or more of the request_queues of the tag_set. This 227 * function only waits for the quiesce on those request_queues that had 228 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 229 */ 230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 231 { 232 if (set->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(set->srcu); 234 else 235 synchronize_rcu(); 236 } 237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 238 239 /** 240 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 241 * @q: request queue. 242 * 243 * Note: this function does not prevent that the struct request end_io() 244 * callback function is invoked. Once this function is returned, we make 245 * sure no dispatch can happen until the queue is unquiesced via 246 * blk_mq_unquiesce_queue(). 247 */ 248 void blk_mq_quiesce_queue(struct request_queue *q) 249 { 250 blk_mq_quiesce_queue_nowait(q); 251 /* nothing to wait for non-mq queues */ 252 if (queue_is_mq(q)) 253 blk_mq_wait_quiesce_done(q->tag_set); 254 } 255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 256 257 /* 258 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 259 * @q: request queue. 260 * 261 * This function recovers queue into the state before quiescing 262 * which is done by blk_mq_quiesce_queue. 263 */ 264 void blk_mq_unquiesce_queue(struct request_queue *q) 265 { 266 unsigned long flags; 267 bool run_queue = false; 268 269 spin_lock_irqsave(&q->queue_lock, flags); 270 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 271 ; 272 } else if (!--q->quiesce_depth) { 273 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 274 run_queue = true; 275 } 276 spin_unlock_irqrestore(&q->queue_lock, flags); 277 278 /* dispatch requests which are inserted during quiescing */ 279 if (run_queue) 280 blk_mq_run_hw_queues(q, true); 281 } 282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 283 284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 285 { 286 struct request_queue *q; 287 288 mutex_lock(&set->tag_list_lock); 289 list_for_each_entry(q, &set->tag_list, tag_set_list) { 290 if (!blk_queue_skip_tagset_quiesce(q)) 291 blk_mq_quiesce_queue_nowait(q); 292 } 293 blk_mq_wait_quiesce_done(set); 294 mutex_unlock(&set->tag_list_lock); 295 } 296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 297 298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 299 { 300 struct request_queue *q; 301 302 mutex_lock(&set->tag_list_lock); 303 list_for_each_entry(q, &set->tag_list, tag_set_list) { 304 if (!blk_queue_skip_tagset_quiesce(q)) 305 blk_mq_unquiesce_queue(q); 306 } 307 mutex_unlock(&set->tag_list_lock); 308 } 309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 310 311 void blk_mq_wake_waiters(struct request_queue *q) 312 { 313 struct blk_mq_hw_ctx *hctx; 314 unsigned long i; 315 316 queue_for_each_hw_ctx(q, hctx, i) 317 if (blk_mq_hw_queue_mapped(hctx)) 318 blk_mq_tag_wakeup_all(hctx->tags, true); 319 } 320 321 void blk_rq_init(struct request_queue *q, struct request *rq) 322 { 323 memset(rq, 0, sizeof(*rq)); 324 325 INIT_LIST_HEAD(&rq->queuelist); 326 rq->q = q; 327 rq->__sector = (sector_t) -1; 328 INIT_HLIST_NODE(&rq->hash); 329 RB_CLEAR_NODE(&rq->rb_node); 330 rq->tag = BLK_MQ_NO_TAG; 331 rq->internal_tag = BLK_MQ_NO_TAG; 332 rq->start_time_ns = ktime_get_ns(); 333 rq->part = NULL; 334 blk_crypto_rq_set_defaults(rq); 335 } 336 EXPORT_SYMBOL(blk_rq_init); 337 338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 339 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 340 { 341 struct blk_mq_ctx *ctx = data->ctx; 342 struct blk_mq_hw_ctx *hctx = data->hctx; 343 struct request_queue *q = data->q; 344 struct request *rq = tags->static_rqs[tag]; 345 346 rq->q = q; 347 rq->mq_ctx = ctx; 348 rq->mq_hctx = hctx; 349 rq->cmd_flags = data->cmd_flags; 350 351 if (data->flags & BLK_MQ_REQ_PM) 352 data->rq_flags |= RQF_PM; 353 if (blk_queue_io_stat(q)) 354 data->rq_flags |= RQF_IO_STAT; 355 rq->rq_flags = data->rq_flags; 356 357 if (!(data->rq_flags & RQF_ELV)) { 358 rq->tag = tag; 359 rq->internal_tag = BLK_MQ_NO_TAG; 360 } else { 361 rq->tag = BLK_MQ_NO_TAG; 362 rq->internal_tag = tag; 363 } 364 rq->timeout = 0; 365 366 if (blk_mq_need_time_stamp(rq)) 367 rq->start_time_ns = ktime_get_ns(); 368 else 369 rq->start_time_ns = 0; 370 rq->part = NULL; 371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 372 rq->alloc_time_ns = alloc_time_ns; 373 #endif 374 rq->io_start_time_ns = 0; 375 rq->stats_sectors = 0; 376 rq->nr_phys_segments = 0; 377 #if defined(CONFIG_BLK_DEV_INTEGRITY) 378 rq->nr_integrity_segments = 0; 379 #endif 380 rq->end_io = NULL; 381 rq->end_io_data = NULL; 382 383 blk_crypto_rq_set_defaults(rq); 384 INIT_LIST_HEAD(&rq->queuelist); 385 /* tag was already set */ 386 WRITE_ONCE(rq->deadline, 0); 387 req_ref_set(rq, 1); 388 389 if (rq->rq_flags & RQF_ELV) { 390 struct elevator_queue *e = data->q->elevator; 391 392 INIT_HLIST_NODE(&rq->hash); 393 RB_CLEAR_NODE(&rq->rb_node); 394 395 if (!op_is_flush(data->cmd_flags) && 396 e->type->ops.prepare_request) { 397 e->type->ops.prepare_request(rq); 398 rq->rq_flags |= RQF_ELVPRIV; 399 } 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 407 u64 alloc_time_ns) 408 { 409 unsigned int tag, tag_offset; 410 struct blk_mq_tags *tags; 411 struct request *rq; 412 unsigned long tag_mask; 413 int i, nr = 0; 414 415 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 416 if (unlikely(!tag_mask)) 417 return NULL; 418 419 tags = blk_mq_tags_from_data(data); 420 for (i = 0; tag_mask; i++) { 421 if (!(tag_mask & (1UL << i))) 422 continue; 423 tag = tag_offset + i; 424 prefetch(tags->static_rqs[tag]); 425 tag_mask &= ~(1UL << i); 426 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 427 rq_list_add(data->cached_rq, rq); 428 nr++; 429 } 430 /* caller already holds a reference, add for remainder */ 431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 432 data->nr_tags -= nr; 433 434 return rq_list_pop(data->cached_rq); 435 } 436 437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 438 { 439 struct request_queue *q = data->q; 440 u64 alloc_time_ns = 0; 441 struct request *rq; 442 unsigned int tag; 443 444 /* alloc_time includes depth and tag waits */ 445 if (blk_queue_rq_alloc_time(q)) 446 alloc_time_ns = ktime_get_ns(); 447 448 if (data->cmd_flags & REQ_NOWAIT) 449 data->flags |= BLK_MQ_REQ_NOWAIT; 450 451 if (q->elevator) { 452 struct elevator_queue *e = q->elevator; 453 454 data->rq_flags |= RQF_ELV; 455 456 /* 457 * Flush/passthrough requests are special and go directly to the 458 * dispatch list. Don't include reserved tags in the 459 * limiting, as it isn't useful. 460 */ 461 if (!op_is_flush(data->cmd_flags) && 462 !blk_op_is_passthrough(data->cmd_flags) && 463 e->type->ops.limit_depth && 464 !(data->flags & BLK_MQ_REQ_RESERVED)) 465 e->type->ops.limit_depth(data->cmd_flags, data); 466 } 467 468 retry: 469 data->ctx = blk_mq_get_ctx(q); 470 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 471 if (!(data->rq_flags & RQF_ELV)) 472 blk_mq_tag_busy(data->hctx); 473 474 if (data->flags & BLK_MQ_REQ_RESERVED) 475 data->rq_flags |= RQF_RESV; 476 477 /* 478 * Try batched alloc if we want more than 1 tag. 479 */ 480 if (data->nr_tags > 1) { 481 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 482 if (rq) 483 return rq; 484 data->nr_tags = 1; 485 } 486 487 /* 488 * Waiting allocations only fail because of an inactive hctx. In that 489 * case just retry the hctx assignment and tag allocation as CPU hotplug 490 * should have migrated us to an online CPU by now. 491 */ 492 tag = blk_mq_get_tag(data); 493 if (tag == BLK_MQ_NO_TAG) { 494 if (data->flags & BLK_MQ_REQ_NOWAIT) 495 return NULL; 496 /* 497 * Give up the CPU and sleep for a random short time to 498 * ensure that thread using a realtime scheduling class 499 * are migrated off the CPU, and thus off the hctx that 500 * is going away. 501 */ 502 msleep(3); 503 goto retry; 504 } 505 506 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 507 alloc_time_ns); 508 } 509 510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 511 struct blk_plug *plug, 512 blk_opf_t opf, 513 blk_mq_req_flags_t flags) 514 { 515 struct blk_mq_alloc_data data = { 516 .q = q, 517 .flags = flags, 518 .cmd_flags = opf, 519 .nr_tags = plug->nr_ios, 520 .cached_rq = &plug->cached_rq, 521 }; 522 struct request *rq; 523 524 if (blk_queue_enter(q, flags)) 525 return NULL; 526 527 plug->nr_ios = 1; 528 529 rq = __blk_mq_alloc_requests(&data); 530 if (unlikely(!rq)) 531 blk_queue_exit(q); 532 return rq; 533 } 534 535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 536 blk_opf_t opf, 537 blk_mq_req_flags_t flags) 538 { 539 struct blk_plug *plug = current->plug; 540 struct request *rq; 541 542 if (!plug) 543 return NULL; 544 545 if (rq_list_empty(plug->cached_rq)) { 546 if (plug->nr_ios == 1) 547 return NULL; 548 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 549 if (!rq) 550 return NULL; 551 } else { 552 rq = rq_list_peek(&plug->cached_rq); 553 if (!rq || rq->q != q) 554 return NULL; 555 556 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 557 return NULL; 558 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 559 return NULL; 560 561 plug->cached_rq = rq_list_next(rq); 562 } 563 564 rq->cmd_flags = opf; 565 INIT_LIST_HEAD(&rq->queuelist); 566 return rq; 567 } 568 569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 570 blk_mq_req_flags_t flags) 571 { 572 struct request *rq; 573 574 rq = blk_mq_alloc_cached_request(q, opf, flags); 575 if (!rq) { 576 struct blk_mq_alloc_data data = { 577 .q = q, 578 .flags = flags, 579 .cmd_flags = opf, 580 .nr_tags = 1, 581 }; 582 int ret; 583 584 ret = blk_queue_enter(q, flags); 585 if (ret) 586 return ERR_PTR(ret); 587 588 rq = __blk_mq_alloc_requests(&data); 589 if (!rq) 590 goto out_queue_exit; 591 } 592 rq->__data_len = 0; 593 rq->__sector = (sector_t) -1; 594 rq->bio = rq->biotail = NULL; 595 return rq; 596 out_queue_exit: 597 blk_queue_exit(q); 598 return ERR_PTR(-EWOULDBLOCK); 599 } 600 EXPORT_SYMBOL(blk_mq_alloc_request); 601 602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 603 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 604 { 605 struct blk_mq_alloc_data data = { 606 .q = q, 607 .flags = flags, 608 .cmd_flags = opf, 609 .nr_tags = 1, 610 }; 611 u64 alloc_time_ns = 0; 612 struct request *rq; 613 unsigned int cpu; 614 unsigned int tag; 615 int ret; 616 617 /* alloc_time includes depth and tag waits */ 618 if (blk_queue_rq_alloc_time(q)) 619 alloc_time_ns = ktime_get_ns(); 620 621 /* 622 * If the tag allocator sleeps we could get an allocation for a 623 * different hardware context. No need to complicate the low level 624 * allocator for this for the rare use case of a command tied to 625 * a specific queue. 626 */ 627 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 628 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 629 return ERR_PTR(-EINVAL); 630 631 if (hctx_idx >= q->nr_hw_queues) 632 return ERR_PTR(-EIO); 633 634 ret = blk_queue_enter(q, flags); 635 if (ret) 636 return ERR_PTR(ret); 637 638 /* 639 * Check if the hardware context is actually mapped to anything. 640 * If not tell the caller that it should skip this queue. 641 */ 642 ret = -EXDEV; 643 data.hctx = xa_load(&q->hctx_table, hctx_idx); 644 if (!blk_mq_hw_queue_mapped(data.hctx)) 645 goto out_queue_exit; 646 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 647 if (cpu >= nr_cpu_ids) 648 goto out_queue_exit; 649 data.ctx = __blk_mq_get_ctx(q, cpu); 650 651 if (!q->elevator) 652 blk_mq_tag_busy(data.hctx); 653 else 654 data.rq_flags |= RQF_ELV; 655 656 if (flags & BLK_MQ_REQ_RESERVED) 657 data.rq_flags |= RQF_RESV; 658 659 ret = -EWOULDBLOCK; 660 tag = blk_mq_get_tag(&data); 661 if (tag == BLK_MQ_NO_TAG) 662 goto out_queue_exit; 663 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 664 alloc_time_ns); 665 rq->__data_len = 0; 666 rq->__sector = (sector_t) -1; 667 rq->bio = rq->biotail = NULL; 668 return rq; 669 670 out_queue_exit: 671 blk_queue_exit(q); 672 return ERR_PTR(ret); 673 } 674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 675 676 static void __blk_mq_free_request(struct request *rq) 677 { 678 struct request_queue *q = rq->q; 679 struct blk_mq_ctx *ctx = rq->mq_ctx; 680 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 681 const int sched_tag = rq->internal_tag; 682 683 blk_crypto_free_request(rq); 684 blk_pm_mark_last_busy(rq); 685 rq->mq_hctx = NULL; 686 if (rq->tag != BLK_MQ_NO_TAG) 687 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 688 if (sched_tag != BLK_MQ_NO_TAG) 689 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 690 blk_mq_sched_restart(hctx); 691 blk_queue_exit(q); 692 } 693 694 void blk_mq_free_request(struct request *rq) 695 { 696 struct request_queue *q = rq->q; 697 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 698 699 if ((rq->rq_flags & RQF_ELVPRIV) && 700 q->elevator->type->ops.finish_request) 701 q->elevator->type->ops.finish_request(rq); 702 703 if (rq->rq_flags & RQF_MQ_INFLIGHT) 704 __blk_mq_dec_active_requests(hctx); 705 706 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 707 laptop_io_completion(q->disk->bdi); 708 709 rq_qos_done(q, rq); 710 711 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 712 if (req_ref_put_and_test(rq)) 713 __blk_mq_free_request(rq); 714 } 715 EXPORT_SYMBOL_GPL(blk_mq_free_request); 716 717 void blk_mq_free_plug_rqs(struct blk_plug *plug) 718 { 719 struct request *rq; 720 721 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 722 blk_mq_free_request(rq); 723 } 724 725 void blk_dump_rq_flags(struct request *rq, char *msg) 726 { 727 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 728 rq->q->disk ? rq->q->disk->disk_name : "?", 729 (__force unsigned long long) rq->cmd_flags); 730 731 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 732 (unsigned long long)blk_rq_pos(rq), 733 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 734 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 735 rq->bio, rq->biotail, blk_rq_bytes(rq)); 736 } 737 EXPORT_SYMBOL(blk_dump_rq_flags); 738 739 static void req_bio_endio(struct request *rq, struct bio *bio, 740 unsigned int nbytes, blk_status_t error) 741 { 742 if (unlikely(error)) { 743 bio->bi_status = error; 744 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 745 /* 746 * Partial zone append completions cannot be supported as the 747 * BIO fragments may end up not being written sequentially. 748 */ 749 if (bio->bi_iter.bi_size != nbytes) 750 bio->bi_status = BLK_STS_IOERR; 751 else 752 bio->bi_iter.bi_sector = rq->__sector; 753 } 754 755 bio_advance(bio, nbytes); 756 757 if (unlikely(rq->rq_flags & RQF_QUIET)) 758 bio_set_flag(bio, BIO_QUIET); 759 /* don't actually finish bio if it's part of flush sequence */ 760 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 761 bio_endio(bio); 762 } 763 764 static void blk_account_io_completion(struct request *req, unsigned int bytes) 765 { 766 if (req->part && blk_do_io_stat(req)) { 767 const int sgrp = op_stat_group(req_op(req)); 768 769 part_stat_lock(); 770 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 771 part_stat_unlock(); 772 } 773 } 774 775 static void blk_print_req_error(struct request *req, blk_status_t status) 776 { 777 printk_ratelimited(KERN_ERR 778 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 779 "phys_seg %u prio class %u\n", 780 blk_status_to_str(status), 781 req->q->disk ? req->q->disk->disk_name : "?", 782 blk_rq_pos(req), (__force u32)req_op(req), 783 blk_op_str(req_op(req)), 784 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 785 req->nr_phys_segments, 786 IOPRIO_PRIO_CLASS(req->ioprio)); 787 } 788 789 /* 790 * Fully end IO on a request. Does not support partial completions, or 791 * errors. 792 */ 793 static void blk_complete_request(struct request *req) 794 { 795 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 796 int total_bytes = blk_rq_bytes(req); 797 struct bio *bio = req->bio; 798 799 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 800 801 if (!bio) 802 return; 803 804 #ifdef CONFIG_BLK_DEV_INTEGRITY 805 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 806 req->q->integrity.profile->complete_fn(req, total_bytes); 807 #endif 808 809 /* 810 * Upper layers may call blk_crypto_evict_key() anytime after the last 811 * bio_endio(). Therefore, the keyslot must be released before that. 812 */ 813 blk_crypto_rq_put_keyslot(req); 814 815 blk_account_io_completion(req, total_bytes); 816 817 do { 818 struct bio *next = bio->bi_next; 819 820 /* Completion has already been traced */ 821 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 822 823 if (req_op(req) == REQ_OP_ZONE_APPEND) 824 bio->bi_iter.bi_sector = req->__sector; 825 826 if (!is_flush) 827 bio_endio(bio); 828 bio = next; 829 } while (bio); 830 831 /* 832 * Reset counters so that the request stacking driver 833 * can find how many bytes remain in the request 834 * later. 835 */ 836 if (!req->end_io) { 837 req->bio = NULL; 838 req->__data_len = 0; 839 } 840 } 841 842 /** 843 * blk_update_request - Complete multiple bytes without completing the request 844 * @req: the request being processed 845 * @error: block status code 846 * @nr_bytes: number of bytes to complete for @req 847 * 848 * Description: 849 * Ends I/O on a number of bytes attached to @req, but doesn't complete 850 * the request structure even if @req doesn't have leftover. 851 * If @req has leftover, sets it up for the next range of segments. 852 * 853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 854 * %false return from this function. 855 * 856 * Note: 857 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 858 * except in the consistency check at the end of this function. 859 * 860 * Return: 861 * %false - this request doesn't have any more data 862 * %true - this request has more data 863 **/ 864 bool blk_update_request(struct request *req, blk_status_t error, 865 unsigned int nr_bytes) 866 { 867 int total_bytes; 868 869 trace_block_rq_complete(req, error, nr_bytes); 870 871 if (!req->bio) 872 return false; 873 874 #ifdef CONFIG_BLK_DEV_INTEGRITY 875 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 876 error == BLK_STS_OK) 877 req->q->integrity.profile->complete_fn(req, nr_bytes); 878 #endif 879 880 /* 881 * Upper layers may call blk_crypto_evict_key() anytime after the last 882 * bio_endio(). Therefore, the keyslot must be released before that. 883 */ 884 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 885 __blk_crypto_rq_put_keyslot(req); 886 887 if (unlikely(error && !blk_rq_is_passthrough(req) && 888 !(req->rq_flags & RQF_QUIET)) && 889 !test_bit(GD_DEAD, &req->q->disk->state)) { 890 blk_print_req_error(req, error); 891 trace_block_rq_error(req, error, nr_bytes); 892 } 893 894 blk_account_io_completion(req, nr_bytes); 895 896 total_bytes = 0; 897 while (req->bio) { 898 struct bio *bio = req->bio; 899 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 900 901 if (bio_bytes == bio->bi_iter.bi_size) 902 req->bio = bio->bi_next; 903 904 /* Completion has already been traced */ 905 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 906 req_bio_endio(req, bio, bio_bytes, error); 907 908 total_bytes += bio_bytes; 909 nr_bytes -= bio_bytes; 910 911 if (!nr_bytes) 912 break; 913 } 914 915 /* 916 * completely done 917 */ 918 if (!req->bio) { 919 /* 920 * Reset counters so that the request stacking driver 921 * can find how many bytes remain in the request 922 * later. 923 */ 924 req->__data_len = 0; 925 return false; 926 } 927 928 req->__data_len -= total_bytes; 929 930 /* update sector only for requests with clear definition of sector */ 931 if (!blk_rq_is_passthrough(req)) 932 req->__sector += total_bytes >> 9; 933 934 /* mixed attributes always follow the first bio */ 935 if (req->rq_flags & RQF_MIXED_MERGE) { 936 req->cmd_flags &= ~REQ_FAILFAST_MASK; 937 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 938 } 939 940 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 941 /* 942 * If total number of sectors is less than the first segment 943 * size, something has gone terribly wrong. 944 */ 945 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 946 blk_dump_rq_flags(req, "request botched"); 947 req->__data_len = blk_rq_cur_bytes(req); 948 } 949 950 /* recalculate the number of segments */ 951 req->nr_phys_segments = blk_recalc_rq_segments(req); 952 } 953 954 return true; 955 } 956 EXPORT_SYMBOL_GPL(blk_update_request); 957 958 static inline void blk_account_io_done(struct request *req, u64 now) 959 { 960 /* 961 * Account IO completion. flush_rq isn't accounted as a 962 * normal IO on queueing nor completion. Accounting the 963 * containing request is enough. 964 */ 965 if (blk_do_io_stat(req) && req->part && 966 !(req->rq_flags & RQF_FLUSH_SEQ)) { 967 const int sgrp = op_stat_group(req_op(req)); 968 969 part_stat_lock(); 970 update_io_ticks(req->part, jiffies, true); 971 part_stat_inc(req->part, ios[sgrp]); 972 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 973 part_stat_unlock(); 974 } 975 } 976 977 static inline void blk_account_io_start(struct request *req) 978 { 979 if (blk_do_io_stat(req)) { 980 /* 981 * All non-passthrough requests are created from a bio with one 982 * exception: when a flush command that is part of a flush sequence 983 * generated by the state machine in blk-flush.c is cloned onto the 984 * lower device by dm-multipath we can get here without a bio. 985 */ 986 if (req->bio) 987 req->part = req->bio->bi_bdev; 988 else 989 req->part = req->q->disk->part0; 990 991 part_stat_lock(); 992 update_io_ticks(req->part, jiffies, false); 993 part_stat_unlock(); 994 } 995 } 996 997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 998 { 999 if (rq->rq_flags & RQF_STATS) 1000 blk_stat_add(rq, now); 1001 1002 blk_mq_sched_completed_request(rq, now); 1003 blk_account_io_done(rq, now); 1004 } 1005 1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1007 { 1008 if (blk_mq_need_time_stamp(rq)) 1009 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1010 1011 if (rq->end_io) { 1012 rq_qos_done(rq->q, rq); 1013 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1014 blk_mq_free_request(rq); 1015 } else { 1016 blk_mq_free_request(rq); 1017 } 1018 } 1019 EXPORT_SYMBOL(__blk_mq_end_request); 1020 1021 void blk_mq_end_request(struct request *rq, blk_status_t error) 1022 { 1023 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1024 BUG(); 1025 __blk_mq_end_request(rq, error); 1026 } 1027 EXPORT_SYMBOL(blk_mq_end_request); 1028 1029 #define TAG_COMP_BATCH 32 1030 1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1032 int *tag_array, int nr_tags) 1033 { 1034 struct request_queue *q = hctx->queue; 1035 1036 /* 1037 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1038 * update hctx->nr_active in batch 1039 */ 1040 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1041 __blk_mq_sub_active_requests(hctx, nr_tags); 1042 1043 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1044 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1045 } 1046 1047 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1048 { 1049 int tags[TAG_COMP_BATCH], nr_tags = 0; 1050 struct blk_mq_hw_ctx *cur_hctx = NULL; 1051 struct request *rq; 1052 u64 now = 0; 1053 1054 if (iob->need_ts) 1055 now = ktime_get_ns(); 1056 1057 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1058 prefetch(rq->bio); 1059 prefetch(rq->rq_next); 1060 1061 blk_complete_request(rq); 1062 if (iob->need_ts) 1063 __blk_mq_end_request_acct(rq, now); 1064 1065 rq_qos_done(rq->q, rq); 1066 1067 /* 1068 * If end_io handler returns NONE, then it still has 1069 * ownership of the request. 1070 */ 1071 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1072 continue; 1073 1074 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1075 if (!req_ref_put_and_test(rq)) 1076 continue; 1077 1078 blk_crypto_free_request(rq); 1079 blk_pm_mark_last_busy(rq); 1080 1081 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1082 if (cur_hctx) 1083 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1084 nr_tags = 0; 1085 cur_hctx = rq->mq_hctx; 1086 } 1087 tags[nr_tags++] = rq->tag; 1088 } 1089 1090 if (nr_tags) 1091 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1092 } 1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1094 1095 static void blk_complete_reqs(struct llist_head *list) 1096 { 1097 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1098 struct request *rq, *next; 1099 1100 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1101 rq->q->mq_ops->complete(rq); 1102 } 1103 1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1105 { 1106 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1107 } 1108 1109 static int blk_softirq_cpu_dead(unsigned int cpu) 1110 { 1111 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1112 return 0; 1113 } 1114 1115 static void __blk_mq_complete_request_remote(void *data) 1116 { 1117 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1118 } 1119 1120 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1121 { 1122 int cpu = raw_smp_processor_id(); 1123 1124 if (!IS_ENABLED(CONFIG_SMP) || 1125 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1126 return false; 1127 /* 1128 * With force threaded interrupts enabled, raising softirq from an SMP 1129 * function call will always result in waking the ksoftirqd thread. 1130 * This is probably worse than completing the request on a different 1131 * cache domain. 1132 */ 1133 if (force_irqthreads()) 1134 return false; 1135 1136 /* same CPU or cache domain? Complete locally */ 1137 if (cpu == rq->mq_ctx->cpu || 1138 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1139 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1140 return false; 1141 1142 /* don't try to IPI to an offline CPU */ 1143 return cpu_online(rq->mq_ctx->cpu); 1144 } 1145 1146 static void blk_mq_complete_send_ipi(struct request *rq) 1147 { 1148 struct llist_head *list; 1149 unsigned int cpu; 1150 1151 cpu = rq->mq_ctx->cpu; 1152 list = &per_cpu(blk_cpu_done, cpu); 1153 if (llist_add(&rq->ipi_list, list)) { 1154 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1155 smp_call_function_single_async(cpu, &rq->csd); 1156 } 1157 } 1158 1159 static void blk_mq_raise_softirq(struct request *rq) 1160 { 1161 struct llist_head *list; 1162 1163 preempt_disable(); 1164 list = this_cpu_ptr(&blk_cpu_done); 1165 if (llist_add(&rq->ipi_list, list)) 1166 raise_softirq(BLOCK_SOFTIRQ); 1167 preempt_enable(); 1168 } 1169 1170 bool blk_mq_complete_request_remote(struct request *rq) 1171 { 1172 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1173 1174 /* 1175 * For request which hctx has only one ctx mapping, 1176 * or a polled request, always complete locally, 1177 * it's pointless to redirect the completion. 1178 */ 1179 if (rq->mq_hctx->nr_ctx == 1 || 1180 rq->cmd_flags & REQ_POLLED) 1181 return false; 1182 1183 if (blk_mq_complete_need_ipi(rq)) { 1184 blk_mq_complete_send_ipi(rq); 1185 return true; 1186 } 1187 1188 if (rq->q->nr_hw_queues == 1) { 1189 blk_mq_raise_softirq(rq); 1190 return true; 1191 } 1192 return false; 1193 } 1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1195 1196 /** 1197 * blk_mq_complete_request - end I/O on a request 1198 * @rq: the request being processed 1199 * 1200 * Description: 1201 * Complete a request by scheduling the ->complete_rq operation. 1202 **/ 1203 void blk_mq_complete_request(struct request *rq) 1204 { 1205 if (!blk_mq_complete_request_remote(rq)) 1206 rq->q->mq_ops->complete(rq); 1207 } 1208 EXPORT_SYMBOL(blk_mq_complete_request); 1209 1210 /** 1211 * blk_mq_start_request - Start processing a request 1212 * @rq: Pointer to request to be started 1213 * 1214 * Function used by device drivers to notify the block layer that a request 1215 * is going to be processed now, so blk layer can do proper initializations 1216 * such as starting the timeout timer. 1217 */ 1218 void blk_mq_start_request(struct request *rq) 1219 { 1220 struct request_queue *q = rq->q; 1221 1222 trace_block_rq_issue(rq); 1223 1224 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1225 rq->io_start_time_ns = ktime_get_ns(); 1226 rq->stats_sectors = blk_rq_sectors(rq); 1227 rq->rq_flags |= RQF_STATS; 1228 rq_qos_issue(q, rq); 1229 } 1230 1231 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1232 1233 blk_add_timer(rq); 1234 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1235 1236 #ifdef CONFIG_BLK_DEV_INTEGRITY 1237 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1238 q->integrity.profile->prepare_fn(rq); 1239 #endif 1240 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1241 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1242 } 1243 EXPORT_SYMBOL(blk_mq_start_request); 1244 1245 /* 1246 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1247 * queues. This is important for md arrays to benefit from merging 1248 * requests. 1249 */ 1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1251 { 1252 if (plug->multiple_queues) 1253 return BLK_MAX_REQUEST_COUNT * 2; 1254 return BLK_MAX_REQUEST_COUNT; 1255 } 1256 1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1258 { 1259 struct request *last = rq_list_peek(&plug->mq_list); 1260 1261 if (!plug->rq_count) { 1262 trace_block_plug(rq->q); 1263 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1264 (!blk_queue_nomerges(rq->q) && 1265 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1266 blk_mq_flush_plug_list(plug, false); 1267 last = NULL; 1268 trace_block_plug(rq->q); 1269 } 1270 1271 if (!plug->multiple_queues && last && last->q != rq->q) 1272 plug->multiple_queues = true; 1273 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1274 plug->has_elevator = true; 1275 rq->rq_next = NULL; 1276 rq_list_add(&plug->mq_list, rq); 1277 plug->rq_count++; 1278 } 1279 1280 /** 1281 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1282 * @rq: request to insert 1283 * @at_head: insert request at head or tail of queue 1284 * 1285 * Description: 1286 * Insert a fully prepared request at the back of the I/O scheduler queue 1287 * for execution. Don't wait for completion. 1288 * 1289 * Note: 1290 * This function will invoke @done directly if the queue is dead. 1291 */ 1292 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1293 { 1294 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1295 1296 WARN_ON(irqs_disabled()); 1297 WARN_ON(!blk_rq_is_passthrough(rq)); 1298 1299 blk_account_io_start(rq); 1300 1301 /* 1302 * As plugging can be enabled for passthrough requests on a zoned 1303 * device, directly accessing the plug instead of using blk_mq_plug() 1304 * should not have any consequences. 1305 */ 1306 if (current->plug && !at_head) { 1307 blk_add_rq_to_plug(current->plug, rq); 1308 return; 1309 } 1310 1311 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1312 blk_mq_run_hw_queue(hctx, false); 1313 } 1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1315 1316 struct blk_rq_wait { 1317 struct completion done; 1318 blk_status_t ret; 1319 }; 1320 1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1322 { 1323 struct blk_rq_wait *wait = rq->end_io_data; 1324 1325 wait->ret = ret; 1326 complete(&wait->done); 1327 return RQ_END_IO_NONE; 1328 } 1329 1330 bool blk_rq_is_poll(struct request *rq) 1331 { 1332 if (!rq->mq_hctx) 1333 return false; 1334 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1335 return false; 1336 return true; 1337 } 1338 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1339 1340 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1341 { 1342 do { 1343 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0); 1344 cond_resched(); 1345 } while (!completion_done(wait)); 1346 } 1347 1348 /** 1349 * blk_execute_rq - insert a request into queue for execution 1350 * @rq: request to insert 1351 * @at_head: insert request at head or tail of queue 1352 * 1353 * Description: 1354 * Insert a fully prepared request at the back of the I/O scheduler queue 1355 * for execution and wait for completion. 1356 * Return: The blk_status_t result provided to blk_mq_end_request(). 1357 */ 1358 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1359 { 1360 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1361 struct blk_rq_wait wait = { 1362 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1363 }; 1364 1365 WARN_ON(irqs_disabled()); 1366 WARN_ON(!blk_rq_is_passthrough(rq)); 1367 1368 rq->end_io_data = &wait; 1369 rq->end_io = blk_end_sync_rq; 1370 1371 blk_account_io_start(rq); 1372 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1373 blk_mq_run_hw_queue(hctx, false); 1374 1375 if (blk_rq_is_poll(rq)) { 1376 blk_rq_poll_completion(rq, &wait.done); 1377 } else { 1378 /* 1379 * Prevent hang_check timer from firing at us during very long 1380 * I/O 1381 */ 1382 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1383 1384 if (hang_check) 1385 while (!wait_for_completion_io_timeout(&wait.done, 1386 hang_check * (HZ/2))) 1387 ; 1388 else 1389 wait_for_completion_io(&wait.done); 1390 } 1391 1392 return wait.ret; 1393 } 1394 EXPORT_SYMBOL(blk_execute_rq); 1395 1396 static void __blk_mq_requeue_request(struct request *rq) 1397 { 1398 struct request_queue *q = rq->q; 1399 1400 blk_mq_put_driver_tag(rq); 1401 1402 trace_block_rq_requeue(rq); 1403 rq_qos_requeue(q, rq); 1404 1405 if (blk_mq_request_started(rq)) { 1406 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1407 rq->rq_flags &= ~RQF_TIMED_OUT; 1408 } 1409 } 1410 1411 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1412 { 1413 struct request_queue *q = rq->q; 1414 1415 __blk_mq_requeue_request(rq); 1416 1417 /* this request will be re-inserted to io scheduler queue */ 1418 blk_mq_sched_requeue_request(rq); 1419 1420 blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD); 1421 1422 if (kick_requeue_list) 1423 blk_mq_kick_requeue_list(q); 1424 } 1425 EXPORT_SYMBOL(blk_mq_requeue_request); 1426 1427 static void blk_mq_requeue_work(struct work_struct *work) 1428 { 1429 struct request_queue *q = 1430 container_of(work, struct request_queue, requeue_work.work); 1431 LIST_HEAD(rq_list); 1432 struct request *rq, *next; 1433 1434 spin_lock_irq(&q->requeue_lock); 1435 list_splice_init(&q->requeue_list, &rq_list); 1436 spin_unlock_irq(&q->requeue_lock); 1437 1438 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1439 /* 1440 * If RQF_DONTPREP ist set, the request has been started by the 1441 * driver already and might have driver-specific data allocated 1442 * already. Insert it into the hctx dispatch list to avoid 1443 * block layer merges for the request. 1444 */ 1445 if (rq->rq_flags & RQF_DONTPREP) { 1446 rq->rq_flags &= ~RQF_SOFTBARRIER; 1447 list_del_init(&rq->queuelist); 1448 blk_mq_request_bypass_insert(rq, 0); 1449 } else if (rq->rq_flags & RQF_SOFTBARRIER) { 1450 rq->rq_flags &= ~RQF_SOFTBARRIER; 1451 list_del_init(&rq->queuelist); 1452 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1453 } 1454 } 1455 1456 while (!list_empty(&rq_list)) { 1457 rq = list_entry(rq_list.next, struct request, queuelist); 1458 list_del_init(&rq->queuelist); 1459 blk_mq_insert_request(rq, 0); 1460 } 1461 1462 blk_mq_run_hw_queues(q, false); 1463 } 1464 1465 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags) 1466 { 1467 struct request_queue *q = rq->q; 1468 unsigned long flags; 1469 1470 /* 1471 * We abuse this flag that is otherwise used by the I/O scheduler to 1472 * request head insertion from the workqueue. 1473 */ 1474 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1475 1476 spin_lock_irqsave(&q->requeue_lock, flags); 1477 if (insert_flags & BLK_MQ_INSERT_AT_HEAD) { 1478 rq->rq_flags |= RQF_SOFTBARRIER; 1479 list_add(&rq->queuelist, &q->requeue_list); 1480 } else { 1481 list_add_tail(&rq->queuelist, &q->requeue_list); 1482 } 1483 spin_unlock_irqrestore(&q->requeue_lock, flags); 1484 } 1485 1486 void blk_mq_kick_requeue_list(struct request_queue *q) 1487 { 1488 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1489 } 1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1491 1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1493 unsigned long msecs) 1494 { 1495 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1496 msecs_to_jiffies(msecs)); 1497 } 1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1499 1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1501 { 1502 /* 1503 * If we find a request that isn't idle we know the queue is busy 1504 * as it's checked in the iter. 1505 * Return false to stop the iteration. 1506 */ 1507 if (blk_mq_request_started(rq)) { 1508 bool *busy = priv; 1509 1510 *busy = true; 1511 return false; 1512 } 1513 1514 return true; 1515 } 1516 1517 bool blk_mq_queue_inflight(struct request_queue *q) 1518 { 1519 bool busy = false; 1520 1521 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1522 return busy; 1523 } 1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1525 1526 static void blk_mq_rq_timed_out(struct request *req) 1527 { 1528 req->rq_flags |= RQF_TIMED_OUT; 1529 if (req->q->mq_ops->timeout) { 1530 enum blk_eh_timer_return ret; 1531 1532 ret = req->q->mq_ops->timeout(req); 1533 if (ret == BLK_EH_DONE) 1534 return; 1535 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1536 } 1537 1538 blk_add_timer(req); 1539 } 1540 1541 struct blk_expired_data { 1542 bool has_timedout_rq; 1543 unsigned long next; 1544 unsigned long timeout_start; 1545 }; 1546 1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1548 { 1549 unsigned long deadline; 1550 1551 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1552 return false; 1553 if (rq->rq_flags & RQF_TIMED_OUT) 1554 return false; 1555 1556 deadline = READ_ONCE(rq->deadline); 1557 if (time_after_eq(expired->timeout_start, deadline)) 1558 return true; 1559 1560 if (expired->next == 0) 1561 expired->next = deadline; 1562 else if (time_after(expired->next, deadline)) 1563 expired->next = deadline; 1564 return false; 1565 } 1566 1567 void blk_mq_put_rq_ref(struct request *rq) 1568 { 1569 if (is_flush_rq(rq)) { 1570 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1571 blk_mq_free_request(rq); 1572 } else if (req_ref_put_and_test(rq)) { 1573 __blk_mq_free_request(rq); 1574 } 1575 } 1576 1577 static bool blk_mq_check_expired(struct request *rq, void *priv) 1578 { 1579 struct blk_expired_data *expired = priv; 1580 1581 /* 1582 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1583 * be reallocated underneath the timeout handler's processing, then 1584 * the expire check is reliable. If the request is not expired, then 1585 * it was completed and reallocated as a new request after returning 1586 * from blk_mq_check_expired(). 1587 */ 1588 if (blk_mq_req_expired(rq, expired)) { 1589 expired->has_timedout_rq = true; 1590 return false; 1591 } 1592 return true; 1593 } 1594 1595 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1596 { 1597 struct blk_expired_data *expired = priv; 1598 1599 if (blk_mq_req_expired(rq, expired)) 1600 blk_mq_rq_timed_out(rq); 1601 return true; 1602 } 1603 1604 static void blk_mq_timeout_work(struct work_struct *work) 1605 { 1606 struct request_queue *q = 1607 container_of(work, struct request_queue, timeout_work); 1608 struct blk_expired_data expired = { 1609 .timeout_start = jiffies, 1610 }; 1611 struct blk_mq_hw_ctx *hctx; 1612 unsigned long i; 1613 1614 /* A deadlock might occur if a request is stuck requiring a 1615 * timeout at the same time a queue freeze is waiting 1616 * completion, since the timeout code would not be able to 1617 * acquire the queue reference here. 1618 * 1619 * That's why we don't use blk_queue_enter here; instead, we use 1620 * percpu_ref_tryget directly, because we need to be able to 1621 * obtain a reference even in the short window between the queue 1622 * starting to freeze, by dropping the first reference in 1623 * blk_freeze_queue_start, and the moment the last request is 1624 * consumed, marked by the instant q_usage_counter reaches 1625 * zero. 1626 */ 1627 if (!percpu_ref_tryget(&q->q_usage_counter)) 1628 return; 1629 1630 /* check if there is any timed-out request */ 1631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1632 if (expired.has_timedout_rq) { 1633 /* 1634 * Before walking tags, we must ensure any submit started 1635 * before the current time has finished. Since the submit 1636 * uses srcu or rcu, wait for a synchronization point to 1637 * ensure all running submits have finished 1638 */ 1639 blk_mq_wait_quiesce_done(q->tag_set); 1640 1641 expired.next = 0; 1642 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1643 } 1644 1645 if (expired.next != 0) { 1646 mod_timer(&q->timeout, expired.next); 1647 } else { 1648 /* 1649 * Request timeouts are handled as a forward rolling timer. If 1650 * we end up here it means that no requests are pending and 1651 * also that no request has been pending for a while. Mark 1652 * each hctx as idle. 1653 */ 1654 queue_for_each_hw_ctx(q, hctx, i) { 1655 /* the hctx may be unmapped, so check it here */ 1656 if (blk_mq_hw_queue_mapped(hctx)) 1657 blk_mq_tag_idle(hctx); 1658 } 1659 } 1660 blk_queue_exit(q); 1661 } 1662 1663 struct flush_busy_ctx_data { 1664 struct blk_mq_hw_ctx *hctx; 1665 struct list_head *list; 1666 }; 1667 1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1669 { 1670 struct flush_busy_ctx_data *flush_data = data; 1671 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1672 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1673 enum hctx_type type = hctx->type; 1674 1675 spin_lock(&ctx->lock); 1676 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1677 sbitmap_clear_bit(sb, bitnr); 1678 spin_unlock(&ctx->lock); 1679 return true; 1680 } 1681 1682 /* 1683 * Process software queues that have been marked busy, splicing them 1684 * to the for-dispatch 1685 */ 1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1687 { 1688 struct flush_busy_ctx_data data = { 1689 .hctx = hctx, 1690 .list = list, 1691 }; 1692 1693 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1694 } 1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1696 1697 struct dispatch_rq_data { 1698 struct blk_mq_hw_ctx *hctx; 1699 struct request *rq; 1700 }; 1701 1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1703 void *data) 1704 { 1705 struct dispatch_rq_data *dispatch_data = data; 1706 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1707 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1708 enum hctx_type type = hctx->type; 1709 1710 spin_lock(&ctx->lock); 1711 if (!list_empty(&ctx->rq_lists[type])) { 1712 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1713 list_del_init(&dispatch_data->rq->queuelist); 1714 if (list_empty(&ctx->rq_lists[type])) 1715 sbitmap_clear_bit(sb, bitnr); 1716 } 1717 spin_unlock(&ctx->lock); 1718 1719 return !dispatch_data->rq; 1720 } 1721 1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1723 struct blk_mq_ctx *start) 1724 { 1725 unsigned off = start ? start->index_hw[hctx->type] : 0; 1726 struct dispatch_rq_data data = { 1727 .hctx = hctx, 1728 .rq = NULL, 1729 }; 1730 1731 __sbitmap_for_each_set(&hctx->ctx_map, off, 1732 dispatch_rq_from_ctx, &data); 1733 1734 return data.rq; 1735 } 1736 1737 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1738 { 1739 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1740 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1741 int tag; 1742 1743 blk_mq_tag_busy(rq->mq_hctx); 1744 1745 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1746 bt = &rq->mq_hctx->tags->breserved_tags; 1747 tag_offset = 0; 1748 } else { 1749 if (!hctx_may_queue(rq->mq_hctx, bt)) 1750 return false; 1751 } 1752 1753 tag = __sbitmap_queue_get(bt); 1754 if (tag == BLK_MQ_NO_TAG) 1755 return false; 1756 1757 rq->tag = tag + tag_offset; 1758 return true; 1759 } 1760 1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1762 { 1763 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1764 return false; 1765 1766 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1767 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1768 rq->rq_flags |= RQF_MQ_INFLIGHT; 1769 __blk_mq_inc_active_requests(hctx); 1770 } 1771 hctx->tags->rqs[rq->tag] = rq; 1772 return true; 1773 } 1774 1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1776 int flags, void *key) 1777 { 1778 struct blk_mq_hw_ctx *hctx; 1779 1780 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1781 1782 spin_lock(&hctx->dispatch_wait_lock); 1783 if (!list_empty(&wait->entry)) { 1784 struct sbitmap_queue *sbq; 1785 1786 list_del_init(&wait->entry); 1787 sbq = &hctx->tags->bitmap_tags; 1788 atomic_dec(&sbq->ws_active); 1789 } 1790 spin_unlock(&hctx->dispatch_wait_lock); 1791 1792 blk_mq_run_hw_queue(hctx, true); 1793 return 1; 1794 } 1795 1796 /* 1797 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1798 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1799 * restart. For both cases, take care to check the condition again after 1800 * marking us as waiting. 1801 */ 1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1803 struct request *rq) 1804 { 1805 struct sbitmap_queue *sbq; 1806 struct wait_queue_head *wq; 1807 wait_queue_entry_t *wait; 1808 bool ret; 1809 1810 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1811 !(blk_mq_is_shared_tags(hctx->flags))) { 1812 blk_mq_sched_mark_restart_hctx(hctx); 1813 1814 /* 1815 * It's possible that a tag was freed in the window between the 1816 * allocation failure and adding the hardware queue to the wait 1817 * queue. 1818 * 1819 * Don't clear RESTART here, someone else could have set it. 1820 * At most this will cost an extra queue run. 1821 */ 1822 return blk_mq_get_driver_tag(rq); 1823 } 1824 1825 wait = &hctx->dispatch_wait; 1826 if (!list_empty_careful(&wait->entry)) 1827 return false; 1828 1829 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1830 sbq = &hctx->tags->breserved_tags; 1831 else 1832 sbq = &hctx->tags->bitmap_tags; 1833 wq = &bt_wait_ptr(sbq, hctx)->wait; 1834 1835 spin_lock_irq(&wq->lock); 1836 spin_lock(&hctx->dispatch_wait_lock); 1837 if (!list_empty(&wait->entry)) { 1838 spin_unlock(&hctx->dispatch_wait_lock); 1839 spin_unlock_irq(&wq->lock); 1840 return false; 1841 } 1842 1843 atomic_inc(&sbq->ws_active); 1844 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1845 __add_wait_queue(wq, wait); 1846 1847 /* 1848 * It's possible that a tag was freed in the window between the 1849 * allocation failure and adding the hardware queue to the wait 1850 * queue. 1851 */ 1852 ret = blk_mq_get_driver_tag(rq); 1853 if (!ret) { 1854 spin_unlock(&hctx->dispatch_wait_lock); 1855 spin_unlock_irq(&wq->lock); 1856 return false; 1857 } 1858 1859 /* 1860 * We got a tag, remove ourselves from the wait queue to ensure 1861 * someone else gets the wakeup. 1862 */ 1863 list_del_init(&wait->entry); 1864 atomic_dec(&sbq->ws_active); 1865 spin_unlock(&hctx->dispatch_wait_lock); 1866 spin_unlock_irq(&wq->lock); 1867 1868 return true; 1869 } 1870 1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1873 /* 1874 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1875 * - EWMA is one simple way to compute running average value 1876 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1877 * - take 4 as factor for avoiding to get too small(0) result, and this 1878 * factor doesn't matter because EWMA decreases exponentially 1879 */ 1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1881 { 1882 unsigned int ewma; 1883 1884 ewma = hctx->dispatch_busy; 1885 1886 if (!ewma && !busy) 1887 return; 1888 1889 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1890 if (busy) 1891 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1892 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1893 1894 hctx->dispatch_busy = ewma; 1895 } 1896 1897 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1898 1899 static void blk_mq_handle_dev_resource(struct request *rq, 1900 struct list_head *list) 1901 { 1902 list_add(&rq->queuelist, list); 1903 __blk_mq_requeue_request(rq); 1904 } 1905 1906 static void blk_mq_handle_zone_resource(struct request *rq, 1907 struct list_head *zone_list) 1908 { 1909 /* 1910 * If we end up here it is because we cannot dispatch a request to a 1911 * specific zone due to LLD level zone-write locking or other zone 1912 * related resource not being available. In this case, set the request 1913 * aside in zone_list for retrying it later. 1914 */ 1915 list_add(&rq->queuelist, zone_list); 1916 __blk_mq_requeue_request(rq); 1917 } 1918 1919 enum prep_dispatch { 1920 PREP_DISPATCH_OK, 1921 PREP_DISPATCH_NO_TAG, 1922 PREP_DISPATCH_NO_BUDGET, 1923 }; 1924 1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1926 bool need_budget) 1927 { 1928 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1929 int budget_token = -1; 1930 1931 if (need_budget) { 1932 budget_token = blk_mq_get_dispatch_budget(rq->q); 1933 if (budget_token < 0) { 1934 blk_mq_put_driver_tag(rq); 1935 return PREP_DISPATCH_NO_BUDGET; 1936 } 1937 blk_mq_set_rq_budget_token(rq, budget_token); 1938 } 1939 1940 if (!blk_mq_get_driver_tag(rq)) { 1941 /* 1942 * The initial allocation attempt failed, so we need to 1943 * rerun the hardware queue when a tag is freed. The 1944 * waitqueue takes care of that. If the queue is run 1945 * before we add this entry back on the dispatch list, 1946 * we'll re-run it below. 1947 */ 1948 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1949 /* 1950 * All budgets not got from this function will be put 1951 * together during handling partial dispatch 1952 */ 1953 if (need_budget) 1954 blk_mq_put_dispatch_budget(rq->q, budget_token); 1955 return PREP_DISPATCH_NO_TAG; 1956 } 1957 } 1958 1959 return PREP_DISPATCH_OK; 1960 } 1961 1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1963 static void blk_mq_release_budgets(struct request_queue *q, 1964 struct list_head *list) 1965 { 1966 struct request *rq; 1967 1968 list_for_each_entry(rq, list, queuelist) { 1969 int budget_token = blk_mq_get_rq_budget_token(rq); 1970 1971 if (budget_token >= 0) 1972 blk_mq_put_dispatch_budget(q, budget_token); 1973 } 1974 } 1975 1976 /* 1977 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1978 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1979 * details) 1980 * Attention, we should explicitly call this in unusual cases: 1981 * 1) did not queue everything initially scheduled to queue 1982 * 2) the last attempt to queue a request failed 1983 */ 1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1985 bool from_schedule) 1986 { 1987 if (hctx->queue->mq_ops->commit_rqs && queued) { 1988 trace_block_unplug(hctx->queue, queued, !from_schedule); 1989 hctx->queue->mq_ops->commit_rqs(hctx); 1990 } 1991 } 1992 1993 /* 1994 * Returns true if we did some work AND can potentially do more. 1995 */ 1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1997 unsigned int nr_budgets) 1998 { 1999 enum prep_dispatch prep; 2000 struct request_queue *q = hctx->queue; 2001 struct request *rq; 2002 int queued; 2003 blk_status_t ret = BLK_STS_OK; 2004 LIST_HEAD(zone_list); 2005 bool needs_resource = false; 2006 2007 if (list_empty(list)) 2008 return false; 2009 2010 /* 2011 * Now process all the entries, sending them to the driver. 2012 */ 2013 queued = 0; 2014 do { 2015 struct blk_mq_queue_data bd; 2016 2017 rq = list_first_entry(list, struct request, queuelist); 2018 2019 WARN_ON_ONCE(hctx != rq->mq_hctx); 2020 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2021 if (prep != PREP_DISPATCH_OK) 2022 break; 2023 2024 list_del_init(&rq->queuelist); 2025 2026 bd.rq = rq; 2027 bd.last = list_empty(list); 2028 2029 /* 2030 * once the request is queued to lld, no need to cover the 2031 * budget any more 2032 */ 2033 if (nr_budgets) 2034 nr_budgets--; 2035 ret = q->mq_ops->queue_rq(hctx, &bd); 2036 switch (ret) { 2037 case BLK_STS_OK: 2038 queued++; 2039 break; 2040 case BLK_STS_RESOURCE: 2041 needs_resource = true; 2042 fallthrough; 2043 case BLK_STS_DEV_RESOURCE: 2044 blk_mq_handle_dev_resource(rq, list); 2045 goto out; 2046 case BLK_STS_ZONE_RESOURCE: 2047 /* 2048 * Move the request to zone_list and keep going through 2049 * the dispatch list to find more requests the drive can 2050 * accept. 2051 */ 2052 blk_mq_handle_zone_resource(rq, &zone_list); 2053 needs_resource = true; 2054 break; 2055 default: 2056 blk_mq_end_request(rq, ret); 2057 } 2058 } while (!list_empty(list)); 2059 out: 2060 if (!list_empty(&zone_list)) 2061 list_splice_tail_init(&zone_list, list); 2062 2063 /* If we didn't flush the entire list, we could have told the driver 2064 * there was more coming, but that turned out to be a lie. 2065 */ 2066 if (!list_empty(list) || ret != BLK_STS_OK) 2067 blk_mq_commit_rqs(hctx, queued, false); 2068 2069 /* 2070 * Any items that need requeuing? Stuff them into hctx->dispatch, 2071 * that is where we will continue on next queue run. 2072 */ 2073 if (!list_empty(list)) { 2074 bool needs_restart; 2075 /* For non-shared tags, the RESTART check will suffice */ 2076 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2077 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2078 blk_mq_is_shared_tags(hctx->flags)); 2079 2080 if (nr_budgets) 2081 blk_mq_release_budgets(q, list); 2082 2083 spin_lock(&hctx->lock); 2084 list_splice_tail_init(list, &hctx->dispatch); 2085 spin_unlock(&hctx->lock); 2086 2087 /* 2088 * Order adding requests to hctx->dispatch and checking 2089 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2090 * in blk_mq_sched_restart(). Avoid restart code path to 2091 * miss the new added requests to hctx->dispatch, meantime 2092 * SCHED_RESTART is observed here. 2093 */ 2094 smp_mb(); 2095 2096 /* 2097 * If SCHED_RESTART was set by the caller of this function and 2098 * it is no longer set that means that it was cleared by another 2099 * thread and hence that a queue rerun is needed. 2100 * 2101 * If 'no_tag' is set, that means that we failed getting 2102 * a driver tag with an I/O scheduler attached. If our dispatch 2103 * waitqueue is no longer active, ensure that we run the queue 2104 * AFTER adding our entries back to the list. 2105 * 2106 * If no I/O scheduler has been configured it is possible that 2107 * the hardware queue got stopped and restarted before requests 2108 * were pushed back onto the dispatch list. Rerun the queue to 2109 * avoid starvation. Notes: 2110 * - blk_mq_run_hw_queue() checks whether or not a queue has 2111 * been stopped before rerunning a queue. 2112 * - Some but not all block drivers stop a queue before 2113 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2114 * and dm-rq. 2115 * 2116 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2117 * bit is set, run queue after a delay to avoid IO stalls 2118 * that could otherwise occur if the queue is idle. We'll do 2119 * similar if we couldn't get budget or couldn't lock a zone 2120 * and SCHED_RESTART is set. 2121 */ 2122 needs_restart = blk_mq_sched_needs_restart(hctx); 2123 if (prep == PREP_DISPATCH_NO_BUDGET) 2124 needs_resource = true; 2125 if (!needs_restart || 2126 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2127 blk_mq_run_hw_queue(hctx, true); 2128 else if (needs_resource) 2129 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2130 2131 blk_mq_update_dispatch_busy(hctx, true); 2132 return false; 2133 } 2134 2135 blk_mq_update_dispatch_busy(hctx, false); 2136 return true; 2137 } 2138 2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2140 { 2141 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2142 2143 if (cpu >= nr_cpu_ids) 2144 cpu = cpumask_first(hctx->cpumask); 2145 return cpu; 2146 } 2147 2148 /* 2149 * It'd be great if the workqueue API had a way to pass 2150 * in a mask and had some smarts for more clever placement. 2151 * For now we just round-robin here, switching for every 2152 * BLK_MQ_CPU_WORK_BATCH queued items. 2153 */ 2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2155 { 2156 bool tried = false; 2157 int next_cpu = hctx->next_cpu; 2158 2159 if (hctx->queue->nr_hw_queues == 1) 2160 return WORK_CPU_UNBOUND; 2161 2162 if (--hctx->next_cpu_batch <= 0) { 2163 select_cpu: 2164 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2165 cpu_online_mask); 2166 if (next_cpu >= nr_cpu_ids) 2167 next_cpu = blk_mq_first_mapped_cpu(hctx); 2168 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2169 } 2170 2171 /* 2172 * Do unbound schedule if we can't find a online CPU for this hctx, 2173 * and it should only happen in the path of handling CPU DEAD. 2174 */ 2175 if (!cpu_online(next_cpu)) { 2176 if (!tried) { 2177 tried = true; 2178 goto select_cpu; 2179 } 2180 2181 /* 2182 * Make sure to re-select CPU next time once after CPUs 2183 * in hctx->cpumask become online again. 2184 */ 2185 hctx->next_cpu = next_cpu; 2186 hctx->next_cpu_batch = 1; 2187 return WORK_CPU_UNBOUND; 2188 } 2189 2190 hctx->next_cpu = next_cpu; 2191 return next_cpu; 2192 } 2193 2194 /** 2195 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2196 * @hctx: Pointer to the hardware queue to run. 2197 * @msecs: Milliseconds of delay to wait before running the queue. 2198 * 2199 * Run a hardware queue asynchronously with a delay of @msecs. 2200 */ 2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2202 { 2203 if (unlikely(blk_mq_hctx_stopped(hctx))) 2204 return; 2205 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2206 msecs_to_jiffies(msecs)); 2207 } 2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2209 2210 /** 2211 * blk_mq_run_hw_queue - Start to run a hardware queue. 2212 * @hctx: Pointer to the hardware queue to run. 2213 * @async: If we want to run the queue asynchronously. 2214 * 2215 * Check if the request queue is not in a quiesced state and if there are 2216 * pending requests to be sent. If this is true, run the queue to send requests 2217 * to hardware. 2218 */ 2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2220 { 2221 bool need_run; 2222 2223 /* 2224 * We can't run the queue inline with interrupts disabled. 2225 */ 2226 WARN_ON_ONCE(!async && in_interrupt()); 2227 2228 /* 2229 * When queue is quiesced, we may be switching io scheduler, or 2230 * updating nr_hw_queues, or other things, and we can't run queue 2231 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2232 * 2233 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2234 * quiesced. 2235 */ 2236 __blk_mq_run_dispatch_ops(hctx->queue, false, 2237 need_run = !blk_queue_quiesced(hctx->queue) && 2238 blk_mq_hctx_has_pending(hctx)); 2239 2240 if (!need_run) 2241 return; 2242 2243 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) || 2244 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2245 blk_mq_delay_run_hw_queue(hctx, 0); 2246 return; 2247 } 2248 2249 blk_mq_run_dispatch_ops(hctx->queue, 2250 blk_mq_sched_dispatch_requests(hctx)); 2251 } 2252 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2253 2254 /* 2255 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2256 * scheduler. 2257 */ 2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2259 { 2260 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2261 /* 2262 * If the IO scheduler does not respect hardware queues when 2263 * dispatching, we just don't bother with multiple HW queues and 2264 * dispatch from hctx for the current CPU since running multiple queues 2265 * just causes lock contention inside the scheduler and pointless cache 2266 * bouncing. 2267 */ 2268 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2269 2270 if (!blk_mq_hctx_stopped(hctx)) 2271 return hctx; 2272 return NULL; 2273 } 2274 2275 /** 2276 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2277 * @q: Pointer to the request queue to run. 2278 * @async: If we want to run the queue asynchronously. 2279 */ 2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2281 { 2282 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2283 unsigned long i; 2284 2285 sq_hctx = NULL; 2286 if (blk_queue_sq_sched(q)) 2287 sq_hctx = blk_mq_get_sq_hctx(q); 2288 queue_for_each_hw_ctx(q, hctx, i) { 2289 if (blk_mq_hctx_stopped(hctx)) 2290 continue; 2291 /* 2292 * Dispatch from this hctx either if there's no hctx preferred 2293 * by IO scheduler or if it has requests that bypass the 2294 * scheduler. 2295 */ 2296 if (!sq_hctx || sq_hctx == hctx || 2297 !list_empty_careful(&hctx->dispatch)) 2298 blk_mq_run_hw_queue(hctx, async); 2299 } 2300 } 2301 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2302 2303 /** 2304 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2305 * @q: Pointer to the request queue to run. 2306 * @msecs: Milliseconds of delay to wait before running the queues. 2307 */ 2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2309 { 2310 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2311 unsigned long i; 2312 2313 sq_hctx = NULL; 2314 if (blk_queue_sq_sched(q)) 2315 sq_hctx = blk_mq_get_sq_hctx(q); 2316 queue_for_each_hw_ctx(q, hctx, i) { 2317 if (blk_mq_hctx_stopped(hctx)) 2318 continue; 2319 /* 2320 * If there is already a run_work pending, leave the 2321 * pending delay untouched. Otherwise, a hctx can stall 2322 * if another hctx is re-delaying the other's work 2323 * before the work executes. 2324 */ 2325 if (delayed_work_pending(&hctx->run_work)) 2326 continue; 2327 /* 2328 * Dispatch from this hctx either if there's no hctx preferred 2329 * by IO scheduler or if it has requests that bypass the 2330 * scheduler. 2331 */ 2332 if (!sq_hctx || sq_hctx == hctx || 2333 !list_empty_careful(&hctx->dispatch)) 2334 blk_mq_delay_run_hw_queue(hctx, msecs); 2335 } 2336 } 2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2338 2339 /* 2340 * This function is often used for pausing .queue_rq() by driver when 2341 * there isn't enough resource or some conditions aren't satisfied, and 2342 * BLK_STS_RESOURCE is usually returned. 2343 * 2344 * We do not guarantee that dispatch can be drained or blocked 2345 * after blk_mq_stop_hw_queue() returns. Please use 2346 * blk_mq_quiesce_queue() for that requirement. 2347 */ 2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2349 { 2350 cancel_delayed_work(&hctx->run_work); 2351 2352 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2353 } 2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2355 2356 /* 2357 * This function is often used for pausing .queue_rq() by driver when 2358 * there isn't enough resource or some conditions aren't satisfied, and 2359 * BLK_STS_RESOURCE is usually returned. 2360 * 2361 * We do not guarantee that dispatch can be drained or blocked 2362 * after blk_mq_stop_hw_queues() returns. Please use 2363 * blk_mq_quiesce_queue() for that requirement. 2364 */ 2365 void blk_mq_stop_hw_queues(struct request_queue *q) 2366 { 2367 struct blk_mq_hw_ctx *hctx; 2368 unsigned long i; 2369 2370 queue_for_each_hw_ctx(q, hctx, i) 2371 blk_mq_stop_hw_queue(hctx); 2372 } 2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2374 2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2376 { 2377 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2378 2379 blk_mq_run_hw_queue(hctx, false); 2380 } 2381 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2382 2383 void blk_mq_start_hw_queues(struct request_queue *q) 2384 { 2385 struct blk_mq_hw_ctx *hctx; 2386 unsigned long i; 2387 2388 queue_for_each_hw_ctx(q, hctx, i) 2389 blk_mq_start_hw_queue(hctx); 2390 } 2391 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2392 2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2394 { 2395 if (!blk_mq_hctx_stopped(hctx)) 2396 return; 2397 2398 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2399 blk_mq_run_hw_queue(hctx, async); 2400 } 2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2402 2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2404 { 2405 struct blk_mq_hw_ctx *hctx; 2406 unsigned long i; 2407 2408 queue_for_each_hw_ctx(q, hctx, i) 2409 blk_mq_start_stopped_hw_queue(hctx, async); 2410 } 2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2412 2413 static void blk_mq_run_work_fn(struct work_struct *work) 2414 { 2415 struct blk_mq_hw_ctx *hctx = 2416 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2417 2418 blk_mq_run_dispatch_ops(hctx->queue, 2419 blk_mq_sched_dispatch_requests(hctx)); 2420 } 2421 2422 /** 2423 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2424 * @rq: Pointer to request to be inserted. 2425 * @flags: BLK_MQ_INSERT_* 2426 * 2427 * Should only be used carefully, when the caller knows we want to 2428 * bypass a potential IO scheduler on the target device. 2429 */ 2430 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2431 { 2432 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2433 2434 spin_lock(&hctx->lock); 2435 if (flags & BLK_MQ_INSERT_AT_HEAD) 2436 list_add(&rq->queuelist, &hctx->dispatch); 2437 else 2438 list_add_tail(&rq->queuelist, &hctx->dispatch); 2439 spin_unlock(&hctx->lock); 2440 } 2441 2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2443 struct blk_mq_ctx *ctx, struct list_head *list, 2444 bool run_queue_async) 2445 { 2446 struct request *rq; 2447 enum hctx_type type = hctx->type; 2448 2449 /* 2450 * Try to issue requests directly if the hw queue isn't busy to save an 2451 * extra enqueue & dequeue to the sw queue. 2452 */ 2453 if (!hctx->dispatch_busy && !run_queue_async) { 2454 blk_mq_run_dispatch_ops(hctx->queue, 2455 blk_mq_try_issue_list_directly(hctx, list)); 2456 if (list_empty(list)) 2457 goto out; 2458 } 2459 2460 /* 2461 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2462 * offline now 2463 */ 2464 list_for_each_entry(rq, list, queuelist) { 2465 BUG_ON(rq->mq_ctx != ctx); 2466 trace_block_rq_insert(rq); 2467 } 2468 2469 spin_lock(&ctx->lock); 2470 list_splice_tail_init(list, &ctx->rq_lists[type]); 2471 blk_mq_hctx_mark_pending(hctx, ctx); 2472 spin_unlock(&ctx->lock); 2473 out: 2474 blk_mq_run_hw_queue(hctx, run_queue_async); 2475 } 2476 2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2478 { 2479 struct request_queue *q = rq->q; 2480 struct blk_mq_ctx *ctx = rq->mq_ctx; 2481 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2482 2483 if (blk_rq_is_passthrough(rq)) { 2484 /* 2485 * Passthrough request have to be added to hctx->dispatch 2486 * directly. The device may be in a situation where it can't 2487 * handle FS request, and always returns BLK_STS_RESOURCE for 2488 * them, which gets them added to hctx->dispatch. 2489 * 2490 * If a passthrough request is required to unblock the queues, 2491 * and it is added to the scheduler queue, there is no chance to 2492 * dispatch it given we prioritize requests in hctx->dispatch. 2493 */ 2494 blk_mq_request_bypass_insert(rq, flags); 2495 } else if (rq->rq_flags & RQF_FLUSH_SEQ) { 2496 /* 2497 * Firstly normal IO request is inserted to scheduler queue or 2498 * sw queue, meantime we add flush request to dispatch queue( 2499 * hctx->dispatch) directly and there is at most one in-flight 2500 * flush request for each hw queue, so it doesn't matter to add 2501 * flush request to tail or front of the dispatch queue. 2502 * 2503 * Secondly in case of NCQ, flush request belongs to non-NCQ 2504 * command, and queueing it will fail when there is any 2505 * in-flight normal IO request(NCQ command). When adding flush 2506 * rq to the front of hctx->dispatch, it is easier to introduce 2507 * extra time to flush rq's latency because of S_SCHED_RESTART 2508 * compared with adding to the tail of dispatch queue, then 2509 * chance of flush merge is increased, and less flush requests 2510 * will be issued to controller. It is observed that ~10% time 2511 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2512 * drive when adding flush rq to the front of hctx->dispatch. 2513 * 2514 * Simply queue flush rq to the front of hctx->dispatch so that 2515 * intensive flush workloads can benefit in case of NCQ HW. 2516 */ 2517 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2518 } else if (q->elevator) { 2519 LIST_HEAD(list); 2520 2521 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2522 2523 list_add(&rq->queuelist, &list); 2524 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2525 } else { 2526 trace_block_rq_insert(rq); 2527 2528 spin_lock(&ctx->lock); 2529 if (flags & BLK_MQ_INSERT_AT_HEAD) 2530 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2531 else 2532 list_add_tail(&rq->queuelist, 2533 &ctx->rq_lists[hctx->type]); 2534 blk_mq_hctx_mark_pending(hctx, ctx); 2535 spin_unlock(&ctx->lock); 2536 } 2537 } 2538 2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2540 unsigned int nr_segs) 2541 { 2542 int err; 2543 2544 if (bio->bi_opf & REQ_RAHEAD) 2545 rq->cmd_flags |= REQ_FAILFAST_MASK; 2546 2547 rq->__sector = bio->bi_iter.bi_sector; 2548 blk_rq_bio_prep(rq, bio, nr_segs); 2549 2550 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2551 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2552 WARN_ON_ONCE(err); 2553 2554 blk_account_io_start(rq); 2555 } 2556 2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2558 struct request *rq, bool last) 2559 { 2560 struct request_queue *q = rq->q; 2561 struct blk_mq_queue_data bd = { 2562 .rq = rq, 2563 .last = last, 2564 }; 2565 blk_status_t ret; 2566 2567 /* 2568 * For OK queue, we are done. For error, caller may kill it. 2569 * Any other error (busy), just add it to our list as we 2570 * previously would have done. 2571 */ 2572 ret = q->mq_ops->queue_rq(hctx, &bd); 2573 switch (ret) { 2574 case BLK_STS_OK: 2575 blk_mq_update_dispatch_busy(hctx, false); 2576 break; 2577 case BLK_STS_RESOURCE: 2578 case BLK_STS_DEV_RESOURCE: 2579 blk_mq_update_dispatch_busy(hctx, true); 2580 __blk_mq_requeue_request(rq); 2581 break; 2582 default: 2583 blk_mq_update_dispatch_busy(hctx, false); 2584 break; 2585 } 2586 2587 return ret; 2588 } 2589 2590 static bool blk_mq_get_budget_and_tag(struct request *rq) 2591 { 2592 int budget_token; 2593 2594 budget_token = blk_mq_get_dispatch_budget(rq->q); 2595 if (budget_token < 0) 2596 return false; 2597 blk_mq_set_rq_budget_token(rq, budget_token); 2598 if (!blk_mq_get_driver_tag(rq)) { 2599 blk_mq_put_dispatch_budget(rq->q, budget_token); 2600 return false; 2601 } 2602 return true; 2603 } 2604 2605 /** 2606 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2607 * @hctx: Pointer of the associated hardware queue. 2608 * @rq: Pointer to request to be sent. 2609 * 2610 * If the device has enough resources to accept a new request now, send the 2611 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2612 * we can try send it another time in the future. Requests inserted at this 2613 * queue have higher priority. 2614 */ 2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2616 struct request *rq) 2617 { 2618 blk_status_t ret; 2619 2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2621 blk_mq_insert_request(rq, 0); 2622 return; 2623 } 2624 2625 if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) { 2626 blk_mq_insert_request(rq, 0); 2627 blk_mq_run_hw_queue(hctx, false); 2628 return; 2629 } 2630 2631 ret = __blk_mq_issue_directly(hctx, rq, true); 2632 switch (ret) { 2633 case BLK_STS_OK: 2634 break; 2635 case BLK_STS_RESOURCE: 2636 case BLK_STS_DEV_RESOURCE: 2637 blk_mq_request_bypass_insert(rq, 0); 2638 blk_mq_run_hw_queue(hctx, false); 2639 break; 2640 default: 2641 blk_mq_end_request(rq, ret); 2642 break; 2643 } 2644 } 2645 2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2647 { 2648 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2649 2650 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2651 blk_mq_insert_request(rq, 0); 2652 return BLK_STS_OK; 2653 } 2654 2655 if (!blk_mq_get_budget_and_tag(rq)) 2656 return BLK_STS_RESOURCE; 2657 return __blk_mq_issue_directly(hctx, rq, last); 2658 } 2659 2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2661 { 2662 struct blk_mq_hw_ctx *hctx = NULL; 2663 struct request *rq; 2664 int queued = 0; 2665 blk_status_t ret = BLK_STS_OK; 2666 2667 while ((rq = rq_list_pop(&plug->mq_list))) { 2668 bool last = rq_list_empty(plug->mq_list); 2669 2670 if (hctx != rq->mq_hctx) { 2671 if (hctx) { 2672 blk_mq_commit_rqs(hctx, queued, false); 2673 queued = 0; 2674 } 2675 hctx = rq->mq_hctx; 2676 } 2677 2678 ret = blk_mq_request_issue_directly(rq, last); 2679 switch (ret) { 2680 case BLK_STS_OK: 2681 queued++; 2682 break; 2683 case BLK_STS_RESOURCE: 2684 case BLK_STS_DEV_RESOURCE: 2685 blk_mq_request_bypass_insert(rq, 0); 2686 blk_mq_run_hw_queue(hctx, false); 2687 goto out; 2688 default: 2689 blk_mq_end_request(rq, ret); 2690 break; 2691 } 2692 } 2693 2694 out: 2695 if (ret != BLK_STS_OK) 2696 blk_mq_commit_rqs(hctx, queued, false); 2697 } 2698 2699 static void __blk_mq_flush_plug_list(struct request_queue *q, 2700 struct blk_plug *plug) 2701 { 2702 if (blk_queue_quiesced(q)) 2703 return; 2704 q->mq_ops->queue_rqs(&plug->mq_list); 2705 } 2706 2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2708 { 2709 struct blk_mq_hw_ctx *this_hctx = NULL; 2710 struct blk_mq_ctx *this_ctx = NULL; 2711 struct request *requeue_list = NULL; 2712 struct request **requeue_lastp = &requeue_list; 2713 unsigned int depth = 0; 2714 LIST_HEAD(list); 2715 2716 do { 2717 struct request *rq = rq_list_pop(&plug->mq_list); 2718 2719 if (!this_hctx) { 2720 this_hctx = rq->mq_hctx; 2721 this_ctx = rq->mq_ctx; 2722 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2723 rq_list_add_tail(&requeue_lastp, rq); 2724 continue; 2725 } 2726 list_add(&rq->queuelist, &list); 2727 depth++; 2728 } while (!rq_list_empty(plug->mq_list)); 2729 2730 plug->mq_list = requeue_list; 2731 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2732 2733 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2734 if (this_hctx->queue->elevator) { 2735 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2736 &list, 0); 2737 blk_mq_run_hw_queue(this_hctx, from_sched); 2738 } else { 2739 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2740 } 2741 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2742 } 2743 2744 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2745 { 2746 struct request *rq; 2747 2748 if (rq_list_empty(plug->mq_list)) 2749 return; 2750 plug->rq_count = 0; 2751 2752 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2753 struct request_queue *q; 2754 2755 rq = rq_list_peek(&plug->mq_list); 2756 q = rq->q; 2757 2758 /* 2759 * Peek first request and see if we have a ->queue_rqs() hook. 2760 * If we do, we can dispatch the whole plug list in one go. We 2761 * already know at this point that all requests belong to the 2762 * same queue, caller must ensure that's the case. 2763 * 2764 * Since we pass off the full list to the driver at this point, 2765 * we do not increment the active request count for the queue. 2766 * Bypass shared tags for now because of that. 2767 */ 2768 if (q->mq_ops->queue_rqs && 2769 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2770 blk_mq_run_dispatch_ops(q, 2771 __blk_mq_flush_plug_list(q, plug)); 2772 if (rq_list_empty(plug->mq_list)) 2773 return; 2774 } 2775 2776 blk_mq_run_dispatch_ops(q, 2777 blk_mq_plug_issue_direct(plug)); 2778 if (rq_list_empty(plug->mq_list)) 2779 return; 2780 } 2781 2782 do { 2783 blk_mq_dispatch_plug_list(plug, from_schedule); 2784 } while (!rq_list_empty(plug->mq_list)); 2785 } 2786 2787 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2788 struct list_head *list) 2789 { 2790 int queued = 0; 2791 blk_status_t ret = BLK_STS_OK; 2792 2793 while (!list_empty(list)) { 2794 struct request *rq = list_first_entry(list, struct request, 2795 queuelist); 2796 2797 list_del_init(&rq->queuelist); 2798 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2799 switch (ret) { 2800 case BLK_STS_OK: 2801 queued++; 2802 break; 2803 case BLK_STS_RESOURCE: 2804 case BLK_STS_DEV_RESOURCE: 2805 blk_mq_request_bypass_insert(rq, 0); 2806 if (list_empty(list)) 2807 blk_mq_run_hw_queue(hctx, false); 2808 goto out; 2809 default: 2810 blk_mq_end_request(rq, ret); 2811 break; 2812 } 2813 } 2814 2815 out: 2816 if (ret != BLK_STS_OK) 2817 blk_mq_commit_rqs(hctx, queued, false); 2818 } 2819 2820 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2821 struct bio *bio, unsigned int nr_segs) 2822 { 2823 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2824 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2825 return true; 2826 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2827 return true; 2828 } 2829 return false; 2830 } 2831 2832 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2833 struct blk_plug *plug, 2834 struct bio *bio, 2835 unsigned int nsegs) 2836 { 2837 struct blk_mq_alloc_data data = { 2838 .q = q, 2839 .nr_tags = 1, 2840 .cmd_flags = bio->bi_opf, 2841 }; 2842 struct request *rq; 2843 2844 if (unlikely(bio_queue_enter(bio))) 2845 return NULL; 2846 2847 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2848 goto queue_exit; 2849 2850 rq_qos_throttle(q, bio); 2851 2852 if (plug) { 2853 data.nr_tags = plug->nr_ios; 2854 plug->nr_ios = 1; 2855 data.cached_rq = &plug->cached_rq; 2856 } 2857 2858 rq = __blk_mq_alloc_requests(&data); 2859 if (rq) 2860 return rq; 2861 rq_qos_cleanup(q, bio); 2862 if (bio->bi_opf & REQ_NOWAIT) 2863 bio_wouldblock_error(bio); 2864 queue_exit: 2865 blk_queue_exit(q); 2866 return NULL; 2867 } 2868 2869 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2870 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2871 { 2872 struct request *rq; 2873 enum hctx_type type, hctx_type; 2874 2875 if (!plug) 2876 return NULL; 2877 rq = rq_list_peek(&plug->cached_rq); 2878 if (!rq || rq->q != q) 2879 return NULL; 2880 2881 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2882 *bio = NULL; 2883 return NULL; 2884 } 2885 2886 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2887 hctx_type = rq->mq_hctx->type; 2888 if (type != hctx_type && 2889 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2890 return NULL; 2891 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2892 return NULL; 2893 2894 /* 2895 * If any qos ->throttle() end up blocking, we will have flushed the 2896 * plug and hence killed the cached_rq list as well. Pop this entry 2897 * before we throttle. 2898 */ 2899 plug->cached_rq = rq_list_next(rq); 2900 rq_qos_throttle(q, *bio); 2901 2902 rq->cmd_flags = (*bio)->bi_opf; 2903 INIT_LIST_HEAD(&rq->queuelist); 2904 return rq; 2905 } 2906 2907 static void bio_set_ioprio(struct bio *bio) 2908 { 2909 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2910 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2911 bio->bi_ioprio = get_current_ioprio(); 2912 blkcg_set_ioprio(bio); 2913 } 2914 2915 /** 2916 * blk_mq_submit_bio - Create and send a request to block device. 2917 * @bio: Bio pointer. 2918 * 2919 * Builds up a request structure from @q and @bio and send to the device. The 2920 * request may not be queued directly to hardware if: 2921 * * This request can be merged with another one 2922 * * We want to place request at plug queue for possible future merging 2923 * * There is an IO scheduler active at this queue 2924 * 2925 * It will not queue the request if there is an error with the bio, or at the 2926 * request creation. 2927 */ 2928 void blk_mq_submit_bio(struct bio *bio) 2929 { 2930 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2931 struct blk_plug *plug = blk_mq_plug(bio); 2932 const int is_sync = op_is_sync(bio->bi_opf); 2933 struct blk_mq_hw_ctx *hctx; 2934 struct request *rq; 2935 unsigned int nr_segs = 1; 2936 blk_status_t ret; 2937 2938 bio = blk_queue_bounce(bio, q); 2939 if (bio_may_exceed_limits(bio, &q->limits)) { 2940 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2941 if (!bio) 2942 return; 2943 } 2944 2945 if (!bio_integrity_prep(bio)) 2946 return; 2947 2948 bio_set_ioprio(bio); 2949 2950 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2951 if (!rq) { 2952 if (!bio) 2953 return; 2954 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2955 if (unlikely(!rq)) 2956 return; 2957 } 2958 2959 trace_block_getrq(bio); 2960 2961 rq_qos_track(q, rq, bio); 2962 2963 blk_mq_bio_to_request(rq, bio, nr_segs); 2964 2965 ret = blk_crypto_rq_get_keyslot(rq); 2966 if (ret != BLK_STS_OK) { 2967 bio->bi_status = ret; 2968 bio_endio(bio); 2969 blk_mq_free_request(rq); 2970 return; 2971 } 2972 2973 if (op_is_flush(bio->bi_opf)) { 2974 blk_insert_flush(rq); 2975 return; 2976 } 2977 2978 if (plug) { 2979 blk_add_rq_to_plug(plug, rq); 2980 return; 2981 } 2982 2983 hctx = rq->mq_hctx; 2984 if ((rq->rq_flags & RQF_ELV) || 2985 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 2986 blk_mq_insert_request(rq, 0); 2987 blk_mq_run_hw_queue(hctx, true); 2988 } else { 2989 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 2990 } 2991 } 2992 2993 #ifdef CONFIG_BLK_MQ_STACKING 2994 /** 2995 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2996 * @rq: the request being queued 2997 */ 2998 blk_status_t blk_insert_cloned_request(struct request *rq) 2999 { 3000 struct request_queue *q = rq->q; 3001 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3002 unsigned int max_segments = blk_rq_get_max_segments(rq); 3003 blk_status_t ret; 3004 3005 if (blk_rq_sectors(rq) > max_sectors) { 3006 /* 3007 * SCSI device does not have a good way to return if 3008 * Write Same/Zero is actually supported. If a device rejects 3009 * a non-read/write command (discard, write same,etc.) the 3010 * low-level device driver will set the relevant queue limit to 3011 * 0 to prevent blk-lib from issuing more of the offending 3012 * operations. Commands queued prior to the queue limit being 3013 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3014 * errors being propagated to upper layers. 3015 */ 3016 if (max_sectors == 0) 3017 return BLK_STS_NOTSUPP; 3018 3019 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3020 __func__, blk_rq_sectors(rq), max_sectors); 3021 return BLK_STS_IOERR; 3022 } 3023 3024 /* 3025 * The queue settings related to segment counting may differ from the 3026 * original queue. 3027 */ 3028 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3029 if (rq->nr_phys_segments > max_segments) { 3030 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3031 __func__, rq->nr_phys_segments, max_segments); 3032 return BLK_STS_IOERR; 3033 } 3034 3035 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3036 return BLK_STS_IOERR; 3037 3038 ret = blk_crypto_rq_get_keyslot(rq); 3039 if (ret != BLK_STS_OK) 3040 return ret; 3041 3042 blk_account_io_start(rq); 3043 3044 /* 3045 * Since we have a scheduler attached on the top device, 3046 * bypass a potential scheduler on the bottom device for 3047 * insert. 3048 */ 3049 blk_mq_run_dispatch_ops(q, 3050 ret = blk_mq_request_issue_directly(rq, true)); 3051 if (ret) 3052 blk_account_io_done(rq, ktime_get_ns()); 3053 return ret; 3054 } 3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3056 3057 /** 3058 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3059 * @rq: the clone request to be cleaned up 3060 * 3061 * Description: 3062 * Free all bios in @rq for a cloned request. 3063 */ 3064 void blk_rq_unprep_clone(struct request *rq) 3065 { 3066 struct bio *bio; 3067 3068 while ((bio = rq->bio) != NULL) { 3069 rq->bio = bio->bi_next; 3070 3071 bio_put(bio); 3072 } 3073 } 3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3075 3076 /** 3077 * blk_rq_prep_clone - Helper function to setup clone request 3078 * @rq: the request to be setup 3079 * @rq_src: original request to be cloned 3080 * @bs: bio_set that bios for clone are allocated from 3081 * @gfp_mask: memory allocation mask for bio 3082 * @bio_ctr: setup function to be called for each clone bio. 3083 * Returns %0 for success, non %0 for failure. 3084 * @data: private data to be passed to @bio_ctr 3085 * 3086 * Description: 3087 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3088 * Also, pages which the original bios are pointing to are not copied 3089 * and the cloned bios just point same pages. 3090 * So cloned bios must be completed before original bios, which means 3091 * the caller must complete @rq before @rq_src. 3092 */ 3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3094 struct bio_set *bs, gfp_t gfp_mask, 3095 int (*bio_ctr)(struct bio *, struct bio *, void *), 3096 void *data) 3097 { 3098 struct bio *bio, *bio_src; 3099 3100 if (!bs) 3101 bs = &fs_bio_set; 3102 3103 __rq_for_each_bio(bio_src, rq_src) { 3104 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3105 bs); 3106 if (!bio) 3107 goto free_and_out; 3108 3109 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3110 goto free_and_out; 3111 3112 if (rq->bio) { 3113 rq->biotail->bi_next = bio; 3114 rq->biotail = bio; 3115 } else { 3116 rq->bio = rq->biotail = bio; 3117 } 3118 bio = NULL; 3119 } 3120 3121 /* Copy attributes of the original request to the clone request. */ 3122 rq->__sector = blk_rq_pos(rq_src); 3123 rq->__data_len = blk_rq_bytes(rq_src); 3124 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3125 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3126 rq->special_vec = rq_src->special_vec; 3127 } 3128 rq->nr_phys_segments = rq_src->nr_phys_segments; 3129 rq->ioprio = rq_src->ioprio; 3130 3131 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3132 goto free_and_out; 3133 3134 return 0; 3135 3136 free_and_out: 3137 if (bio) 3138 bio_put(bio); 3139 blk_rq_unprep_clone(rq); 3140 3141 return -ENOMEM; 3142 } 3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3144 #endif /* CONFIG_BLK_MQ_STACKING */ 3145 3146 /* 3147 * Steal bios from a request and add them to a bio list. 3148 * The request must not have been partially completed before. 3149 */ 3150 void blk_steal_bios(struct bio_list *list, struct request *rq) 3151 { 3152 if (rq->bio) { 3153 if (list->tail) 3154 list->tail->bi_next = rq->bio; 3155 else 3156 list->head = rq->bio; 3157 list->tail = rq->biotail; 3158 3159 rq->bio = NULL; 3160 rq->biotail = NULL; 3161 } 3162 3163 rq->__data_len = 0; 3164 } 3165 EXPORT_SYMBOL_GPL(blk_steal_bios); 3166 3167 static size_t order_to_size(unsigned int order) 3168 { 3169 return (size_t)PAGE_SIZE << order; 3170 } 3171 3172 /* called before freeing request pool in @tags */ 3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3174 struct blk_mq_tags *tags) 3175 { 3176 struct page *page; 3177 unsigned long flags; 3178 3179 /* 3180 * There is no need to clear mapping if driver tags is not initialized 3181 * or the mapping belongs to the driver tags. 3182 */ 3183 if (!drv_tags || drv_tags == tags) 3184 return; 3185 3186 list_for_each_entry(page, &tags->page_list, lru) { 3187 unsigned long start = (unsigned long)page_address(page); 3188 unsigned long end = start + order_to_size(page->private); 3189 int i; 3190 3191 for (i = 0; i < drv_tags->nr_tags; i++) { 3192 struct request *rq = drv_tags->rqs[i]; 3193 unsigned long rq_addr = (unsigned long)rq; 3194 3195 if (rq_addr >= start && rq_addr < end) { 3196 WARN_ON_ONCE(req_ref_read(rq) != 0); 3197 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3198 } 3199 } 3200 } 3201 3202 /* 3203 * Wait until all pending iteration is done. 3204 * 3205 * Request reference is cleared and it is guaranteed to be observed 3206 * after the ->lock is released. 3207 */ 3208 spin_lock_irqsave(&drv_tags->lock, flags); 3209 spin_unlock_irqrestore(&drv_tags->lock, flags); 3210 } 3211 3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3213 unsigned int hctx_idx) 3214 { 3215 struct blk_mq_tags *drv_tags; 3216 struct page *page; 3217 3218 if (list_empty(&tags->page_list)) 3219 return; 3220 3221 if (blk_mq_is_shared_tags(set->flags)) 3222 drv_tags = set->shared_tags; 3223 else 3224 drv_tags = set->tags[hctx_idx]; 3225 3226 if (tags->static_rqs && set->ops->exit_request) { 3227 int i; 3228 3229 for (i = 0; i < tags->nr_tags; i++) { 3230 struct request *rq = tags->static_rqs[i]; 3231 3232 if (!rq) 3233 continue; 3234 set->ops->exit_request(set, rq, hctx_idx); 3235 tags->static_rqs[i] = NULL; 3236 } 3237 } 3238 3239 blk_mq_clear_rq_mapping(drv_tags, tags); 3240 3241 while (!list_empty(&tags->page_list)) { 3242 page = list_first_entry(&tags->page_list, struct page, lru); 3243 list_del_init(&page->lru); 3244 /* 3245 * Remove kmemleak object previously allocated in 3246 * blk_mq_alloc_rqs(). 3247 */ 3248 kmemleak_free(page_address(page)); 3249 __free_pages(page, page->private); 3250 } 3251 } 3252 3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3254 { 3255 kfree(tags->rqs); 3256 tags->rqs = NULL; 3257 kfree(tags->static_rqs); 3258 tags->static_rqs = NULL; 3259 3260 blk_mq_free_tags(tags); 3261 } 3262 3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3264 unsigned int hctx_idx) 3265 { 3266 int i; 3267 3268 for (i = 0; i < set->nr_maps; i++) { 3269 unsigned int start = set->map[i].queue_offset; 3270 unsigned int end = start + set->map[i].nr_queues; 3271 3272 if (hctx_idx >= start && hctx_idx < end) 3273 break; 3274 } 3275 3276 if (i >= set->nr_maps) 3277 i = HCTX_TYPE_DEFAULT; 3278 3279 return i; 3280 } 3281 3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3283 unsigned int hctx_idx) 3284 { 3285 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3286 3287 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3288 } 3289 3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3291 unsigned int hctx_idx, 3292 unsigned int nr_tags, 3293 unsigned int reserved_tags) 3294 { 3295 int node = blk_mq_get_hctx_node(set, hctx_idx); 3296 struct blk_mq_tags *tags; 3297 3298 if (node == NUMA_NO_NODE) 3299 node = set->numa_node; 3300 3301 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3302 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3303 if (!tags) 3304 return NULL; 3305 3306 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3307 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3308 node); 3309 if (!tags->rqs) 3310 goto err_free_tags; 3311 3312 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3313 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3314 node); 3315 if (!tags->static_rqs) 3316 goto err_free_rqs; 3317 3318 return tags; 3319 3320 err_free_rqs: 3321 kfree(tags->rqs); 3322 err_free_tags: 3323 blk_mq_free_tags(tags); 3324 return NULL; 3325 } 3326 3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3328 unsigned int hctx_idx, int node) 3329 { 3330 int ret; 3331 3332 if (set->ops->init_request) { 3333 ret = set->ops->init_request(set, rq, hctx_idx, node); 3334 if (ret) 3335 return ret; 3336 } 3337 3338 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3339 return 0; 3340 } 3341 3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3343 struct blk_mq_tags *tags, 3344 unsigned int hctx_idx, unsigned int depth) 3345 { 3346 unsigned int i, j, entries_per_page, max_order = 4; 3347 int node = blk_mq_get_hctx_node(set, hctx_idx); 3348 size_t rq_size, left; 3349 3350 if (node == NUMA_NO_NODE) 3351 node = set->numa_node; 3352 3353 INIT_LIST_HEAD(&tags->page_list); 3354 3355 /* 3356 * rq_size is the size of the request plus driver payload, rounded 3357 * to the cacheline size 3358 */ 3359 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3360 cache_line_size()); 3361 left = rq_size * depth; 3362 3363 for (i = 0; i < depth; ) { 3364 int this_order = max_order; 3365 struct page *page; 3366 int to_do; 3367 void *p; 3368 3369 while (this_order && left < order_to_size(this_order - 1)) 3370 this_order--; 3371 3372 do { 3373 page = alloc_pages_node(node, 3374 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3375 this_order); 3376 if (page) 3377 break; 3378 if (!this_order--) 3379 break; 3380 if (order_to_size(this_order) < rq_size) 3381 break; 3382 } while (1); 3383 3384 if (!page) 3385 goto fail; 3386 3387 page->private = this_order; 3388 list_add_tail(&page->lru, &tags->page_list); 3389 3390 p = page_address(page); 3391 /* 3392 * Allow kmemleak to scan these pages as they contain pointers 3393 * to additional allocations like via ops->init_request(). 3394 */ 3395 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3396 entries_per_page = order_to_size(this_order) / rq_size; 3397 to_do = min(entries_per_page, depth - i); 3398 left -= to_do * rq_size; 3399 for (j = 0; j < to_do; j++) { 3400 struct request *rq = p; 3401 3402 tags->static_rqs[i] = rq; 3403 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3404 tags->static_rqs[i] = NULL; 3405 goto fail; 3406 } 3407 3408 p += rq_size; 3409 i++; 3410 } 3411 } 3412 return 0; 3413 3414 fail: 3415 blk_mq_free_rqs(set, tags, hctx_idx); 3416 return -ENOMEM; 3417 } 3418 3419 struct rq_iter_data { 3420 struct blk_mq_hw_ctx *hctx; 3421 bool has_rq; 3422 }; 3423 3424 static bool blk_mq_has_request(struct request *rq, void *data) 3425 { 3426 struct rq_iter_data *iter_data = data; 3427 3428 if (rq->mq_hctx != iter_data->hctx) 3429 return true; 3430 iter_data->has_rq = true; 3431 return false; 3432 } 3433 3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3435 { 3436 struct blk_mq_tags *tags = hctx->sched_tags ? 3437 hctx->sched_tags : hctx->tags; 3438 struct rq_iter_data data = { 3439 .hctx = hctx, 3440 }; 3441 3442 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3443 return data.has_rq; 3444 } 3445 3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3447 struct blk_mq_hw_ctx *hctx) 3448 { 3449 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3450 return false; 3451 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3452 return false; 3453 return true; 3454 } 3455 3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3457 { 3458 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3459 struct blk_mq_hw_ctx, cpuhp_online); 3460 3461 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3462 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3463 return 0; 3464 3465 /* 3466 * Prevent new request from being allocated on the current hctx. 3467 * 3468 * The smp_mb__after_atomic() Pairs with the implied barrier in 3469 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3470 * seen once we return from the tag allocator. 3471 */ 3472 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3473 smp_mb__after_atomic(); 3474 3475 /* 3476 * Try to grab a reference to the queue and wait for any outstanding 3477 * requests. If we could not grab a reference the queue has been 3478 * frozen and there are no requests. 3479 */ 3480 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3481 while (blk_mq_hctx_has_requests(hctx)) 3482 msleep(5); 3483 percpu_ref_put(&hctx->queue->q_usage_counter); 3484 } 3485 3486 return 0; 3487 } 3488 3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3490 { 3491 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3492 struct blk_mq_hw_ctx, cpuhp_online); 3493 3494 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3495 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3496 return 0; 3497 } 3498 3499 /* 3500 * 'cpu' is going away. splice any existing rq_list entries from this 3501 * software queue to the hw queue dispatch list, and ensure that it 3502 * gets run. 3503 */ 3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3505 { 3506 struct blk_mq_hw_ctx *hctx; 3507 struct blk_mq_ctx *ctx; 3508 LIST_HEAD(tmp); 3509 enum hctx_type type; 3510 3511 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3512 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3513 return 0; 3514 3515 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3516 type = hctx->type; 3517 3518 spin_lock(&ctx->lock); 3519 if (!list_empty(&ctx->rq_lists[type])) { 3520 list_splice_init(&ctx->rq_lists[type], &tmp); 3521 blk_mq_hctx_clear_pending(hctx, ctx); 3522 } 3523 spin_unlock(&ctx->lock); 3524 3525 if (list_empty(&tmp)) 3526 return 0; 3527 3528 spin_lock(&hctx->lock); 3529 list_splice_tail_init(&tmp, &hctx->dispatch); 3530 spin_unlock(&hctx->lock); 3531 3532 blk_mq_run_hw_queue(hctx, true); 3533 return 0; 3534 } 3535 3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3537 { 3538 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3539 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3540 &hctx->cpuhp_online); 3541 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3542 &hctx->cpuhp_dead); 3543 } 3544 3545 /* 3546 * Before freeing hw queue, clearing the flush request reference in 3547 * tags->rqs[] for avoiding potential UAF. 3548 */ 3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3550 unsigned int queue_depth, struct request *flush_rq) 3551 { 3552 int i; 3553 unsigned long flags; 3554 3555 /* The hw queue may not be mapped yet */ 3556 if (!tags) 3557 return; 3558 3559 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3560 3561 for (i = 0; i < queue_depth; i++) 3562 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3563 3564 /* 3565 * Wait until all pending iteration is done. 3566 * 3567 * Request reference is cleared and it is guaranteed to be observed 3568 * after the ->lock is released. 3569 */ 3570 spin_lock_irqsave(&tags->lock, flags); 3571 spin_unlock_irqrestore(&tags->lock, flags); 3572 } 3573 3574 /* hctx->ctxs will be freed in queue's release handler */ 3575 static void blk_mq_exit_hctx(struct request_queue *q, 3576 struct blk_mq_tag_set *set, 3577 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3578 { 3579 struct request *flush_rq = hctx->fq->flush_rq; 3580 3581 if (blk_mq_hw_queue_mapped(hctx)) 3582 blk_mq_tag_idle(hctx); 3583 3584 if (blk_queue_init_done(q)) 3585 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3586 set->queue_depth, flush_rq); 3587 if (set->ops->exit_request) 3588 set->ops->exit_request(set, flush_rq, hctx_idx); 3589 3590 if (set->ops->exit_hctx) 3591 set->ops->exit_hctx(hctx, hctx_idx); 3592 3593 blk_mq_remove_cpuhp(hctx); 3594 3595 xa_erase(&q->hctx_table, hctx_idx); 3596 3597 spin_lock(&q->unused_hctx_lock); 3598 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3599 spin_unlock(&q->unused_hctx_lock); 3600 } 3601 3602 static void blk_mq_exit_hw_queues(struct request_queue *q, 3603 struct blk_mq_tag_set *set, int nr_queue) 3604 { 3605 struct blk_mq_hw_ctx *hctx; 3606 unsigned long i; 3607 3608 queue_for_each_hw_ctx(q, hctx, i) { 3609 if (i == nr_queue) 3610 break; 3611 blk_mq_exit_hctx(q, set, hctx, i); 3612 } 3613 } 3614 3615 static int blk_mq_init_hctx(struct request_queue *q, 3616 struct blk_mq_tag_set *set, 3617 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3618 { 3619 hctx->queue_num = hctx_idx; 3620 3621 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3622 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3623 &hctx->cpuhp_online); 3624 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3625 3626 hctx->tags = set->tags[hctx_idx]; 3627 3628 if (set->ops->init_hctx && 3629 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3630 goto unregister_cpu_notifier; 3631 3632 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3633 hctx->numa_node)) 3634 goto exit_hctx; 3635 3636 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3637 goto exit_flush_rq; 3638 3639 return 0; 3640 3641 exit_flush_rq: 3642 if (set->ops->exit_request) 3643 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3644 exit_hctx: 3645 if (set->ops->exit_hctx) 3646 set->ops->exit_hctx(hctx, hctx_idx); 3647 unregister_cpu_notifier: 3648 blk_mq_remove_cpuhp(hctx); 3649 return -1; 3650 } 3651 3652 static struct blk_mq_hw_ctx * 3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3654 int node) 3655 { 3656 struct blk_mq_hw_ctx *hctx; 3657 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3658 3659 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3660 if (!hctx) 3661 goto fail_alloc_hctx; 3662 3663 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3664 goto free_hctx; 3665 3666 atomic_set(&hctx->nr_active, 0); 3667 if (node == NUMA_NO_NODE) 3668 node = set->numa_node; 3669 hctx->numa_node = node; 3670 3671 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3672 spin_lock_init(&hctx->lock); 3673 INIT_LIST_HEAD(&hctx->dispatch); 3674 hctx->queue = q; 3675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3676 3677 INIT_LIST_HEAD(&hctx->hctx_list); 3678 3679 /* 3680 * Allocate space for all possible cpus to avoid allocation at 3681 * runtime 3682 */ 3683 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3684 gfp, node); 3685 if (!hctx->ctxs) 3686 goto free_cpumask; 3687 3688 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3689 gfp, node, false, false)) 3690 goto free_ctxs; 3691 hctx->nr_ctx = 0; 3692 3693 spin_lock_init(&hctx->dispatch_wait_lock); 3694 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3695 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3696 3697 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3698 if (!hctx->fq) 3699 goto free_bitmap; 3700 3701 blk_mq_hctx_kobj_init(hctx); 3702 3703 return hctx; 3704 3705 free_bitmap: 3706 sbitmap_free(&hctx->ctx_map); 3707 free_ctxs: 3708 kfree(hctx->ctxs); 3709 free_cpumask: 3710 free_cpumask_var(hctx->cpumask); 3711 free_hctx: 3712 kfree(hctx); 3713 fail_alloc_hctx: 3714 return NULL; 3715 } 3716 3717 static void blk_mq_init_cpu_queues(struct request_queue *q, 3718 unsigned int nr_hw_queues) 3719 { 3720 struct blk_mq_tag_set *set = q->tag_set; 3721 unsigned int i, j; 3722 3723 for_each_possible_cpu(i) { 3724 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3725 struct blk_mq_hw_ctx *hctx; 3726 int k; 3727 3728 __ctx->cpu = i; 3729 spin_lock_init(&__ctx->lock); 3730 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3731 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3732 3733 __ctx->queue = q; 3734 3735 /* 3736 * Set local node, IFF we have more than one hw queue. If 3737 * not, we remain on the home node of the device 3738 */ 3739 for (j = 0; j < set->nr_maps; j++) { 3740 hctx = blk_mq_map_queue_type(q, j, i); 3741 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3742 hctx->numa_node = cpu_to_node(i); 3743 } 3744 } 3745 } 3746 3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3748 unsigned int hctx_idx, 3749 unsigned int depth) 3750 { 3751 struct blk_mq_tags *tags; 3752 int ret; 3753 3754 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3755 if (!tags) 3756 return NULL; 3757 3758 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3759 if (ret) { 3760 blk_mq_free_rq_map(tags); 3761 return NULL; 3762 } 3763 3764 return tags; 3765 } 3766 3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3768 int hctx_idx) 3769 { 3770 if (blk_mq_is_shared_tags(set->flags)) { 3771 set->tags[hctx_idx] = set->shared_tags; 3772 3773 return true; 3774 } 3775 3776 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3777 set->queue_depth); 3778 3779 return set->tags[hctx_idx]; 3780 } 3781 3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3783 struct blk_mq_tags *tags, 3784 unsigned int hctx_idx) 3785 { 3786 if (tags) { 3787 blk_mq_free_rqs(set, tags, hctx_idx); 3788 blk_mq_free_rq_map(tags); 3789 } 3790 } 3791 3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3793 unsigned int hctx_idx) 3794 { 3795 if (!blk_mq_is_shared_tags(set->flags)) 3796 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3797 3798 set->tags[hctx_idx] = NULL; 3799 } 3800 3801 static void blk_mq_map_swqueue(struct request_queue *q) 3802 { 3803 unsigned int j, hctx_idx; 3804 unsigned long i; 3805 struct blk_mq_hw_ctx *hctx; 3806 struct blk_mq_ctx *ctx; 3807 struct blk_mq_tag_set *set = q->tag_set; 3808 3809 queue_for_each_hw_ctx(q, hctx, i) { 3810 cpumask_clear(hctx->cpumask); 3811 hctx->nr_ctx = 0; 3812 hctx->dispatch_from = NULL; 3813 } 3814 3815 /* 3816 * Map software to hardware queues. 3817 * 3818 * If the cpu isn't present, the cpu is mapped to first hctx. 3819 */ 3820 for_each_possible_cpu(i) { 3821 3822 ctx = per_cpu_ptr(q->queue_ctx, i); 3823 for (j = 0; j < set->nr_maps; j++) { 3824 if (!set->map[j].nr_queues) { 3825 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3826 HCTX_TYPE_DEFAULT, i); 3827 continue; 3828 } 3829 hctx_idx = set->map[j].mq_map[i]; 3830 /* unmapped hw queue can be remapped after CPU topo changed */ 3831 if (!set->tags[hctx_idx] && 3832 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3833 /* 3834 * If tags initialization fail for some hctx, 3835 * that hctx won't be brought online. In this 3836 * case, remap the current ctx to hctx[0] which 3837 * is guaranteed to always have tags allocated 3838 */ 3839 set->map[j].mq_map[i] = 0; 3840 } 3841 3842 hctx = blk_mq_map_queue_type(q, j, i); 3843 ctx->hctxs[j] = hctx; 3844 /* 3845 * If the CPU is already set in the mask, then we've 3846 * mapped this one already. This can happen if 3847 * devices share queues across queue maps. 3848 */ 3849 if (cpumask_test_cpu(i, hctx->cpumask)) 3850 continue; 3851 3852 cpumask_set_cpu(i, hctx->cpumask); 3853 hctx->type = j; 3854 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3855 hctx->ctxs[hctx->nr_ctx++] = ctx; 3856 3857 /* 3858 * If the nr_ctx type overflows, we have exceeded the 3859 * amount of sw queues we can support. 3860 */ 3861 BUG_ON(!hctx->nr_ctx); 3862 } 3863 3864 for (; j < HCTX_MAX_TYPES; j++) 3865 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3866 HCTX_TYPE_DEFAULT, i); 3867 } 3868 3869 queue_for_each_hw_ctx(q, hctx, i) { 3870 /* 3871 * If no software queues are mapped to this hardware queue, 3872 * disable it and free the request entries. 3873 */ 3874 if (!hctx->nr_ctx) { 3875 /* Never unmap queue 0. We need it as a 3876 * fallback in case of a new remap fails 3877 * allocation 3878 */ 3879 if (i) 3880 __blk_mq_free_map_and_rqs(set, i); 3881 3882 hctx->tags = NULL; 3883 continue; 3884 } 3885 3886 hctx->tags = set->tags[i]; 3887 WARN_ON(!hctx->tags); 3888 3889 /* 3890 * Set the map size to the number of mapped software queues. 3891 * This is more accurate and more efficient than looping 3892 * over all possibly mapped software queues. 3893 */ 3894 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3895 3896 /* 3897 * Initialize batch roundrobin counts 3898 */ 3899 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3900 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3901 } 3902 } 3903 3904 /* 3905 * Caller needs to ensure that we're either frozen/quiesced, or that 3906 * the queue isn't live yet. 3907 */ 3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3909 { 3910 struct blk_mq_hw_ctx *hctx; 3911 unsigned long i; 3912 3913 queue_for_each_hw_ctx(q, hctx, i) { 3914 if (shared) { 3915 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3916 } else { 3917 blk_mq_tag_idle(hctx); 3918 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3919 } 3920 } 3921 } 3922 3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3924 bool shared) 3925 { 3926 struct request_queue *q; 3927 3928 lockdep_assert_held(&set->tag_list_lock); 3929 3930 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3931 blk_mq_freeze_queue(q); 3932 queue_set_hctx_shared(q, shared); 3933 blk_mq_unfreeze_queue(q); 3934 } 3935 } 3936 3937 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3938 { 3939 struct blk_mq_tag_set *set = q->tag_set; 3940 3941 mutex_lock(&set->tag_list_lock); 3942 list_del(&q->tag_set_list); 3943 if (list_is_singular(&set->tag_list)) { 3944 /* just transitioned to unshared */ 3945 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3946 /* update existing queue */ 3947 blk_mq_update_tag_set_shared(set, false); 3948 } 3949 mutex_unlock(&set->tag_list_lock); 3950 INIT_LIST_HEAD(&q->tag_set_list); 3951 } 3952 3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3954 struct request_queue *q) 3955 { 3956 mutex_lock(&set->tag_list_lock); 3957 3958 /* 3959 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3960 */ 3961 if (!list_empty(&set->tag_list) && 3962 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3963 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3964 /* update existing queue */ 3965 blk_mq_update_tag_set_shared(set, true); 3966 } 3967 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3968 queue_set_hctx_shared(q, true); 3969 list_add_tail(&q->tag_set_list, &set->tag_list); 3970 3971 mutex_unlock(&set->tag_list_lock); 3972 } 3973 3974 /* All allocations will be freed in release handler of q->mq_kobj */ 3975 static int blk_mq_alloc_ctxs(struct request_queue *q) 3976 { 3977 struct blk_mq_ctxs *ctxs; 3978 int cpu; 3979 3980 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3981 if (!ctxs) 3982 return -ENOMEM; 3983 3984 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3985 if (!ctxs->queue_ctx) 3986 goto fail; 3987 3988 for_each_possible_cpu(cpu) { 3989 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3990 ctx->ctxs = ctxs; 3991 } 3992 3993 q->mq_kobj = &ctxs->kobj; 3994 q->queue_ctx = ctxs->queue_ctx; 3995 3996 return 0; 3997 fail: 3998 kfree(ctxs); 3999 return -ENOMEM; 4000 } 4001 4002 /* 4003 * It is the actual release handler for mq, but we do it from 4004 * request queue's release handler for avoiding use-after-free 4005 * and headache because q->mq_kobj shouldn't have been introduced, 4006 * but we can't group ctx/kctx kobj without it. 4007 */ 4008 void blk_mq_release(struct request_queue *q) 4009 { 4010 struct blk_mq_hw_ctx *hctx, *next; 4011 unsigned long i; 4012 4013 queue_for_each_hw_ctx(q, hctx, i) 4014 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4015 4016 /* all hctx are in .unused_hctx_list now */ 4017 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4018 list_del_init(&hctx->hctx_list); 4019 kobject_put(&hctx->kobj); 4020 } 4021 4022 xa_destroy(&q->hctx_table); 4023 4024 /* 4025 * release .mq_kobj and sw queue's kobject now because 4026 * both share lifetime with request queue. 4027 */ 4028 blk_mq_sysfs_deinit(q); 4029 } 4030 4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4032 void *queuedata) 4033 { 4034 struct request_queue *q; 4035 int ret; 4036 4037 q = blk_alloc_queue(set->numa_node); 4038 if (!q) 4039 return ERR_PTR(-ENOMEM); 4040 q->queuedata = queuedata; 4041 ret = blk_mq_init_allocated_queue(set, q); 4042 if (ret) { 4043 blk_put_queue(q); 4044 return ERR_PTR(ret); 4045 } 4046 return q; 4047 } 4048 4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4050 { 4051 return blk_mq_init_queue_data(set, NULL); 4052 } 4053 EXPORT_SYMBOL(blk_mq_init_queue); 4054 4055 /** 4056 * blk_mq_destroy_queue - shutdown a request queue 4057 * @q: request queue to shutdown 4058 * 4059 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4060 * requests will be failed with -ENODEV. The caller is responsible for dropping 4061 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4062 * 4063 * Context: can sleep 4064 */ 4065 void blk_mq_destroy_queue(struct request_queue *q) 4066 { 4067 WARN_ON_ONCE(!queue_is_mq(q)); 4068 WARN_ON_ONCE(blk_queue_registered(q)); 4069 4070 might_sleep(); 4071 4072 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4073 blk_queue_start_drain(q); 4074 blk_mq_freeze_queue_wait(q); 4075 4076 blk_sync_queue(q); 4077 blk_mq_cancel_work_sync(q); 4078 blk_mq_exit_queue(q); 4079 } 4080 EXPORT_SYMBOL(blk_mq_destroy_queue); 4081 4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4083 struct lock_class_key *lkclass) 4084 { 4085 struct request_queue *q; 4086 struct gendisk *disk; 4087 4088 q = blk_mq_init_queue_data(set, queuedata); 4089 if (IS_ERR(q)) 4090 return ERR_CAST(q); 4091 4092 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4093 if (!disk) { 4094 blk_mq_destroy_queue(q); 4095 blk_put_queue(q); 4096 return ERR_PTR(-ENOMEM); 4097 } 4098 set_bit(GD_OWNS_QUEUE, &disk->state); 4099 return disk; 4100 } 4101 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4102 4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4104 struct lock_class_key *lkclass) 4105 { 4106 struct gendisk *disk; 4107 4108 if (!blk_get_queue(q)) 4109 return NULL; 4110 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4111 if (!disk) 4112 blk_put_queue(q); 4113 return disk; 4114 } 4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4116 4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4118 struct blk_mq_tag_set *set, struct request_queue *q, 4119 int hctx_idx, int node) 4120 { 4121 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4122 4123 /* reuse dead hctx first */ 4124 spin_lock(&q->unused_hctx_lock); 4125 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4126 if (tmp->numa_node == node) { 4127 hctx = tmp; 4128 break; 4129 } 4130 } 4131 if (hctx) 4132 list_del_init(&hctx->hctx_list); 4133 spin_unlock(&q->unused_hctx_lock); 4134 4135 if (!hctx) 4136 hctx = blk_mq_alloc_hctx(q, set, node); 4137 if (!hctx) 4138 goto fail; 4139 4140 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4141 goto free_hctx; 4142 4143 return hctx; 4144 4145 free_hctx: 4146 kobject_put(&hctx->kobj); 4147 fail: 4148 return NULL; 4149 } 4150 4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4152 struct request_queue *q) 4153 { 4154 struct blk_mq_hw_ctx *hctx; 4155 unsigned long i, j; 4156 4157 /* protect against switching io scheduler */ 4158 mutex_lock(&q->sysfs_lock); 4159 for (i = 0; i < set->nr_hw_queues; i++) { 4160 int old_node; 4161 int node = blk_mq_get_hctx_node(set, i); 4162 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4163 4164 if (old_hctx) { 4165 old_node = old_hctx->numa_node; 4166 blk_mq_exit_hctx(q, set, old_hctx, i); 4167 } 4168 4169 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4170 if (!old_hctx) 4171 break; 4172 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4173 node, old_node); 4174 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4175 WARN_ON_ONCE(!hctx); 4176 } 4177 } 4178 /* 4179 * Increasing nr_hw_queues fails. Free the newly allocated 4180 * hctxs and keep the previous q->nr_hw_queues. 4181 */ 4182 if (i != set->nr_hw_queues) { 4183 j = q->nr_hw_queues; 4184 } else { 4185 j = i; 4186 q->nr_hw_queues = set->nr_hw_queues; 4187 } 4188 4189 xa_for_each_start(&q->hctx_table, j, hctx, j) 4190 blk_mq_exit_hctx(q, set, hctx, j); 4191 mutex_unlock(&q->sysfs_lock); 4192 } 4193 4194 static void blk_mq_update_poll_flag(struct request_queue *q) 4195 { 4196 struct blk_mq_tag_set *set = q->tag_set; 4197 4198 if (set->nr_maps > HCTX_TYPE_POLL && 4199 set->map[HCTX_TYPE_POLL].nr_queues) 4200 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4201 else 4202 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4203 } 4204 4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4206 struct request_queue *q) 4207 { 4208 /* mark the queue as mq asap */ 4209 q->mq_ops = set->ops; 4210 4211 if (blk_mq_alloc_ctxs(q)) 4212 goto err_exit; 4213 4214 /* init q->mq_kobj and sw queues' kobjects */ 4215 blk_mq_sysfs_init(q); 4216 4217 INIT_LIST_HEAD(&q->unused_hctx_list); 4218 spin_lock_init(&q->unused_hctx_lock); 4219 4220 xa_init(&q->hctx_table); 4221 4222 blk_mq_realloc_hw_ctxs(set, q); 4223 if (!q->nr_hw_queues) 4224 goto err_hctxs; 4225 4226 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4227 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4228 4229 q->tag_set = set; 4230 4231 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4232 blk_mq_update_poll_flag(q); 4233 4234 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4235 INIT_LIST_HEAD(&q->requeue_list); 4236 spin_lock_init(&q->requeue_lock); 4237 4238 q->nr_requests = set->queue_depth; 4239 4240 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4241 blk_mq_add_queue_tag_set(set, q); 4242 blk_mq_map_swqueue(q); 4243 return 0; 4244 4245 err_hctxs: 4246 blk_mq_release(q); 4247 err_exit: 4248 q->mq_ops = NULL; 4249 return -ENOMEM; 4250 } 4251 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4252 4253 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4254 void blk_mq_exit_queue(struct request_queue *q) 4255 { 4256 struct blk_mq_tag_set *set = q->tag_set; 4257 4258 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4259 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4260 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4261 blk_mq_del_queue_tag_set(q); 4262 } 4263 4264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4265 { 4266 int i; 4267 4268 if (blk_mq_is_shared_tags(set->flags)) { 4269 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4270 BLK_MQ_NO_HCTX_IDX, 4271 set->queue_depth); 4272 if (!set->shared_tags) 4273 return -ENOMEM; 4274 } 4275 4276 for (i = 0; i < set->nr_hw_queues; i++) { 4277 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4278 goto out_unwind; 4279 cond_resched(); 4280 } 4281 4282 return 0; 4283 4284 out_unwind: 4285 while (--i >= 0) 4286 __blk_mq_free_map_and_rqs(set, i); 4287 4288 if (blk_mq_is_shared_tags(set->flags)) { 4289 blk_mq_free_map_and_rqs(set, set->shared_tags, 4290 BLK_MQ_NO_HCTX_IDX); 4291 } 4292 4293 return -ENOMEM; 4294 } 4295 4296 /* 4297 * Allocate the request maps associated with this tag_set. Note that this 4298 * may reduce the depth asked for, if memory is tight. set->queue_depth 4299 * will be updated to reflect the allocated depth. 4300 */ 4301 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4302 { 4303 unsigned int depth; 4304 int err; 4305 4306 depth = set->queue_depth; 4307 do { 4308 err = __blk_mq_alloc_rq_maps(set); 4309 if (!err) 4310 break; 4311 4312 set->queue_depth >>= 1; 4313 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4314 err = -ENOMEM; 4315 break; 4316 } 4317 } while (set->queue_depth); 4318 4319 if (!set->queue_depth || err) { 4320 pr_err("blk-mq: failed to allocate request map\n"); 4321 return -ENOMEM; 4322 } 4323 4324 if (depth != set->queue_depth) 4325 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4326 depth, set->queue_depth); 4327 4328 return 0; 4329 } 4330 4331 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4332 { 4333 /* 4334 * blk_mq_map_queues() and multiple .map_queues() implementations 4335 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4336 * number of hardware queues. 4337 */ 4338 if (set->nr_maps == 1) 4339 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4340 4341 if (set->ops->map_queues && !is_kdump_kernel()) { 4342 int i; 4343 4344 /* 4345 * transport .map_queues is usually done in the following 4346 * way: 4347 * 4348 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4349 * mask = get_cpu_mask(queue) 4350 * for_each_cpu(cpu, mask) 4351 * set->map[x].mq_map[cpu] = queue; 4352 * } 4353 * 4354 * When we need to remap, the table has to be cleared for 4355 * killing stale mapping since one CPU may not be mapped 4356 * to any hw queue. 4357 */ 4358 for (i = 0; i < set->nr_maps; i++) 4359 blk_mq_clear_mq_map(&set->map[i]); 4360 4361 set->ops->map_queues(set); 4362 } else { 4363 BUG_ON(set->nr_maps > 1); 4364 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4365 } 4366 } 4367 4368 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4369 int new_nr_hw_queues) 4370 { 4371 struct blk_mq_tags **new_tags; 4372 4373 if (set->nr_hw_queues >= new_nr_hw_queues) 4374 goto done; 4375 4376 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4377 GFP_KERNEL, set->numa_node); 4378 if (!new_tags) 4379 return -ENOMEM; 4380 4381 if (set->tags) 4382 memcpy(new_tags, set->tags, set->nr_hw_queues * 4383 sizeof(*set->tags)); 4384 kfree(set->tags); 4385 set->tags = new_tags; 4386 done: 4387 set->nr_hw_queues = new_nr_hw_queues; 4388 return 0; 4389 } 4390 4391 /* 4392 * Alloc a tag set to be associated with one or more request queues. 4393 * May fail with EINVAL for various error conditions. May adjust the 4394 * requested depth down, if it's too large. In that case, the set 4395 * value will be stored in set->queue_depth. 4396 */ 4397 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4398 { 4399 int i, ret; 4400 4401 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4402 4403 if (!set->nr_hw_queues) 4404 return -EINVAL; 4405 if (!set->queue_depth) 4406 return -EINVAL; 4407 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4408 return -EINVAL; 4409 4410 if (!set->ops->queue_rq) 4411 return -EINVAL; 4412 4413 if (!set->ops->get_budget ^ !set->ops->put_budget) 4414 return -EINVAL; 4415 4416 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4417 pr_info("blk-mq: reduced tag depth to %u\n", 4418 BLK_MQ_MAX_DEPTH); 4419 set->queue_depth = BLK_MQ_MAX_DEPTH; 4420 } 4421 4422 if (!set->nr_maps) 4423 set->nr_maps = 1; 4424 else if (set->nr_maps > HCTX_MAX_TYPES) 4425 return -EINVAL; 4426 4427 /* 4428 * If a crashdump is active, then we are potentially in a very 4429 * memory constrained environment. Limit us to 1 queue and 4430 * 64 tags to prevent using too much memory. 4431 */ 4432 if (is_kdump_kernel()) { 4433 set->nr_hw_queues = 1; 4434 set->nr_maps = 1; 4435 set->queue_depth = min(64U, set->queue_depth); 4436 } 4437 /* 4438 * There is no use for more h/w queues than cpus if we just have 4439 * a single map 4440 */ 4441 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4442 set->nr_hw_queues = nr_cpu_ids; 4443 4444 if (set->flags & BLK_MQ_F_BLOCKING) { 4445 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4446 if (!set->srcu) 4447 return -ENOMEM; 4448 ret = init_srcu_struct(set->srcu); 4449 if (ret) 4450 goto out_free_srcu; 4451 } 4452 4453 ret = -ENOMEM; 4454 set->tags = kcalloc_node(set->nr_hw_queues, 4455 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4456 set->numa_node); 4457 if (!set->tags) 4458 goto out_cleanup_srcu; 4459 4460 for (i = 0; i < set->nr_maps; i++) { 4461 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4462 sizeof(set->map[i].mq_map[0]), 4463 GFP_KERNEL, set->numa_node); 4464 if (!set->map[i].mq_map) 4465 goto out_free_mq_map; 4466 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4467 } 4468 4469 blk_mq_update_queue_map(set); 4470 4471 ret = blk_mq_alloc_set_map_and_rqs(set); 4472 if (ret) 4473 goto out_free_mq_map; 4474 4475 mutex_init(&set->tag_list_lock); 4476 INIT_LIST_HEAD(&set->tag_list); 4477 4478 return 0; 4479 4480 out_free_mq_map: 4481 for (i = 0; i < set->nr_maps; i++) { 4482 kfree(set->map[i].mq_map); 4483 set->map[i].mq_map = NULL; 4484 } 4485 kfree(set->tags); 4486 set->tags = NULL; 4487 out_cleanup_srcu: 4488 if (set->flags & BLK_MQ_F_BLOCKING) 4489 cleanup_srcu_struct(set->srcu); 4490 out_free_srcu: 4491 if (set->flags & BLK_MQ_F_BLOCKING) 4492 kfree(set->srcu); 4493 return ret; 4494 } 4495 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4496 4497 /* allocate and initialize a tagset for a simple single-queue device */ 4498 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4499 const struct blk_mq_ops *ops, unsigned int queue_depth, 4500 unsigned int set_flags) 4501 { 4502 memset(set, 0, sizeof(*set)); 4503 set->ops = ops; 4504 set->nr_hw_queues = 1; 4505 set->nr_maps = 1; 4506 set->queue_depth = queue_depth; 4507 set->numa_node = NUMA_NO_NODE; 4508 set->flags = set_flags; 4509 return blk_mq_alloc_tag_set(set); 4510 } 4511 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4512 4513 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4514 { 4515 int i, j; 4516 4517 for (i = 0; i < set->nr_hw_queues; i++) 4518 __blk_mq_free_map_and_rqs(set, i); 4519 4520 if (blk_mq_is_shared_tags(set->flags)) { 4521 blk_mq_free_map_and_rqs(set, set->shared_tags, 4522 BLK_MQ_NO_HCTX_IDX); 4523 } 4524 4525 for (j = 0; j < set->nr_maps; j++) { 4526 kfree(set->map[j].mq_map); 4527 set->map[j].mq_map = NULL; 4528 } 4529 4530 kfree(set->tags); 4531 set->tags = NULL; 4532 if (set->flags & BLK_MQ_F_BLOCKING) { 4533 cleanup_srcu_struct(set->srcu); 4534 kfree(set->srcu); 4535 } 4536 } 4537 EXPORT_SYMBOL(blk_mq_free_tag_set); 4538 4539 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4540 { 4541 struct blk_mq_tag_set *set = q->tag_set; 4542 struct blk_mq_hw_ctx *hctx; 4543 int ret; 4544 unsigned long i; 4545 4546 if (!set) 4547 return -EINVAL; 4548 4549 if (q->nr_requests == nr) 4550 return 0; 4551 4552 blk_mq_freeze_queue(q); 4553 blk_mq_quiesce_queue(q); 4554 4555 ret = 0; 4556 queue_for_each_hw_ctx(q, hctx, i) { 4557 if (!hctx->tags) 4558 continue; 4559 /* 4560 * If we're using an MQ scheduler, just update the scheduler 4561 * queue depth. This is similar to what the old code would do. 4562 */ 4563 if (hctx->sched_tags) { 4564 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4565 nr, true); 4566 } else { 4567 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4568 false); 4569 } 4570 if (ret) 4571 break; 4572 if (q->elevator && q->elevator->type->ops.depth_updated) 4573 q->elevator->type->ops.depth_updated(hctx); 4574 } 4575 if (!ret) { 4576 q->nr_requests = nr; 4577 if (blk_mq_is_shared_tags(set->flags)) { 4578 if (q->elevator) 4579 blk_mq_tag_update_sched_shared_tags(q); 4580 else 4581 blk_mq_tag_resize_shared_tags(set, nr); 4582 } 4583 } 4584 4585 blk_mq_unquiesce_queue(q); 4586 blk_mq_unfreeze_queue(q); 4587 4588 return ret; 4589 } 4590 4591 /* 4592 * request_queue and elevator_type pair. 4593 * It is just used by __blk_mq_update_nr_hw_queues to cache 4594 * the elevator_type associated with a request_queue. 4595 */ 4596 struct blk_mq_qe_pair { 4597 struct list_head node; 4598 struct request_queue *q; 4599 struct elevator_type *type; 4600 }; 4601 4602 /* 4603 * Cache the elevator_type in qe pair list and switch the 4604 * io scheduler to 'none' 4605 */ 4606 static bool blk_mq_elv_switch_none(struct list_head *head, 4607 struct request_queue *q) 4608 { 4609 struct blk_mq_qe_pair *qe; 4610 4611 if (!q->elevator) 4612 return true; 4613 4614 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4615 if (!qe) 4616 return false; 4617 4618 /* q->elevator needs protection from ->sysfs_lock */ 4619 mutex_lock(&q->sysfs_lock); 4620 4621 INIT_LIST_HEAD(&qe->node); 4622 qe->q = q; 4623 qe->type = q->elevator->type; 4624 /* keep a reference to the elevator module as we'll switch back */ 4625 __elevator_get(qe->type); 4626 list_add(&qe->node, head); 4627 elevator_disable(q); 4628 mutex_unlock(&q->sysfs_lock); 4629 4630 return true; 4631 } 4632 4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4634 struct request_queue *q) 4635 { 4636 struct blk_mq_qe_pair *qe; 4637 4638 list_for_each_entry(qe, head, node) 4639 if (qe->q == q) 4640 return qe; 4641 4642 return NULL; 4643 } 4644 4645 static void blk_mq_elv_switch_back(struct list_head *head, 4646 struct request_queue *q) 4647 { 4648 struct blk_mq_qe_pair *qe; 4649 struct elevator_type *t; 4650 4651 qe = blk_lookup_qe_pair(head, q); 4652 if (!qe) 4653 return; 4654 t = qe->type; 4655 list_del(&qe->node); 4656 kfree(qe); 4657 4658 mutex_lock(&q->sysfs_lock); 4659 elevator_switch(q, t); 4660 /* drop the reference acquired in blk_mq_elv_switch_none */ 4661 elevator_put(t); 4662 mutex_unlock(&q->sysfs_lock); 4663 } 4664 4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4666 int nr_hw_queues) 4667 { 4668 struct request_queue *q; 4669 LIST_HEAD(head); 4670 int prev_nr_hw_queues; 4671 4672 lockdep_assert_held(&set->tag_list_lock); 4673 4674 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4675 nr_hw_queues = nr_cpu_ids; 4676 if (nr_hw_queues < 1) 4677 return; 4678 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4679 return; 4680 4681 list_for_each_entry(q, &set->tag_list, tag_set_list) 4682 blk_mq_freeze_queue(q); 4683 /* 4684 * Switch IO scheduler to 'none', cleaning up the data associated 4685 * with the previous scheduler. We will switch back once we are done 4686 * updating the new sw to hw queue mappings. 4687 */ 4688 list_for_each_entry(q, &set->tag_list, tag_set_list) 4689 if (!blk_mq_elv_switch_none(&head, q)) 4690 goto switch_back; 4691 4692 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4693 blk_mq_debugfs_unregister_hctxs(q); 4694 blk_mq_sysfs_unregister_hctxs(q); 4695 } 4696 4697 prev_nr_hw_queues = set->nr_hw_queues; 4698 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4699 goto reregister; 4700 4701 fallback: 4702 blk_mq_update_queue_map(set); 4703 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4704 blk_mq_realloc_hw_ctxs(set, q); 4705 blk_mq_update_poll_flag(q); 4706 if (q->nr_hw_queues != set->nr_hw_queues) { 4707 int i = prev_nr_hw_queues; 4708 4709 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4710 nr_hw_queues, prev_nr_hw_queues); 4711 for (; i < set->nr_hw_queues; i++) 4712 __blk_mq_free_map_and_rqs(set, i); 4713 4714 set->nr_hw_queues = prev_nr_hw_queues; 4715 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4716 goto fallback; 4717 } 4718 blk_mq_map_swqueue(q); 4719 } 4720 4721 reregister: 4722 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4723 blk_mq_sysfs_register_hctxs(q); 4724 blk_mq_debugfs_register_hctxs(q); 4725 } 4726 4727 switch_back: 4728 list_for_each_entry(q, &set->tag_list, tag_set_list) 4729 blk_mq_elv_switch_back(&head, q); 4730 4731 list_for_each_entry(q, &set->tag_list, tag_set_list) 4732 blk_mq_unfreeze_queue(q); 4733 } 4734 4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4736 { 4737 mutex_lock(&set->tag_list_lock); 4738 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4739 mutex_unlock(&set->tag_list_lock); 4740 } 4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4742 4743 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4744 unsigned int flags) 4745 { 4746 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4747 long state = get_current_state(); 4748 int ret; 4749 4750 do { 4751 ret = q->mq_ops->poll(hctx, iob); 4752 if (ret > 0) { 4753 __set_current_state(TASK_RUNNING); 4754 return ret; 4755 } 4756 4757 if (signal_pending_state(state, current)) 4758 __set_current_state(TASK_RUNNING); 4759 if (task_is_running(current)) 4760 return 1; 4761 4762 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4763 break; 4764 cpu_relax(); 4765 } while (!need_resched()); 4766 4767 __set_current_state(TASK_RUNNING); 4768 return 0; 4769 } 4770 4771 unsigned int blk_mq_rq_cpu(struct request *rq) 4772 { 4773 return rq->mq_ctx->cpu; 4774 } 4775 EXPORT_SYMBOL(blk_mq_rq_cpu); 4776 4777 void blk_mq_cancel_work_sync(struct request_queue *q) 4778 { 4779 struct blk_mq_hw_ctx *hctx; 4780 unsigned long i; 4781 4782 cancel_delayed_work_sync(&q->requeue_work); 4783 4784 queue_for_each_hw_ctx(q, hctx, i) 4785 cancel_delayed_work_sync(&hctx->run_work); 4786 } 4787 4788 static int __init blk_mq_init(void) 4789 { 4790 int i; 4791 4792 for_each_possible_cpu(i) 4793 init_llist_head(&per_cpu(blk_cpu_done, i)); 4794 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4795 4796 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4797 "block/softirq:dead", NULL, 4798 blk_softirq_cpu_dead); 4799 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4800 blk_mq_hctx_notify_dead); 4801 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4802 blk_mq_hctx_notify_online, 4803 blk_mq_hctx_notify_offline); 4804 return 0; 4805 } 4806 subsys_initcall(blk_mq_init); 4807