1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 retry: 451 data->ctx = blk_mq_get_ctx(q); 452 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 453 454 if (q->elevator) { 455 /* 456 * All requests use scheduler tags when an I/O scheduler is 457 * enabled for the queue. 458 */ 459 data->rq_flags |= RQF_SCHED_TAGS; 460 461 /* 462 * Flush/passthrough requests are special and go directly to the 463 * dispatch list. 464 */ 465 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 466 !blk_op_is_passthrough(data->cmd_flags)) { 467 struct elevator_mq_ops *ops = &q->elevator->type->ops; 468 469 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 470 471 data->rq_flags |= RQF_USE_SCHED; 472 if (ops->limit_depth) 473 ops->limit_depth(data->cmd_flags, data); 474 } 475 } else { 476 blk_mq_tag_busy(data->hctx); 477 } 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 */ 771 if (bio->bi_iter.bi_size != nbytes) 772 bio->bi_status = BLK_STS_IOERR; 773 else 774 bio->bi_iter.bi_sector = rq->__sector; 775 } 776 777 bio_advance(bio, nbytes); 778 779 if (unlikely(rq->rq_flags & RQF_QUIET)) 780 bio_set_flag(bio, BIO_QUIET); 781 /* don't actually finish bio if it's part of flush sequence */ 782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 783 bio_endio(bio); 784 } 785 786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 787 { 788 if (req->part && blk_do_io_stat(req)) { 789 const int sgrp = op_stat_group(req_op(req)); 790 791 part_stat_lock(); 792 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 793 part_stat_unlock(); 794 } 795 } 796 797 static void blk_print_req_error(struct request *req, blk_status_t status) 798 { 799 printk_ratelimited(KERN_ERR 800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 801 "phys_seg %u prio class %u\n", 802 blk_status_to_str(status), 803 req->q->disk ? req->q->disk->disk_name : "?", 804 blk_rq_pos(req), (__force u32)req_op(req), 805 blk_op_str(req_op(req)), 806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 807 req->nr_phys_segments, 808 IOPRIO_PRIO_CLASS(req->ioprio)); 809 } 810 811 /* 812 * Fully end IO on a request. Does not support partial completions, or 813 * errors. 814 */ 815 static void blk_complete_request(struct request *req) 816 { 817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 818 int total_bytes = blk_rq_bytes(req); 819 struct bio *bio = req->bio; 820 821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 822 823 if (!bio) 824 return; 825 826 #ifdef CONFIG_BLK_DEV_INTEGRITY 827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 828 req->q->integrity.profile->complete_fn(req, total_bytes); 829 #endif 830 831 /* 832 * Upper layers may call blk_crypto_evict_key() anytime after the last 833 * bio_endio(). Therefore, the keyslot must be released before that. 834 */ 835 blk_crypto_rq_put_keyslot(req); 836 837 blk_account_io_completion(req, total_bytes); 838 839 do { 840 struct bio *next = bio->bi_next; 841 842 /* Completion has already been traced */ 843 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 844 845 if (req_op(req) == REQ_OP_ZONE_APPEND) 846 bio->bi_iter.bi_sector = req->__sector; 847 848 if (!is_flush) 849 bio_endio(bio); 850 bio = next; 851 } while (bio); 852 853 /* 854 * Reset counters so that the request stacking driver 855 * can find how many bytes remain in the request 856 * later. 857 */ 858 if (!req->end_io) { 859 req->bio = NULL; 860 req->__data_len = 0; 861 } 862 } 863 864 /** 865 * blk_update_request - Complete multiple bytes without completing the request 866 * @req: the request being processed 867 * @error: block status code 868 * @nr_bytes: number of bytes to complete for @req 869 * 870 * Description: 871 * Ends I/O on a number of bytes attached to @req, but doesn't complete 872 * the request structure even if @req doesn't have leftover. 873 * If @req has leftover, sets it up for the next range of segments. 874 * 875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 876 * %false return from this function. 877 * 878 * Note: 879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 880 * except in the consistency check at the end of this function. 881 * 882 * Return: 883 * %false - this request doesn't have any more data 884 * %true - this request has more data 885 **/ 886 bool blk_update_request(struct request *req, blk_status_t error, 887 unsigned int nr_bytes) 888 { 889 int total_bytes; 890 891 trace_block_rq_complete(req, error, nr_bytes); 892 893 if (!req->bio) 894 return false; 895 896 #ifdef CONFIG_BLK_DEV_INTEGRITY 897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 898 error == BLK_STS_OK) 899 req->q->integrity.profile->complete_fn(req, nr_bytes); 900 #endif 901 902 /* 903 * Upper layers may call blk_crypto_evict_key() anytime after the last 904 * bio_endio(). Therefore, the keyslot must be released before that. 905 */ 906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 907 __blk_crypto_rq_put_keyslot(req); 908 909 if (unlikely(error && !blk_rq_is_passthrough(req) && 910 !(req->rq_flags & RQF_QUIET)) && 911 !test_bit(GD_DEAD, &req->q->disk->state)) { 912 blk_print_req_error(req, error); 913 trace_block_rq_error(req, error, nr_bytes); 914 } 915 916 blk_account_io_completion(req, nr_bytes); 917 918 total_bytes = 0; 919 while (req->bio) { 920 struct bio *bio = req->bio; 921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 922 923 if (bio_bytes == bio->bi_iter.bi_size) 924 req->bio = bio->bi_next; 925 926 /* Completion has already been traced */ 927 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 928 req_bio_endio(req, bio, bio_bytes, error); 929 930 total_bytes += bio_bytes; 931 nr_bytes -= bio_bytes; 932 933 if (!nr_bytes) 934 break; 935 } 936 937 /* 938 * completely done 939 */ 940 if (!req->bio) { 941 /* 942 * Reset counters so that the request stacking driver 943 * can find how many bytes remain in the request 944 * later. 945 */ 946 req->__data_len = 0; 947 return false; 948 } 949 950 req->__data_len -= total_bytes; 951 952 /* update sector only for requests with clear definition of sector */ 953 if (!blk_rq_is_passthrough(req)) 954 req->__sector += total_bytes >> 9; 955 956 /* mixed attributes always follow the first bio */ 957 if (req->rq_flags & RQF_MIXED_MERGE) { 958 req->cmd_flags &= ~REQ_FAILFAST_MASK; 959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 960 } 961 962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 963 /* 964 * If total number of sectors is less than the first segment 965 * size, something has gone terribly wrong. 966 */ 967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 968 blk_dump_rq_flags(req, "request botched"); 969 req->__data_len = blk_rq_cur_bytes(req); 970 } 971 972 /* recalculate the number of segments */ 973 req->nr_phys_segments = blk_recalc_rq_segments(req); 974 } 975 976 return true; 977 } 978 EXPORT_SYMBOL_GPL(blk_update_request); 979 980 static inline void blk_account_io_done(struct request *req, u64 now) 981 { 982 trace_block_io_done(req); 983 984 /* 985 * Account IO completion. flush_rq isn't accounted as a 986 * normal IO on queueing nor completion. Accounting the 987 * containing request is enough. 988 */ 989 if (blk_do_io_stat(req) && req->part && 990 !(req->rq_flags & RQF_FLUSH_SEQ)) { 991 const int sgrp = op_stat_group(req_op(req)); 992 993 part_stat_lock(); 994 update_io_ticks(req->part, jiffies, true); 995 part_stat_inc(req->part, ios[sgrp]); 996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 997 part_stat_local_dec(req->part, 998 in_flight[op_is_write(req_op(req))]); 999 part_stat_unlock(); 1000 } 1001 } 1002 1003 static inline void blk_account_io_start(struct request *req) 1004 { 1005 trace_block_io_start(req); 1006 1007 if (blk_do_io_stat(req)) { 1008 /* 1009 * All non-passthrough requests are created from a bio with one 1010 * exception: when a flush command that is part of a flush sequence 1011 * generated by the state machine in blk-flush.c is cloned onto the 1012 * lower device by dm-multipath we can get here without a bio. 1013 */ 1014 if (req->bio) 1015 req->part = req->bio->bi_bdev; 1016 else 1017 req->part = req->q->disk->part0; 1018 1019 part_stat_lock(); 1020 update_io_ticks(req->part, jiffies, false); 1021 part_stat_local_inc(req->part, 1022 in_flight[op_is_write(req_op(req))]); 1023 part_stat_unlock(); 1024 } 1025 } 1026 1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1028 { 1029 if (rq->rq_flags & RQF_STATS) 1030 blk_stat_add(rq, now); 1031 1032 blk_mq_sched_completed_request(rq, now); 1033 blk_account_io_done(rq, now); 1034 } 1035 1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1037 { 1038 if (blk_mq_need_time_stamp(rq)) 1039 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1040 1041 blk_mq_finish_request(rq); 1042 1043 if (rq->end_io) { 1044 rq_qos_done(rq->q, rq); 1045 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1046 blk_mq_free_request(rq); 1047 } else { 1048 blk_mq_free_request(rq); 1049 } 1050 } 1051 EXPORT_SYMBOL(__blk_mq_end_request); 1052 1053 void blk_mq_end_request(struct request *rq, blk_status_t error) 1054 { 1055 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1056 BUG(); 1057 __blk_mq_end_request(rq, error); 1058 } 1059 EXPORT_SYMBOL(blk_mq_end_request); 1060 1061 #define TAG_COMP_BATCH 32 1062 1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1064 int *tag_array, int nr_tags) 1065 { 1066 struct request_queue *q = hctx->queue; 1067 1068 /* 1069 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1070 * update hctx->nr_active in batch 1071 */ 1072 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1073 __blk_mq_sub_active_requests(hctx, nr_tags); 1074 1075 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1076 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1077 } 1078 1079 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1080 { 1081 int tags[TAG_COMP_BATCH], nr_tags = 0; 1082 struct blk_mq_hw_ctx *cur_hctx = NULL; 1083 struct request *rq; 1084 u64 now = 0; 1085 1086 if (iob->need_ts) 1087 now = ktime_get_ns(); 1088 1089 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1090 prefetch(rq->bio); 1091 prefetch(rq->rq_next); 1092 1093 blk_complete_request(rq); 1094 if (iob->need_ts) 1095 __blk_mq_end_request_acct(rq, now); 1096 1097 blk_mq_finish_request(rq); 1098 1099 rq_qos_done(rq->q, rq); 1100 1101 /* 1102 * If end_io handler returns NONE, then it still has 1103 * ownership of the request. 1104 */ 1105 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1106 continue; 1107 1108 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1109 if (!req_ref_put_and_test(rq)) 1110 continue; 1111 1112 blk_crypto_free_request(rq); 1113 blk_pm_mark_last_busy(rq); 1114 1115 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1116 if (cur_hctx) 1117 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1118 nr_tags = 0; 1119 cur_hctx = rq->mq_hctx; 1120 } 1121 tags[nr_tags++] = rq->tag; 1122 } 1123 1124 if (nr_tags) 1125 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1126 } 1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1128 1129 static void blk_complete_reqs(struct llist_head *list) 1130 { 1131 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1132 struct request *rq, *next; 1133 1134 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1135 rq->q->mq_ops->complete(rq); 1136 } 1137 1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1139 { 1140 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1141 } 1142 1143 static int blk_softirq_cpu_dead(unsigned int cpu) 1144 { 1145 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1146 return 0; 1147 } 1148 1149 static void __blk_mq_complete_request_remote(void *data) 1150 { 1151 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1152 } 1153 1154 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1155 { 1156 int cpu = raw_smp_processor_id(); 1157 1158 if (!IS_ENABLED(CONFIG_SMP) || 1159 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1160 return false; 1161 /* 1162 * With force threaded interrupts enabled, raising softirq from an SMP 1163 * function call will always result in waking the ksoftirqd thread. 1164 * This is probably worse than completing the request on a different 1165 * cache domain. 1166 */ 1167 if (force_irqthreads()) 1168 return false; 1169 1170 /* same CPU or cache domain? Complete locally */ 1171 if (cpu == rq->mq_ctx->cpu || 1172 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1173 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1174 return false; 1175 1176 /* don't try to IPI to an offline CPU */ 1177 return cpu_online(rq->mq_ctx->cpu); 1178 } 1179 1180 static void blk_mq_complete_send_ipi(struct request *rq) 1181 { 1182 unsigned int cpu; 1183 1184 cpu = rq->mq_ctx->cpu; 1185 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1186 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1187 } 1188 1189 static void blk_mq_raise_softirq(struct request *rq) 1190 { 1191 struct llist_head *list; 1192 1193 preempt_disable(); 1194 list = this_cpu_ptr(&blk_cpu_done); 1195 if (llist_add(&rq->ipi_list, list)) 1196 raise_softirq(BLOCK_SOFTIRQ); 1197 preempt_enable(); 1198 } 1199 1200 bool blk_mq_complete_request_remote(struct request *rq) 1201 { 1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1203 1204 /* 1205 * For request which hctx has only one ctx mapping, 1206 * or a polled request, always complete locally, 1207 * it's pointless to redirect the completion. 1208 */ 1209 if ((rq->mq_hctx->nr_ctx == 1 && 1210 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1211 rq->cmd_flags & REQ_POLLED) 1212 return false; 1213 1214 if (blk_mq_complete_need_ipi(rq)) { 1215 blk_mq_complete_send_ipi(rq); 1216 return true; 1217 } 1218 1219 if (rq->q->nr_hw_queues == 1) { 1220 blk_mq_raise_softirq(rq); 1221 return true; 1222 } 1223 return false; 1224 } 1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1226 1227 /** 1228 * blk_mq_complete_request - end I/O on a request 1229 * @rq: the request being processed 1230 * 1231 * Description: 1232 * Complete a request by scheduling the ->complete_rq operation. 1233 **/ 1234 void blk_mq_complete_request(struct request *rq) 1235 { 1236 if (!blk_mq_complete_request_remote(rq)) 1237 rq->q->mq_ops->complete(rq); 1238 } 1239 EXPORT_SYMBOL(blk_mq_complete_request); 1240 1241 /** 1242 * blk_mq_start_request - Start processing a request 1243 * @rq: Pointer to request to be started 1244 * 1245 * Function used by device drivers to notify the block layer that a request 1246 * is going to be processed now, so blk layer can do proper initializations 1247 * such as starting the timeout timer. 1248 */ 1249 void blk_mq_start_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 trace_block_rq_issue(rq); 1254 1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1256 rq->io_start_time_ns = ktime_get_ns(); 1257 rq->stats_sectors = blk_rq_sectors(rq); 1258 rq->rq_flags |= RQF_STATS; 1259 rq_qos_issue(q, rq); 1260 } 1261 1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1263 1264 blk_add_timer(rq); 1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1266 1267 #ifdef CONFIG_BLK_DEV_INTEGRITY 1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1269 q->integrity.profile->prepare_fn(rq); 1270 #endif 1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1272 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1273 } 1274 EXPORT_SYMBOL(blk_mq_start_request); 1275 1276 /* 1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1278 * queues. This is important for md arrays to benefit from merging 1279 * requests. 1280 */ 1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1282 { 1283 if (plug->multiple_queues) 1284 return BLK_MAX_REQUEST_COUNT * 2; 1285 return BLK_MAX_REQUEST_COUNT; 1286 } 1287 1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1289 { 1290 struct request *last = rq_list_peek(&plug->mq_list); 1291 1292 if (!plug->rq_count) { 1293 trace_block_plug(rq->q); 1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1295 (!blk_queue_nomerges(rq->q) && 1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1297 blk_mq_flush_plug_list(plug, false); 1298 last = NULL; 1299 trace_block_plug(rq->q); 1300 } 1301 1302 if (!plug->multiple_queues && last && last->q != rq->q) 1303 plug->multiple_queues = true; 1304 /* 1305 * Any request allocated from sched tags can't be issued to 1306 * ->queue_rqs() directly 1307 */ 1308 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1309 plug->has_elevator = true; 1310 rq->rq_next = NULL; 1311 rq_list_add(&plug->mq_list, rq); 1312 plug->rq_count++; 1313 } 1314 1315 /** 1316 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1317 * @rq: request to insert 1318 * @at_head: insert request at head or tail of queue 1319 * 1320 * Description: 1321 * Insert a fully prepared request at the back of the I/O scheduler queue 1322 * for execution. Don't wait for completion. 1323 * 1324 * Note: 1325 * This function will invoke @done directly if the queue is dead. 1326 */ 1327 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1328 { 1329 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1330 1331 WARN_ON(irqs_disabled()); 1332 WARN_ON(!blk_rq_is_passthrough(rq)); 1333 1334 blk_account_io_start(rq); 1335 1336 /* 1337 * As plugging can be enabled for passthrough requests on a zoned 1338 * device, directly accessing the plug instead of using blk_mq_plug() 1339 * should not have any consequences. 1340 */ 1341 if (current->plug && !at_head) { 1342 blk_add_rq_to_plug(current->plug, rq); 1343 return; 1344 } 1345 1346 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1347 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1348 } 1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1350 1351 struct blk_rq_wait { 1352 struct completion done; 1353 blk_status_t ret; 1354 }; 1355 1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1357 { 1358 struct blk_rq_wait *wait = rq->end_io_data; 1359 1360 wait->ret = ret; 1361 complete(&wait->done); 1362 return RQ_END_IO_NONE; 1363 } 1364 1365 bool blk_rq_is_poll(struct request *rq) 1366 { 1367 if (!rq->mq_hctx) 1368 return false; 1369 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1370 return false; 1371 return true; 1372 } 1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1374 1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1376 { 1377 do { 1378 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1379 cond_resched(); 1380 } while (!completion_done(wait)); 1381 } 1382 1383 /** 1384 * blk_execute_rq - insert a request into queue for execution 1385 * @rq: request to insert 1386 * @at_head: insert request at head or tail of queue 1387 * 1388 * Description: 1389 * Insert a fully prepared request at the back of the I/O scheduler queue 1390 * for execution and wait for completion. 1391 * Return: The blk_status_t result provided to blk_mq_end_request(). 1392 */ 1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1394 { 1395 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1396 struct blk_rq_wait wait = { 1397 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1398 }; 1399 1400 WARN_ON(irqs_disabled()); 1401 WARN_ON(!blk_rq_is_passthrough(rq)); 1402 1403 rq->end_io_data = &wait; 1404 rq->end_io = blk_end_sync_rq; 1405 1406 blk_account_io_start(rq); 1407 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1408 blk_mq_run_hw_queue(hctx, false); 1409 1410 if (blk_rq_is_poll(rq)) { 1411 blk_rq_poll_completion(rq, &wait.done); 1412 } else { 1413 /* 1414 * Prevent hang_check timer from firing at us during very long 1415 * I/O 1416 */ 1417 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1418 1419 if (hang_check) 1420 while (!wait_for_completion_io_timeout(&wait.done, 1421 hang_check * (HZ/2))) 1422 ; 1423 else 1424 wait_for_completion_io(&wait.done); 1425 } 1426 1427 return wait.ret; 1428 } 1429 EXPORT_SYMBOL(blk_execute_rq); 1430 1431 static void __blk_mq_requeue_request(struct request *rq) 1432 { 1433 struct request_queue *q = rq->q; 1434 1435 blk_mq_put_driver_tag(rq); 1436 1437 trace_block_rq_requeue(rq); 1438 rq_qos_requeue(q, rq); 1439 1440 if (blk_mq_request_started(rq)) { 1441 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1442 rq->rq_flags &= ~RQF_TIMED_OUT; 1443 } 1444 } 1445 1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1447 { 1448 struct request_queue *q = rq->q; 1449 unsigned long flags; 1450 1451 __blk_mq_requeue_request(rq); 1452 1453 /* this request will be re-inserted to io scheduler queue */ 1454 blk_mq_sched_requeue_request(rq); 1455 1456 spin_lock_irqsave(&q->requeue_lock, flags); 1457 list_add_tail(&rq->queuelist, &q->requeue_list); 1458 spin_unlock_irqrestore(&q->requeue_lock, flags); 1459 1460 if (kick_requeue_list) 1461 blk_mq_kick_requeue_list(q); 1462 } 1463 EXPORT_SYMBOL(blk_mq_requeue_request); 1464 1465 static void blk_mq_requeue_work(struct work_struct *work) 1466 { 1467 struct request_queue *q = 1468 container_of(work, struct request_queue, requeue_work.work); 1469 LIST_HEAD(rq_list); 1470 LIST_HEAD(flush_list); 1471 struct request *rq; 1472 1473 spin_lock_irq(&q->requeue_lock); 1474 list_splice_init(&q->requeue_list, &rq_list); 1475 list_splice_init(&q->flush_list, &flush_list); 1476 spin_unlock_irq(&q->requeue_lock); 1477 1478 while (!list_empty(&rq_list)) { 1479 rq = list_entry(rq_list.next, struct request, queuelist); 1480 /* 1481 * If RQF_DONTPREP ist set, the request has been started by the 1482 * driver already and might have driver-specific data allocated 1483 * already. Insert it into the hctx dispatch list to avoid 1484 * block layer merges for the request. 1485 */ 1486 if (rq->rq_flags & RQF_DONTPREP) { 1487 list_del_init(&rq->queuelist); 1488 blk_mq_request_bypass_insert(rq, 0); 1489 } else { 1490 list_del_init(&rq->queuelist); 1491 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1492 } 1493 } 1494 1495 while (!list_empty(&flush_list)) { 1496 rq = list_entry(flush_list.next, struct request, queuelist); 1497 list_del_init(&rq->queuelist); 1498 blk_mq_insert_request(rq, 0); 1499 } 1500 1501 blk_mq_run_hw_queues(q, false); 1502 } 1503 1504 void blk_mq_kick_requeue_list(struct request_queue *q) 1505 { 1506 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1507 } 1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1509 1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1511 unsigned long msecs) 1512 { 1513 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1514 msecs_to_jiffies(msecs)); 1515 } 1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1517 1518 static bool blk_is_flush_data_rq(struct request *rq) 1519 { 1520 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1521 } 1522 1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1524 { 1525 /* 1526 * If we find a request that isn't idle we know the queue is busy 1527 * as it's checked in the iter. 1528 * Return false to stop the iteration. 1529 * 1530 * In case of queue quiesce, if one flush data request is completed, 1531 * don't count it as inflight given the flush sequence is suspended, 1532 * and the original flush data request is invisible to driver, just 1533 * like other pending requests because of quiesce 1534 */ 1535 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1536 blk_is_flush_data_rq(rq) && 1537 blk_mq_request_completed(rq))) { 1538 bool *busy = priv; 1539 1540 *busy = true; 1541 return false; 1542 } 1543 1544 return true; 1545 } 1546 1547 bool blk_mq_queue_inflight(struct request_queue *q) 1548 { 1549 bool busy = false; 1550 1551 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1552 return busy; 1553 } 1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1555 1556 static void blk_mq_rq_timed_out(struct request *req) 1557 { 1558 req->rq_flags |= RQF_TIMED_OUT; 1559 if (req->q->mq_ops->timeout) { 1560 enum blk_eh_timer_return ret; 1561 1562 ret = req->q->mq_ops->timeout(req); 1563 if (ret == BLK_EH_DONE) 1564 return; 1565 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1566 } 1567 1568 blk_add_timer(req); 1569 } 1570 1571 struct blk_expired_data { 1572 bool has_timedout_rq; 1573 unsigned long next; 1574 unsigned long timeout_start; 1575 }; 1576 1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1578 { 1579 unsigned long deadline; 1580 1581 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1582 return false; 1583 if (rq->rq_flags & RQF_TIMED_OUT) 1584 return false; 1585 1586 deadline = READ_ONCE(rq->deadline); 1587 if (time_after_eq(expired->timeout_start, deadline)) 1588 return true; 1589 1590 if (expired->next == 0) 1591 expired->next = deadline; 1592 else if (time_after(expired->next, deadline)) 1593 expired->next = deadline; 1594 return false; 1595 } 1596 1597 void blk_mq_put_rq_ref(struct request *rq) 1598 { 1599 if (is_flush_rq(rq)) { 1600 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1601 blk_mq_free_request(rq); 1602 } else if (req_ref_put_and_test(rq)) { 1603 __blk_mq_free_request(rq); 1604 } 1605 } 1606 1607 static bool blk_mq_check_expired(struct request *rq, void *priv) 1608 { 1609 struct blk_expired_data *expired = priv; 1610 1611 /* 1612 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1613 * be reallocated underneath the timeout handler's processing, then 1614 * the expire check is reliable. If the request is not expired, then 1615 * it was completed and reallocated as a new request after returning 1616 * from blk_mq_check_expired(). 1617 */ 1618 if (blk_mq_req_expired(rq, expired)) { 1619 expired->has_timedout_rq = true; 1620 return false; 1621 } 1622 return true; 1623 } 1624 1625 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1626 { 1627 struct blk_expired_data *expired = priv; 1628 1629 if (blk_mq_req_expired(rq, expired)) 1630 blk_mq_rq_timed_out(rq); 1631 return true; 1632 } 1633 1634 static void blk_mq_timeout_work(struct work_struct *work) 1635 { 1636 struct request_queue *q = 1637 container_of(work, struct request_queue, timeout_work); 1638 struct blk_expired_data expired = { 1639 .timeout_start = jiffies, 1640 }; 1641 struct blk_mq_hw_ctx *hctx; 1642 unsigned long i; 1643 1644 /* A deadlock might occur if a request is stuck requiring a 1645 * timeout at the same time a queue freeze is waiting 1646 * completion, since the timeout code would not be able to 1647 * acquire the queue reference here. 1648 * 1649 * That's why we don't use blk_queue_enter here; instead, we use 1650 * percpu_ref_tryget directly, because we need to be able to 1651 * obtain a reference even in the short window between the queue 1652 * starting to freeze, by dropping the first reference in 1653 * blk_freeze_queue_start, and the moment the last request is 1654 * consumed, marked by the instant q_usage_counter reaches 1655 * zero. 1656 */ 1657 if (!percpu_ref_tryget(&q->q_usage_counter)) 1658 return; 1659 1660 /* check if there is any timed-out request */ 1661 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1662 if (expired.has_timedout_rq) { 1663 /* 1664 * Before walking tags, we must ensure any submit started 1665 * before the current time has finished. Since the submit 1666 * uses srcu or rcu, wait for a synchronization point to 1667 * ensure all running submits have finished 1668 */ 1669 blk_mq_wait_quiesce_done(q->tag_set); 1670 1671 expired.next = 0; 1672 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1673 } 1674 1675 if (expired.next != 0) { 1676 mod_timer(&q->timeout, expired.next); 1677 } else { 1678 /* 1679 * Request timeouts are handled as a forward rolling timer. If 1680 * we end up here it means that no requests are pending and 1681 * also that no request has been pending for a while. Mark 1682 * each hctx as idle. 1683 */ 1684 queue_for_each_hw_ctx(q, hctx, i) { 1685 /* the hctx may be unmapped, so check it here */ 1686 if (blk_mq_hw_queue_mapped(hctx)) 1687 blk_mq_tag_idle(hctx); 1688 } 1689 } 1690 blk_queue_exit(q); 1691 } 1692 1693 struct flush_busy_ctx_data { 1694 struct blk_mq_hw_ctx *hctx; 1695 struct list_head *list; 1696 }; 1697 1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1699 { 1700 struct flush_busy_ctx_data *flush_data = data; 1701 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1702 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1703 enum hctx_type type = hctx->type; 1704 1705 spin_lock(&ctx->lock); 1706 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1707 sbitmap_clear_bit(sb, bitnr); 1708 spin_unlock(&ctx->lock); 1709 return true; 1710 } 1711 1712 /* 1713 * Process software queues that have been marked busy, splicing them 1714 * to the for-dispatch 1715 */ 1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1717 { 1718 struct flush_busy_ctx_data data = { 1719 .hctx = hctx, 1720 .list = list, 1721 }; 1722 1723 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1724 } 1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1726 1727 struct dispatch_rq_data { 1728 struct blk_mq_hw_ctx *hctx; 1729 struct request *rq; 1730 }; 1731 1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1733 void *data) 1734 { 1735 struct dispatch_rq_data *dispatch_data = data; 1736 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1737 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1738 enum hctx_type type = hctx->type; 1739 1740 spin_lock(&ctx->lock); 1741 if (!list_empty(&ctx->rq_lists[type])) { 1742 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1743 list_del_init(&dispatch_data->rq->queuelist); 1744 if (list_empty(&ctx->rq_lists[type])) 1745 sbitmap_clear_bit(sb, bitnr); 1746 } 1747 spin_unlock(&ctx->lock); 1748 1749 return !dispatch_data->rq; 1750 } 1751 1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1753 struct blk_mq_ctx *start) 1754 { 1755 unsigned off = start ? start->index_hw[hctx->type] : 0; 1756 struct dispatch_rq_data data = { 1757 .hctx = hctx, 1758 .rq = NULL, 1759 }; 1760 1761 __sbitmap_for_each_set(&hctx->ctx_map, off, 1762 dispatch_rq_from_ctx, &data); 1763 1764 return data.rq; 1765 } 1766 1767 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1768 { 1769 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1770 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1771 int tag; 1772 1773 blk_mq_tag_busy(rq->mq_hctx); 1774 1775 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1776 bt = &rq->mq_hctx->tags->breserved_tags; 1777 tag_offset = 0; 1778 } else { 1779 if (!hctx_may_queue(rq->mq_hctx, bt)) 1780 return false; 1781 } 1782 1783 tag = __sbitmap_queue_get(bt); 1784 if (tag == BLK_MQ_NO_TAG) 1785 return false; 1786 1787 rq->tag = tag + tag_offset; 1788 return true; 1789 } 1790 1791 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1792 { 1793 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1794 return false; 1795 1796 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1797 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1798 rq->rq_flags |= RQF_MQ_INFLIGHT; 1799 __blk_mq_inc_active_requests(hctx); 1800 } 1801 hctx->tags->rqs[rq->tag] = rq; 1802 return true; 1803 } 1804 1805 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1806 int flags, void *key) 1807 { 1808 struct blk_mq_hw_ctx *hctx; 1809 1810 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1811 1812 spin_lock(&hctx->dispatch_wait_lock); 1813 if (!list_empty(&wait->entry)) { 1814 struct sbitmap_queue *sbq; 1815 1816 list_del_init(&wait->entry); 1817 sbq = &hctx->tags->bitmap_tags; 1818 atomic_dec(&sbq->ws_active); 1819 } 1820 spin_unlock(&hctx->dispatch_wait_lock); 1821 1822 blk_mq_run_hw_queue(hctx, true); 1823 return 1; 1824 } 1825 1826 /* 1827 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1828 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1829 * restart. For both cases, take care to check the condition again after 1830 * marking us as waiting. 1831 */ 1832 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1833 struct request *rq) 1834 { 1835 struct sbitmap_queue *sbq; 1836 struct wait_queue_head *wq; 1837 wait_queue_entry_t *wait; 1838 bool ret; 1839 1840 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1841 !(blk_mq_is_shared_tags(hctx->flags))) { 1842 blk_mq_sched_mark_restart_hctx(hctx); 1843 1844 /* 1845 * It's possible that a tag was freed in the window between the 1846 * allocation failure and adding the hardware queue to the wait 1847 * queue. 1848 * 1849 * Don't clear RESTART here, someone else could have set it. 1850 * At most this will cost an extra queue run. 1851 */ 1852 return blk_mq_get_driver_tag(rq); 1853 } 1854 1855 wait = &hctx->dispatch_wait; 1856 if (!list_empty_careful(&wait->entry)) 1857 return false; 1858 1859 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1860 sbq = &hctx->tags->breserved_tags; 1861 else 1862 sbq = &hctx->tags->bitmap_tags; 1863 wq = &bt_wait_ptr(sbq, hctx)->wait; 1864 1865 spin_lock_irq(&wq->lock); 1866 spin_lock(&hctx->dispatch_wait_lock); 1867 if (!list_empty(&wait->entry)) { 1868 spin_unlock(&hctx->dispatch_wait_lock); 1869 spin_unlock_irq(&wq->lock); 1870 return false; 1871 } 1872 1873 atomic_inc(&sbq->ws_active); 1874 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1875 __add_wait_queue(wq, wait); 1876 1877 /* 1878 * Add one explicit barrier since blk_mq_get_driver_tag() may 1879 * not imply barrier in case of failure. 1880 * 1881 * Order adding us to wait queue and allocating driver tag. 1882 * 1883 * The pair is the one implied in sbitmap_queue_wake_up() which 1884 * orders clearing sbitmap tag bits and waitqueue_active() in 1885 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1886 * 1887 * Otherwise, re-order of adding wait queue and getting driver tag 1888 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1889 * the waitqueue_active() may not observe us in wait queue. 1890 */ 1891 smp_mb(); 1892 1893 /* 1894 * It's possible that a tag was freed in the window between the 1895 * allocation failure and adding the hardware queue to the wait 1896 * queue. 1897 */ 1898 ret = blk_mq_get_driver_tag(rq); 1899 if (!ret) { 1900 spin_unlock(&hctx->dispatch_wait_lock); 1901 spin_unlock_irq(&wq->lock); 1902 return false; 1903 } 1904 1905 /* 1906 * We got a tag, remove ourselves from the wait queue to ensure 1907 * someone else gets the wakeup. 1908 */ 1909 list_del_init(&wait->entry); 1910 atomic_dec(&sbq->ws_active); 1911 spin_unlock(&hctx->dispatch_wait_lock); 1912 spin_unlock_irq(&wq->lock); 1913 1914 return true; 1915 } 1916 1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1919 /* 1920 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1921 * - EWMA is one simple way to compute running average value 1922 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1923 * - take 4 as factor for avoiding to get too small(0) result, and this 1924 * factor doesn't matter because EWMA decreases exponentially 1925 */ 1926 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1927 { 1928 unsigned int ewma; 1929 1930 ewma = hctx->dispatch_busy; 1931 1932 if (!ewma && !busy) 1933 return; 1934 1935 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1936 if (busy) 1937 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1938 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1939 1940 hctx->dispatch_busy = ewma; 1941 } 1942 1943 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1944 1945 static void blk_mq_handle_dev_resource(struct request *rq, 1946 struct list_head *list) 1947 { 1948 list_add(&rq->queuelist, list); 1949 __blk_mq_requeue_request(rq); 1950 } 1951 1952 static void blk_mq_handle_zone_resource(struct request *rq, 1953 struct list_head *zone_list) 1954 { 1955 /* 1956 * If we end up here it is because we cannot dispatch a request to a 1957 * specific zone due to LLD level zone-write locking or other zone 1958 * related resource not being available. In this case, set the request 1959 * aside in zone_list for retrying it later. 1960 */ 1961 list_add(&rq->queuelist, zone_list); 1962 __blk_mq_requeue_request(rq); 1963 } 1964 1965 enum prep_dispatch { 1966 PREP_DISPATCH_OK, 1967 PREP_DISPATCH_NO_TAG, 1968 PREP_DISPATCH_NO_BUDGET, 1969 }; 1970 1971 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1972 bool need_budget) 1973 { 1974 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1975 int budget_token = -1; 1976 1977 if (need_budget) { 1978 budget_token = blk_mq_get_dispatch_budget(rq->q); 1979 if (budget_token < 0) { 1980 blk_mq_put_driver_tag(rq); 1981 return PREP_DISPATCH_NO_BUDGET; 1982 } 1983 blk_mq_set_rq_budget_token(rq, budget_token); 1984 } 1985 1986 if (!blk_mq_get_driver_tag(rq)) { 1987 /* 1988 * The initial allocation attempt failed, so we need to 1989 * rerun the hardware queue when a tag is freed. The 1990 * waitqueue takes care of that. If the queue is run 1991 * before we add this entry back on the dispatch list, 1992 * we'll re-run it below. 1993 */ 1994 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1995 /* 1996 * All budgets not got from this function will be put 1997 * together during handling partial dispatch 1998 */ 1999 if (need_budget) 2000 blk_mq_put_dispatch_budget(rq->q, budget_token); 2001 return PREP_DISPATCH_NO_TAG; 2002 } 2003 } 2004 2005 return PREP_DISPATCH_OK; 2006 } 2007 2008 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2009 static void blk_mq_release_budgets(struct request_queue *q, 2010 struct list_head *list) 2011 { 2012 struct request *rq; 2013 2014 list_for_each_entry(rq, list, queuelist) { 2015 int budget_token = blk_mq_get_rq_budget_token(rq); 2016 2017 if (budget_token >= 0) 2018 blk_mq_put_dispatch_budget(q, budget_token); 2019 } 2020 } 2021 2022 /* 2023 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2024 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2025 * details) 2026 * Attention, we should explicitly call this in unusual cases: 2027 * 1) did not queue everything initially scheduled to queue 2028 * 2) the last attempt to queue a request failed 2029 */ 2030 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2031 bool from_schedule) 2032 { 2033 if (hctx->queue->mq_ops->commit_rqs && queued) { 2034 trace_block_unplug(hctx->queue, queued, !from_schedule); 2035 hctx->queue->mq_ops->commit_rqs(hctx); 2036 } 2037 } 2038 2039 /* 2040 * Returns true if we did some work AND can potentially do more. 2041 */ 2042 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2043 unsigned int nr_budgets) 2044 { 2045 enum prep_dispatch prep; 2046 struct request_queue *q = hctx->queue; 2047 struct request *rq; 2048 int queued; 2049 blk_status_t ret = BLK_STS_OK; 2050 LIST_HEAD(zone_list); 2051 bool needs_resource = false; 2052 2053 if (list_empty(list)) 2054 return false; 2055 2056 /* 2057 * Now process all the entries, sending them to the driver. 2058 */ 2059 queued = 0; 2060 do { 2061 struct blk_mq_queue_data bd; 2062 2063 rq = list_first_entry(list, struct request, queuelist); 2064 2065 WARN_ON_ONCE(hctx != rq->mq_hctx); 2066 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2067 if (prep != PREP_DISPATCH_OK) 2068 break; 2069 2070 list_del_init(&rq->queuelist); 2071 2072 bd.rq = rq; 2073 bd.last = list_empty(list); 2074 2075 /* 2076 * once the request is queued to lld, no need to cover the 2077 * budget any more 2078 */ 2079 if (nr_budgets) 2080 nr_budgets--; 2081 ret = q->mq_ops->queue_rq(hctx, &bd); 2082 switch (ret) { 2083 case BLK_STS_OK: 2084 queued++; 2085 break; 2086 case BLK_STS_RESOURCE: 2087 needs_resource = true; 2088 fallthrough; 2089 case BLK_STS_DEV_RESOURCE: 2090 blk_mq_handle_dev_resource(rq, list); 2091 goto out; 2092 case BLK_STS_ZONE_RESOURCE: 2093 /* 2094 * Move the request to zone_list and keep going through 2095 * the dispatch list to find more requests the drive can 2096 * accept. 2097 */ 2098 blk_mq_handle_zone_resource(rq, &zone_list); 2099 needs_resource = true; 2100 break; 2101 default: 2102 blk_mq_end_request(rq, ret); 2103 } 2104 } while (!list_empty(list)); 2105 out: 2106 if (!list_empty(&zone_list)) 2107 list_splice_tail_init(&zone_list, list); 2108 2109 /* If we didn't flush the entire list, we could have told the driver 2110 * there was more coming, but that turned out to be a lie. 2111 */ 2112 if (!list_empty(list) || ret != BLK_STS_OK) 2113 blk_mq_commit_rqs(hctx, queued, false); 2114 2115 /* 2116 * Any items that need requeuing? Stuff them into hctx->dispatch, 2117 * that is where we will continue on next queue run. 2118 */ 2119 if (!list_empty(list)) { 2120 bool needs_restart; 2121 /* For non-shared tags, the RESTART check will suffice */ 2122 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2123 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2124 blk_mq_is_shared_tags(hctx->flags)); 2125 2126 if (nr_budgets) 2127 blk_mq_release_budgets(q, list); 2128 2129 spin_lock(&hctx->lock); 2130 list_splice_tail_init(list, &hctx->dispatch); 2131 spin_unlock(&hctx->lock); 2132 2133 /* 2134 * Order adding requests to hctx->dispatch and checking 2135 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2136 * in blk_mq_sched_restart(). Avoid restart code path to 2137 * miss the new added requests to hctx->dispatch, meantime 2138 * SCHED_RESTART is observed here. 2139 */ 2140 smp_mb(); 2141 2142 /* 2143 * If SCHED_RESTART was set by the caller of this function and 2144 * it is no longer set that means that it was cleared by another 2145 * thread and hence that a queue rerun is needed. 2146 * 2147 * If 'no_tag' is set, that means that we failed getting 2148 * a driver tag with an I/O scheduler attached. If our dispatch 2149 * waitqueue is no longer active, ensure that we run the queue 2150 * AFTER adding our entries back to the list. 2151 * 2152 * If no I/O scheduler has been configured it is possible that 2153 * the hardware queue got stopped and restarted before requests 2154 * were pushed back onto the dispatch list. Rerun the queue to 2155 * avoid starvation. Notes: 2156 * - blk_mq_run_hw_queue() checks whether or not a queue has 2157 * been stopped before rerunning a queue. 2158 * - Some but not all block drivers stop a queue before 2159 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2160 * and dm-rq. 2161 * 2162 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2163 * bit is set, run queue after a delay to avoid IO stalls 2164 * that could otherwise occur if the queue is idle. We'll do 2165 * similar if we couldn't get budget or couldn't lock a zone 2166 * and SCHED_RESTART is set. 2167 */ 2168 needs_restart = blk_mq_sched_needs_restart(hctx); 2169 if (prep == PREP_DISPATCH_NO_BUDGET) 2170 needs_resource = true; 2171 if (!needs_restart || 2172 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2173 blk_mq_run_hw_queue(hctx, true); 2174 else if (needs_resource) 2175 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2176 2177 blk_mq_update_dispatch_busy(hctx, true); 2178 return false; 2179 } 2180 2181 blk_mq_update_dispatch_busy(hctx, false); 2182 return true; 2183 } 2184 2185 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2186 { 2187 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2188 2189 if (cpu >= nr_cpu_ids) 2190 cpu = cpumask_first(hctx->cpumask); 2191 return cpu; 2192 } 2193 2194 /* 2195 * It'd be great if the workqueue API had a way to pass 2196 * in a mask and had some smarts for more clever placement. 2197 * For now we just round-robin here, switching for every 2198 * BLK_MQ_CPU_WORK_BATCH queued items. 2199 */ 2200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2201 { 2202 bool tried = false; 2203 int next_cpu = hctx->next_cpu; 2204 2205 if (hctx->queue->nr_hw_queues == 1) 2206 return WORK_CPU_UNBOUND; 2207 2208 if (--hctx->next_cpu_batch <= 0) { 2209 select_cpu: 2210 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2211 cpu_online_mask); 2212 if (next_cpu >= nr_cpu_ids) 2213 next_cpu = blk_mq_first_mapped_cpu(hctx); 2214 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2215 } 2216 2217 /* 2218 * Do unbound schedule if we can't find a online CPU for this hctx, 2219 * and it should only happen in the path of handling CPU DEAD. 2220 */ 2221 if (!cpu_online(next_cpu)) { 2222 if (!tried) { 2223 tried = true; 2224 goto select_cpu; 2225 } 2226 2227 /* 2228 * Make sure to re-select CPU next time once after CPUs 2229 * in hctx->cpumask become online again. 2230 */ 2231 hctx->next_cpu = next_cpu; 2232 hctx->next_cpu_batch = 1; 2233 return WORK_CPU_UNBOUND; 2234 } 2235 2236 hctx->next_cpu = next_cpu; 2237 return next_cpu; 2238 } 2239 2240 /** 2241 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2242 * @hctx: Pointer to the hardware queue to run. 2243 * @msecs: Milliseconds of delay to wait before running the queue. 2244 * 2245 * Run a hardware queue asynchronously with a delay of @msecs. 2246 */ 2247 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2248 { 2249 if (unlikely(blk_mq_hctx_stopped(hctx))) 2250 return; 2251 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2252 msecs_to_jiffies(msecs)); 2253 } 2254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2255 2256 /** 2257 * blk_mq_run_hw_queue - Start to run a hardware queue. 2258 * @hctx: Pointer to the hardware queue to run. 2259 * @async: If we want to run the queue asynchronously. 2260 * 2261 * Check if the request queue is not in a quiesced state and if there are 2262 * pending requests to be sent. If this is true, run the queue to send requests 2263 * to hardware. 2264 */ 2265 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2266 { 2267 bool need_run; 2268 2269 /* 2270 * We can't run the queue inline with interrupts disabled. 2271 */ 2272 WARN_ON_ONCE(!async && in_interrupt()); 2273 2274 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2275 2276 /* 2277 * When queue is quiesced, we may be switching io scheduler, or 2278 * updating nr_hw_queues, or other things, and we can't run queue 2279 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2280 * 2281 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2282 * quiesced. 2283 */ 2284 __blk_mq_run_dispatch_ops(hctx->queue, false, 2285 need_run = !blk_queue_quiesced(hctx->queue) && 2286 blk_mq_hctx_has_pending(hctx)); 2287 2288 if (!need_run) 2289 return; 2290 2291 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2292 blk_mq_delay_run_hw_queue(hctx, 0); 2293 return; 2294 } 2295 2296 blk_mq_run_dispatch_ops(hctx->queue, 2297 blk_mq_sched_dispatch_requests(hctx)); 2298 } 2299 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2300 2301 /* 2302 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2303 * scheduler. 2304 */ 2305 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2306 { 2307 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2308 /* 2309 * If the IO scheduler does not respect hardware queues when 2310 * dispatching, we just don't bother with multiple HW queues and 2311 * dispatch from hctx for the current CPU since running multiple queues 2312 * just causes lock contention inside the scheduler and pointless cache 2313 * bouncing. 2314 */ 2315 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2316 2317 if (!blk_mq_hctx_stopped(hctx)) 2318 return hctx; 2319 return NULL; 2320 } 2321 2322 /** 2323 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2324 * @q: Pointer to the request queue to run. 2325 * @async: If we want to run the queue asynchronously. 2326 */ 2327 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2328 { 2329 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2330 unsigned long i; 2331 2332 sq_hctx = NULL; 2333 if (blk_queue_sq_sched(q)) 2334 sq_hctx = blk_mq_get_sq_hctx(q); 2335 queue_for_each_hw_ctx(q, hctx, i) { 2336 if (blk_mq_hctx_stopped(hctx)) 2337 continue; 2338 /* 2339 * Dispatch from this hctx either if there's no hctx preferred 2340 * by IO scheduler or if it has requests that bypass the 2341 * scheduler. 2342 */ 2343 if (!sq_hctx || sq_hctx == hctx || 2344 !list_empty_careful(&hctx->dispatch)) 2345 blk_mq_run_hw_queue(hctx, async); 2346 } 2347 } 2348 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2349 2350 /** 2351 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2352 * @q: Pointer to the request queue to run. 2353 * @msecs: Milliseconds of delay to wait before running the queues. 2354 */ 2355 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2356 { 2357 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2358 unsigned long i; 2359 2360 sq_hctx = NULL; 2361 if (blk_queue_sq_sched(q)) 2362 sq_hctx = blk_mq_get_sq_hctx(q); 2363 queue_for_each_hw_ctx(q, hctx, i) { 2364 if (blk_mq_hctx_stopped(hctx)) 2365 continue; 2366 /* 2367 * If there is already a run_work pending, leave the 2368 * pending delay untouched. Otherwise, a hctx can stall 2369 * if another hctx is re-delaying the other's work 2370 * before the work executes. 2371 */ 2372 if (delayed_work_pending(&hctx->run_work)) 2373 continue; 2374 /* 2375 * Dispatch from this hctx either if there's no hctx preferred 2376 * by IO scheduler or if it has requests that bypass the 2377 * scheduler. 2378 */ 2379 if (!sq_hctx || sq_hctx == hctx || 2380 !list_empty_careful(&hctx->dispatch)) 2381 blk_mq_delay_run_hw_queue(hctx, msecs); 2382 } 2383 } 2384 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2385 2386 /* 2387 * This function is often used for pausing .queue_rq() by driver when 2388 * there isn't enough resource or some conditions aren't satisfied, and 2389 * BLK_STS_RESOURCE is usually returned. 2390 * 2391 * We do not guarantee that dispatch can be drained or blocked 2392 * after blk_mq_stop_hw_queue() returns. Please use 2393 * blk_mq_quiesce_queue() for that requirement. 2394 */ 2395 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2396 { 2397 cancel_delayed_work(&hctx->run_work); 2398 2399 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2400 } 2401 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2402 2403 /* 2404 * This function is often used for pausing .queue_rq() by driver when 2405 * there isn't enough resource or some conditions aren't satisfied, and 2406 * BLK_STS_RESOURCE is usually returned. 2407 * 2408 * We do not guarantee that dispatch can be drained or blocked 2409 * after blk_mq_stop_hw_queues() returns. Please use 2410 * blk_mq_quiesce_queue() for that requirement. 2411 */ 2412 void blk_mq_stop_hw_queues(struct request_queue *q) 2413 { 2414 struct blk_mq_hw_ctx *hctx; 2415 unsigned long i; 2416 2417 queue_for_each_hw_ctx(q, hctx, i) 2418 blk_mq_stop_hw_queue(hctx); 2419 } 2420 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2421 2422 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2423 { 2424 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2425 2426 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2427 } 2428 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2429 2430 void blk_mq_start_hw_queues(struct request_queue *q) 2431 { 2432 struct blk_mq_hw_ctx *hctx; 2433 unsigned long i; 2434 2435 queue_for_each_hw_ctx(q, hctx, i) 2436 blk_mq_start_hw_queue(hctx); 2437 } 2438 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2439 2440 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2441 { 2442 if (!blk_mq_hctx_stopped(hctx)) 2443 return; 2444 2445 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2446 blk_mq_run_hw_queue(hctx, async); 2447 } 2448 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2449 2450 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2451 { 2452 struct blk_mq_hw_ctx *hctx; 2453 unsigned long i; 2454 2455 queue_for_each_hw_ctx(q, hctx, i) 2456 blk_mq_start_stopped_hw_queue(hctx, async || 2457 (hctx->flags & BLK_MQ_F_BLOCKING)); 2458 } 2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2460 2461 static void blk_mq_run_work_fn(struct work_struct *work) 2462 { 2463 struct blk_mq_hw_ctx *hctx = 2464 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2465 2466 blk_mq_run_dispatch_ops(hctx->queue, 2467 blk_mq_sched_dispatch_requests(hctx)); 2468 } 2469 2470 /** 2471 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2472 * @rq: Pointer to request to be inserted. 2473 * @flags: BLK_MQ_INSERT_* 2474 * 2475 * Should only be used carefully, when the caller knows we want to 2476 * bypass a potential IO scheduler on the target device. 2477 */ 2478 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2479 { 2480 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2481 2482 spin_lock(&hctx->lock); 2483 if (flags & BLK_MQ_INSERT_AT_HEAD) 2484 list_add(&rq->queuelist, &hctx->dispatch); 2485 else 2486 list_add_tail(&rq->queuelist, &hctx->dispatch); 2487 spin_unlock(&hctx->lock); 2488 } 2489 2490 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2491 struct blk_mq_ctx *ctx, struct list_head *list, 2492 bool run_queue_async) 2493 { 2494 struct request *rq; 2495 enum hctx_type type = hctx->type; 2496 2497 /* 2498 * Try to issue requests directly if the hw queue isn't busy to save an 2499 * extra enqueue & dequeue to the sw queue. 2500 */ 2501 if (!hctx->dispatch_busy && !run_queue_async) { 2502 blk_mq_run_dispatch_ops(hctx->queue, 2503 blk_mq_try_issue_list_directly(hctx, list)); 2504 if (list_empty(list)) 2505 goto out; 2506 } 2507 2508 /* 2509 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2510 * offline now 2511 */ 2512 list_for_each_entry(rq, list, queuelist) { 2513 BUG_ON(rq->mq_ctx != ctx); 2514 trace_block_rq_insert(rq); 2515 if (rq->cmd_flags & REQ_NOWAIT) 2516 run_queue_async = true; 2517 } 2518 2519 spin_lock(&ctx->lock); 2520 list_splice_tail_init(list, &ctx->rq_lists[type]); 2521 blk_mq_hctx_mark_pending(hctx, ctx); 2522 spin_unlock(&ctx->lock); 2523 out: 2524 blk_mq_run_hw_queue(hctx, run_queue_async); 2525 } 2526 2527 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2528 { 2529 struct request_queue *q = rq->q; 2530 struct blk_mq_ctx *ctx = rq->mq_ctx; 2531 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2532 2533 if (blk_rq_is_passthrough(rq)) { 2534 /* 2535 * Passthrough request have to be added to hctx->dispatch 2536 * directly. The device may be in a situation where it can't 2537 * handle FS request, and always returns BLK_STS_RESOURCE for 2538 * them, which gets them added to hctx->dispatch. 2539 * 2540 * If a passthrough request is required to unblock the queues, 2541 * and it is added to the scheduler queue, there is no chance to 2542 * dispatch it given we prioritize requests in hctx->dispatch. 2543 */ 2544 blk_mq_request_bypass_insert(rq, flags); 2545 } else if (req_op(rq) == REQ_OP_FLUSH) { 2546 /* 2547 * Firstly normal IO request is inserted to scheduler queue or 2548 * sw queue, meantime we add flush request to dispatch queue( 2549 * hctx->dispatch) directly and there is at most one in-flight 2550 * flush request for each hw queue, so it doesn't matter to add 2551 * flush request to tail or front of the dispatch queue. 2552 * 2553 * Secondly in case of NCQ, flush request belongs to non-NCQ 2554 * command, and queueing it will fail when there is any 2555 * in-flight normal IO request(NCQ command). When adding flush 2556 * rq to the front of hctx->dispatch, it is easier to introduce 2557 * extra time to flush rq's latency because of S_SCHED_RESTART 2558 * compared with adding to the tail of dispatch queue, then 2559 * chance of flush merge is increased, and less flush requests 2560 * will be issued to controller. It is observed that ~10% time 2561 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2562 * drive when adding flush rq to the front of hctx->dispatch. 2563 * 2564 * Simply queue flush rq to the front of hctx->dispatch so that 2565 * intensive flush workloads can benefit in case of NCQ HW. 2566 */ 2567 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2568 } else if (q->elevator) { 2569 LIST_HEAD(list); 2570 2571 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2572 2573 list_add(&rq->queuelist, &list); 2574 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2575 } else { 2576 trace_block_rq_insert(rq); 2577 2578 spin_lock(&ctx->lock); 2579 if (flags & BLK_MQ_INSERT_AT_HEAD) 2580 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2581 else 2582 list_add_tail(&rq->queuelist, 2583 &ctx->rq_lists[hctx->type]); 2584 blk_mq_hctx_mark_pending(hctx, ctx); 2585 spin_unlock(&ctx->lock); 2586 } 2587 } 2588 2589 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2590 unsigned int nr_segs) 2591 { 2592 int err; 2593 2594 if (bio->bi_opf & REQ_RAHEAD) 2595 rq->cmd_flags |= REQ_FAILFAST_MASK; 2596 2597 rq->__sector = bio->bi_iter.bi_sector; 2598 blk_rq_bio_prep(rq, bio, nr_segs); 2599 2600 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2601 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2602 WARN_ON_ONCE(err); 2603 2604 blk_account_io_start(rq); 2605 } 2606 2607 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2608 struct request *rq, bool last) 2609 { 2610 struct request_queue *q = rq->q; 2611 struct blk_mq_queue_data bd = { 2612 .rq = rq, 2613 .last = last, 2614 }; 2615 blk_status_t ret; 2616 2617 /* 2618 * For OK queue, we are done. For error, caller may kill it. 2619 * Any other error (busy), just add it to our list as we 2620 * previously would have done. 2621 */ 2622 ret = q->mq_ops->queue_rq(hctx, &bd); 2623 switch (ret) { 2624 case BLK_STS_OK: 2625 blk_mq_update_dispatch_busy(hctx, false); 2626 break; 2627 case BLK_STS_RESOURCE: 2628 case BLK_STS_DEV_RESOURCE: 2629 blk_mq_update_dispatch_busy(hctx, true); 2630 __blk_mq_requeue_request(rq); 2631 break; 2632 default: 2633 blk_mq_update_dispatch_busy(hctx, false); 2634 break; 2635 } 2636 2637 return ret; 2638 } 2639 2640 static bool blk_mq_get_budget_and_tag(struct request *rq) 2641 { 2642 int budget_token; 2643 2644 budget_token = blk_mq_get_dispatch_budget(rq->q); 2645 if (budget_token < 0) 2646 return false; 2647 blk_mq_set_rq_budget_token(rq, budget_token); 2648 if (!blk_mq_get_driver_tag(rq)) { 2649 blk_mq_put_dispatch_budget(rq->q, budget_token); 2650 return false; 2651 } 2652 return true; 2653 } 2654 2655 /** 2656 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2657 * @hctx: Pointer of the associated hardware queue. 2658 * @rq: Pointer to request to be sent. 2659 * 2660 * If the device has enough resources to accept a new request now, send the 2661 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2662 * we can try send it another time in the future. Requests inserted at this 2663 * queue have higher priority. 2664 */ 2665 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2666 struct request *rq) 2667 { 2668 blk_status_t ret; 2669 2670 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2671 blk_mq_insert_request(rq, 0); 2672 return; 2673 } 2674 2675 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2676 blk_mq_insert_request(rq, 0); 2677 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2678 return; 2679 } 2680 2681 ret = __blk_mq_issue_directly(hctx, rq, true); 2682 switch (ret) { 2683 case BLK_STS_OK: 2684 break; 2685 case BLK_STS_RESOURCE: 2686 case BLK_STS_DEV_RESOURCE: 2687 blk_mq_request_bypass_insert(rq, 0); 2688 blk_mq_run_hw_queue(hctx, false); 2689 break; 2690 default: 2691 blk_mq_end_request(rq, ret); 2692 break; 2693 } 2694 } 2695 2696 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2697 { 2698 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2699 2700 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2701 blk_mq_insert_request(rq, 0); 2702 return BLK_STS_OK; 2703 } 2704 2705 if (!blk_mq_get_budget_and_tag(rq)) 2706 return BLK_STS_RESOURCE; 2707 return __blk_mq_issue_directly(hctx, rq, last); 2708 } 2709 2710 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2711 { 2712 struct blk_mq_hw_ctx *hctx = NULL; 2713 struct request *rq; 2714 int queued = 0; 2715 blk_status_t ret = BLK_STS_OK; 2716 2717 while ((rq = rq_list_pop(&plug->mq_list))) { 2718 bool last = rq_list_empty(plug->mq_list); 2719 2720 if (hctx != rq->mq_hctx) { 2721 if (hctx) { 2722 blk_mq_commit_rqs(hctx, queued, false); 2723 queued = 0; 2724 } 2725 hctx = rq->mq_hctx; 2726 } 2727 2728 ret = blk_mq_request_issue_directly(rq, last); 2729 switch (ret) { 2730 case BLK_STS_OK: 2731 queued++; 2732 break; 2733 case BLK_STS_RESOURCE: 2734 case BLK_STS_DEV_RESOURCE: 2735 blk_mq_request_bypass_insert(rq, 0); 2736 blk_mq_run_hw_queue(hctx, false); 2737 goto out; 2738 default: 2739 blk_mq_end_request(rq, ret); 2740 break; 2741 } 2742 } 2743 2744 out: 2745 if (ret != BLK_STS_OK) 2746 blk_mq_commit_rqs(hctx, queued, false); 2747 } 2748 2749 static void __blk_mq_flush_plug_list(struct request_queue *q, 2750 struct blk_plug *plug) 2751 { 2752 if (blk_queue_quiesced(q)) 2753 return; 2754 q->mq_ops->queue_rqs(&plug->mq_list); 2755 } 2756 2757 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2758 { 2759 struct blk_mq_hw_ctx *this_hctx = NULL; 2760 struct blk_mq_ctx *this_ctx = NULL; 2761 struct request *requeue_list = NULL; 2762 struct request **requeue_lastp = &requeue_list; 2763 unsigned int depth = 0; 2764 bool is_passthrough = false; 2765 LIST_HEAD(list); 2766 2767 do { 2768 struct request *rq = rq_list_pop(&plug->mq_list); 2769 2770 if (!this_hctx) { 2771 this_hctx = rq->mq_hctx; 2772 this_ctx = rq->mq_ctx; 2773 is_passthrough = blk_rq_is_passthrough(rq); 2774 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2775 is_passthrough != blk_rq_is_passthrough(rq)) { 2776 rq_list_add_tail(&requeue_lastp, rq); 2777 continue; 2778 } 2779 list_add(&rq->queuelist, &list); 2780 depth++; 2781 } while (!rq_list_empty(plug->mq_list)); 2782 2783 plug->mq_list = requeue_list; 2784 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2785 2786 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2787 /* passthrough requests should never be issued to the I/O scheduler */ 2788 if (is_passthrough) { 2789 spin_lock(&this_hctx->lock); 2790 list_splice_tail_init(&list, &this_hctx->dispatch); 2791 spin_unlock(&this_hctx->lock); 2792 blk_mq_run_hw_queue(this_hctx, from_sched); 2793 } else if (this_hctx->queue->elevator) { 2794 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2795 &list, 0); 2796 blk_mq_run_hw_queue(this_hctx, from_sched); 2797 } else { 2798 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2799 } 2800 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2801 } 2802 2803 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2804 { 2805 struct request *rq; 2806 2807 /* 2808 * We may have been called recursively midway through handling 2809 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2810 * To avoid mq_list changing under our feet, clear rq_count early and 2811 * bail out specifically if rq_count is 0 rather than checking 2812 * whether the mq_list is empty. 2813 */ 2814 if (plug->rq_count == 0) 2815 return; 2816 plug->rq_count = 0; 2817 2818 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2819 struct request_queue *q; 2820 2821 rq = rq_list_peek(&plug->mq_list); 2822 q = rq->q; 2823 2824 /* 2825 * Peek first request and see if we have a ->queue_rqs() hook. 2826 * If we do, we can dispatch the whole plug list in one go. We 2827 * already know at this point that all requests belong to the 2828 * same queue, caller must ensure that's the case. 2829 * 2830 * Since we pass off the full list to the driver at this point, 2831 * we do not increment the active request count for the queue. 2832 * Bypass shared tags for now because of that. 2833 */ 2834 if (q->mq_ops->queue_rqs && 2835 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2836 blk_mq_run_dispatch_ops(q, 2837 __blk_mq_flush_plug_list(q, plug)); 2838 if (rq_list_empty(plug->mq_list)) 2839 return; 2840 } 2841 2842 blk_mq_run_dispatch_ops(q, 2843 blk_mq_plug_issue_direct(plug)); 2844 if (rq_list_empty(plug->mq_list)) 2845 return; 2846 } 2847 2848 do { 2849 blk_mq_dispatch_plug_list(plug, from_schedule); 2850 } while (!rq_list_empty(plug->mq_list)); 2851 } 2852 2853 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2854 struct list_head *list) 2855 { 2856 int queued = 0; 2857 blk_status_t ret = BLK_STS_OK; 2858 2859 while (!list_empty(list)) { 2860 struct request *rq = list_first_entry(list, struct request, 2861 queuelist); 2862 2863 list_del_init(&rq->queuelist); 2864 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2865 switch (ret) { 2866 case BLK_STS_OK: 2867 queued++; 2868 break; 2869 case BLK_STS_RESOURCE: 2870 case BLK_STS_DEV_RESOURCE: 2871 blk_mq_request_bypass_insert(rq, 0); 2872 if (list_empty(list)) 2873 blk_mq_run_hw_queue(hctx, false); 2874 goto out; 2875 default: 2876 blk_mq_end_request(rq, ret); 2877 break; 2878 } 2879 } 2880 2881 out: 2882 if (ret != BLK_STS_OK) 2883 blk_mq_commit_rqs(hctx, queued, false); 2884 } 2885 2886 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2887 struct bio *bio, unsigned int nr_segs) 2888 { 2889 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2890 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2891 return true; 2892 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2893 return true; 2894 } 2895 return false; 2896 } 2897 2898 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2899 struct blk_plug *plug, 2900 struct bio *bio, 2901 unsigned int nsegs) 2902 { 2903 struct blk_mq_alloc_data data = { 2904 .q = q, 2905 .nr_tags = 1, 2906 .cmd_flags = bio->bi_opf, 2907 }; 2908 struct request *rq; 2909 2910 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2911 return NULL; 2912 2913 rq_qos_throttle(q, bio); 2914 2915 if (plug) { 2916 data.nr_tags = plug->nr_ios; 2917 plug->nr_ios = 1; 2918 data.cached_rq = &plug->cached_rq; 2919 } 2920 2921 rq = __blk_mq_alloc_requests(&data); 2922 if (rq) 2923 return rq; 2924 rq_qos_cleanup(q, bio); 2925 if (bio->bi_opf & REQ_NOWAIT) 2926 bio_wouldblock_error(bio); 2927 return NULL; 2928 } 2929 2930 /* return true if this @rq can be used for @bio */ 2931 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2932 struct bio *bio) 2933 { 2934 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2935 enum hctx_type hctx_type = rq->mq_hctx->type; 2936 2937 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2938 2939 if (type != hctx_type && 2940 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2941 return false; 2942 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2943 return false; 2944 2945 /* 2946 * If any qos ->throttle() end up blocking, we will have flushed the 2947 * plug and hence killed the cached_rq list as well. Pop this entry 2948 * before we throttle. 2949 */ 2950 plug->cached_rq = rq_list_next(rq); 2951 rq_qos_throttle(rq->q, bio); 2952 2953 blk_mq_rq_time_init(rq, 0); 2954 rq->cmd_flags = bio->bi_opf; 2955 INIT_LIST_HEAD(&rq->queuelist); 2956 return true; 2957 } 2958 2959 static void bio_set_ioprio(struct bio *bio) 2960 { 2961 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2962 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2963 bio->bi_ioprio = get_current_ioprio(); 2964 blkcg_set_ioprio(bio); 2965 } 2966 2967 /** 2968 * blk_mq_submit_bio - Create and send a request to block device. 2969 * @bio: Bio pointer. 2970 * 2971 * Builds up a request structure from @q and @bio and send to the device. The 2972 * request may not be queued directly to hardware if: 2973 * * This request can be merged with another one 2974 * * We want to place request at plug queue for possible future merging 2975 * * There is an IO scheduler active at this queue 2976 * 2977 * It will not queue the request if there is an error with the bio, or at the 2978 * request creation. 2979 */ 2980 void blk_mq_submit_bio(struct bio *bio) 2981 { 2982 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2983 struct blk_plug *plug = blk_mq_plug(bio); 2984 const int is_sync = op_is_sync(bio->bi_opf); 2985 struct blk_mq_hw_ctx *hctx; 2986 struct request *rq = NULL; 2987 unsigned int nr_segs = 1; 2988 blk_status_t ret; 2989 2990 bio = blk_queue_bounce(bio, q); 2991 bio_set_ioprio(bio); 2992 2993 if (plug) { 2994 rq = rq_list_peek(&plug->cached_rq); 2995 if (rq && rq->q != q) 2996 rq = NULL; 2997 } 2998 if (rq) { 2999 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3000 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3001 if (!bio) 3002 return; 3003 } 3004 if (!bio_integrity_prep(bio)) 3005 return; 3006 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3007 return; 3008 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 3009 goto done; 3010 percpu_ref_get(&q->q_usage_counter); 3011 } else { 3012 if (unlikely(bio_queue_enter(bio))) 3013 return; 3014 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3015 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3016 if (!bio) 3017 goto fail; 3018 } 3019 if (!bio_integrity_prep(bio)) 3020 goto fail; 3021 } 3022 3023 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3024 if (unlikely(!rq)) { 3025 fail: 3026 blk_queue_exit(q); 3027 return; 3028 } 3029 3030 done: 3031 trace_block_getrq(bio); 3032 3033 rq_qos_track(q, rq, bio); 3034 3035 blk_mq_bio_to_request(rq, bio, nr_segs); 3036 3037 ret = blk_crypto_rq_get_keyslot(rq); 3038 if (ret != BLK_STS_OK) { 3039 bio->bi_status = ret; 3040 bio_endio(bio); 3041 blk_mq_free_request(rq); 3042 return; 3043 } 3044 3045 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3046 return; 3047 3048 if (plug) { 3049 blk_add_rq_to_plug(plug, rq); 3050 return; 3051 } 3052 3053 hctx = rq->mq_hctx; 3054 if ((rq->rq_flags & RQF_USE_SCHED) || 3055 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3056 blk_mq_insert_request(rq, 0); 3057 blk_mq_run_hw_queue(hctx, true); 3058 } else { 3059 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3060 } 3061 } 3062 3063 #ifdef CONFIG_BLK_MQ_STACKING 3064 /** 3065 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3066 * @rq: the request being queued 3067 */ 3068 blk_status_t blk_insert_cloned_request(struct request *rq) 3069 { 3070 struct request_queue *q = rq->q; 3071 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3072 unsigned int max_segments = blk_rq_get_max_segments(rq); 3073 blk_status_t ret; 3074 3075 if (blk_rq_sectors(rq) > max_sectors) { 3076 /* 3077 * SCSI device does not have a good way to return if 3078 * Write Same/Zero is actually supported. If a device rejects 3079 * a non-read/write command (discard, write same,etc.) the 3080 * low-level device driver will set the relevant queue limit to 3081 * 0 to prevent blk-lib from issuing more of the offending 3082 * operations. Commands queued prior to the queue limit being 3083 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3084 * errors being propagated to upper layers. 3085 */ 3086 if (max_sectors == 0) 3087 return BLK_STS_NOTSUPP; 3088 3089 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3090 __func__, blk_rq_sectors(rq), max_sectors); 3091 return BLK_STS_IOERR; 3092 } 3093 3094 /* 3095 * The queue settings related to segment counting may differ from the 3096 * original queue. 3097 */ 3098 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3099 if (rq->nr_phys_segments > max_segments) { 3100 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3101 __func__, rq->nr_phys_segments, max_segments); 3102 return BLK_STS_IOERR; 3103 } 3104 3105 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3106 return BLK_STS_IOERR; 3107 3108 ret = blk_crypto_rq_get_keyslot(rq); 3109 if (ret != BLK_STS_OK) 3110 return ret; 3111 3112 blk_account_io_start(rq); 3113 3114 /* 3115 * Since we have a scheduler attached on the top device, 3116 * bypass a potential scheduler on the bottom device for 3117 * insert. 3118 */ 3119 blk_mq_run_dispatch_ops(q, 3120 ret = blk_mq_request_issue_directly(rq, true)); 3121 if (ret) 3122 blk_account_io_done(rq, ktime_get_ns()); 3123 return ret; 3124 } 3125 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3126 3127 /** 3128 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3129 * @rq: the clone request to be cleaned up 3130 * 3131 * Description: 3132 * Free all bios in @rq for a cloned request. 3133 */ 3134 void blk_rq_unprep_clone(struct request *rq) 3135 { 3136 struct bio *bio; 3137 3138 while ((bio = rq->bio) != NULL) { 3139 rq->bio = bio->bi_next; 3140 3141 bio_put(bio); 3142 } 3143 } 3144 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3145 3146 /** 3147 * blk_rq_prep_clone - Helper function to setup clone request 3148 * @rq: the request to be setup 3149 * @rq_src: original request to be cloned 3150 * @bs: bio_set that bios for clone are allocated from 3151 * @gfp_mask: memory allocation mask for bio 3152 * @bio_ctr: setup function to be called for each clone bio. 3153 * Returns %0 for success, non %0 for failure. 3154 * @data: private data to be passed to @bio_ctr 3155 * 3156 * Description: 3157 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3158 * Also, pages which the original bios are pointing to are not copied 3159 * and the cloned bios just point same pages. 3160 * So cloned bios must be completed before original bios, which means 3161 * the caller must complete @rq before @rq_src. 3162 */ 3163 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3164 struct bio_set *bs, gfp_t gfp_mask, 3165 int (*bio_ctr)(struct bio *, struct bio *, void *), 3166 void *data) 3167 { 3168 struct bio *bio, *bio_src; 3169 3170 if (!bs) 3171 bs = &fs_bio_set; 3172 3173 __rq_for_each_bio(bio_src, rq_src) { 3174 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3175 bs); 3176 if (!bio) 3177 goto free_and_out; 3178 3179 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3180 goto free_and_out; 3181 3182 if (rq->bio) { 3183 rq->biotail->bi_next = bio; 3184 rq->biotail = bio; 3185 } else { 3186 rq->bio = rq->biotail = bio; 3187 } 3188 bio = NULL; 3189 } 3190 3191 /* Copy attributes of the original request to the clone request. */ 3192 rq->__sector = blk_rq_pos(rq_src); 3193 rq->__data_len = blk_rq_bytes(rq_src); 3194 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3195 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3196 rq->special_vec = rq_src->special_vec; 3197 } 3198 rq->nr_phys_segments = rq_src->nr_phys_segments; 3199 rq->ioprio = rq_src->ioprio; 3200 3201 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3202 goto free_and_out; 3203 3204 return 0; 3205 3206 free_and_out: 3207 if (bio) 3208 bio_put(bio); 3209 blk_rq_unprep_clone(rq); 3210 3211 return -ENOMEM; 3212 } 3213 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3214 #endif /* CONFIG_BLK_MQ_STACKING */ 3215 3216 /* 3217 * Steal bios from a request and add them to a bio list. 3218 * The request must not have been partially completed before. 3219 */ 3220 void blk_steal_bios(struct bio_list *list, struct request *rq) 3221 { 3222 if (rq->bio) { 3223 if (list->tail) 3224 list->tail->bi_next = rq->bio; 3225 else 3226 list->head = rq->bio; 3227 list->tail = rq->biotail; 3228 3229 rq->bio = NULL; 3230 rq->biotail = NULL; 3231 } 3232 3233 rq->__data_len = 0; 3234 } 3235 EXPORT_SYMBOL_GPL(blk_steal_bios); 3236 3237 static size_t order_to_size(unsigned int order) 3238 { 3239 return (size_t)PAGE_SIZE << order; 3240 } 3241 3242 /* called before freeing request pool in @tags */ 3243 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3244 struct blk_mq_tags *tags) 3245 { 3246 struct page *page; 3247 unsigned long flags; 3248 3249 /* 3250 * There is no need to clear mapping if driver tags is not initialized 3251 * or the mapping belongs to the driver tags. 3252 */ 3253 if (!drv_tags || drv_tags == tags) 3254 return; 3255 3256 list_for_each_entry(page, &tags->page_list, lru) { 3257 unsigned long start = (unsigned long)page_address(page); 3258 unsigned long end = start + order_to_size(page->private); 3259 int i; 3260 3261 for (i = 0; i < drv_tags->nr_tags; i++) { 3262 struct request *rq = drv_tags->rqs[i]; 3263 unsigned long rq_addr = (unsigned long)rq; 3264 3265 if (rq_addr >= start && rq_addr < end) { 3266 WARN_ON_ONCE(req_ref_read(rq) != 0); 3267 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3268 } 3269 } 3270 } 3271 3272 /* 3273 * Wait until all pending iteration is done. 3274 * 3275 * Request reference is cleared and it is guaranteed to be observed 3276 * after the ->lock is released. 3277 */ 3278 spin_lock_irqsave(&drv_tags->lock, flags); 3279 spin_unlock_irqrestore(&drv_tags->lock, flags); 3280 } 3281 3282 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3283 unsigned int hctx_idx) 3284 { 3285 struct blk_mq_tags *drv_tags; 3286 struct page *page; 3287 3288 if (list_empty(&tags->page_list)) 3289 return; 3290 3291 if (blk_mq_is_shared_tags(set->flags)) 3292 drv_tags = set->shared_tags; 3293 else 3294 drv_tags = set->tags[hctx_idx]; 3295 3296 if (tags->static_rqs && set->ops->exit_request) { 3297 int i; 3298 3299 for (i = 0; i < tags->nr_tags; i++) { 3300 struct request *rq = tags->static_rqs[i]; 3301 3302 if (!rq) 3303 continue; 3304 set->ops->exit_request(set, rq, hctx_idx); 3305 tags->static_rqs[i] = NULL; 3306 } 3307 } 3308 3309 blk_mq_clear_rq_mapping(drv_tags, tags); 3310 3311 while (!list_empty(&tags->page_list)) { 3312 page = list_first_entry(&tags->page_list, struct page, lru); 3313 list_del_init(&page->lru); 3314 /* 3315 * Remove kmemleak object previously allocated in 3316 * blk_mq_alloc_rqs(). 3317 */ 3318 kmemleak_free(page_address(page)); 3319 __free_pages(page, page->private); 3320 } 3321 } 3322 3323 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3324 { 3325 kfree(tags->rqs); 3326 tags->rqs = NULL; 3327 kfree(tags->static_rqs); 3328 tags->static_rqs = NULL; 3329 3330 blk_mq_free_tags(tags); 3331 } 3332 3333 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3334 unsigned int hctx_idx) 3335 { 3336 int i; 3337 3338 for (i = 0; i < set->nr_maps; i++) { 3339 unsigned int start = set->map[i].queue_offset; 3340 unsigned int end = start + set->map[i].nr_queues; 3341 3342 if (hctx_idx >= start && hctx_idx < end) 3343 break; 3344 } 3345 3346 if (i >= set->nr_maps) 3347 i = HCTX_TYPE_DEFAULT; 3348 3349 return i; 3350 } 3351 3352 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3353 unsigned int hctx_idx) 3354 { 3355 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3356 3357 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3358 } 3359 3360 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3361 unsigned int hctx_idx, 3362 unsigned int nr_tags, 3363 unsigned int reserved_tags) 3364 { 3365 int node = blk_mq_get_hctx_node(set, hctx_idx); 3366 struct blk_mq_tags *tags; 3367 3368 if (node == NUMA_NO_NODE) 3369 node = set->numa_node; 3370 3371 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3372 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3373 if (!tags) 3374 return NULL; 3375 3376 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3377 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3378 node); 3379 if (!tags->rqs) 3380 goto err_free_tags; 3381 3382 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3383 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3384 node); 3385 if (!tags->static_rqs) 3386 goto err_free_rqs; 3387 3388 return tags; 3389 3390 err_free_rqs: 3391 kfree(tags->rqs); 3392 err_free_tags: 3393 blk_mq_free_tags(tags); 3394 return NULL; 3395 } 3396 3397 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3398 unsigned int hctx_idx, int node) 3399 { 3400 int ret; 3401 3402 if (set->ops->init_request) { 3403 ret = set->ops->init_request(set, rq, hctx_idx, node); 3404 if (ret) 3405 return ret; 3406 } 3407 3408 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3409 return 0; 3410 } 3411 3412 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3413 struct blk_mq_tags *tags, 3414 unsigned int hctx_idx, unsigned int depth) 3415 { 3416 unsigned int i, j, entries_per_page, max_order = 4; 3417 int node = blk_mq_get_hctx_node(set, hctx_idx); 3418 size_t rq_size, left; 3419 3420 if (node == NUMA_NO_NODE) 3421 node = set->numa_node; 3422 3423 INIT_LIST_HEAD(&tags->page_list); 3424 3425 /* 3426 * rq_size is the size of the request plus driver payload, rounded 3427 * to the cacheline size 3428 */ 3429 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3430 cache_line_size()); 3431 left = rq_size * depth; 3432 3433 for (i = 0; i < depth; ) { 3434 int this_order = max_order; 3435 struct page *page; 3436 int to_do; 3437 void *p; 3438 3439 while (this_order && left < order_to_size(this_order - 1)) 3440 this_order--; 3441 3442 do { 3443 page = alloc_pages_node(node, 3444 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3445 this_order); 3446 if (page) 3447 break; 3448 if (!this_order--) 3449 break; 3450 if (order_to_size(this_order) < rq_size) 3451 break; 3452 } while (1); 3453 3454 if (!page) 3455 goto fail; 3456 3457 page->private = this_order; 3458 list_add_tail(&page->lru, &tags->page_list); 3459 3460 p = page_address(page); 3461 /* 3462 * Allow kmemleak to scan these pages as they contain pointers 3463 * to additional allocations like via ops->init_request(). 3464 */ 3465 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3466 entries_per_page = order_to_size(this_order) / rq_size; 3467 to_do = min(entries_per_page, depth - i); 3468 left -= to_do * rq_size; 3469 for (j = 0; j < to_do; j++) { 3470 struct request *rq = p; 3471 3472 tags->static_rqs[i] = rq; 3473 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3474 tags->static_rqs[i] = NULL; 3475 goto fail; 3476 } 3477 3478 p += rq_size; 3479 i++; 3480 } 3481 } 3482 return 0; 3483 3484 fail: 3485 blk_mq_free_rqs(set, tags, hctx_idx); 3486 return -ENOMEM; 3487 } 3488 3489 struct rq_iter_data { 3490 struct blk_mq_hw_ctx *hctx; 3491 bool has_rq; 3492 }; 3493 3494 static bool blk_mq_has_request(struct request *rq, void *data) 3495 { 3496 struct rq_iter_data *iter_data = data; 3497 3498 if (rq->mq_hctx != iter_data->hctx) 3499 return true; 3500 iter_data->has_rq = true; 3501 return false; 3502 } 3503 3504 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3505 { 3506 struct blk_mq_tags *tags = hctx->sched_tags ? 3507 hctx->sched_tags : hctx->tags; 3508 struct rq_iter_data data = { 3509 .hctx = hctx, 3510 }; 3511 3512 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3513 return data.has_rq; 3514 } 3515 3516 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3517 struct blk_mq_hw_ctx *hctx) 3518 { 3519 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3520 return false; 3521 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3522 return false; 3523 return true; 3524 } 3525 3526 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3527 { 3528 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3529 struct blk_mq_hw_ctx, cpuhp_online); 3530 3531 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3532 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3533 return 0; 3534 3535 /* 3536 * Prevent new request from being allocated on the current hctx. 3537 * 3538 * The smp_mb__after_atomic() Pairs with the implied barrier in 3539 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3540 * seen once we return from the tag allocator. 3541 */ 3542 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3543 smp_mb__after_atomic(); 3544 3545 /* 3546 * Try to grab a reference to the queue and wait for any outstanding 3547 * requests. If we could not grab a reference the queue has been 3548 * frozen and there are no requests. 3549 */ 3550 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3551 while (blk_mq_hctx_has_requests(hctx)) 3552 msleep(5); 3553 percpu_ref_put(&hctx->queue->q_usage_counter); 3554 } 3555 3556 return 0; 3557 } 3558 3559 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3560 { 3561 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3562 struct blk_mq_hw_ctx, cpuhp_online); 3563 3564 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3565 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3566 return 0; 3567 } 3568 3569 /* 3570 * 'cpu' is going away. splice any existing rq_list entries from this 3571 * software queue to the hw queue dispatch list, and ensure that it 3572 * gets run. 3573 */ 3574 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3575 { 3576 struct blk_mq_hw_ctx *hctx; 3577 struct blk_mq_ctx *ctx; 3578 LIST_HEAD(tmp); 3579 enum hctx_type type; 3580 3581 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3582 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3583 return 0; 3584 3585 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3586 type = hctx->type; 3587 3588 spin_lock(&ctx->lock); 3589 if (!list_empty(&ctx->rq_lists[type])) { 3590 list_splice_init(&ctx->rq_lists[type], &tmp); 3591 blk_mq_hctx_clear_pending(hctx, ctx); 3592 } 3593 spin_unlock(&ctx->lock); 3594 3595 if (list_empty(&tmp)) 3596 return 0; 3597 3598 spin_lock(&hctx->lock); 3599 list_splice_tail_init(&tmp, &hctx->dispatch); 3600 spin_unlock(&hctx->lock); 3601 3602 blk_mq_run_hw_queue(hctx, true); 3603 return 0; 3604 } 3605 3606 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3607 { 3608 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3609 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3610 &hctx->cpuhp_online); 3611 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3612 &hctx->cpuhp_dead); 3613 } 3614 3615 /* 3616 * Before freeing hw queue, clearing the flush request reference in 3617 * tags->rqs[] for avoiding potential UAF. 3618 */ 3619 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3620 unsigned int queue_depth, struct request *flush_rq) 3621 { 3622 int i; 3623 unsigned long flags; 3624 3625 /* The hw queue may not be mapped yet */ 3626 if (!tags) 3627 return; 3628 3629 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3630 3631 for (i = 0; i < queue_depth; i++) 3632 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3633 3634 /* 3635 * Wait until all pending iteration is done. 3636 * 3637 * Request reference is cleared and it is guaranteed to be observed 3638 * after the ->lock is released. 3639 */ 3640 spin_lock_irqsave(&tags->lock, flags); 3641 spin_unlock_irqrestore(&tags->lock, flags); 3642 } 3643 3644 /* hctx->ctxs will be freed in queue's release handler */ 3645 static void blk_mq_exit_hctx(struct request_queue *q, 3646 struct blk_mq_tag_set *set, 3647 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3648 { 3649 struct request *flush_rq = hctx->fq->flush_rq; 3650 3651 if (blk_mq_hw_queue_mapped(hctx)) 3652 blk_mq_tag_idle(hctx); 3653 3654 if (blk_queue_init_done(q)) 3655 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3656 set->queue_depth, flush_rq); 3657 if (set->ops->exit_request) 3658 set->ops->exit_request(set, flush_rq, hctx_idx); 3659 3660 if (set->ops->exit_hctx) 3661 set->ops->exit_hctx(hctx, hctx_idx); 3662 3663 blk_mq_remove_cpuhp(hctx); 3664 3665 xa_erase(&q->hctx_table, hctx_idx); 3666 3667 spin_lock(&q->unused_hctx_lock); 3668 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3669 spin_unlock(&q->unused_hctx_lock); 3670 } 3671 3672 static void blk_mq_exit_hw_queues(struct request_queue *q, 3673 struct blk_mq_tag_set *set, int nr_queue) 3674 { 3675 struct blk_mq_hw_ctx *hctx; 3676 unsigned long i; 3677 3678 queue_for_each_hw_ctx(q, hctx, i) { 3679 if (i == nr_queue) 3680 break; 3681 blk_mq_exit_hctx(q, set, hctx, i); 3682 } 3683 } 3684 3685 static int blk_mq_init_hctx(struct request_queue *q, 3686 struct blk_mq_tag_set *set, 3687 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3688 { 3689 hctx->queue_num = hctx_idx; 3690 3691 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3692 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3693 &hctx->cpuhp_online); 3694 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3695 3696 hctx->tags = set->tags[hctx_idx]; 3697 3698 if (set->ops->init_hctx && 3699 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3700 goto unregister_cpu_notifier; 3701 3702 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3703 hctx->numa_node)) 3704 goto exit_hctx; 3705 3706 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3707 goto exit_flush_rq; 3708 3709 return 0; 3710 3711 exit_flush_rq: 3712 if (set->ops->exit_request) 3713 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3714 exit_hctx: 3715 if (set->ops->exit_hctx) 3716 set->ops->exit_hctx(hctx, hctx_idx); 3717 unregister_cpu_notifier: 3718 blk_mq_remove_cpuhp(hctx); 3719 return -1; 3720 } 3721 3722 static struct blk_mq_hw_ctx * 3723 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3724 int node) 3725 { 3726 struct blk_mq_hw_ctx *hctx; 3727 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3728 3729 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3730 if (!hctx) 3731 goto fail_alloc_hctx; 3732 3733 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3734 goto free_hctx; 3735 3736 atomic_set(&hctx->nr_active, 0); 3737 if (node == NUMA_NO_NODE) 3738 node = set->numa_node; 3739 hctx->numa_node = node; 3740 3741 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3742 spin_lock_init(&hctx->lock); 3743 INIT_LIST_HEAD(&hctx->dispatch); 3744 hctx->queue = q; 3745 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3746 3747 INIT_LIST_HEAD(&hctx->hctx_list); 3748 3749 /* 3750 * Allocate space for all possible cpus to avoid allocation at 3751 * runtime 3752 */ 3753 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3754 gfp, node); 3755 if (!hctx->ctxs) 3756 goto free_cpumask; 3757 3758 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3759 gfp, node, false, false)) 3760 goto free_ctxs; 3761 hctx->nr_ctx = 0; 3762 3763 spin_lock_init(&hctx->dispatch_wait_lock); 3764 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3765 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3766 3767 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3768 if (!hctx->fq) 3769 goto free_bitmap; 3770 3771 blk_mq_hctx_kobj_init(hctx); 3772 3773 return hctx; 3774 3775 free_bitmap: 3776 sbitmap_free(&hctx->ctx_map); 3777 free_ctxs: 3778 kfree(hctx->ctxs); 3779 free_cpumask: 3780 free_cpumask_var(hctx->cpumask); 3781 free_hctx: 3782 kfree(hctx); 3783 fail_alloc_hctx: 3784 return NULL; 3785 } 3786 3787 static void blk_mq_init_cpu_queues(struct request_queue *q, 3788 unsigned int nr_hw_queues) 3789 { 3790 struct blk_mq_tag_set *set = q->tag_set; 3791 unsigned int i, j; 3792 3793 for_each_possible_cpu(i) { 3794 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3795 struct blk_mq_hw_ctx *hctx; 3796 int k; 3797 3798 __ctx->cpu = i; 3799 spin_lock_init(&__ctx->lock); 3800 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3801 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3802 3803 __ctx->queue = q; 3804 3805 /* 3806 * Set local node, IFF we have more than one hw queue. If 3807 * not, we remain on the home node of the device 3808 */ 3809 for (j = 0; j < set->nr_maps; j++) { 3810 hctx = blk_mq_map_queue_type(q, j, i); 3811 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3812 hctx->numa_node = cpu_to_node(i); 3813 } 3814 } 3815 } 3816 3817 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3818 unsigned int hctx_idx, 3819 unsigned int depth) 3820 { 3821 struct blk_mq_tags *tags; 3822 int ret; 3823 3824 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3825 if (!tags) 3826 return NULL; 3827 3828 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3829 if (ret) { 3830 blk_mq_free_rq_map(tags); 3831 return NULL; 3832 } 3833 3834 return tags; 3835 } 3836 3837 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3838 int hctx_idx) 3839 { 3840 if (blk_mq_is_shared_tags(set->flags)) { 3841 set->tags[hctx_idx] = set->shared_tags; 3842 3843 return true; 3844 } 3845 3846 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3847 set->queue_depth); 3848 3849 return set->tags[hctx_idx]; 3850 } 3851 3852 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3853 struct blk_mq_tags *tags, 3854 unsigned int hctx_idx) 3855 { 3856 if (tags) { 3857 blk_mq_free_rqs(set, tags, hctx_idx); 3858 blk_mq_free_rq_map(tags); 3859 } 3860 } 3861 3862 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3863 unsigned int hctx_idx) 3864 { 3865 if (!blk_mq_is_shared_tags(set->flags)) 3866 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3867 3868 set->tags[hctx_idx] = NULL; 3869 } 3870 3871 static void blk_mq_map_swqueue(struct request_queue *q) 3872 { 3873 unsigned int j, hctx_idx; 3874 unsigned long i; 3875 struct blk_mq_hw_ctx *hctx; 3876 struct blk_mq_ctx *ctx; 3877 struct blk_mq_tag_set *set = q->tag_set; 3878 3879 queue_for_each_hw_ctx(q, hctx, i) { 3880 cpumask_clear(hctx->cpumask); 3881 hctx->nr_ctx = 0; 3882 hctx->dispatch_from = NULL; 3883 } 3884 3885 /* 3886 * Map software to hardware queues. 3887 * 3888 * If the cpu isn't present, the cpu is mapped to first hctx. 3889 */ 3890 for_each_possible_cpu(i) { 3891 3892 ctx = per_cpu_ptr(q->queue_ctx, i); 3893 for (j = 0; j < set->nr_maps; j++) { 3894 if (!set->map[j].nr_queues) { 3895 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3896 HCTX_TYPE_DEFAULT, i); 3897 continue; 3898 } 3899 hctx_idx = set->map[j].mq_map[i]; 3900 /* unmapped hw queue can be remapped after CPU topo changed */ 3901 if (!set->tags[hctx_idx] && 3902 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3903 /* 3904 * If tags initialization fail for some hctx, 3905 * that hctx won't be brought online. In this 3906 * case, remap the current ctx to hctx[0] which 3907 * is guaranteed to always have tags allocated 3908 */ 3909 set->map[j].mq_map[i] = 0; 3910 } 3911 3912 hctx = blk_mq_map_queue_type(q, j, i); 3913 ctx->hctxs[j] = hctx; 3914 /* 3915 * If the CPU is already set in the mask, then we've 3916 * mapped this one already. This can happen if 3917 * devices share queues across queue maps. 3918 */ 3919 if (cpumask_test_cpu(i, hctx->cpumask)) 3920 continue; 3921 3922 cpumask_set_cpu(i, hctx->cpumask); 3923 hctx->type = j; 3924 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3925 hctx->ctxs[hctx->nr_ctx++] = ctx; 3926 3927 /* 3928 * If the nr_ctx type overflows, we have exceeded the 3929 * amount of sw queues we can support. 3930 */ 3931 BUG_ON(!hctx->nr_ctx); 3932 } 3933 3934 for (; j < HCTX_MAX_TYPES; j++) 3935 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3936 HCTX_TYPE_DEFAULT, i); 3937 } 3938 3939 queue_for_each_hw_ctx(q, hctx, i) { 3940 /* 3941 * If no software queues are mapped to this hardware queue, 3942 * disable it and free the request entries. 3943 */ 3944 if (!hctx->nr_ctx) { 3945 /* Never unmap queue 0. We need it as a 3946 * fallback in case of a new remap fails 3947 * allocation 3948 */ 3949 if (i) 3950 __blk_mq_free_map_and_rqs(set, i); 3951 3952 hctx->tags = NULL; 3953 continue; 3954 } 3955 3956 hctx->tags = set->tags[i]; 3957 WARN_ON(!hctx->tags); 3958 3959 /* 3960 * Set the map size to the number of mapped software queues. 3961 * This is more accurate and more efficient than looping 3962 * over all possibly mapped software queues. 3963 */ 3964 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3965 3966 /* 3967 * Initialize batch roundrobin counts 3968 */ 3969 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3970 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3971 } 3972 } 3973 3974 /* 3975 * Caller needs to ensure that we're either frozen/quiesced, or that 3976 * the queue isn't live yet. 3977 */ 3978 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3979 { 3980 struct blk_mq_hw_ctx *hctx; 3981 unsigned long i; 3982 3983 queue_for_each_hw_ctx(q, hctx, i) { 3984 if (shared) { 3985 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3986 } else { 3987 blk_mq_tag_idle(hctx); 3988 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3989 } 3990 } 3991 } 3992 3993 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3994 bool shared) 3995 { 3996 struct request_queue *q; 3997 3998 lockdep_assert_held(&set->tag_list_lock); 3999 4000 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4001 blk_mq_freeze_queue(q); 4002 queue_set_hctx_shared(q, shared); 4003 blk_mq_unfreeze_queue(q); 4004 } 4005 } 4006 4007 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4008 { 4009 struct blk_mq_tag_set *set = q->tag_set; 4010 4011 mutex_lock(&set->tag_list_lock); 4012 list_del(&q->tag_set_list); 4013 if (list_is_singular(&set->tag_list)) { 4014 /* just transitioned to unshared */ 4015 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4016 /* update existing queue */ 4017 blk_mq_update_tag_set_shared(set, false); 4018 } 4019 mutex_unlock(&set->tag_list_lock); 4020 INIT_LIST_HEAD(&q->tag_set_list); 4021 } 4022 4023 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4024 struct request_queue *q) 4025 { 4026 mutex_lock(&set->tag_list_lock); 4027 4028 /* 4029 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4030 */ 4031 if (!list_empty(&set->tag_list) && 4032 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4033 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4034 /* update existing queue */ 4035 blk_mq_update_tag_set_shared(set, true); 4036 } 4037 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4038 queue_set_hctx_shared(q, true); 4039 list_add_tail(&q->tag_set_list, &set->tag_list); 4040 4041 mutex_unlock(&set->tag_list_lock); 4042 } 4043 4044 /* All allocations will be freed in release handler of q->mq_kobj */ 4045 static int blk_mq_alloc_ctxs(struct request_queue *q) 4046 { 4047 struct blk_mq_ctxs *ctxs; 4048 int cpu; 4049 4050 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4051 if (!ctxs) 4052 return -ENOMEM; 4053 4054 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4055 if (!ctxs->queue_ctx) 4056 goto fail; 4057 4058 for_each_possible_cpu(cpu) { 4059 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4060 ctx->ctxs = ctxs; 4061 } 4062 4063 q->mq_kobj = &ctxs->kobj; 4064 q->queue_ctx = ctxs->queue_ctx; 4065 4066 return 0; 4067 fail: 4068 kfree(ctxs); 4069 return -ENOMEM; 4070 } 4071 4072 /* 4073 * It is the actual release handler for mq, but we do it from 4074 * request queue's release handler for avoiding use-after-free 4075 * and headache because q->mq_kobj shouldn't have been introduced, 4076 * but we can't group ctx/kctx kobj without it. 4077 */ 4078 void blk_mq_release(struct request_queue *q) 4079 { 4080 struct blk_mq_hw_ctx *hctx, *next; 4081 unsigned long i; 4082 4083 queue_for_each_hw_ctx(q, hctx, i) 4084 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4085 4086 /* all hctx are in .unused_hctx_list now */ 4087 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4088 list_del_init(&hctx->hctx_list); 4089 kobject_put(&hctx->kobj); 4090 } 4091 4092 xa_destroy(&q->hctx_table); 4093 4094 /* 4095 * release .mq_kobj and sw queue's kobject now because 4096 * both share lifetime with request queue. 4097 */ 4098 blk_mq_sysfs_deinit(q); 4099 } 4100 4101 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4102 void *queuedata) 4103 { 4104 struct request_queue *q; 4105 int ret; 4106 4107 q = blk_alloc_queue(set->numa_node); 4108 if (!q) 4109 return ERR_PTR(-ENOMEM); 4110 q->queuedata = queuedata; 4111 ret = blk_mq_init_allocated_queue(set, q); 4112 if (ret) { 4113 blk_put_queue(q); 4114 return ERR_PTR(ret); 4115 } 4116 return q; 4117 } 4118 4119 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4120 { 4121 return blk_mq_init_queue_data(set, NULL); 4122 } 4123 EXPORT_SYMBOL(blk_mq_init_queue); 4124 4125 /** 4126 * blk_mq_destroy_queue - shutdown a request queue 4127 * @q: request queue to shutdown 4128 * 4129 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4130 * requests will be failed with -ENODEV. The caller is responsible for dropping 4131 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4132 * 4133 * Context: can sleep 4134 */ 4135 void blk_mq_destroy_queue(struct request_queue *q) 4136 { 4137 WARN_ON_ONCE(!queue_is_mq(q)); 4138 WARN_ON_ONCE(blk_queue_registered(q)); 4139 4140 might_sleep(); 4141 4142 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4143 blk_queue_start_drain(q); 4144 blk_mq_freeze_queue_wait(q); 4145 4146 blk_sync_queue(q); 4147 blk_mq_cancel_work_sync(q); 4148 blk_mq_exit_queue(q); 4149 } 4150 EXPORT_SYMBOL(blk_mq_destroy_queue); 4151 4152 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4153 struct lock_class_key *lkclass) 4154 { 4155 struct request_queue *q; 4156 struct gendisk *disk; 4157 4158 q = blk_mq_init_queue_data(set, queuedata); 4159 if (IS_ERR(q)) 4160 return ERR_CAST(q); 4161 4162 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4163 if (!disk) { 4164 blk_mq_destroy_queue(q); 4165 blk_put_queue(q); 4166 return ERR_PTR(-ENOMEM); 4167 } 4168 set_bit(GD_OWNS_QUEUE, &disk->state); 4169 return disk; 4170 } 4171 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4172 4173 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4174 struct lock_class_key *lkclass) 4175 { 4176 struct gendisk *disk; 4177 4178 if (!blk_get_queue(q)) 4179 return NULL; 4180 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4181 if (!disk) 4182 blk_put_queue(q); 4183 return disk; 4184 } 4185 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4186 4187 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4188 struct blk_mq_tag_set *set, struct request_queue *q, 4189 int hctx_idx, int node) 4190 { 4191 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4192 4193 /* reuse dead hctx first */ 4194 spin_lock(&q->unused_hctx_lock); 4195 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4196 if (tmp->numa_node == node) { 4197 hctx = tmp; 4198 break; 4199 } 4200 } 4201 if (hctx) 4202 list_del_init(&hctx->hctx_list); 4203 spin_unlock(&q->unused_hctx_lock); 4204 4205 if (!hctx) 4206 hctx = blk_mq_alloc_hctx(q, set, node); 4207 if (!hctx) 4208 goto fail; 4209 4210 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4211 goto free_hctx; 4212 4213 return hctx; 4214 4215 free_hctx: 4216 kobject_put(&hctx->kobj); 4217 fail: 4218 return NULL; 4219 } 4220 4221 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4222 struct request_queue *q) 4223 { 4224 struct blk_mq_hw_ctx *hctx; 4225 unsigned long i, j; 4226 4227 /* protect against switching io scheduler */ 4228 mutex_lock(&q->sysfs_lock); 4229 for (i = 0; i < set->nr_hw_queues; i++) { 4230 int old_node; 4231 int node = blk_mq_get_hctx_node(set, i); 4232 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4233 4234 if (old_hctx) { 4235 old_node = old_hctx->numa_node; 4236 blk_mq_exit_hctx(q, set, old_hctx, i); 4237 } 4238 4239 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4240 if (!old_hctx) 4241 break; 4242 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4243 node, old_node); 4244 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4245 WARN_ON_ONCE(!hctx); 4246 } 4247 } 4248 /* 4249 * Increasing nr_hw_queues fails. Free the newly allocated 4250 * hctxs and keep the previous q->nr_hw_queues. 4251 */ 4252 if (i != set->nr_hw_queues) { 4253 j = q->nr_hw_queues; 4254 } else { 4255 j = i; 4256 q->nr_hw_queues = set->nr_hw_queues; 4257 } 4258 4259 xa_for_each_start(&q->hctx_table, j, hctx, j) 4260 blk_mq_exit_hctx(q, set, hctx, j); 4261 mutex_unlock(&q->sysfs_lock); 4262 } 4263 4264 static void blk_mq_update_poll_flag(struct request_queue *q) 4265 { 4266 struct blk_mq_tag_set *set = q->tag_set; 4267 4268 if (set->nr_maps > HCTX_TYPE_POLL && 4269 set->map[HCTX_TYPE_POLL].nr_queues) 4270 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4271 else 4272 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4273 } 4274 4275 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4276 struct request_queue *q) 4277 { 4278 /* mark the queue as mq asap */ 4279 q->mq_ops = set->ops; 4280 4281 if (blk_mq_alloc_ctxs(q)) 4282 goto err_exit; 4283 4284 /* init q->mq_kobj and sw queues' kobjects */ 4285 blk_mq_sysfs_init(q); 4286 4287 INIT_LIST_HEAD(&q->unused_hctx_list); 4288 spin_lock_init(&q->unused_hctx_lock); 4289 4290 xa_init(&q->hctx_table); 4291 4292 blk_mq_realloc_hw_ctxs(set, q); 4293 if (!q->nr_hw_queues) 4294 goto err_hctxs; 4295 4296 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4297 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4298 4299 q->tag_set = set; 4300 4301 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4302 blk_mq_update_poll_flag(q); 4303 4304 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4305 INIT_LIST_HEAD(&q->flush_list); 4306 INIT_LIST_HEAD(&q->requeue_list); 4307 spin_lock_init(&q->requeue_lock); 4308 4309 q->nr_requests = set->queue_depth; 4310 4311 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4312 blk_mq_add_queue_tag_set(set, q); 4313 blk_mq_map_swqueue(q); 4314 return 0; 4315 4316 err_hctxs: 4317 blk_mq_release(q); 4318 err_exit: 4319 q->mq_ops = NULL; 4320 return -ENOMEM; 4321 } 4322 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4323 4324 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4325 void blk_mq_exit_queue(struct request_queue *q) 4326 { 4327 struct blk_mq_tag_set *set = q->tag_set; 4328 4329 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4330 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4331 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4332 blk_mq_del_queue_tag_set(q); 4333 } 4334 4335 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4336 { 4337 int i; 4338 4339 if (blk_mq_is_shared_tags(set->flags)) { 4340 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4341 BLK_MQ_NO_HCTX_IDX, 4342 set->queue_depth); 4343 if (!set->shared_tags) 4344 return -ENOMEM; 4345 } 4346 4347 for (i = 0; i < set->nr_hw_queues; i++) { 4348 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4349 goto out_unwind; 4350 cond_resched(); 4351 } 4352 4353 return 0; 4354 4355 out_unwind: 4356 while (--i >= 0) 4357 __blk_mq_free_map_and_rqs(set, i); 4358 4359 if (blk_mq_is_shared_tags(set->flags)) { 4360 blk_mq_free_map_and_rqs(set, set->shared_tags, 4361 BLK_MQ_NO_HCTX_IDX); 4362 } 4363 4364 return -ENOMEM; 4365 } 4366 4367 /* 4368 * Allocate the request maps associated with this tag_set. Note that this 4369 * may reduce the depth asked for, if memory is tight. set->queue_depth 4370 * will be updated to reflect the allocated depth. 4371 */ 4372 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4373 { 4374 unsigned int depth; 4375 int err; 4376 4377 depth = set->queue_depth; 4378 do { 4379 err = __blk_mq_alloc_rq_maps(set); 4380 if (!err) 4381 break; 4382 4383 set->queue_depth >>= 1; 4384 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4385 err = -ENOMEM; 4386 break; 4387 } 4388 } while (set->queue_depth); 4389 4390 if (!set->queue_depth || err) { 4391 pr_err("blk-mq: failed to allocate request map\n"); 4392 return -ENOMEM; 4393 } 4394 4395 if (depth != set->queue_depth) 4396 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4397 depth, set->queue_depth); 4398 4399 return 0; 4400 } 4401 4402 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4403 { 4404 /* 4405 * blk_mq_map_queues() and multiple .map_queues() implementations 4406 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4407 * number of hardware queues. 4408 */ 4409 if (set->nr_maps == 1) 4410 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4411 4412 if (set->ops->map_queues && !is_kdump_kernel()) { 4413 int i; 4414 4415 /* 4416 * transport .map_queues is usually done in the following 4417 * way: 4418 * 4419 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4420 * mask = get_cpu_mask(queue) 4421 * for_each_cpu(cpu, mask) 4422 * set->map[x].mq_map[cpu] = queue; 4423 * } 4424 * 4425 * When we need to remap, the table has to be cleared for 4426 * killing stale mapping since one CPU may not be mapped 4427 * to any hw queue. 4428 */ 4429 for (i = 0; i < set->nr_maps; i++) 4430 blk_mq_clear_mq_map(&set->map[i]); 4431 4432 set->ops->map_queues(set); 4433 } else { 4434 BUG_ON(set->nr_maps > 1); 4435 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4436 } 4437 } 4438 4439 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4440 int new_nr_hw_queues) 4441 { 4442 struct blk_mq_tags **new_tags; 4443 int i; 4444 4445 if (set->nr_hw_queues >= new_nr_hw_queues) 4446 goto done; 4447 4448 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4449 GFP_KERNEL, set->numa_node); 4450 if (!new_tags) 4451 return -ENOMEM; 4452 4453 if (set->tags) 4454 memcpy(new_tags, set->tags, set->nr_hw_queues * 4455 sizeof(*set->tags)); 4456 kfree(set->tags); 4457 set->tags = new_tags; 4458 4459 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4460 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4461 while (--i >= set->nr_hw_queues) 4462 __blk_mq_free_map_and_rqs(set, i); 4463 return -ENOMEM; 4464 } 4465 cond_resched(); 4466 } 4467 4468 done: 4469 set->nr_hw_queues = new_nr_hw_queues; 4470 return 0; 4471 } 4472 4473 /* 4474 * Alloc a tag set to be associated with one or more request queues. 4475 * May fail with EINVAL for various error conditions. May adjust the 4476 * requested depth down, if it's too large. In that case, the set 4477 * value will be stored in set->queue_depth. 4478 */ 4479 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4480 { 4481 int i, ret; 4482 4483 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4484 4485 if (!set->nr_hw_queues) 4486 return -EINVAL; 4487 if (!set->queue_depth) 4488 return -EINVAL; 4489 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4490 return -EINVAL; 4491 4492 if (!set->ops->queue_rq) 4493 return -EINVAL; 4494 4495 if (!set->ops->get_budget ^ !set->ops->put_budget) 4496 return -EINVAL; 4497 4498 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4499 pr_info("blk-mq: reduced tag depth to %u\n", 4500 BLK_MQ_MAX_DEPTH); 4501 set->queue_depth = BLK_MQ_MAX_DEPTH; 4502 } 4503 4504 if (!set->nr_maps) 4505 set->nr_maps = 1; 4506 else if (set->nr_maps > HCTX_MAX_TYPES) 4507 return -EINVAL; 4508 4509 /* 4510 * If a crashdump is active, then we are potentially in a very 4511 * memory constrained environment. Limit us to 1 queue and 4512 * 64 tags to prevent using too much memory. 4513 */ 4514 if (is_kdump_kernel()) { 4515 set->nr_hw_queues = 1; 4516 set->nr_maps = 1; 4517 set->queue_depth = min(64U, set->queue_depth); 4518 } 4519 /* 4520 * There is no use for more h/w queues than cpus if we just have 4521 * a single map 4522 */ 4523 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4524 set->nr_hw_queues = nr_cpu_ids; 4525 4526 if (set->flags & BLK_MQ_F_BLOCKING) { 4527 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4528 if (!set->srcu) 4529 return -ENOMEM; 4530 ret = init_srcu_struct(set->srcu); 4531 if (ret) 4532 goto out_free_srcu; 4533 } 4534 4535 ret = -ENOMEM; 4536 set->tags = kcalloc_node(set->nr_hw_queues, 4537 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4538 set->numa_node); 4539 if (!set->tags) 4540 goto out_cleanup_srcu; 4541 4542 for (i = 0; i < set->nr_maps; i++) { 4543 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4544 sizeof(set->map[i].mq_map[0]), 4545 GFP_KERNEL, set->numa_node); 4546 if (!set->map[i].mq_map) 4547 goto out_free_mq_map; 4548 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4549 } 4550 4551 blk_mq_update_queue_map(set); 4552 4553 ret = blk_mq_alloc_set_map_and_rqs(set); 4554 if (ret) 4555 goto out_free_mq_map; 4556 4557 mutex_init(&set->tag_list_lock); 4558 INIT_LIST_HEAD(&set->tag_list); 4559 4560 return 0; 4561 4562 out_free_mq_map: 4563 for (i = 0; i < set->nr_maps; i++) { 4564 kfree(set->map[i].mq_map); 4565 set->map[i].mq_map = NULL; 4566 } 4567 kfree(set->tags); 4568 set->tags = NULL; 4569 out_cleanup_srcu: 4570 if (set->flags & BLK_MQ_F_BLOCKING) 4571 cleanup_srcu_struct(set->srcu); 4572 out_free_srcu: 4573 if (set->flags & BLK_MQ_F_BLOCKING) 4574 kfree(set->srcu); 4575 return ret; 4576 } 4577 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4578 4579 /* allocate and initialize a tagset for a simple single-queue device */ 4580 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4581 const struct blk_mq_ops *ops, unsigned int queue_depth, 4582 unsigned int set_flags) 4583 { 4584 memset(set, 0, sizeof(*set)); 4585 set->ops = ops; 4586 set->nr_hw_queues = 1; 4587 set->nr_maps = 1; 4588 set->queue_depth = queue_depth; 4589 set->numa_node = NUMA_NO_NODE; 4590 set->flags = set_flags; 4591 return blk_mq_alloc_tag_set(set); 4592 } 4593 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4594 4595 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4596 { 4597 int i, j; 4598 4599 for (i = 0; i < set->nr_hw_queues; i++) 4600 __blk_mq_free_map_and_rqs(set, i); 4601 4602 if (blk_mq_is_shared_tags(set->flags)) { 4603 blk_mq_free_map_and_rqs(set, set->shared_tags, 4604 BLK_MQ_NO_HCTX_IDX); 4605 } 4606 4607 for (j = 0; j < set->nr_maps; j++) { 4608 kfree(set->map[j].mq_map); 4609 set->map[j].mq_map = NULL; 4610 } 4611 4612 kfree(set->tags); 4613 set->tags = NULL; 4614 if (set->flags & BLK_MQ_F_BLOCKING) { 4615 cleanup_srcu_struct(set->srcu); 4616 kfree(set->srcu); 4617 } 4618 } 4619 EXPORT_SYMBOL(blk_mq_free_tag_set); 4620 4621 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4622 { 4623 struct blk_mq_tag_set *set = q->tag_set; 4624 struct blk_mq_hw_ctx *hctx; 4625 int ret; 4626 unsigned long i; 4627 4628 if (!set) 4629 return -EINVAL; 4630 4631 if (q->nr_requests == nr) 4632 return 0; 4633 4634 blk_mq_freeze_queue(q); 4635 blk_mq_quiesce_queue(q); 4636 4637 ret = 0; 4638 queue_for_each_hw_ctx(q, hctx, i) { 4639 if (!hctx->tags) 4640 continue; 4641 /* 4642 * If we're using an MQ scheduler, just update the scheduler 4643 * queue depth. This is similar to what the old code would do. 4644 */ 4645 if (hctx->sched_tags) { 4646 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4647 nr, true); 4648 } else { 4649 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4650 false); 4651 } 4652 if (ret) 4653 break; 4654 if (q->elevator && q->elevator->type->ops.depth_updated) 4655 q->elevator->type->ops.depth_updated(hctx); 4656 } 4657 if (!ret) { 4658 q->nr_requests = nr; 4659 if (blk_mq_is_shared_tags(set->flags)) { 4660 if (q->elevator) 4661 blk_mq_tag_update_sched_shared_tags(q); 4662 else 4663 blk_mq_tag_resize_shared_tags(set, nr); 4664 } 4665 } 4666 4667 blk_mq_unquiesce_queue(q); 4668 blk_mq_unfreeze_queue(q); 4669 4670 return ret; 4671 } 4672 4673 /* 4674 * request_queue and elevator_type pair. 4675 * It is just used by __blk_mq_update_nr_hw_queues to cache 4676 * the elevator_type associated with a request_queue. 4677 */ 4678 struct blk_mq_qe_pair { 4679 struct list_head node; 4680 struct request_queue *q; 4681 struct elevator_type *type; 4682 }; 4683 4684 /* 4685 * Cache the elevator_type in qe pair list and switch the 4686 * io scheduler to 'none' 4687 */ 4688 static bool blk_mq_elv_switch_none(struct list_head *head, 4689 struct request_queue *q) 4690 { 4691 struct blk_mq_qe_pair *qe; 4692 4693 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4694 if (!qe) 4695 return false; 4696 4697 /* q->elevator needs protection from ->sysfs_lock */ 4698 mutex_lock(&q->sysfs_lock); 4699 4700 /* the check has to be done with holding sysfs_lock */ 4701 if (!q->elevator) { 4702 kfree(qe); 4703 goto unlock; 4704 } 4705 4706 INIT_LIST_HEAD(&qe->node); 4707 qe->q = q; 4708 qe->type = q->elevator->type; 4709 /* keep a reference to the elevator module as we'll switch back */ 4710 __elevator_get(qe->type); 4711 list_add(&qe->node, head); 4712 elevator_disable(q); 4713 unlock: 4714 mutex_unlock(&q->sysfs_lock); 4715 4716 return true; 4717 } 4718 4719 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4720 struct request_queue *q) 4721 { 4722 struct blk_mq_qe_pair *qe; 4723 4724 list_for_each_entry(qe, head, node) 4725 if (qe->q == q) 4726 return qe; 4727 4728 return NULL; 4729 } 4730 4731 static void blk_mq_elv_switch_back(struct list_head *head, 4732 struct request_queue *q) 4733 { 4734 struct blk_mq_qe_pair *qe; 4735 struct elevator_type *t; 4736 4737 qe = blk_lookup_qe_pair(head, q); 4738 if (!qe) 4739 return; 4740 t = qe->type; 4741 list_del(&qe->node); 4742 kfree(qe); 4743 4744 mutex_lock(&q->sysfs_lock); 4745 elevator_switch(q, t); 4746 /* drop the reference acquired in blk_mq_elv_switch_none */ 4747 elevator_put(t); 4748 mutex_unlock(&q->sysfs_lock); 4749 } 4750 4751 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4752 int nr_hw_queues) 4753 { 4754 struct request_queue *q; 4755 LIST_HEAD(head); 4756 int prev_nr_hw_queues = set->nr_hw_queues; 4757 int i; 4758 4759 lockdep_assert_held(&set->tag_list_lock); 4760 4761 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4762 nr_hw_queues = nr_cpu_ids; 4763 if (nr_hw_queues < 1) 4764 return; 4765 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4766 return; 4767 4768 list_for_each_entry(q, &set->tag_list, tag_set_list) 4769 blk_mq_freeze_queue(q); 4770 /* 4771 * Switch IO scheduler to 'none', cleaning up the data associated 4772 * with the previous scheduler. We will switch back once we are done 4773 * updating the new sw to hw queue mappings. 4774 */ 4775 list_for_each_entry(q, &set->tag_list, tag_set_list) 4776 if (!blk_mq_elv_switch_none(&head, q)) 4777 goto switch_back; 4778 4779 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4780 blk_mq_debugfs_unregister_hctxs(q); 4781 blk_mq_sysfs_unregister_hctxs(q); 4782 } 4783 4784 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4785 goto reregister; 4786 4787 fallback: 4788 blk_mq_update_queue_map(set); 4789 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4790 blk_mq_realloc_hw_ctxs(set, q); 4791 blk_mq_update_poll_flag(q); 4792 if (q->nr_hw_queues != set->nr_hw_queues) { 4793 int i = prev_nr_hw_queues; 4794 4795 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4796 nr_hw_queues, prev_nr_hw_queues); 4797 for (; i < set->nr_hw_queues; i++) 4798 __blk_mq_free_map_and_rqs(set, i); 4799 4800 set->nr_hw_queues = prev_nr_hw_queues; 4801 goto fallback; 4802 } 4803 blk_mq_map_swqueue(q); 4804 } 4805 4806 reregister: 4807 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4808 blk_mq_sysfs_register_hctxs(q); 4809 blk_mq_debugfs_register_hctxs(q); 4810 } 4811 4812 switch_back: 4813 list_for_each_entry(q, &set->tag_list, tag_set_list) 4814 blk_mq_elv_switch_back(&head, q); 4815 4816 list_for_each_entry(q, &set->tag_list, tag_set_list) 4817 blk_mq_unfreeze_queue(q); 4818 4819 /* Free the excess tags when nr_hw_queues shrink. */ 4820 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4821 __blk_mq_free_map_and_rqs(set, i); 4822 } 4823 4824 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4825 { 4826 mutex_lock(&set->tag_list_lock); 4827 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4828 mutex_unlock(&set->tag_list_lock); 4829 } 4830 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4831 4832 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4833 struct io_comp_batch *iob, unsigned int flags) 4834 { 4835 long state = get_current_state(); 4836 int ret; 4837 4838 do { 4839 ret = q->mq_ops->poll(hctx, iob); 4840 if (ret > 0) { 4841 __set_current_state(TASK_RUNNING); 4842 return ret; 4843 } 4844 4845 if (signal_pending_state(state, current)) 4846 __set_current_state(TASK_RUNNING); 4847 if (task_is_running(current)) 4848 return 1; 4849 4850 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4851 break; 4852 cpu_relax(); 4853 } while (!need_resched()); 4854 4855 __set_current_state(TASK_RUNNING); 4856 return 0; 4857 } 4858 4859 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4860 struct io_comp_batch *iob, unsigned int flags) 4861 { 4862 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4863 4864 return blk_hctx_poll(q, hctx, iob, flags); 4865 } 4866 4867 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4868 unsigned int poll_flags) 4869 { 4870 struct request_queue *q = rq->q; 4871 int ret; 4872 4873 if (!blk_rq_is_poll(rq)) 4874 return 0; 4875 if (!percpu_ref_tryget(&q->q_usage_counter)) 4876 return 0; 4877 4878 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4879 blk_queue_exit(q); 4880 4881 return ret; 4882 } 4883 EXPORT_SYMBOL_GPL(blk_rq_poll); 4884 4885 unsigned int blk_mq_rq_cpu(struct request *rq) 4886 { 4887 return rq->mq_ctx->cpu; 4888 } 4889 EXPORT_SYMBOL(blk_mq_rq_cpu); 4890 4891 void blk_mq_cancel_work_sync(struct request_queue *q) 4892 { 4893 struct blk_mq_hw_ctx *hctx; 4894 unsigned long i; 4895 4896 cancel_delayed_work_sync(&q->requeue_work); 4897 4898 queue_for_each_hw_ctx(q, hctx, i) 4899 cancel_delayed_work_sync(&hctx->run_work); 4900 } 4901 4902 static int __init blk_mq_init(void) 4903 { 4904 int i; 4905 4906 for_each_possible_cpu(i) 4907 init_llist_head(&per_cpu(blk_cpu_done, i)); 4908 for_each_possible_cpu(i) 4909 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4910 __blk_mq_complete_request_remote, NULL); 4911 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4912 4913 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4914 "block/softirq:dead", NULL, 4915 blk_softirq_cpu_dead); 4916 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4917 blk_mq_hctx_notify_dead); 4918 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4919 blk_mq_hctx_notify_online, 4920 blk_mq_hctx_notify_offline); 4921 return 0; 4922 } 4923 subsys_initcall(blk_mq_init); 4924