1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-pm.h" 37 #include "blk-stat.h" 38 #include "blk-mq-sched.h" 39 #include "blk-rq-qos.h" 40 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx, dispatch list or elevator 63 * have pending work in this hardware queue. 64 */ 65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 66 { 67 return !list_empty_careful(&hctx->dispatch) || 68 sbitmap_any_bit_set(&hctx->ctx_map) || 69 blk_mq_sched_has_work(hctx); 70 } 71 72 /* 73 * Mark this ctx as having pending work in this hardware queue 74 */ 75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 76 struct blk_mq_ctx *ctx) 77 { 78 const int bit = ctx->index_hw[hctx->type]; 79 80 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 81 sbitmap_set_bit(&hctx->ctx_map, bit); 82 } 83 84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 85 struct blk_mq_ctx *ctx) 86 { 87 const int bit = ctx->index_hw[hctx->type]; 88 89 sbitmap_clear_bit(&hctx->ctx_map, bit); 90 } 91 92 struct mq_inflight { 93 struct hd_struct *part; 94 unsigned int *inflight; 95 }; 96 97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 98 struct request *rq, void *priv, 99 bool reserved) 100 { 101 struct mq_inflight *mi = priv; 102 103 /* 104 * index[0] counts the specific partition that was asked for. 105 */ 106 if (rq->part == mi->part) 107 mi->inflight[0]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 113 { 114 unsigned inflight[2]; 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 120 return inflight[0]; 121 } 122 123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 124 struct request *rq, void *priv, 125 bool reserved) 126 { 127 struct mq_inflight *mi = priv; 128 129 if (rq->part == mi->part) 130 mi->inflight[rq_data_dir(rq)]++; 131 132 return true; 133 } 134 135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 136 unsigned int inflight[2]) 137 { 138 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 139 140 inflight[0] = inflight[1] = 0; 141 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 142 } 143 144 void blk_freeze_queue_start(struct request_queue *q) 145 { 146 int freeze_depth; 147 148 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 149 if (freeze_depth == 1) { 150 percpu_ref_kill(&q->q_usage_counter); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } 154 } 155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 156 157 void blk_mq_freeze_queue_wait(struct request_queue *q) 158 { 159 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 160 } 161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 162 163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 164 unsigned long timeout) 165 { 166 return wait_event_timeout(q->mq_freeze_wq, 167 percpu_ref_is_zero(&q->q_usage_counter), 168 timeout); 169 } 170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 171 172 /* 173 * Guarantee no request is in use, so we can change any data structure of 174 * the queue afterward. 175 */ 176 void blk_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * In the !blk_mq case we are only calling this to kill the 180 * q_usage_counter, otherwise this increases the freeze depth 181 * and waits for it to return to zero. For this reason there is 182 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 183 * exported to drivers as the only user for unfreeze is blk_mq. 184 */ 185 blk_freeze_queue_start(q); 186 blk_mq_freeze_queue_wait(q); 187 } 188 189 void blk_mq_freeze_queue(struct request_queue *q) 190 { 191 /* 192 * ...just an alias to keep freeze and unfreeze actions balanced 193 * in the blk_mq_* namespace 194 */ 195 blk_freeze_queue(q); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 198 199 void blk_mq_unfreeze_queue(struct request_queue *q) 200 { 201 int freeze_depth; 202 203 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 204 WARN_ON_ONCE(freeze_depth < 0); 205 if (!freeze_depth) { 206 percpu_ref_resurrect(&q->q_usage_counter); 207 wake_up_all(&q->mq_freeze_wq); 208 } 209 } 210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 211 212 /* 213 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 214 * mpt3sas driver such that this function can be removed. 215 */ 216 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 217 { 218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 219 } 220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 221 222 /** 223 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 224 * @q: request queue. 225 * 226 * Note: this function does not prevent that the struct request end_io() 227 * callback function is invoked. Once this function is returned, we make 228 * sure no dispatch can happen until the queue is unquiesced via 229 * blk_mq_unquiesce_queue(). 230 */ 231 void blk_mq_quiesce_queue(struct request_queue *q) 232 { 233 struct blk_mq_hw_ctx *hctx; 234 unsigned int i; 235 bool rcu = false; 236 237 blk_mq_quiesce_queue_nowait(q); 238 239 queue_for_each_hw_ctx(q, hctx, i) { 240 if (hctx->flags & BLK_MQ_F_BLOCKING) 241 synchronize_srcu(hctx->srcu); 242 else 243 rcu = true; 244 } 245 if (rcu) 246 synchronize_rcu(); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 260 261 /* dispatch requests which are inserted during quiescing */ 262 blk_mq_run_hw_queues(q, true); 263 } 264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 265 266 void blk_mq_wake_waiters(struct request_queue *q) 267 { 268 struct blk_mq_hw_ctx *hctx; 269 unsigned int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) 272 if (blk_mq_hw_queue_mapped(hctx)) 273 blk_mq_tag_wakeup_all(hctx->tags, true); 274 } 275 276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 277 { 278 return blk_mq_has_free_tags(hctx->tags); 279 } 280 EXPORT_SYMBOL(blk_mq_can_queue); 281 282 /* 283 * Only need start/end time stamping if we have stats enabled, or using 284 * an IO scheduler. 285 */ 286 static inline bool blk_mq_need_time_stamp(struct request *rq) 287 { 288 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 289 } 290 291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 292 unsigned int tag, unsigned int op) 293 { 294 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 295 struct request *rq = tags->static_rqs[tag]; 296 req_flags_t rq_flags = 0; 297 298 if (data->flags & BLK_MQ_REQ_INTERNAL) { 299 rq->tag = -1; 300 rq->internal_tag = tag; 301 } else { 302 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 303 rq_flags = RQF_MQ_INFLIGHT; 304 atomic_inc(&data->hctx->nr_active); 305 } 306 rq->tag = tag; 307 rq->internal_tag = -1; 308 data->hctx->tags->rqs[rq->tag] = rq; 309 } 310 311 /* csd/requeue_work/fifo_time is initialized before use */ 312 rq->q = data->q; 313 rq->mq_ctx = data->ctx; 314 rq->mq_hctx = data->hctx; 315 rq->rq_flags = rq_flags; 316 rq->cmd_flags = op; 317 if (data->flags & BLK_MQ_REQ_PREEMPT) 318 rq->rq_flags |= RQF_PREEMPT; 319 if (blk_queue_io_stat(data->q)) 320 rq->rq_flags |= RQF_IO_STAT; 321 INIT_LIST_HEAD(&rq->queuelist); 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->rq_disk = NULL; 325 rq->part = NULL; 326 if (blk_mq_need_time_stamp(rq)) 327 rq->start_time_ns = ktime_get_ns(); 328 else 329 rq->start_time_ns = 0; 330 rq->io_start_time_ns = 0; 331 rq->nr_phys_segments = 0; 332 #if defined(CONFIG_BLK_DEV_INTEGRITY) 333 rq->nr_integrity_segments = 0; 334 #endif 335 /* tag was already set */ 336 rq->extra_len = 0; 337 WRITE_ONCE(rq->deadline, 0); 338 339 rq->timeout = 0; 340 341 rq->end_io = NULL; 342 rq->end_io_data = NULL; 343 344 data->ctx->rq_dispatched[op_is_sync(op)]++; 345 refcount_set(&rq->ref, 1); 346 return rq; 347 } 348 349 static struct request *blk_mq_get_request(struct request_queue *q, 350 struct bio *bio, 351 struct blk_mq_alloc_data *data) 352 { 353 struct elevator_queue *e = q->elevator; 354 struct request *rq; 355 unsigned int tag; 356 bool put_ctx_on_error = false; 357 358 blk_queue_enter_live(q); 359 data->q = q; 360 if (likely(!data->ctx)) { 361 data->ctx = blk_mq_get_ctx(q); 362 put_ctx_on_error = true; 363 } 364 if (likely(!data->hctx)) 365 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 366 data->ctx); 367 if (data->cmd_flags & REQ_NOWAIT) 368 data->flags |= BLK_MQ_REQ_NOWAIT; 369 370 if (e) { 371 data->flags |= BLK_MQ_REQ_INTERNAL; 372 373 /* 374 * Flush requests are special and go directly to the 375 * dispatch list. Don't include reserved tags in the 376 * limiting, as it isn't useful. 377 */ 378 if (!op_is_flush(data->cmd_flags) && 379 e->type->ops.limit_depth && 380 !(data->flags & BLK_MQ_REQ_RESERVED)) 381 e->type->ops.limit_depth(data->cmd_flags, data); 382 } else { 383 blk_mq_tag_busy(data->hctx); 384 } 385 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_TAG_FAIL) { 388 if (put_ctx_on_error) { 389 blk_mq_put_ctx(data->ctx); 390 data->ctx = NULL; 391 } 392 blk_queue_exit(q); 393 return NULL; 394 } 395 396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 397 if (!op_is_flush(data->cmd_flags)) { 398 rq->elv.icq = NULL; 399 if (e && e->type->ops.prepare_request) { 400 if (e->type->icq_cache) 401 blk_mq_sched_assign_ioc(rq); 402 403 e->type->ops.prepare_request(rq, bio); 404 rq->rq_flags |= RQF_ELVPRIV; 405 } 406 } 407 data->hctx->queued++; 408 return rq; 409 } 410 411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 412 blk_mq_req_flags_t flags) 413 { 414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 415 struct request *rq; 416 int ret; 417 418 ret = blk_queue_enter(q, flags); 419 if (ret) 420 return ERR_PTR(ret); 421 422 rq = blk_mq_get_request(q, NULL, &alloc_data); 423 blk_queue_exit(q); 424 425 if (!rq) 426 return ERR_PTR(-EWOULDBLOCK); 427 428 blk_mq_put_ctx(alloc_data.ctx); 429 430 rq->__data_len = 0; 431 rq->__sector = (sector_t) -1; 432 rq->bio = rq->biotail = NULL; 433 return rq; 434 } 435 EXPORT_SYMBOL(blk_mq_alloc_request); 436 437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 439 { 440 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 441 struct request *rq; 442 unsigned int cpu; 443 int ret; 444 445 /* 446 * If the tag allocator sleeps we could get an allocation for a 447 * different hardware context. No need to complicate the low level 448 * allocator for this for the rare use case of a command tied to 449 * a specific queue. 450 */ 451 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 452 return ERR_PTR(-EINVAL); 453 454 if (hctx_idx >= q->nr_hw_queues) 455 return ERR_PTR(-EIO); 456 457 ret = blk_queue_enter(q, flags); 458 if (ret) 459 return ERR_PTR(ret); 460 461 /* 462 * Check if the hardware context is actually mapped to anything. 463 * If not tell the caller that it should skip this queue. 464 */ 465 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 466 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 467 blk_queue_exit(q); 468 return ERR_PTR(-EXDEV); 469 } 470 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 471 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 472 473 rq = blk_mq_get_request(q, NULL, &alloc_data); 474 blk_queue_exit(q); 475 476 if (!rq) 477 return ERR_PTR(-EWOULDBLOCK); 478 479 return rq; 480 } 481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 482 483 static void __blk_mq_free_request(struct request *rq) 484 { 485 struct request_queue *q = rq->q; 486 struct blk_mq_ctx *ctx = rq->mq_ctx; 487 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 488 const int sched_tag = rq->internal_tag; 489 490 blk_pm_mark_last_busy(rq); 491 rq->mq_hctx = NULL; 492 if (rq->tag != -1) 493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 494 if (sched_tag != -1) 495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 496 blk_mq_sched_restart(hctx); 497 blk_queue_exit(q); 498 } 499 500 void blk_mq_free_request(struct request *rq) 501 { 502 struct request_queue *q = rq->q; 503 struct elevator_queue *e = q->elevator; 504 struct blk_mq_ctx *ctx = rq->mq_ctx; 505 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 506 507 if (rq->rq_flags & RQF_ELVPRIV) { 508 if (e && e->type->ops.finish_request) 509 e->type->ops.finish_request(rq); 510 if (rq->elv.icq) { 511 put_io_context(rq->elv.icq->ioc); 512 rq->elv.icq = NULL; 513 } 514 } 515 516 ctx->rq_completed[rq_is_sync(rq)]++; 517 if (rq->rq_flags & RQF_MQ_INFLIGHT) 518 atomic_dec(&hctx->nr_active); 519 520 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 521 laptop_io_completion(q->backing_dev_info); 522 523 rq_qos_done(q, rq); 524 525 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 526 if (refcount_dec_and_test(&rq->ref)) 527 __blk_mq_free_request(rq); 528 } 529 EXPORT_SYMBOL_GPL(blk_mq_free_request); 530 531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 532 { 533 u64 now = 0; 534 535 if (blk_mq_need_time_stamp(rq)) 536 now = ktime_get_ns(); 537 538 if (rq->rq_flags & RQF_STATS) { 539 blk_mq_poll_stats_start(rq->q); 540 blk_stat_add(rq, now); 541 } 542 543 if (rq->internal_tag != -1) 544 blk_mq_sched_completed_request(rq, now); 545 546 blk_account_io_done(rq, now); 547 548 if (rq->end_io) { 549 rq_qos_done(rq->q, rq); 550 rq->end_io(rq, error); 551 } else { 552 blk_mq_free_request(rq); 553 } 554 } 555 EXPORT_SYMBOL(__blk_mq_end_request); 556 557 void blk_mq_end_request(struct request *rq, blk_status_t error) 558 { 559 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 560 BUG(); 561 __blk_mq_end_request(rq, error); 562 } 563 EXPORT_SYMBOL(blk_mq_end_request); 564 565 static void __blk_mq_complete_request_remote(void *data) 566 { 567 struct request *rq = data; 568 struct request_queue *q = rq->q; 569 570 q->mq_ops->complete(rq); 571 } 572 573 static void __blk_mq_complete_request(struct request *rq) 574 { 575 struct blk_mq_ctx *ctx = rq->mq_ctx; 576 struct request_queue *q = rq->q; 577 bool shared = false; 578 int cpu; 579 580 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 581 /* 582 * Most of single queue controllers, there is only one irq vector 583 * for handling IO completion, and the only irq's affinity is set 584 * as all possible CPUs. On most of ARCHs, this affinity means the 585 * irq is handled on one specific CPU. 586 * 587 * So complete IO reqeust in softirq context in case of single queue 588 * for not degrading IO performance by irqsoff latency. 589 */ 590 if (q->nr_hw_queues == 1) { 591 __blk_complete_request(rq); 592 return; 593 } 594 595 /* 596 * For a polled request, always complete locallly, it's pointless 597 * to redirect the completion. 598 */ 599 if ((rq->cmd_flags & REQ_HIPRI) || 600 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 601 q->mq_ops->complete(rq); 602 return; 603 } 604 605 cpu = get_cpu(); 606 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 607 shared = cpus_share_cache(cpu, ctx->cpu); 608 609 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 610 rq->csd.func = __blk_mq_complete_request_remote; 611 rq->csd.info = rq; 612 rq->csd.flags = 0; 613 smp_call_function_single_async(ctx->cpu, &rq->csd); 614 } else { 615 q->mq_ops->complete(rq); 616 } 617 put_cpu(); 618 } 619 620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 621 __releases(hctx->srcu) 622 { 623 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 624 rcu_read_unlock(); 625 else 626 srcu_read_unlock(hctx->srcu, srcu_idx); 627 } 628 629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 630 __acquires(hctx->srcu) 631 { 632 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 633 /* shut up gcc false positive */ 634 *srcu_idx = 0; 635 rcu_read_lock(); 636 } else 637 *srcu_idx = srcu_read_lock(hctx->srcu); 638 } 639 640 /** 641 * blk_mq_complete_request - end I/O on a request 642 * @rq: the request being processed 643 * 644 * Description: 645 * Ends all I/O on a request. It does not handle partial completions. 646 * The actual completion happens out-of-order, through a IPI handler. 647 **/ 648 bool blk_mq_complete_request(struct request *rq) 649 { 650 if (unlikely(blk_should_fake_timeout(rq->q))) 651 return false; 652 __blk_mq_complete_request(rq); 653 return true; 654 } 655 EXPORT_SYMBOL(blk_mq_complete_request); 656 657 int blk_mq_request_started(struct request *rq) 658 { 659 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 660 } 661 EXPORT_SYMBOL_GPL(blk_mq_request_started); 662 663 void blk_mq_start_request(struct request *rq) 664 { 665 struct request_queue *q = rq->q; 666 667 blk_mq_sched_started_request(rq); 668 669 trace_block_rq_issue(q, rq); 670 671 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 672 rq->io_start_time_ns = ktime_get_ns(); 673 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 674 rq->throtl_size = blk_rq_sectors(rq); 675 #endif 676 rq->rq_flags |= RQF_STATS; 677 rq_qos_issue(q, rq); 678 } 679 680 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 681 682 blk_add_timer(rq); 683 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 684 685 if (q->dma_drain_size && blk_rq_bytes(rq)) { 686 /* 687 * Make sure space for the drain appears. We know we can do 688 * this because max_hw_segments has been adjusted to be one 689 * fewer than the device can handle. 690 */ 691 rq->nr_phys_segments++; 692 } 693 } 694 EXPORT_SYMBOL(blk_mq_start_request); 695 696 static void __blk_mq_requeue_request(struct request *rq) 697 { 698 struct request_queue *q = rq->q; 699 700 blk_mq_put_driver_tag(rq); 701 702 trace_block_rq_requeue(q, rq); 703 rq_qos_requeue(q, rq); 704 705 if (blk_mq_request_started(rq)) { 706 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 707 rq->rq_flags &= ~RQF_TIMED_OUT; 708 if (q->dma_drain_size && blk_rq_bytes(rq)) 709 rq->nr_phys_segments--; 710 } 711 } 712 713 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 714 { 715 __blk_mq_requeue_request(rq); 716 717 /* this request will be re-inserted to io scheduler queue */ 718 blk_mq_sched_requeue_request(rq); 719 720 BUG_ON(!list_empty(&rq->queuelist)); 721 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 722 } 723 EXPORT_SYMBOL(blk_mq_requeue_request); 724 725 static void blk_mq_requeue_work(struct work_struct *work) 726 { 727 struct request_queue *q = 728 container_of(work, struct request_queue, requeue_work.work); 729 LIST_HEAD(rq_list); 730 struct request *rq, *next; 731 732 spin_lock_irq(&q->requeue_lock); 733 list_splice_init(&q->requeue_list, &rq_list); 734 spin_unlock_irq(&q->requeue_lock); 735 736 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 737 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 738 continue; 739 740 rq->rq_flags &= ~RQF_SOFTBARRIER; 741 list_del_init(&rq->queuelist); 742 /* 743 * If RQF_DONTPREP, rq has contained some driver specific 744 * data, so insert it to hctx dispatch list to avoid any 745 * merge. 746 */ 747 if (rq->rq_flags & RQF_DONTPREP) 748 blk_mq_request_bypass_insert(rq, false); 749 else 750 blk_mq_sched_insert_request(rq, true, false, false); 751 } 752 753 while (!list_empty(&rq_list)) { 754 rq = list_entry(rq_list.next, struct request, queuelist); 755 list_del_init(&rq->queuelist); 756 blk_mq_sched_insert_request(rq, false, false, false); 757 } 758 759 blk_mq_run_hw_queues(q, false); 760 } 761 762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 763 bool kick_requeue_list) 764 { 765 struct request_queue *q = rq->q; 766 unsigned long flags; 767 768 /* 769 * We abuse this flag that is otherwise used by the I/O scheduler to 770 * request head insertion from the workqueue. 771 */ 772 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 773 774 spin_lock_irqsave(&q->requeue_lock, flags); 775 if (at_head) { 776 rq->rq_flags |= RQF_SOFTBARRIER; 777 list_add(&rq->queuelist, &q->requeue_list); 778 } else { 779 list_add_tail(&rq->queuelist, &q->requeue_list); 780 } 781 spin_unlock_irqrestore(&q->requeue_lock, flags); 782 783 if (kick_requeue_list) 784 blk_mq_kick_requeue_list(q); 785 } 786 787 void blk_mq_kick_requeue_list(struct request_queue *q) 788 { 789 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 790 } 791 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 792 793 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 794 unsigned long msecs) 795 { 796 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 797 msecs_to_jiffies(msecs)); 798 } 799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 800 801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 802 { 803 if (tag < tags->nr_tags) { 804 prefetch(tags->rqs[tag]); 805 return tags->rqs[tag]; 806 } 807 808 return NULL; 809 } 810 EXPORT_SYMBOL(blk_mq_tag_to_rq); 811 812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 813 void *priv, bool reserved) 814 { 815 /* 816 * If we find a request that is inflight and the queue matches, 817 * we know the queue is busy. Return false to stop the iteration. 818 */ 819 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 820 bool *busy = priv; 821 822 *busy = true; 823 return false; 824 } 825 826 return true; 827 } 828 829 bool blk_mq_queue_inflight(struct request_queue *q) 830 { 831 bool busy = false; 832 833 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 834 return busy; 835 } 836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 837 838 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 839 { 840 req->rq_flags |= RQF_TIMED_OUT; 841 if (req->q->mq_ops->timeout) { 842 enum blk_eh_timer_return ret; 843 844 ret = req->q->mq_ops->timeout(req, reserved); 845 if (ret == BLK_EH_DONE) 846 return; 847 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 848 } 849 850 blk_add_timer(req); 851 } 852 853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 854 { 855 unsigned long deadline; 856 857 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 858 return false; 859 if (rq->rq_flags & RQF_TIMED_OUT) 860 return false; 861 862 deadline = READ_ONCE(rq->deadline); 863 if (time_after_eq(jiffies, deadline)) 864 return true; 865 866 if (*next == 0) 867 *next = deadline; 868 else if (time_after(*next, deadline)) 869 *next = deadline; 870 return false; 871 } 872 873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 874 struct request *rq, void *priv, bool reserved) 875 { 876 unsigned long *next = priv; 877 878 /* 879 * Just do a quick check if it is expired before locking the request in 880 * so we're not unnecessarilly synchronizing across CPUs. 881 */ 882 if (!blk_mq_req_expired(rq, next)) 883 return true; 884 885 /* 886 * We have reason to believe the request may be expired. Take a 887 * reference on the request to lock this request lifetime into its 888 * currently allocated context to prevent it from being reallocated in 889 * the event the completion by-passes this timeout handler. 890 * 891 * If the reference was already released, then the driver beat the 892 * timeout handler to posting a natural completion. 893 */ 894 if (!refcount_inc_not_zero(&rq->ref)) 895 return true; 896 897 /* 898 * The request is now locked and cannot be reallocated underneath the 899 * timeout handler's processing. Re-verify this exact request is truly 900 * expired; if it is not expired, then the request was completed and 901 * reallocated as a new request. 902 */ 903 if (blk_mq_req_expired(rq, next)) 904 blk_mq_rq_timed_out(rq, reserved); 905 if (refcount_dec_and_test(&rq->ref)) 906 __blk_mq_free_request(rq); 907 908 return true; 909 } 910 911 static void blk_mq_timeout_work(struct work_struct *work) 912 { 913 struct request_queue *q = 914 container_of(work, struct request_queue, timeout_work); 915 unsigned long next = 0; 916 struct blk_mq_hw_ctx *hctx; 917 int i; 918 919 /* A deadlock might occur if a request is stuck requiring a 920 * timeout at the same time a queue freeze is waiting 921 * completion, since the timeout code would not be able to 922 * acquire the queue reference here. 923 * 924 * That's why we don't use blk_queue_enter here; instead, we use 925 * percpu_ref_tryget directly, because we need to be able to 926 * obtain a reference even in the short window between the queue 927 * starting to freeze, by dropping the first reference in 928 * blk_freeze_queue_start, and the moment the last request is 929 * consumed, marked by the instant q_usage_counter reaches 930 * zero. 931 */ 932 if (!percpu_ref_tryget(&q->q_usage_counter)) 933 return; 934 935 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 936 937 if (next != 0) { 938 mod_timer(&q->timeout, next); 939 } else { 940 /* 941 * Request timeouts are handled as a forward rolling timer. If 942 * we end up here it means that no requests are pending and 943 * also that no request has been pending for a while. Mark 944 * each hctx as idle. 945 */ 946 queue_for_each_hw_ctx(q, hctx, i) { 947 /* the hctx may be unmapped, so check it here */ 948 if (blk_mq_hw_queue_mapped(hctx)) 949 blk_mq_tag_idle(hctx); 950 } 951 } 952 blk_queue_exit(q); 953 } 954 955 struct flush_busy_ctx_data { 956 struct blk_mq_hw_ctx *hctx; 957 struct list_head *list; 958 }; 959 960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 961 { 962 struct flush_busy_ctx_data *flush_data = data; 963 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 964 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 965 enum hctx_type type = hctx->type; 966 967 spin_lock(&ctx->lock); 968 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 969 sbitmap_clear_bit(sb, bitnr); 970 spin_unlock(&ctx->lock); 971 return true; 972 } 973 974 /* 975 * Process software queues that have been marked busy, splicing them 976 * to the for-dispatch 977 */ 978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 979 { 980 struct flush_busy_ctx_data data = { 981 .hctx = hctx, 982 .list = list, 983 }; 984 985 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 986 } 987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 988 989 struct dispatch_rq_data { 990 struct blk_mq_hw_ctx *hctx; 991 struct request *rq; 992 }; 993 994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 995 void *data) 996 { 997 struct dispatch_rq_data *dispatch_data = data; 998 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 999 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1000 enum hctx_type type = hctx->type; 1001 1002 spin_lock(&ctx->lock); 1003 if (!list_empty(&ctx->rq_lists[type])) { 1004 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1005 list_del_init(&dispatch_data->rq->queuelist); 1006 if (list_empty(&ctx->rq_lists[type])) 1007 sbitmap_clear_bit(sb, bitnr); 1008 } 1009 spin_unlock(&ctx->lock); 1010 1011 return !dispatch_data->rq; 1012 } 1013 1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1015 struct blk_mq_ctx *start) 1016 { 1017 unsigned off = start ? start->index_hw[hctx->type] : 0; 1018 struct dispatch_rq_data data = { 1019 .hctx = hctx, 1020 .rq = NULL, 1021 }; 1022 1023 __sbitmap_for_each_set(&hctx->ctx_map, off, 1024 dispatch_rq_from_ctx, &data); 1025 1026 return data.rq; 1027 } 1028 1029 static inline unsigned int queued_to_index(unsigned int queued) 1030 { 1031 if (!queued) 1032 return 0; 1033 1034 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1035 } 1036 1037 bool blk_mq_get_driver_tag(struct request *rq) 1038 { 1039 struct blk_mq_alloc_data data = { 1040 .q = rq->q, 1041 .hctx = rq->mq_hctx, 1042 .flags = BLK_MQ_REQ_NOWAIT, 1043 .cmd_flags = rq->cmd_flags, 1044 }; 1045 bool shared; 1046 1047 if (rq->tag != -1) 1048 goto done; 1049 1050 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1051 data.flags |= BLK_MQ_REQ_RESERVED; 1052 1053 shared = blk_mq_tag_busy(data.hctx); 1054 rq->tag = blk_mq_get_tag(&data); 1055 if (rq->tag >= 0) { 1056 if (shared) { 1057 rq->rq_flags |= RQF_MQ_INFLIGHT; 1058 atomic_inc(&data.hctx->nr_active); 1059 } 1060 data.hctx->tags->rqs[rq->tag] = rq; 1061 } 1062 1063 done: 1064 return rq->tag != -1; 1065 } 1066 1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1068 int flags, void *key) 1069 { 1070 struct blk_mq_hw_ctx *hctx; 1071 1072 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1073 1074 spin_lock(&hctx->dispatch_wait_lock); 1075 if (!list_empty(&wait->entry)) { 1076 struct sbitmap_queue *sbq; 1077 1078 list_del_init(&wait->entry); 1079 sbq = &hctx->tags->bitmap_tags; 1080 atomic_dec(&sbq->ws_active); 1081 } 1082 spin_unlock(&hctx->dispatch_wait_lock); 1083 1084 blk_mq_run_hw_queue(hctx, true); 1085 return 1; 1086 } 1087 1088 /* 1089 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1090 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1091 * restart. For both cases, take care to check the condition again after 1092 * marking us as waiting. 1093 */ 1094 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1095 struct request *rq) 1096 { 1097 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1098 struct wait_queue_head *wq; 1099 wait_queue_entry_t *wait; 1100 bool ret; 1101 1102 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1103 blk_mq_sched_mark_restart_hctx(hctx); 1104 1105 /* 1106 * It's possible that a tag was freed in the window between the 1107 * allocation failure and adding the hardware queue to the wait 1108 * queue. 1109 * 1110 * Don't clear RESTART here, someone else could have set it. 1111 * At most this will cost an extra queue run. 1112 */ 1113 return blk_mq_get_driver_tag(rq); 1114 } 1115 1116 wait = &hctx->dispatch_wait; 1117 if (!list_empty_careful(&wait->entry)) 1118 return false; 1119 1120 wq = &bt_wait_ptr(sbq, hctx)->wait; 1121 1122 spin_lock_irq(&wq->lock); 1123 spin_lock(&hctx->dispatch_wait_lock); 1124 if (!list_empty(&wait->entry)) { 1125 spin_unlock(&hctx->dispatch_wait_lock); 1126 spin_unlock_irq(&wq->lock); 1127 return false; 1128 } 1129 1130 atomic_inc(&sbq->ws_active); 1131 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1132 __add_wait_queue(wq, wait); 1133 1134 /* 1135 * It's possible that a tag was freed in the window between the 1136 * allocation failure and adding the hardware queue to the wait 1137 * queue. 1138 */ 1139 ret = blk_mq_get_driver_tag(rq); 1140 if (!ret) { 1141 spin_unlock(&hctx->dispatch_wait_lock); 1142 spin_unlock_irq(&wq->lock); 1143 return false; 1144 } 1145 1146 /* 1147 * We got a tag, remove ourselves from the wait queue to ensure 1148 * someone else gets the wakeup. 1149 */ 1150 list_del_init(&wait->entry); 1151 atomic_dec(&sbq->ws_active); 1152 spin_unlock(&hctx->dispatch_wait_lock); 1153 spin_unlock_irq(&wq->lock); 1154 1155 return true; 1156 } 1157 1158 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1159 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1160 /* 1161 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1162 * - EWMA is one simple way to compute running average value 1163 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1164 * - take 4 as factor for avoiding to get too small(0) result, and this 1165 * factor doesn't matter because EWMA decreases exponentially 1166 */ 1167 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1168 { 1169 unsigned int ewma; 1170 1171 if (hctx->queue->elevator) 1172 return; 1173 1174 ewma = hctx->dispatch_busy; 1175 1176 if (!ewma && !busy) 1177 return; 1178 1179 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1180 if (busy) 1181 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1182 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1183 1184 hctx->dispatch_busy = ewma; 1185 } 1186 1187 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1188 1189 /* 1190 * Returns true if we did some work AND can potentially do more. 1191 */ 1192 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1193 bool got_budget) 1194 { 1195 struct blk_mq_hw_ctx *hctx; 1196 struct request *rq, *nxt; 1197 bool no_tag = false; 1198 int errors, queued; 1199 blk_status_t ret = BLK_STS_OK; 1200 1201 if (list_empty(list)) 1202 return false; 1203 1204 WARN_ON(!list_is_singular(list) && got_budget); 1205 1206 /* 1207 * Now process all the entries, sending them to the driver. 1208 */ 1209 errors = queued = 0; 1210 do { 1211 struct blk_mq_queue_data bd; 1212 1213 rq = list_first_entry(list, struct request, queuelist); 1214 1215 hctx = rq->mq_hctx; 1216 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1217 break; 1218 1219 if (!blk_mq_get_driver_tag(rq)) { 1220 /* 1221 * The initial allocation attempt failed, so we need to 1222 * rerun the hardware queue when a tag is freed. The 1223 * waitqueue takes care of that. If the queue is run 1224 * before we add this entry back on the dispatch list, 1225 * we'll re-run it below. 1226 */ 1227 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1228 blk_mq_put_dispatch_budget(hctx); 1229 /* 1230 * For non-shared tags, the RESTART check 1231 * will suffice. 1232 */ 1233 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1234 no_tag = true; 1235 break; 1236 } 1237 } 1238 1239 list_del_init(&rq->queuelist); 1240 1241 bd.rq = rq; 1242 1243 /* 1244 * Flag last if we have no more requests, or if we have more 1245 * but can't assign a driver tag to it. 1246 */ 1247 if (list_empty(list)) 1248 bd.last = true; 1249 else { 1250 nxt = list_first_entry(list, struct request, queuelist); 1251 bd.last = !blk_mq_get_driver_tag(nxt); 1252 } 1253 1254 ret = q->mq_ops->queue_rq(hctx, &bd); 1255 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1256 /* 1257 * If an I/O scheduler has been configured and we got a 1258 * driver tag for the next request already, free it 1259 * again. 1260 */ 1261 if (!list_empty(list)) { 1262 nxt = list_first_entry(list, struct request, queuelist); 1263 blk_mq_put_driver_tag(nxt); 1264 } 1265 list_add(&rq->queuelist, list); 1266 __blk_mq_requeue_request(rq); 1267 break; 1268 } 1269 1270 if (unlikely(ret != BLK_STS_OK)) { 1271 errors++; 1272 blk_mq_end_request(rq, BLK_STS_IOERR); 1273 continue; 1274 } 1275 1276 queued++; 1277 } while (!list_empty(list)); 1278 1279 hctx->dispatched[queued_to_index(queued)]++; 1280 1281 /* 1282 * Any items that need requeuing? Stuff them into hctx->dispatch, 1283 * that is where we will continue on next queue run. 1284 */ 1285 if (!list_empty(list)) { 1286 bool needs_restart; 1287 1288 /* 1289 * If we didn't flush the entire list, we could have told 1290 * the driver there was more coming, but that turned out to 1291 * be a lie. 1292 */ 1293 if (q->mq_ops->commit_rqs) 1294 q->mq_ops->commit_rqs(hctx); 1295 1296 spin_lock(&hctx->lock); 1297 list_splice_init(list, &hctx->dispatch); 1298 spin_unlock(&hctx->lock); 1299 1300 /* 1301 * If SCHED_RESTART was set by the caller of this function and 1302 * it is no longer set that means that it was cleared by another 1303 * thread and hence that a queue rerun is needed. 1304 * 1305 * If 'no_tag' is set, that means that we failed getting 1306 * a driver tag with an I/O scheduler attached. If our dispatch 1307 * waitqueue is no longer active, ensure that we run the queue 1308 * AFTER adding our entries back to the list. 1309 * 1310 * If no I/O scheduler has been configured it is possible that 1311 * the hardware queue got stopped and restarted before requests 1312 * were pushed back onto the dispatch list. Rerun the queue to 1313 * avoid starvation. Notes: 1314 * - blk_mq_run_hw_queue() checks whether or not a queue has 1315 * been stopped before rerunning a queue. 1316 * - Some but not all block drivers stop a queue before 1317 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1318 * and dm-rq. 1319 * 1320 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1321 * bit is set, run queue after a delay to avoid IO stalls 1322 * that could otherwise occur if the queue is idle. 1323 */ 1324 needs_restart = blk_mq_sched_needs_restart(hctx); 1325 if (!needs_restart || 1326 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1327 blk_mq_run_hw_queue(hctx, true); 1328 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1329 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1330 1331 blk_mq_update_dispatch_busy(hctx, true); 1332 return false; 1333 } else 1334 blk_mq_update_dispatch_busy(hctx, false); 1335 1336 /* 1337 * If the host/device is unable to accept more work, inform the 1338 * caller of that. 1339 */ 1340 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1341 return false; 1342 1343 return (queued + errors) != 0; 1344 } 1345 1346 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1347 { 1348 int srcu_idx; 1349 1350 /* 1351 * We should be running this queue from one of the CPUs that 1352 * are mapped to it. 1353 * 1354 * There are at least two related races now between setting 1355 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1356 * __blk_mq_run_hw_queue(): 1357 * 1358 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1359 * but later it becomes online, then this warning is harmless 1360 * at all 1361 * 1362 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1363 * but later it becomes offline, then the warning can't be 1364 * triggered, and we depend on blk-mq timeout handler to 1365 * handle dispatched requests to this hctx 1366 */ 1367 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1368 cpu_online(hctx->next_cpu)) { 1369 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1370 raw_smp_processor_id(), 1371 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1372 dump_stack(); 1373 } 1374 1375 /* 1376 * We can't run the queue inline with ints disabled. Ensure that 1377 * we catch bad users of this early. 1378 */ 1379 WARN_ON_ONCE(in_interrupt()); 1380 1381 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1382 1383 hctx_lock(hctx, &srcu_idx); 1384 blk_mq_sched_dispatch_requests(hctx); 1385 hctx_unlock(hctx, srcu_idx); 1386 } 1387 1388 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1389 { 1390 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1391 1392 if (cpu >= nr_cpu_ids) 1393 cpu = cpumask_first(hctx->cpumask); 1394 return cpu; 1395 } 1396 1397 /* 1398 * It'd be great if the workqueue API had a way to pass 1399 * in a mask and had some smarts for more clever placement. 1400 * For now we just round-robin here, switching for every 1401 * BLK_MQ_CPU_WORK_BATCH queued items. 1402 */ 1403 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1404 { 1405 bool tried = false; 1406 int next_cpu = hctx->next_cpu; 1407 1408 if (hctx->queue->nr_hw_queues == 1) 1409 return WORK_CPU_UNBOUND; 1410 1411 if (--hctx->next_cpu_batch <= 0) { 1412 select_cpu: 1413 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1414 cpu_online_mask); 1415 if (next_cpu >= nr_cpu_ids) 1416 next_cpu = blk_mq_first_mapped_cpu(hctx); 1417 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1418 } 1419 1420 /* 1421 * Do unbound schedule if we can't find a online CPU for this hctx, 1422 * and it should only happen in the path of handling CPU DEAD. 1423 */ 1424 if (!cpu_online(next_cpu)) { 1425 if (!tried) { 1426 tried = true; 1427 goto select_cpu; 1428 } 1429 1430 /* 1431 * Make sure to re-select CPU next time once after CPUs 1432 * in hctx->cpumask become online again. 1433 */ 1434 hctx->next_cpu = next_cpu; 1435 hctx->next_cpu_batch = 1; 1436 return WORK_CPU_UNBOUND; 1437 } 1438 1439 hctx->next_cpu = next_cpu; 1440 return next_cpu; 1441 } 1442 1443 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1444 unsigned long msecs) 1445 { 1446 if (unlikely(blk_mq_hctx_stopped(hctx))) 1447 return; 1448 1449 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1450 int cpu = get_cpu(); 1451 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1452 __blk_mq_run_hw_queue(hctx); 1453 put_cpu(); 1454 return; 1455 } 1456 1457 put_cpu(); 1458 } 1459 1460 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1461 msecs_to_jiffies(msecs)); 1462 } 1463 1464 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1465 { 1466 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1467 } 1468 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1469 1470 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1471 { 1472 int srcu_idx; 1473 bool need_run; 1474 1475 /* 1476 * When queue is quiesced, we may be switching io scheduler, or 1477 * updating nr_hw_queues, or other things, and we can't run queue 1478 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1479 * 1480 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1481 * quiesced. 1482 */ 1483 hctx_lock(hctx, &srcu_idx); 1484 need_run = !blk_queue_quiesced(hctx->queue) && 1485 blk_mq_hctx_has_pending(hctx); 1486 hctx_unlock(hctx, srcu_idx); 1487 1488 if (need_run) { 1489 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1490 return true; 1491 } 1492 1493 return false; 1494 } 1495 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1496 1497 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1498 { 1499 struct blk_mq_hw_ctx *hctx; 1500 int i; 1501 1502 queue_for_each_hw_ctx(q, hctx, i) { 1503 if (blk_mq_hctx_stopped(hctx)) 1504 continue; 1505 1506 blk_mq_run_hw_queue(hctx, async); 1507 } 1508 } 1509 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1510 1511 /** 1512 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1513 * @q: request queue. 1514 * 1515 * The caller is responsible for serializing this function against 1516 * blk_mq_{start,stop}_hw_queue(). 1517 */ 1518 bool blk_mq_queue_stopped(struct request_queue *q) 1519 { 1520 struct blk_mq_hw_ctx *hctx; 1521 int i; 1522 1523 queue_for_each_hw_ctx(q, hctx, i) 1524 if (blk_mq_hctx_stopped(hctx)) 1525 return true; 1526 1527 return false; 1528 } 1529 EXPORT_SYMBOL(blk_mq_queue_stopped); 1530 1531 /* 1532 * This function is often used for pausing .queue_rq() by driver when 1533 * there isn't enough resource or some conditions aren't satisfied, and 1534 * BLK_STS_RESOURCE is usually returned. 1535 * 1536 * We do not guarantee that dispatch can be drained or blocked 1537 * after blk_mq_stop_hw_queue() returns. Please use 1538 * blk_mq_quiesce_queue() for that requirement. 1539 */ 1540 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1541 { 1542 cancel_delayed_work(&hctx->run_work); 1543 1544 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1545 } 1546 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1547 1548 /* 1549 * This function is often used for pausing .queue_rq() by driver when 1550 * there isn't enough resource or some conditions aren't satisfied, and 1551 * BLK_STS_RESOURCE is usually returned. 1552 * 1553 * We do not guarantee that dispatch can be drained or blocked 1554 * after blk_mq_stop_hw_queues() returns. Please use 1555 * blk_mq_quiesce_queue() for that requirement. 1556 */ 1557 void blk_mq_stop_hw_queues(struct request_queue *q) 1558 { 1559 struct blk_mq_hw_ctx *hctx; 1560 int i; 1561 1562 queue_for_each_hw_ctx(q, hctx, i) 1563 blk_mq_stop_hw_queue(hctx); 1564 } 1565 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1566 1567 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1568 { 1569 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1570 1571 blk_mq_run_hw_queue(hctx, false); 1572 } 1573 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1574 1575 void blk_mq_start_hw_queues(struct request_queue *q) 1576 { 1577 struct blk_mq_hw_ctx *hctx; 1578 int i; 1579 1580 queue_for_each_hw_ctx(q, hctx, i) 1581 blk_mq_start_hw_queue(hctx); 1582 } 1583 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1584 1585 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1586 { 1587 if (!blk_mq_hctx_stopped(hctx)) 1588 return; 1589 1590 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1591 blk_mq_run_hw_queue(hctx, async); 1592 } 1593 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1594 1595 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1596 { 1597 struct blk_mq_hw_ctx *hctx; 1598 int i; 1599 1600 queue_for_each_hw_ctx(q, hctx, i) 1601 blk_mq_start_stopped_hw_queue(hctx, async); 1602 } 1603 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1604 1605 static void blk_mq_run_work_fn(struct work_struct *work) 1606 { 1607 struct blk_mq_hw_ctx *hctx; 1608 1609 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1610 1611 /* 1612 * If we are stopped, don't run the queue. 1613 */ 1614 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1615 return; 1616 1617 __blk_mq_run_hw_queue(hctx); 1618 } 1619 1620 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1621 struct request *rq, 1622 bool at_head) 1623 { 1624 struct blk_mq_ctx *ctx = rq->mq_ctx; 1625 enum hctx_type type = hctx->type; 1626 1627 lockdep_assert_held(&ctx->lock); 1628 1629 trace_block_rq_insert(hctx->queue, rq); 1630 1631 if (at_head) 1632 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1633 else 1634 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1635 } 1636 1637 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1638 bool at_head) 1639 { 1640 struct blk_mq_ctx *ctx = rq->mq_ctx; 1641 1642 lockdep_assert_held(&ctx->lock); 1643 1644 __blk_mq_insert_req_list(hctx, rq, at_head); 1645 blk_mq_hctx_mark_pending(hctx, ctx); 1646 } 1647 1648 /* 1649 * Should only be used carefully, when the caller knows we want to 1650 * bypass a potential IO scheduler on the target device. 1651 */ 1652 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1653 { 1654 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1655 1656 spin_lock(&hctx->lock); 1657 list_add_tail(&rq->queuelist, &hctx->dispatch); 1658 spin_unlock(&hctx->lock); 1659 1660 if (run_queue) 1661 blk_mq_run_hw_queue(hctx, false); 1662 } 1663 1664 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1665 struct list_head *list) 1666 1667 { 1668 struct request *rq; 1669 enum hctx_type type = hctx->type; 1670 1671 /* 1672 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1673 * offline now 1674 */ 1675 list_for_each_entry(rq, list, queuelist) { 1676 BUG_ON(rq->mq_ctx != ctx); 1677 trace_block_rq_insert(hctx->queue, rq); 1678 } 1679 1680 spin_lock(&ctx->lock); 1681 list_splice_tail_init(list, &ctx->rq_lists[type]); 1682 blk_mq_hctx_mark_pending(hctx, ctx); 1683 spin_unlock(&ctx->lock); 1684 } 1685 1686 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1687 { 1688 struct request *rqa = container_of(a, struct request, queuelist); 1689 struct request *rqb = container_of(b, struct request, queuelist); 1690 1691 if (rqa->mq_ctx < rqb->mq_ctx) 1692 return -1; 1693 else if (rqa->mq_ctx > rqb->mq_ctx) 1694 return 1; 1695 else if (rqa->mq_hctx < rqb->mq_hctx) 1696 return -1; 1697 else if (rqa->mq_hctx > rqb->mq_hctx) 1698 return 1; 1699 1700 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1701 } 1702 1703 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1704 { 1705 struct blk_mq_hw_ctx *this_hctx; 1706 struct blk_mq_ctx *this_ctx; 1707 struct request_queue *this_q; 1708 struct request *rq; 1709 LIST_HEAD(list); 1710 LIST_HEAD(rq_list); 1711 unsigned int depth; 1712 1713 list_splice_init(&plug->mq_list, &list); 1714 plug->rq_count = 0; 1715 1716 if (plug->rq_count > 2 && plug->multiple_queues) 1717 list_sort(NULL, &list, plug_rq_cmp); 1718 1719 this_q = NULL; 1720 this_hctx = NULL; 1721 this_ctx = NULL; 1722 depth = 0; 1723 1724 while (!list_empty(&list)) { 1725 rq = list_entry_rq(list.next); 1726 list_del_init(&rq->queuelist); 1727 BUG_ON(!rq->q); 1728 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1729 if (this_hctx) { 1730 trace_block_unplug(this_q, depth, !from_schedule); 1731 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1732 &rq_list, 1733 from_schedule); 1734 } 1735 1736 this_q = rq->q; 1737 this_ctx = rq->mq_ctx; 1738 this_hctx = rq->mq_hctx; 1739 depth = 0; 1740 } 1741 1742 depth++; 1743 list_add_tail(&rq->queuelist, &rq_list); 1744 } 1745 1746 /* 1747 * If 'this_hctx' is set, we know we have entries to complete 1748 * on 'rq_list'. Do those. 1749 */ 1750 if (this_hctx) { 1751 trace_block_unplug(this_q, depth, !from_schedule); 1752 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1753 from_schedule); 1754 } 1755 } 1756 1757 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1758 { 1759 blk_init_request_from_bio(rq, bio); 1760 1761 blk_account_io_start(rq, true); 1762 } 1763 1764 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1765 struct request *rq, 1766 blk_qc_t *cookie, bool last) 1767 { 1768 struct request_queue *q = rq->q; 1769 struct blk_mq_queue_data bd = { 1770 .rq = rq, 1771 .last = last, 1772 }; 1773 blk_qc_t new_cookie; 1774 blk_status_t ret; 1775 1776 new_cookie = request_to_qc_t(hctx, rq); 1777 1778 /* 1779 * For OK queue, we are done. For error, caller may kill it. 1780 * Any other error (busy), just add it to our list as we 1781 * previously would have done. 1782 */ 1783 ret = q->mq_ops->queue_rq(hctx, &bd); 1784 switch (ret) { 1785 case BLK_STS_OK: 1786 blk_mq_update_dispatch_busy(hctx, false); 1787 *cookie = new_cookie; 1788 break; 1789 case BLK_STS_RESOURCE: 1790 case BLK_STS_DEV_RESOURCE: 1791 blk_mq_update_dispatch_busy(hctx, true); 1792 __blk_mq_requeue_request(rq); 1793 break; 1794 default: 1795 blk_mq_update_dispatch_busy(hctx, false); 1796 *cookie = BLK_QC_T_NONE; 1797 break; 1798 } 1799 1800 return ret; 1801 } 1802 1803 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1804 struct request *rq, 1805 blk_qc_t *cookie, 1806 bool bypass, bool last) 1807 { 1808 struct request_queue *q = rq->q; 1809 bool run_queue = true; 1810 blk_status_t ret = BLK_STS_RESOURCE; 1811 int srcu_idx; 1812 bool force = false; 1813 1814 hctx_lock(hctx, &srcu_idx); 1815 /* 1816 * hctx_lock is needed before checking quiesced flag. 1817 * 1818 * When queue is stopped or quiesced, ignore 'bypass', insert 1819 * and return BLK_STS_OK to caller, and avoid driver to try to 1820 * dispatch again. 1821 */ 1822 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) { 1823 run_queue = false; 1824 bypass = false; 1825 goto out_unlock; 1826 } 1827 1828 if (unlikely(q->elevator && !bypass)) 1829 goto out_unlock; 1830 1831 if (!blk_mq_get_dispatch_budget(hctx)) 1832 goto out_unlock; 1833 1834 if (!blk_mq_get_driver_tag(rq)) { 1835 blk_mq_put_dispatch_budget(hctx); 1836 goto out_unlock; 1837 } 1838 1839 /* 1840 * Always add a request that has been through 1841 *.queue_rq() to the hardware dispatch list. 1842 */ 1843 force = true; 1844 ret = __blk_mq_issue_directly(hctx, rq, cookie, last); 1845 out_unlock: 1846 hctx_unlock(hctx, srcu_idx); 1847 switch (ret) { 1848 case BLK_STS_OK: 1849 break; 1850 case BLK_STS_DEV_RESOURCE: 1851 case BLK_STS_RESOURCE: 1852 if (force) { 1853 blk_mq_request_bypass_insert(rq, run_queue); 1854 /* 1855 * We have to return BLK_STS_OK for the DM 1856 * to avoid livelock. Otherwise, we return 1857 * the real result to indicate whether the 1858 * request is direct-issued successfully. 1859 */ 1860 ret = bypass ? BLK_STS_OK : ret; 1861 } else if (!bypass) { 1862 blk_mq_sched_insert_request(rq, false, 1863 run_queue, false); 1864 } 1865 break; 1866 default: 1867 if (!bypass) 1868 blk_mq_end_request(rq, ret); 1869 break; 1870 } 1871 1872 return ret; 1873 } 1874 1875 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1876 struct list_head *list) 1877 { 1878 blk_qc_t unused; 1879 blk_status_t ret = BLK_STS_OK; 1880 1881 while (!list_empty(list)) { 1882 struct request *rq = list_first_entry(list, struct request, 1883 queuelist); 1884 1885 list_del_init(&rq->queuelist); 1886 if (ret == BLK_STS_OK) 1887 ret = blk_mq_try_issue_directly(hctx, rq, &unused, 1888 false, 1889 list_empty(list)); 1890 else 1891 blk_mq_sched_insert_request(rq, false, true, false); 1892 } 1893 1894 /* 1895 * If we didn't flush the entire list, we could have told 1896 * the driver there was more coming, but that turned out to 1897 * be a lie. 1898 */ 1899 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs) 1900 hctx->queue->mq_ops->commit_rqs(hctx); 1901 } 1902 1903 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1904 { 1905 list_add_tail(&rq->queuelist, &plug->mq_list); 1906 plug->rq_count++; 1907 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1908 struct request *tmp; 1909 1910 tmp = list_first_entry(&plug->mq_list, struct request, 1911 queuelist); 1912 if (tmp->q != rq->q) 1913 plug->multiple_queues = true; 1914 } 1915 } 1916 1917 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1918 { 1919 const int is_sync = op_is_sync(bio->bi_opf); 1920 const int is_flush_fua = op_is_flush(bio->bi_opf); 1921 struct blk_mq_alloc_data data = { .flags = 0}; 1922 struct request *rq; 1923 struct blk_plug *plug; 1924 struct request *same_queue_rq = NULL; 1925 blk_qc_t cookie; 1926 1927 blk_queue_bounce(q, &bio); 1928 1929 blk_queue_split(q, &bio); 1930 1931 if (!bio_integrity_prep(bio)) 1932 return BLK_QC_T_NONE; 1933 1934 if (!is_flush_fua && !blk_queue_nomerges(q) && 1935 blk_attempt_plug_merge(q, bio, &same_queue_rq)) 1936 return BLK_QC_T_NONE; 1937 1938 if (blk_mq_sched_bio_merge(q, bio)) 1939 return BLK_QC_T_NONE; 1940 1941 rq_qos_throttle(q, bio); 1942 1943 data.cmd_flags = bio->bi_opf; 1944 rq = blk_mq_get_request(q, bio, &data); 1945 if (unlikely(!rq)) { 1946 rq_qos_cleanup(q, bio); 1947 if (bio->bi_opf & REQ_NOWAIT) 1948 bio_wouldblock_error(bio); 1949 return BLK_QC_T_NONE; 1950 } 1951 1952 trace_block_getrq(q, bio, bio->bi_opf); 1953 1954 rq_qos_track(q, rq, bio); 1955 1956 cookie = request_to_qc_t(data.hctx, rq); 1957 1958 plug = current->plug; 1959 if (unlikely(is_flush_fua)) { 1960 blk_mq_put_ctx(data.ctx); 1961 blk_mq_bio_to_request(rq, bio); 1962 1963 /* bypass scheduler for flush rq */ 1964 blk_insert_flush(rq); 1965 blk_mq_run_hw_queue(data.hctx, true); 1966 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1967 /* 1968 * Use plugging if we have a ->commit_rqs() hook as well, as 1969 * we know the driver uses bd->last in a smart fashion. 1970 */ 1971 unsigned int request_count = plug->rq_count; 1972 struct request *last = NULL; 1973 1974 blk_mq_put_ctx(data.ctx); 1975 blk_mq_bio_to_request(rq, bio); 1976 1977 if (!request_count) 1978 trace_block_plug(q); 1979 else 1980 last = list_entry_rq(plug->mq_list.prev); 1981 1982 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1983 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1984 blk_flush_plug_list(plug, false); 1985 trace_block_plug(q); 1986 } 1987 1988 blk_add_rq_to_plug(plug, rq); 1989 } else if (plug && !blk_queue_nomerges(q)) { 1990 blk_mq_bio_to_request(rq, bio); 1991 1992 /* 1993 * We do limited plugging. If the bio can be merged, do that. 1994 * Otherwise the existing request in the plug list will be 1995 * issued. So the plug list will have one request at most 1996 * The plug list might get flushed before this. If that happens, 1997 * the plug list is empty, and same_queue_rq is invalid. 1998 */ 1999 if (list_empty(&plug->mq_list)) 2000 same_queue_rq = NULL; 2001 if (same_queue_rq) { 2002 list_del_init(&same_queue_rq->queuelist); 2003 plug->rq_count--; 2004 } 2005 blk_add_rq_to_plug(plug, rq); 2006 2007 blk_mq_put_ctx(data.ctx); 2008 2009 if (same_queue_rq) { 2010 data.hctx = same_queue_rq->mq_hctx; 2011 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2012 &cookie, false, true); 2013 } 2014 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2015 !data.hctx->dispatch_busy)) { 2016 blk_mq_put_ctx(data.ctx); 2017 blk_mq_bio_to_request(rq, bio); 2018 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true); 2019 } else { 2020 blk_mq_put_ctx(data.ctx); 2021 blk_mq_bio_to_request(rq, bio); 2022 blk_mq_sched_insert_request(rq, false, true, true); 2023 } 2024 2025 return cookie; 2026 } 2027 2028 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2029 unsigned int hctx_idx) 2030 { 2031 struct page *page; 2032 2033 if (tags->rqs && set->ops->exit_request) { 2034 int i; 2035 2036 for (i = 0; i < tags->nr_tags; i++) { 2037 struct request *rq = tags->static_rqs[i]; 2038 2039 if (!rq) 2040 continue; 2041 set->ops->exit_request(set, rq, hctx_idx); 2042 tags->static_rqs[i] = NULL; 2043 } 2044 } 2045 2046 while (!list_empty(&tags->page_list)) { 2047 page = list_first_entry(&tags->page_list, struct page, lru); 2048 list_del_init(&page->lru); 2049 /* 2050 * Remove kmemleak object previously allocated in 2051 * blk_mq_init_rq_map(). 2052 */ 2053 kmemleak_free(page_address(page)); 2054 __free_pages(page, page->private); 2055 } 2056 } 2057 2058 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2059 { 2060 kfree(tags->rqs); 2061 tags->rqs = NULL; 2062 kfree(tags->static_rqs); 2063 tags->static_rqs = NULL; 2064 2065 blk_mq_free_tags(tags); 2066 } 2067 2068 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2069 unsigned int hctx_idx, 2070 unsigned int nr_tags, 2071 unsigned int reserved_tags) 2072 { 2073 struct blk_mq_tags *tags; 2074 int node; 2075 2076 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2077 if (node == NUMA_NO_NODE) 2078 node = set->numa_node; 2079 2080 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2081 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2082 if (!tags) 2083 return NULL; 2084 2085 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2086 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2087 node); 2088 if (!tags->rqs) { 2089 blk_mq_free_tags(tags); 2090 return NULL; 2091 } 2092 2093 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2094 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2095 node); 2096 if (!tags->static_rqs) { 2097 kfree(tags->rqs); 2098 blk_mq_free_tags(tags); 2099 return NULL; 2100 } 2101 2102 return tags; 2103 } 2104 2105 static size_t order_to_size(unsigned int order) 2106 { 2107 return (size_t)PAGE_SIZE << order; 2108 } 2109 2110 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2111 unsigned int hctx_idx, int node) 2112 { 2113 int ret; 2114 2115 if (set->ops->init_request) { 2116 ret = set->ops->init_request(set, rq, hctx_idx, node); 2117 if (ret) 2118 return ret; 2119 } 2120 2121 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2122 return 0; 2123 } 2124 2125 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2126 unsigned int hctx_idx, unsigned int depth) 2127 { 2128 unsigned int i, j, entries_per_page, max_order = 4; 2129 size_t rq_size, left; 2130 int node; 2131 2132 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2133 if (node == NUMA_NO_NODE) 2134 node = set->numa_node; 2135 2136 INIT_LIST_HEAD(&tags->page_list); 2137 2138 /* 2139 * rq_size is the size of the request plus driver payload, rounded 2140 * to the cacheline size 2141 */ 2142 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2143 cache_line_size()); 2144 left = rq_size * depth; 2145 2146 for (i = 0; i < depth; ) { 2147 int this_order = max_order; 2148 struct page *page; 2149 int to_do; 2150 void *p; 2151 2152 while (this_order && left < order_to_size(this_order - 1)) 2153 this_order--; 2154 2155 do { 2156 page = alloc_pages_node(node, 2157 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2158 this_order); 2159 if (page) 2160 break; 2161 if (!this_order--) 2162 break; 2163 if (order_to_size(this_order) < rq_size) 2164 break; 2165 } while (1); 2166 2167 if (!page) 2168 goto fail; 2169 2170 page->private = this_order; 2171 list_add_tail(&page->lru, &tags->page_list); 2172 2173 p = page_address(page); 2174 /* 2175 * Allow kmemleak to scan these pages as they contain pointers 2176 * to additional allocations like via ops->init_request(). 2177 */ 2178 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2179 entries_per_page = order_to_size(this_order) / rq_size; 2180 to_do = min(entries_per_page, depth - i); 2181 left -= to_do * rq_size; 2182 for (j = 0; j < to_do; j++) { 2183 struct request *rq = p; 2184 2185 tags->static_rqs[i] = rq; 2186 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2187 tags->static_rqs[i] = NULL; 2188 goto fail; 2189 } 2190 2191 p += rq_size; 2192 i++; 2193 } 2194 } 2195 return 0; 2196 2197 fail: 2198 blk_mq_free_rqs(set, tags, hctx_idx); 2199 return -ENOMEM; 2200 } 2201 2202 /* 2203 * 'cpu' is going away. splice any existing rq_list entries from this 2204 * software queue to the hw queue dispatch list, and ensure that it 2205 * gets run. 2206 */ 2207 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2208 { 2209 struct blk_mq_hw_ctx *hctx; 2210 struct blk_mq_ctx *ctx; 2211 LIST_HEAD(tmp); 2212 enum hctx_type type; 2213 2214 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2215 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2216 type = hctx->type; 2217 2218 spin_lock(&ctx->lock); 2219 if (!list_empty(&ctx->rq_lists[type])) { 2220 list_splice_init(&ctx->rq_lists[type], &tmp); 2221 blk_mq_hctx_clear_pending(hctx, ctx); 2222 } 2223 spin_unlock(&ctx->lock); 2224 2225 if (list_empty(&tmp)) 2226 return 0; 2227 2228 spin_lock(&hctx->lock); 2229 list_splice_tail_init(&tmp, &hctx->dispatch); 2230 spin_unlock(&hctx->lock); 2231 2232 blk_mq_run_hw_queue(hctx, true); 2233 return 0; 2234 } 2235 2236 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2237 { 2238 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2239 &hctx->cpuhp_dead); 2240 } 2241 2242 /* hctx->ctxs will be freed in queue's release handler */ 2243 static void blk_mq_exit_hctx(struct request_queue *q, 2244 struct blk_mq_tag_set *set, 2245 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2246 { 2247 if (blk_mq_hw_queue_mapped(hctx)) 2248 blk_mq_tag_idle(hctx); 2249 2250 if (set->ops->exit_request) 2251 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2252 2253 if (set->ops->exit_hctx) 2254 set->ops->exit_hctx(hctx, hctx_idx); 2255 2256 if (hctx->flags & BLK_MQ_F_BLOCKING) 2257 cleanup_srcu_struct(hctx->srcu); 2258 2259 blk_mq_remove_cpuhp(hctx); 2260 blk_free_flush_queue(hctx->fq); 2261 sbitmap_free(&hctx->ctx_map); 2262 } 2263 2264 static void blk_mq_exit_hw_queues(struct request_queue *q, 2265 struct blk_mq_tag_set *set, int nr_queue) 2266 { 2267 struct blk_mq_hw_ctx *hctx; 2268 unsigned int i; 2269 2270 queue_for_each_hw_ctx(q, hctx, i) { 2271 if (i == nr_queue) 2272 break; 2273 blk_mq_debugfs_unregister_hctx(hctx); 2274 blk_mq_exit_hctx(q, set, hctx, i); 2275 } 2276 } 2277 2278 static int blk_mq_init_hctx(struct request_queue *q, 2279 struct blk_mq_tag_set *set, 2280 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2281 { 2282 int node; 2283 2284 node = hctx->numa_node; 2285 if (node == NUMA_NO_NODE) 2286 node = hctx->numa_node = set->numa_node; 2287 2288 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2289 spin_lock_init(&hctx->lock); 2290 INIT_LIST_HEAD(&hctx->dispatch); 2291 hctx->queue = q; 2292 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2293 2294 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2295 2296 hctx->tags = set->tags[hctx_idx]; 2297 2298 /* 2299 * Allocate space for all possible cpus to avoid allocation at 2300 * runtime 2301 */ 2302 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2303 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); 2304 if (!hctx->ctxs) 2305 goto unregister_cpu_notifier; 2306 2307 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2308 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node)) 2309 goto free_ctxs; 2310 2311 hctx->nr_ctx = 0; 2312 2313 spin_lock_init(&hctx->dispatch_wait_lock); 2314 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2315 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2316 2317 if (set->ops->init_hctx && 2318 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2319 goto free_bitmap; 2320 2321 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2322 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2323 if (!hctx->fq) 2324 goto exit_hctx; 2325 2326 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2327 goto free_fq; 2328 2329 if (hctx->flags & BLK_MQ_F_BLOCKING) 2330 init_srcu_struct(hctx->srcu); 2331 2332 return 0; 2333 2334 free_fq: 2335 kfree(hctx->fq); 2336 exit_hctx: 2337 if (set->ops->exit_hctx) 2338 set->ops->exit_hctx(hctx, hctx_idx); 2339 free_bitmap: 2340 sbitmap_free(&hctx->ctx_map); 2341 free_ctxs: 2342 kfree(hctx->ctxs); 2343 unregister_cpu_notifier: 2344 blk_mq_remove_cpuhp(hctx); 2345 return -1; 2346 } 2347 2348 static void blk_mq_init_cpu_queues(struct request_queue *q, 2349 unsigned int nr_hw_queues) 2350 { 2351 struct blk_mq_tag_set *set = q->tag_set; 2352 unsigned int i, j; 2353 2354 for_each_possible_cpu(i) { 2355 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2356 struct blk_mq_hw_ctx *hctx; 2357 int k; 2358 2359 __ctx->cpu = i; 2360 spin_lock_init(&__ctx->lock); 2361 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2362 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2363 2364 __ctx->queue = q; 2365 2366 /* 2367 * Set local node, IFF we have more than one hw queue. If 2368 * not, we remain on the home node of the device 2369 */ 2370 for (j = 0; j < set->nr_maps; j++) { 2371 hctx = blk_mq_map_queue_type(q, j, i); 2372 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2373 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2374 } 2375 } 2376 } 2377 2378 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2379 { 2380 int ret = 0; 2381 2382 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2383 set->queue_depth, set->reserved_tags); 2384 if (!set->tags[hctx_idx]) 2385 return false; 2386 2387 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2388 set->queue_depth); 2389 if (!ret) 2390 return true; 2391 2392 blk_mq_free_rq_map(set->tags[hctx_idx]); 2393 set->tags[hctx_idx] = NULL; 2394 return false; 2395 } 2396 2397 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2398 unsigned int hctx_idx) 2399 { 2400 if (set->tags && set->tags[hctx_idx]) { 2401 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2402 blk_mq_free_rq_map(set->tags[hctx_idx]); 2403 set->tags[hctx_idx] = NULL; 2404 } 2405 } 2406 2407 static void blk_mq_map_swqueue(struct request_queue *q) 2408 { 2409 unsigned int i, j, hctx_idx; 2410 struct blk_mq_hw_ctx *hctx; 2411 struct blk_mq_ctx *ctx; 2412 struct blk_mq_tag_set *set = q->tag_set; 2413 2414 /* 2415 * Avoid others reading imcomplete hctx->cpumask through sysfs 2416 */ 2417 mutex_lock(&q->sysfs_lock); 2418 2419 queue_for_each_hw_ctx(q, hctx, i) { 2420 cpumask_clear(hctx->cpumask); 2421 hctx->nr_ctx = 0; 2422 hctx->dispatch_from = NULL; 2423 } 2424 2425 /* 2426 * Map software to hardware queues. 2427 * 2428 * If the cpu isn't present, the cpu is mapped to first hctx. 2429 */ 2430 for_each_possible_cpu(i) { 2431 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2432 /* unmapped hw queue can be remapped after CPU topo changed */ 2433 if (!set->tags[hctx_idx] && 2434 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2435 /* 2436 * If tags initialization fail for some hctx, 2437 * that hctx won't be brought online. In this 2438 * case, remap the current ctx to hctx[0] which 2439 * is guaranteed to always have tags allocated 2440 */ 2441 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2442 } 2443 2444 ctx = per_cpu_ptr(q->queue_ctx, i); 2445 for (j = 0; j < set->nr_maps; j++) { 2446 if (!set->map[j].nr_queues) { 2447 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2448 HCTX_TYPE_DEFAULT, i); 2449 continue; 2450 } 2451 2452 hctx = blk_mq_map_queue_type(q, j, i); 2453 ctx->hctxs[j] = hctx; 2454 /* 2455 * If the CPU is already set in the mask, then we've 2456 * mapped this one already. This can happen if 2457 * devices share queues across queue maps. 2458 */ 2459 if (cpumask_test_cpu(i, hctx->cpumask)) 2460 continue; 2461 2462 cpumask_set_cpu(i, hctx->cpumask); 2463 hctx->type = j; 2464 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2465 hctx->ctxs[hctx->nr_ctx++] = ctx; 2466 2467 /* 2468 * If the nr_ctx type overflows, we have exceeded the 2469 * amount of sw queues we can support. 2470 */ 2471 BUG_ON(!hctx->nr_ctx); 2472 } 2473 2474 for (; j < HCTX_MAX_TYPES; j++) 2475 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2476 HCTX_TYPE_DEFAULT, i); 2477 } 2478 2479 mutex_unlock(&q->sysfs_lock); 2480 2481 queue_for_each_hw_ctx(q, hctx, i) { 2482 /* 2483 * If no software queues are mapped to this hardware queue, 2484 * disable it and free the request entries. 2485 */ 2486 if (!hctx->nr_ctx) { 2487 /* Never unmap queue 0. We need it as a 2488 * fallback in case of a new remap fails 2489 * allocation 2490 */ 2491 if (i && set->tags[i]) 2492 blk_mq_free_map_and_requests(set, i); 2493 2494 hctx->tags = NULL; 2495 continue; 2496 } 2497 2498 hctx->tags = set->tags[i]; 2499 WARN_ON(!hctx->tags); 2500 2501 /* 2502 * Set the map size to the number of mapped software queues. 2503 * This is more accurate and more efficient than looping 2504 * over all possibly mapped software queues. 2505 */ 2506 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2507 2508 /* 2509 * Initialize batch roundrobin counts 2510 */ 2511 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2512 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2513 } 2514 } 2515 2516 /* 2517 * Caller needs to ensure that we're either frozen/quiesced, or that 2518 * the queue isn't live yet. 2519 */ 2520 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2521 { 2522 struct blk_mq_hw_ctx *hctx; 2523 int i; 2524 2525 queue_for_each_hw_ctx(q, hctx, i) { 2526 if (shared) 2527 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2528 else 2529 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2530 } 2531 } 2532 2533 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2534 bool shared) 2535 { 2536 struct request_queue *q; 2537 2538 lockdep_assert_held(&set->tag_list_lock); 2539 2540 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2541 blk_mq_freeze_queue(q); 2542 queue_set_hctx_shared(q, shared); 2543 blk_mq_unfreeze_queue(q); 2544 } 2545 } 2546 2547 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2548 { 2549 struct blk_mq_tag_set *set = q->tag_set; 2550 2551 mutex_lock(&set->tag_list_lock); 2552 list_del_rcu(&q->tag_set_list); 2553 if (list_is_singular(&set->tag_list)) { 2554 /* just transitioned to unshared */ 2555 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2556 /* update existing queue */ 2557 blk_mq_update_tag_set_depth(set, false); 2558 } 2559 mutex_unlock(&set->tag_list_lock); 2560 INIT_LIST_HEAD(&q->tag_set_list); 2561 } 2562 2563 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2564 struct request_queue *q) 2565 { 2566 mutex_lock(&set->tag_list_lock); 2567 2568 /* 2569 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2570 */ 2571 if (!list_empty(&set->tag_list) && 2572 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2573 set->flags |= BLK_MQ_F_TAG_SHARED; 2574 /* update existing queue */ 2575 blk_mq_update_tag_set_depth(set, true); 2576 } 2577 if (set->flags & BLK_MQ_F_TAG_SHARED) 2578 queue_set_hctx_shared(q, true); 2579 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2580 2581 mutex_unlock(&set->tag_list_lock); 2582 } 2583 2584 /* All allocations will be freed in release handler of q->mq_kobj */ 2585 static int blk_mq_alloc_ctxs(struct request_queue *q) 2586 { 2587 struct blk_mq_ctxs *ctxs; 2588 int cpu; 2589 2590 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2591 if (!ctxs) 2592 return -ENOMEM; 2593 2594 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2595 if (!ctxs->queue_ctx) 2596 goto fail; 2597 2598 for_each_possible_cpu(cpu) { 2599 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2600 ctx->ctxs = ctxs; 2601 } 2602 2603 q->mq_kobj = &ctxs->kobj; 2604 q->queue_ctx = ctxs->queue_ctx; 2605 2606 return 0; 2607 fail: 2608 kfree(ctxs); 2609 return -ENOMEM; 2610 } 2611 2612 /* 2613 * It is the actual release handler for mq, but we do it from 2614 * request queue's release handler for avoiding use-after-free 2615 * and headache because q->mq_kobj shouldn't have been introduced, 2616 * but we can't group ctx/kctx kobj without it. 2617 */ 2618 void blk_mq_release(struct request_queue *q) 2619 { 2620 struct blk_mq_hw_ctx *hctx; 2621 unsigned int i; 2622 2623 /* hctx kobj stays in hctx */ 2624 queue_for_each_hw_ctx(q, hctx, i) { 2625 if (!hctx) 2626 continue; 2627 kobject_put(&hctx->kobj); 2628 } 2629 2630 kfree(q->queue_hw_ctx); 2631 2632 /* 2633 * release .mq_kobj and sw queue's kobject now because 2634 * both share lifetime with request queue. 2635 */ 2636 blk_mq_sysfs_deinit(q); 2637 } 2638 2639 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2640 { 2641 struct request_queue *uninit_q, *q; 2642 2643 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2644 if (!uninit_q) 2645 return ERR_PTR(-ENOMEM); 2646 2647 q = blk_mq_init_allocated_queue(set, uninit_q); 2648 if (IS_ERR(q)) 2649 blk_cleanup_queue(uninit_q); 2650 2651 return q; 2652 } 2653 EXPORT_SYMBOL(blk_mq_init_queue); 2654 2655 /* 2656 * Helper for setting up a queue with mq ops, given queue depth, and 2657 * the passed in mq ops flags. 2658 */ 2659 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2660 const struct blk_mq_ops *ops, 2661 unsigned int queue_depth, 2662 unsigned int set_flags) 2663 { 2664 struct request_queue *q; 2665 int ret; 2666 2667 memset(set, 0, sizeof(*set)); 2668 set->ops = ops; 2669 set->nr_hw_queues = 1; 2670 set->nr_maps = 1; 2671 set->queue_depth = queue_depth; 2672 set->numa_node = NUMA_NO_NODE; 2673 set->flags = set_flags; 2674 2675 ret = blk_mq_alloc_tag_set(set); 2676 if (ret) 2677 return ERR_PTR(ret); 2678 2679 q = blk_mq_init_queue(set); 2680 if (IS_ERR(q)) { 2681 blk_mq_free_tag_set(set); 2682 return q; 2683 } 2684 2685 return q; 2686 } 2687 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2688 2689 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2690 { 2691 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2692 2693 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2694 __alignof__(struct blk_mq_hw_ctx)) != 2695 sizeof(struct blk_mq_hw_ctx)); 2696 2697 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2698 hw_ctx_size += sizeof(struct srcu_struct); 2699 2700 return hw_ctx_size; 2701 } 2702 2703 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2704 struct blk_mq_tag_set *set, struct request_queue *q, 2705 int hctx_idx, int node) 2706 { 2707 struct blk_mq_hw_ctx *hctx; 2708 2709 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), 2710 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2711 node); 2712 if (!hctx) 2713 return NULL; 2714 2715 if (!zalloc_cpumask_var_node(&hctx->cpumask, 2716 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2717 node)) { 2718 kfree(hctx); 2719 return NULL; 2720 } 2721 2722 atomic_set(&hctx->nr_active, 0); 2723 hctx->numa_node = node; 2724 hctx->queue_num = hctx_idx; 2725 2726 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) { 2727 free_cpumask_var(hctx->cpumask); 2728 kfree(hctx); 2729 return NULL; 2730 } 2731 blk_mq_hctx_kobj_init(hctx); 2732 2733 return hctx; 2734 } 2735 2736 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2737 struct request_queue *q) 2738 { 2739 int i, j, end; 2740 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2741 2742 /* protect against switching io scheduler */ 2743 mutex_lock(&q->sysfs_lock); 2744 for (i = 0; i < set->nr_hw_queues; i++) { 2745 int node; 2746 struct blk_mq_hw_ctx *hctx; 2747 2748 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2749 /* 2750 * If the hw queue has been mapped to another numa node, 2751 * we need to realloc the hctx. If allocation fails, fallback 2752 * to use the previous one. 2753 */ 2754 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2755 continue; 2756 2757 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2758 if (hctx) { 2759 if (hctxs[i]) { 2760 blk_mq_exit_hctx(q, set, hctxs[i], i); 2761 kobject_put(&hctxs[i]->kobj); 2762 } 2763 hctxs[i] = hctx; 2764 } else { 2765 if (hctxs[i]) 2766 pr_warn("Allocate new hctx on node %d fails,\ 2767 fallback to previous one on node %d\n", 2768 node, hctxs[i]->numa_node); 2769 else 2770 break; 2771 } 2772 } 2773 /* 2774 * Increasing nr_hw_queues fails. Free the newly allocated 2775 * hctxs and keep the previous q->nr_hw_queues. 2776 */ 2777 if (i != set->nr_hw_queues) { 2778 j = q->nr_hw_queues; 2779 end = i; 2780 } else { 2781 j = i; 2782 end = q->nr_hw_queues; 2783 q->nr_hw_queues = set->nr_hw_queues; 2784 } 2785 2786 for (; j < end; j++) { 2787 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2788 2789 if (hctx) { 2790 if (hctx->tags) 2791 blk_mq_free_map_and_requests(set, j); 2792 blk_mq_exit_hctx(q, set, hctx, j); 2793 kobject_put(&hctx->kobj); 2794 hctxs[j] = NULL; 2795 2796 } 2797 } 2798 mutex_unlock(&q->sysfs_lock); 2799 } 2800 2801 /* 2802 * Maximum number of hardware queues we support. For single sets, we'll never 2803 * have more than the CPUs (software queues). For multiple sets, the tag_set 2804 * user may have set ->nr_hw_queues larger. 2805 */ 2806 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2807 { 2808 if (set->nr_maps == 1) 2809 return nr_cpu_ids; 2810 2811 return max(set->nr_hw_queues, nr_cpu_ids); 2812 } 2813 2814 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2815 struct request_queue *q) 2816 { 2817 /* mark the queue as mq asap */ 2818 q->mq_ops = set->ops; 2819 2820 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2821 blk_mq_poll_stats_bkt, 2822 BLK_MQ_POLL_STATS_BKTS, q); 2823 if (!q->poll_cb) 2824 goto err_exit; 2825 2826 if (blk_mq_alloc_ctxs(q)) 2827 goto err_exit; 2828 2829 /* init q->mq_kobj and sw queues' kobjects */ 2830 blk_mq_sysfs_init(q); 2831 2832 q->nr_queues = nr_hw_queues(set); 2833 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2834 GFP_KERNEL, set->numa_node); 2835 if (!q->queue_hw_ctx) 2836 goto err_sys_init; 2837 2838 blk_mq_realloc_hw_ctxs(set, q); 2839 if (!q->nr_hw_queues) 2840 goto err_hctxs; 2841 2842 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2843 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2844 2845 q->tag_set = set; 2846 2847 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2848 if (set->nr_maps > HCTX_TYPE_POLL && 2849 set->map[HCTX_TYPE_POLL].nr_queues) 2850 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2851 2852 q->sg_reserved_size = INT_MAX; 2853 2854 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2855 INIT_LIST_HEAD(&q->requeue_list); 2856 spin_lock_init(&q->requeue_lock); 2857 2858 blk_queue_make_request(q, blk_mq_make_request); 2859 2860 /* 2861 * Do this after blk_queue_make_request() overrides it... 2862 */ 2863 q->nr_requests = set->queue_depth; 2864 2865 /* 2866 * Default to classic polling 2867 */ 2868 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2869 2870 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2871 blk_mq_add_queue_tag_set(set, q); 2872 blk_mq_map_swqueue(q); 2873 2874 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2875 int ret; 2876 2877 ret = elevator_init_mq(q); 2878 if (ret) 2879 return ERR_PTR(ret); 2880 } 2881 2882 return q; 2883 2884 err_hctxs: 2885 kfree(q->queue_hw_ctx); 2886 err_sys_init: 2887 blk_mq_sysfs_deinit(q); 2888 err_exit: 2889 q->mq_ops = NULL; 2890 return ERR_PTR(-ENOMEM); 2891 } 2892 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2893 2894 void blk_mq_free_queue(struct request_queue *q) 2895 { 2896 struct blk_mq_tag_set *set = q->tag_set; 2897 2898 blk_mq_del_queue_tag_set(q); 2899 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2900 } 2901 2902 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2903 { 2904 int i; 2905 2906 for (i = 0; i < set->nr_hw_queues; i++) 2907 if (!__blk_mq_alloc_rq_map(set, i)) 2908 goto out_unwind; 2909 2910 return 0; 2911 2912 out_unwind: 2913 while (--i >= 0) 2914 blk_mq_free_rq_map(set->tags[i]); 2915 2916 return -ENOMEM; 2917 } 2918 2919 /* 2920 * Allocate the request maps associated with this tag_set. Note that this 2921 * may reduce the depth asked for, if memory is tight. set->queue_depth 2922 * will be updated to reflect the allocated depth. 2923 */ 2924 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2925 { 2926 unsigned int depth; 2927 int err; 2928 2929 depth = set->queue_depth; 2930 do { 2931 err = __blk_mq_alloc_rq_maps(set); 2932 if (!err) 2933 break; 2934 2935 set->queue_depth >>= 1; 2936 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2937 err = -ENOMEM; 2938 break; 2939 } 2940 } while (set->queue_depth); 2941 2942 if (!set->queue_depth || err) { 2943 pr_err("blk-mq: failed to allocate request map\n"); 2944 return -ENOMEM; 2945 } 2946 2947 if (depth != set->queue_depth) 2948 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2949 depth, set->queue_depth); 2950 2951 return 0; 2952 } 2953 2954 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2955 { 2956 if (set->ops->map_queues && !is_kdump_kernel()) { 2957 int i; 2958 2959 /* 2960 * transport .map_queues is usually done in the following 2961 * way: 2962 * 2963 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2964 * mask = get_cpu_mask(queue) 2965 * for_each_cpu(cpu, mask) 2966 * set->map[x].mq_map[cpu] = queue; 2967 * } 2968 * 2969 * When we need to remap, the table has to be cleared for 2970 * killing stale mapping since one CPU may not be mapped 2971 * to any hw queue. 2972 */ 2973 for (i = 0; i < set->nr_maps; i++) 2974 blk_mq_clear_mq_map(&set->map[i]); 2975 2976 return set->ops->map_queues(set); 2977 } else { 2978 BUG_ON(set->nr_maps > 1); 2979 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2980 } 2981 } 2982 2983 /* 2984 * Alloc a tag set to be associated with one or more request queues. 2985 * May fail with EINVAL for various error conditions. May adjust the 2986 * requested depth down, if it's too large. In that case, the set 2987 * value will be stored in set->queue_depth. 2988 */ 2989 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2990 { 2991 int i, ret; 2992 2993 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2994 2995 if (!set->nr_hw_queues) 2996 return -EINVAL; 2997 if (!set->queue_depth) 2998 return -EINVAL; 2999 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3000 return -EINVAL; 3001 3002 if (!set->ops->queue_rq) 3003 return -EINVAL; 3004 3005 if (!set->ops->get_budget ^ !set->ops->put_budget) 3006 return -EINVAL; 3007 3008 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3009 pr_info("blk-mq: reduced tag depth to %u\n", 3010 BLK_MQ_MAX_DEPTH); 3011 set->queue_depth = BLK_MQ_MAX_DEPTH; 3012 } 3013 3014 if (!set->nr_maps) 3015 set->nr_maps = 1; 3016 else if (set->nr_maps > HCTX_MAX_TYPES) 3017 return -EINVAL; 3018 3019 /* 3020 * If a crashdump is active, then we are potentially in a very 3021 * memory constrained environment. Limit us to 1 queue and 3022 * 64 tags to prevent using too much memory. 3023 */ 3024 if (is_kdump_kernel()) { 3025 set->nr_hw_queues = 1; 3026 set->nr_maps = 1; 3027 set->queue_depth = min(64U, set->queue_depth); 3028 } 3029 /* 3030 * There is no use for more h/w queues than cpus if we just have 3031 * a single map 3032 */ 3033 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3034 set->nr_hw_queues = nr_cpu_ids; 3035 3036 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3037 GFP_KERNEL, set->numa_node); 3038 if (!set->tags) 3039 return -ENOMEM; 3040 3041 ret = -ENOMEM; 3042 for (i = 0; i < set->nr_maps; i++) { 3043 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3044 sizeof(set->map[i].mq_map[0]), 3045 GFP_KERNEL, set->numa_node); 3046 if (!set->map[i].mq_map) 3047 goto out_free_mq_map; 3048 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3049 } 3050 3051 ret = blk_mq_update_queue_map(set); 3052 if (ret) 3053 goto out_free_mq_map; 3054 3055 ret = blk_mq_alloc_rq_maps(set); 3056 if (ret) 3057 goto out_free_mq_map; 3058 3059 mutex_init(&set->tag_list_lock); 3060 INIT_LIST_HEAD(&set->tag_list); 3061 3062 return 0; 3063 3064 out_free_mq_map: 3065 for (i = 0; i < set->nr_maps; i++) { 3066 kfree(set->map[i].mq_map); 3067 set->map[i].mq_map = NULL; 3068 } 3069 kfree(set->tags); 3070 set->tags = NULL; 3071 return ret; 3072 } 3073 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3074 3075 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3076 { 3077 int i, j; 3078 3079 for (i = 0; i < nr_hw_queues(set); i++) 3080 blk_mq_free_map_and_requests(set, i); 3081 3082 for (j = 0; j < set->nr_maps; j++) { 3083 kfree(set->map[j].mq_map); 3084 set->map[j].mq_map = NULL; 3085 } 3086 3087 kfree(set->tags); 3088 set->tags = NULL; 3089 } 3090 EXPORT_SYMBOL(blk_mq_free_tag_set); 3091 3092 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3093 { 3094 struct blk_mq_tag_set *set = q->tag_set; 3095 struct blk_mq_hw_ctx *hctx; 3096 int i, ret; 3097 3098 if (!set) 3099 return -EINVAL; 3100 3101 if (q->nr_requests == nr) 3102 return 0; 3103 3104 blk_mq_freeze_queue(q); 3105 blk_mq_quiesce_queue(q); 3106 3107 ret = 0; 3108 queue_for_each_hw_ctx(q, hctx, i) { 3109 if (!hctx->tags) 3110 continue; 3111 /* 3112 * If we're using an MQ scheduler, just update the scheduler 3113 * queue depth. This is similar to what the old code would do. 3114 */ 3115 if (!hctx->sched_tags) { 3116 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3117 false); 3118 } else { 3119 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3120 nr, true); 3121 } 3122 if (ret) 3123 break; 3124 } 3125 3126 if (!ret) 3127 q->nr_requests = nr; 3128 3129 blk_mq_unquiesce_queue(q); 3130 blk_mq_unfreeze_queue(q); 3131 3132 return ret; 3133 } 3134 3135 /* 3136 * request_queue and elevator_type pair. 3137 * It is just used by __blk_mq_update_nr_hw_queues to cache 3138 * the elevator_type associated with a request_queue. 3139 */ 3140 struct blk_mq_qe_pair { 3141 struct list_head node; 3142 struct request_queue *q; 3143 struct elevator_type *type; 3144 }; 3145 3146 /* 3147 * Cache the elevator_type in qe pair list and switch the 3148 * io scheduler to 'none' 3149 */ 3150 static bool blk_mq_elv_switch_none(struct list_head *head, 3151 struct request_queue *q) 3152 { 3153 struct blk_mq_qe_pair *qe; 3154 3155 if (!q->elevator) 3156 return true; 3157 3158 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3159 if (!qe) 3160 return false; 3161 3162 INIT_LIST_HEAD(&qe->node); 3163 qe->q = q; 3164 qe->type = q->elevator->type; 3165 list_add(&qe->node, head); 3166 3167 mutex_lock(&q->sysfs_lock); 3168 /* 3169 * After elevator_switch_mq, the previous elevator_queue will be 3170 * released by elevator_release. The reference of the io scheduler 3171 * module get by elevator_get will also be put. So we need to get 3172 * a reference of the io scheduler module here to prevent it to be 3173 * removed. 3174 */ 3175 __module_get(qe->type->elevator_owner); 3176 elevator_switch_mq(q, NULL); 3177 mutex_unlock(&q->sysfs_lock); 3178 3179 return true; 3180 } 3181 3182 static void blk_mq_elv_switch_back(struct list_head *head, 3183 struct request_queue *q) 3184 { 3185 struct blk_mq_qe_pair *qe; 3186 struct elevator_type *t = NULL; 3187 3188 list_for_each_entry(qe, head, node) 3189 if (qe->q == q) { 3190 t = qe->type; 3191 break; 3192 } 3193 3194 if (!t) 3195 return; 3196 3197 list_del(&qe->node); 3198 kfree(qe); 3199 3200 mutex_lock(&q->sysfs_lock); 3201 elevator_switch_mq(q, t); 3202 mutex_unlock(&q->sysfs_lock); 3203 } 3204 3205 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3206 int nr_hw_queues) 3207 { 3208 struct request_queue *q; 3209 LIST_HEAD(head); 3210 int prev_nr_hw_queues; 3211 3212 lockdep_assert_held(&set->tag_list_lock); 3213 3214 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3215 nr_hw_queues = nr_cpu_ids; 3216 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3217 return; 3218 3219 list_for_each_entry(q, &set->tag_list, tag_set_list) 3220 blk_mq_freeze_queue(q); 3221 /* 3222 * Sync with blk_mq_queue_tag_busy_iter. 3223 */ 3224 synchronize_rcu(); 3225 /* 3226 * Switch IO scheduler to 'none', cleaning up the data associated 3227 * with the previous scheduler. We will switch back once we are done 3228 * updating the new sw to hw queue mappings. 3229 */ 3230 list_for_each_entry(q, &set->tag_list, tag_set_list) 3231 if (!blk_mq_elv_switch_none(&head, q)) 3232 goto switch_back; 3233 3234 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3235 blk_mq_debugfs_unregister_hctxs(q); 3236 blk_mq_sysfs_unregister(q); 3237 } 3238 3239 prev_nr_hw_queues = set->nr_hw_queues; 3240 set->nr_hw_queues = nr_hw_queues; 3241 blk_mq_update_queue_map(set); 3242 fallback: 3243 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3244 blk_mq_realloc_hw_ctxs(set, q); 3245 if (q->nr_hw_queues != set->nr_hw_queues) { 3246 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3247 nr_hw_queues, prev_nr_hw_queues); 3248 set->nr_hw_queues = prev_nr_hw_queues; 3249 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3250 goto fallback; 3251 } 3252 blk_mq_map_swqueue(q); 3253 } 3254 3255 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3256 blk_mq_sysfs_register(q); 3257 blk_mq_debugfs_register_hctxs(q); 3258 } 3259 3260 switch_back: 3261 list_for_each_entry(q, &set->tag_list, tag_set_list) 3262 blk_mq_elv_switch_back(&head, q); 3263 3264 list_for_each_entry(q, &set->tag_list, tag_set_list) 3265 blk_mq_unfreeze_queue(q); 3266 } 3267 3268 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3269 { 3270 mutex_lock(&set->tag_list_lock); 3271 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3272 mutex_unlock(&set->tag_list_lock); 3273 } 3274 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3275 3276 /* Enable polling stats and return whether they were already enabled. */ 3277 static bool blk_poll_stats_enable(struct request_queue *q) 3278 { 3279 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3280 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3281 return true; 3282 blk_stat_add_callback(q, q->poll_cb); 3283 return false; 3284 } 3285 3286 static void blk_mq_poll_stats_start(struct request_queue *q) 3287 { 3288 /* 3289 * We don't arm the callback if polling stats are not enabled or the 3290 * callback is already active. 3291 */ 3292 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3293 blk_stat_is_active(q->poll_cb)) 3294 return; 3295 3296 blk_stat_activate_msecs(q->poll_cb, 100); 3297 } 3298 3299 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3300 { 3301 struct request_queue *q = cb->data; 3302 int bucket; 3303 3304 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3305 if (cb->stat[bucket].nr_samples) 3306 q->poll_stat[bucket] = cb->stat[bucket]; 3307 } 3308 } 3309 3310 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3311 struct blk_mq_hw_ctx *hctx, 3312 struct request *rq) 3313 { 3314 unsigned long ret = 0; 3315 int bucket; 3316 3317 /* 3318 * If stats collection isn't on, don't sleep but turn it on for 3319 * future users 3320 */ 3321 if (!blk_poll_stats_enable(q)) 3322 return 0; 3323 3324 /* 3325 * As an optimistic guess, use half of the mean service time 3326 * for this type of request. We can (and should) make this smarter. 3327 * For instance, if the completion latencies are tight, we can 3328 * get closer than just half the mean. This is especially 3329 * important on devices where the completion latencies are longer 3330 * than ~10 usec. We do use the stats for the relevant IO size 3331 * if available which does lead to better estimates. 3332 */ 3333 bucket = blk_mq_poll_stats_bkt(rq); 3334 if (bucket < 0) 3335 return ret; 3336 3337 if (q->poll_stat[bucket].nr_samples) 3338 ret = (q->poll_stat[bucket].mean + 1) / 2; 3339 3340 return ret; 3341 } 3342 3343 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3344 struct blk_mq_hw_ctx *hctx, 3345 struct request *rq) 3346 { 3347 struct hrtimer_sleeper hs; 3348 enum hrtimer_mode mode; 3349 unsigned int nsecs; 3350 ktime_t kt; 3351 3352 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3353 return false; 3354 3355 /* 3356 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3357 * 3358 * 0: use half of prev avg 3359 * >0: use this specific value 3360 */ 3361 if (q->poll_nsec > 0) 3362 nsecs = q->poll_nsec; 3363 else 3364 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3365 3366 if (!nsecs) 3367 return false; 3368 3369 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3370 3371 /* 3372 * This will be replaced with the stats tracking code, using 3373 * 'avg_completion_time / 2' as the pre-sleep target. 3374 */ 3375 kt = nsecs; 3376 3377 mode = HRTIMER_MODE_REL; 3378 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3379 hrtimer_set_expires(&hs.timer, kt); 3380 3381 hrtimer_init_sleeper(&hs, current); 3382 do { 3383 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3384 break; 3385 set_current_state(TASK_UNINTERRUPTIBLE); 3386 hrtimer_start_expires(&hs.timer, mode); 3387 if (hs.task) 3388 io_schedule(); 3389 hrtimer_cancel(&hs.timer); 3390 mode = HRTIMER_MODE_ABS; 3391 } while (hs.task && !signal_pending(current)); 3392 3393 __set_current_state(TASK_RUNNING); 3394 destroy_hrtimer_on_stack(&hs.timer); 3395 return true; 3396 } 3397 3398 static bool blk_mq_poll_hybrid(struct request_queue *q, 3399 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3400 { 3401 struct request *rq; 3402 3403 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3404 return false; 3405 3406 if (!blk_qc_t_is_internal(cookie)) 3407 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3408 else { 3409 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3410 /* 3411 * With scheduling, if the request has completed, we'll 3412 * get a NULL return here, as we clear the sched tag when 3413 * that happens. The request still remains valid, like always, 3414 * so we should be safe with just the NULL check. 3415 */ 3416 if (!rq) 3417 return false; 3418 } 3419 3420 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3421 } 3422 3423 /** 3424 * blk_poll - poll for IO completions 3425 * @q: the queue 3426 * @cookie: cookie passed back at IO submission time 3427 * @spin: whether to spin for completions 3428 * 3429 * Description: 3430 * Poll for completions on the passed in queue. Returns number of 3431 * completed entries found. If @spin is true, then blk_poll will continue 3432 * looping until at least one completion is found, unless the task is 3433 * otherwise marked running (or we need to reschedule). 3434 */ 3435 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3436 { 3437 struct blk_mq_hw_ctx *hctx; 3438 long state; 3439 3440 if (!blk_qc_t_valid(cookie) || 3441 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3442 return 0; 3443 3444 if (current->plug) 3445 blk_flush_plug_list(current->plug, false); 3446 3447 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3448 3449 /* 3450 * If we sleep, have the caller restart the poll loop to reset 3451 * the state. Like for the other success return cases, the 3452 * caller is responsible for checking if the IO completed. If 3453 * the IO isn't complete, we'll get called again and will go 3454 * straight to the busy poll loop. 3455 */ 3456 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3457 return 1; 3458 3459 hctx->poll_considered++; 3460 3461 state = current->state; 3462 do { 3463 int ret; 3464 3465 hctx->poll_invoked++; 3466 3467 ret = q->mq_ops->poll(hctx); 3468 if (ret > 0) { 3469 hctx->poll_success++; 3470 __set_current_state(TASK_RUNNING); 3471 return ret; 3472 } 3473 3474 if (signal_pending_state(state, current)) 3475 __set_current_state(TASK_RUNNING); 3476 3477 if (current->state == TASK_RUNNING) 3478 return 1; 3479 if (ret < 0 || !spin) 3480 break; 3481 cpu_relax(); 3482 } while (!need_resched()); 3483 3484 __set_current_state(TASK_RUNNING); 3485 return 0; 3486 } 3487 EXPORT_SYMBOL_GPL(blk_poll); 3488 3489 unsigned int blk_mq_rq_cpu(struct request *rq) 3490 { 3491 return rq->mq_ctx->cpu; 3492 } 3493 EXPORT_SYMBOL(blk_mq_rq_cpu); 3494 3495 static int __init blk_mq_init(void) 3496 { 3497 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3498 blk_mq_hctx_notify_dead); 3499 return 0; 3500 } 3501 subsys_initcall(blk_mq_init); 3502