1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
58 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
63 blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 const int bit = ctx->index_hw[hctx->type];
73
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 const int bit = ctx->index_hw[hctx->type];
82
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87 struct block_device *part;
88 unsigned int inflight[2];
89 };
90
blk_mq_check_inflight(struct request * rq,void * priv)91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 struct mq_inflight *mi = priv;
94
95 if (rq->part && blk_do_io_stat(rq) &&
96 (!mi->part->bd_partno || rq->part == mi->part) &&
97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 mi->inflight[rq_data_dir(rq)]++;
99
100 return true;
101 }
102
blk_mq_in_flight(struct request_queue * q,struct block_device * part)103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
105 {
106 struct mq_inflight mi = { .part = part };
107
108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110 return mi.inflight[0] + mi.inflight[1];
111 }
112
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part };
117
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
121 }
122
blk_freeze_queue_start(struct request_queue * q)123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 mutex_unlock(&q->mq_freeze_lock);
129 if (queue_is_mq(q))
130 blk_mq_run_hw_queues(q, false);
131 } else {
132 mutex_unlock(&q->mq_freeze_lock);
133 }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
blk_mq_freeze_queue_wait(struct request_queue * q)137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
145 {
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
148 timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
155 */
blk_freeze_queue(struct request_queue * q)156 void blk_freeze_queue(struct request_queue *q)
157 {
158 /*
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
164 */
165 blk_freeze_queue_start(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
blk_mq_freeze_queue(struct request_queue * q)169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 mutex_lock(&q->mq_freeze_lock);
182 if (force_atomic)
183 q->q_usage_counter.data->force_atomic = true;
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
187 percpu_ref_resurrect(&q->q_usage_counter);
188 wake_up_all(&q->mq_freeze_wq);
189 }
190 mutex_unlock(&q->mq_freeze_lock);
191 }
192
blk_mq_unfreeze_queue(struct request_queue * q)193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 unsigned long flags;
206
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
217 *
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
227 else
228 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234 * @q: request queue.
235 *
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
240 */
blk_mq_quiesce_queue(struct request_queue * q)241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 blk_mq_quiesce_queue_nowait(q);
244 /* nothing to wait for non-mq queues */
245 if (queue_is_mq(q))
246 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
253 *
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
256 */
blk_mq_unquiesce_queue(struct request_queue * q)257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 unsigned long flags;
260 bool run_queue = false;
261
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 ;
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 run_queue = true;
268 }
269 spin_unlock_irqrestore(&q->queue_lock, flags);
270
271 /* dispatch requests which are inserted during quiescing */
272 if (run_queue)
273 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 struct request_queue *q;
280
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
285 }
286 blk_mq_wait_quiesce_done(set);
287 mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 struct request_queue *q;
294
295 mutex_lock(&set->tag_list_lock);
296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 if (!blk_queue_skip_tagset_quiesce(q))
298 blk_mq_unquiesce_queue(q);
299 }
300 mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
blk_mq_wake_waiters(struct request_queue * q)304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 struct blk_mq_hw_ctx *hctx;
307 unsigned long i;
308
309 queue_for_each_hw_ctx(q, hctx, i)
310 if (blk_mq_hw_queue_mapped(hctx))
311 blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
blk_rq_init(struct request_queue * q,struct request * rq)314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 memset(rq, 0, sizeof(*rq));
317
318 INIT_LIST_HEAD(&rq->queuelist);
319 rq->q = q;
320 rq->__sector = (sector_t) -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->tag = BLK_MQ_NO_TAG;
324 rq->internal_tag = BLK_MQ_NO_TAG;
325 rq->start_time_ns = ktime_get_ns();
326 rq->part = NULL;
327 blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 if (blk_mq_need_time_stamp(rq))
335 rq->start_time_ns = ktime_get_ns();
336 else
337 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 if (blk_queue_rq_alloc_time(rq->q))
341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 else
343 rq->alloc_time_ns = 0;
344 #endif
345 }
346
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 struct blk_mq_tags *tags, unsigned int tag)
349 {
350 struct blk_mq_ctx *ctx = data->ctx;
351 struct blk_mq_hw_ctx *hctx = data->hctx;
352 struct request_queue *q = data->q;
353 struct request *rq = tags->static_rqs[tag];
354
355 rq->q = q;
356 rq->mq_ctx = ctx;
357 rq->mq_hctx = hctx;
358 rq->cmd_flags = data->cmd_flags;
359
360 if (data->flags & BLK_MQ_REQ_PM)
361 data->rq_flags |= RQF_PM;
362 if (blk_queue_io_stat(q))
363 data->rq_flags |= RQF_IO_STAT;
364 rq->rq_flags = data->rq_flags;
365
366 if (data->rq_flags & RQF_SCHED_TAGS) {
367 rq->tag = BLK_MQ_NO_TAG;
368 rq->internal_tag = tag;
369 } else {
370 rq->tag = tag;
371 rq->internal_tag = BLK_MQ_NO_TAG;
372 }
373 rq->timeout = 0;
374
375 rq->part = NULL;
376 rq->io_start_time_ns = 0;
377 rq->stats_sectors = 0;
378 rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 rq->nr_integrity_segments = 0;
381 #endif
382 rq->end_io = NULL;
383 rq->end_io_data = NULL;
384
385 blk_crypto_rq_set_defaults(rq);
386 INIT_LIST_HEAD(&rq->queuelist);
387 /* tag was already set */
388 WRITE_ONCE(rq->deadline, 0);
389 req_ref_set(rq, 1);
390
391 if (rq->rq_flags & RQF_USE_SCHED) {
392 struct elevator_queue *e = data->q->elevator;
393
394 INIT_HLIST_NODE(&rq->hash);
395 RB_CLEAR_NODE(&rq->rb_node);
396
397 if (e->type->ops.prepare_request)
398 e->type->ops.prepare_request(rq);
399 }
400
401 return rq;
402 }
403
404 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 unsigned int tag, tag_offset;
408 struct blk_mq_tags *tags;
409 struct request *rq;
410 unsigned long tag_mask;
411 int i, nr = 0;
412
413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 if (unlikely(!tag_mask))
415 return NULL;
416
417 tags = blk_mq_tags_from_data(data);
418 for (i = 0; tag_mask; i++) {
419 if (!(tag_mask & (1UL << i)))
420 continue;
421 tag = tag_offset + i;
422 prefetch(tags->static_rqs[tag]);
423 tag_mask &= ~(1UL << i);
424 rq = blk_mq_rq_ctx_init(data, tags, tag);
425 rq_list_add(data->cached_rq, rq);
426 nr++;
427 }
428 /* caller already holds a reference, add for remainder */
429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 data->nr_tags -= nr;
431
432 return rq_list_pop(data->cached_rq);
433 }
434
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437 struct request_queue *q = data->q;
438 u64 alloc_time_ns = 0;
439 struct request *rq;
440 unsigned int tag;
441
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q))
444 alloc_time_ns = ktime_get_ns();
445
446 if (data->cmd_flags & REQ_NOWAIT)
447 data->flags |= BLK_MQ_REQ_NOWAIT;
448
449 retry:
450 data->ctx = blk_mq_get_ctx(q);
451 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
452
453 if (q->elevator) {
454 /*
455 * All requests use scheduler tags when an I/O scheduler is
456 * enabled for the queue.
457 */
458 data->rq_flags |= RQF_SCHED_TAGS;
459
460 /*
461 * Flush/passthrough requests are special and go directly to the
462 * dispatch list.
463 */
464 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
465 !blk_op_is_passthrough(data->cmd_flags)) {
466 struct elevator_mq_ops *ops = &q->elevator->type->ops;
467
468 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
469
470 data->rq_flags |= RQF_USE_SCHED;
471 if (ops->limit_depth)
472 ops->limit_depth(data->cmd_flags, data);
473 }
474 } else {
475 blk_mq_tag_busy(data->hctx);
476 }
477
478 if (data->flags & BLK_MQ_REQ_RESERVED)
479 data->rq_flags |= RQF_RESV;
480
481 /*
482 * Try batched alloc if we want more than 1 tag.
483 */
484 if (data->nr_tags > 1) {
485 rq = __blk_mq_alloc_requests_batch(data);
486 if (rq) {
487 blk_mq_rq_time_init(rq, alloc_time_ns);
488 return rq;
489 }
490 data->nr_tags = 1;
491 }
492
493 /*
494 * Waiting allocations only fail because of an inactive hctx. In that
495 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 * should have migrated us to an online CPU by now.
497 */
498 tag = blk_mq_get_tag(data);
499 if (tag == BLK_MQ_NO_TAG) {
500 if (data->flags & BLK_MQ_REQ_NOWAIT)
501 return NULL;
502 /*
503 * Give up the CPU and sleep for a random short time to
504 * ensure that thread using a realtime scheduling class
505 * are migrated off the CPU, and thus off the hctx that
506 * is going away.
507 */
508 msleep(3);
509 goto retry;
510 }
511
512 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513 blk_mq_rq_time_init(rq, alloc_time_ns);
514 return rq;
515 }
516
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518 struct blk_plug *plug,
519 blk_opf_t opf,
520 blk_mq_req_flags_t flags)
521 {
522 struct blk_mq_alloc_data data = {
523 .q = q,
524 .flags = flags,
525 .cmd_flags = opf,
526 .nr_tags = plug->nr_ios,
527 .cached_rq = &plug->cached_rq,
528 };
529 struct request *rq;
530
531 if (blk_queue_enter(q, flags))
532 return NULL;
533
534 plug->nr_ios = 1;
535
536 rq = __blk_mq_alloc_requests(&data);
537 if (unlikely(!rq))
538 blk_queue_exit(q);
539 return rq;
540 }
541
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543 blk_opf_t opf,
544 blk_mq_req_flags_t flags)
545 {
546 struct blk_plug *plug = current->plug;
547 struct request *rq;
548
549 if (!plug)
550 return NULL;
551
552 if (rq_list_empty(plug->cached_rq)) {
553 if (plug->nr_ios == 1)
554 return NULL;
555 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556 if (!rq)
557 return NULL;
558 } else {
559 rq = rq_list_peek(&plug->cached_rq);
560 if (!rq || rq->q != q)
561 return NULL;
562
563 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564 return NULL;
565 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566 return NULL;
567
568 plug->cached_rq = rq_list_next(rq);
569 blk_mq_rq_time_init(rq, 0);
570 }
571
572 rq->cmd_flags = opf;
573 INIT_LIST_HEAD(&rq->queuelist);
574 return rq;
575 }
576
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578 blk_mq_req_flags_t flags)
579 {
580 struct request *rq;
581
582 rq = blk_mq_alloc_cached_request(q, opf, flags);
583 if (!rq) {
584 struct blk_mq_alloc_data data = {
585 .q = q,
586 .flags = flags,
587 .cmd_flags = opf,
588 .nr_tags = 1,
589 };
590 int ret;
591
592 ret = blk_queue_enter(q, flags);
593 if (ret)
594 return ERR_PTR(ret);
595
596 rq = __blk_mq_alloc_requests(&data);
597 if (!rq)
598 goto out_queue_exit;
599 }
600 rq->__data_len = 0;
601 rq->__sector = (sector_t) -1;
602 rq->bio = rq->biotail = NULL;
603 return rq;
604 out_queue_exit:
605 blk_queue_exit(q);
606 return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613 struct blk_mq_alloc_data data = {
614 .q = q,
615 .flags = flags,
616 .cmd_flags = opf,
617 .nr_tags = 1,
618 };
619 u64 alloc_time_ns = 0;
620 struct request *rq;
621 unsigned int cpu;
622 unsigned int tag;
623 int ret;
624
625 /* alloc_time includes depth and tag waits */
626 if (blk_queue_rq_alloc_time(q))
627 alloc_time_ns = ktime_get_ns();
628
629 /*
630 * If the tag allocator sleeps we could get an allocation for a
631 * different hardware context. No need to complicate the low level
632 * allocator for this for the rare use case of a command tied to
633 * a specific queue.
634 */
635 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637 return ERR_PTR(-EINVAL);
638
639 if (hctx_idx >= q->nr_hw_queues)
640 return ERR_PTR(-EIO);
641
642 ret = blk_queue_enter(q, flags);
643 if (ret)
644 return ERR_PTR(ret);
645
646 /*
647 * Check if the hardware context is actually mapped to anything.
648 * If not tell the caller that it should skip this queue.
649 */
650 ret = -EXDEV;
651 data.hctx = xa_load(&q->hctx_table, hctx_idx);
652 if (!blk_mq_hw_queue_mapped(data.hctx))
653 goto out_queue_exit;
654 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655 if (cpu >= nr_cpu_ids)
656 goto out_queue_exit;
657 data.ctx = __blk_mq_get_ctx(q, cpu);
658
659 if (q->elevator)
660 data.rq_flags |= RQF_SCHED_TAGS;
661 else
662 blk_mq_tag_busy(data.hctx);
663
664 if (flags & BLK_MQ_REQ_RESERVED)
665 data.rq_flags |= RQF_RESV;
666
667 ret = -EWOULDBLOCK;
668 tag = blk_mq_get_tag(&data);
669 if (tag == BLK_MQ_NO_TAG)
670 goto out_queue_exit;
671 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672 blk_mq_rq_time_init(rq, alloc_time_ns);
673 rq->__data_len = 0;
674 rq->__sector = (sector_t) -1;
675 rq->bio = rq->biotail = NULL;
676 return rq;
677
678 out_queue_exit:
679 blk_queue_exit(q);
680 return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683
blk_mq_finish_request(struct request * rq)684 static void blk_mq_finish_request(struct request *rq)
685 {
686 struct request_queue *q = rq->q;
687
688 if (rq->rq_flags & RQF_USE_SCHED) {
689 q->elevator->type->ops.finish_request(rq);
690 /*
691 * For postflush request that may need to be
692 * completed twice, we should clear this flag
693 * to avoid double finish_request() on the rq.
694 */
695 rq->rq_flags &= ~RQF_USE_SCHED;
696 }
697 }
698
__blk_mq_free_request(struct request * rq)699 static void __blk_mq_free_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702 struct blk_mq_ctx *ctx = rq->mq_ctx;
703 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
704 const int sched_tag = rq->internal_tag;
705
706 blk_crypto_free_request(rq);
707 blk_pm_mark_last_busy(rq);
708 rq->mq_hctx = NULL;
709
710 if (rq->rq_flags & RQF_MQ_INFLIGHT)
711 __blk_mq_dec_active_requests(hctx);
712
713 if (rq->tag != BLK_MQ_NO_TAG)
714 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
715 if (sched_tag != BLK_MQ_NO_TAG)
716 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
717 blk_mq_sched_restart(hctx);
718 blk_queue_exit(q);
719 }
720
blk_mq_free_request(struct request * rq)721 void blk_mq_free_request(struct request *rq)
722 {
723 struct request_queue *q = rq->q;
724
725 blk_mq_finish_request(rq);
726
727 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
728 laptop_io_completion(q->disk->bdi);
729
730 rq_qos_done(q, rq);
731
732 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
733 if (req_ref_put_and_test(rq))
734 __blk_mq_free_request(rq);
735 }
736 EXPORT_SYMBOL_GPL(blk_mq_free_request);
737
blk_mq_free_plug_rqs(struct blk_plug * plug)738 void blk_mq_free_plug_rqs(struct blk_plug *plug)
739 {
740 struct request *rq;
741
742 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
743 blk_mq_free_request(rq);
744 }
745
blk_dump_rq_flags(struct request * rq,char * msg)746 void blk_dump_rq_flags(struct request *rq, char *msg)
747 {
748 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
749 rq->q->disk ? rq->q->disk->disk_name : "?",
750 (__force unsigned long long) rq->cmd_flags);
751
752 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
753 (unsigned long long)blk_rq_pos(rq),
754 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
755 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
756 rq->bio, rq->biotail, blk_rq_bytes(rq));
757 }
758 EXPORT_SYMBOL(blk_dump_rq_flags);
759
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)760 static void req_bio_endio(struct request *rq, struct bio *bio,
761 unsigned int nbytes, blk_status_t error)
762 {
763 if (unlikely(error)) {
764 bio->bi_status = error;
765 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
766 /*
767 * Partial zone append completions cannot be supported as the
768 * BIO fragments may end up not being written sequentially.
769 */
770 if (bio->bi_iter.bi_size != nbytes)
771 bio->bi_status = BLK_STS_IOERR;
772 else
773 bio->bi_iter.bi_sector = rq->__sector;
774 }
775
776 bio_advance(bio, nbytes);
777
778 if (unlikely(rq->rq_flags & RQF_QUIET))
779 bio_set_flag(bio, BIO_QUIET);
780 /* don't actually finish bio if it's part of flush sequence */
781 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
782 bio_endio(bio);
783 }
784
blk_account_io_completion(struct request * req,unsigned int bytes)785 static void blk_account_io_completion(struct request *req, unsigned int bytes)
786 {
787 if (req->part && blk_do_io_stat(req)) {
788 const int sgrp = op_stat_group(req_op(req));
789
790 part_stat_lock();
791 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
792 part_stat_unlock();
793 }
794 }
795
blk_print_req_error(struct request * req,blk_status_t status)796 static void blk_print_req_error(struct request *req, blk_status_t status)
797 {
798 printk_ratelimited(KERN_ERR
799 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
800 "phys_seg %u prio class %u\n",
801 blk_status_to_str(status),
802 req->q->disk ? req->q->disk->disk_name : "?",
803 blk_rq_pos(req), (__force u32)req_op(req),
804 blk_op_str(req_op(req)),
805 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
806 req->nr_phys_segments,
807 IOPRIO_PRIO_CLASS(req->ioprio));
808 }
809
810 /*
811 * Fully end IO on a request. Does not support partial completions, or
812 * errors.
813 */
blk_complete_request(struct request * req)814 static void blk_complete_request(struct request *req)
815 {
816 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
817 int total_bytes = blk_rq_bytes(req);
818 struct bio *bio = req->bio;
819
820 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
821
822 if (!bio)
823 return;
824
825 #ifdef CONFIG_BLK_DEV_INTEGRITY
826 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
827 req->q->integrity.profile->complete_fn(req, total_bytes);
828 #endif
829
830 /*
831 * Upper layers may call blk_crypto_evict_key() anytime after the last
832 * bio_endio(). Therefore, the keyslot must be released before that.
833 */
834 blk_crypto_rq_put_keyslot(req);
835
836 blk_account_io_completion(req, total_bytes);
837
838 do {
839 struct bio *next = bio->bi_next;
840
841 /* Completion has already been traced */
842 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
843
844 if (req_op(req) == REQ_OP_ZONE_APPEND)
845 bio->bi_iter.bi_sector = req->__sector;
846
847 if (!is_flush)
848 bio_endio(bio);
849 bio = next;
850 } while (bio);
851
852 /*
853 * Reset counters so that the request stacking driver
854 * can find how many bytes remain in the request
855 * later.
856 */
857 if (!req->end_io) {
858 req->bio = NULL;
859 req->__data_len = 0;
860 }
861 }
862
863 /**
864 * blk_update_request - Complete multiple bytes without completing the request
865 * @req: the request being processed
866 * @error: block status code
867 * @nr_bytes: number of bytes to complete for @req
868 *
869 * Description:
870 * Ends I/O on a number of bytes attached to @req, but doesn't complete
871 * the request structure even if @req doesn't have leftover.
872 * If @req has leftover, sets it up for the next range of segments.
873 *
874 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
875 * %false return from this function.
876 *
877 * Note:
878 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
879 * except in the consistency check at the end of this function.
880 *
881 * Return:
882 * %false - this request doesn't have any more data
883 * %true - this request has more data
884 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)885 bool blk_update_request(struct request *req, blk_status_t error,
886 unsigned int nr_bytes)
887 {
888 int total_bytes;
889
890 trace_block_rq_complete(req, error, nr_bytes);
891
892 if (!req->bio)
893 return false;
894
895 #ifdef CONFIG_BLK_DEV_INTEGRITY
896 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
897 error == BLK_STS_OK)
898 req->q->integrity.profile->complete_fn(req, nr_bytes);
899 #endif
900
901 /*
902 * Upper layers may call blk_crypto_evict_key() anytime after the last
903 * bio_endio(). Therefore, the keyslot must be released before that.
904 */
905 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
906 __blk_crypto_rq_put_keyslot(req);
907
908 if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 !(req->rq_flags & RQF_QUIET)) &&
910 !test_bit(GD_DEAD, &req->q->disk->state)) {
911 blk_print_req_error(req, error);
912 trace_block_rq_error(req, error, nr_bytes);
913 }
914
915 blk_account_io_completion(req, nr_bytes);
916
917 total_bytes = 0;
918 while (req->bio) {
919 struct bio *bio = req->bio;
920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921
922 if (bio_bytes == bio->bi_iter.bi_size)
923 req->bio = bio->bi_next;
924
925 /* Completion has already been traced */
926 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 req_bio_endio(req, bio, bio_bytes, error);
928
929 total_bytes += bio_bytes;
930 nr_bytes -= bio_bytes;
931
932 if (!nr_bytes)
933 break;
934 }
935
936 /*
937 * completely done
938 */
939 if (!req->bio) {
940 /*
941 * Reset counters so that the request stacking driver
942 * can find how many bytes remain in the request
943 * later.
944 */
945 req->__data_len = 0;
946 return false;
947 }
948
949 req->__data_len -= total_bytes;
950
951 /* update sector only for requests with clear definition of sector */
952 if (!blk_rq_is_passthrough(req))
953 req->__sector += total_bytes >> 9;
954
955 /* mixed attributes always follow the first bio */
956 if (req->rq_flags & RQF_MIXED_MERGE) {
957 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 }
960
961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 /*
963 * If total number of sectors is less than the first segment
964 * size, something has gone terribly wrong.
965 */
966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 blk_dump_rq_flags(req, "request botched");
968 req->__data_len = blk_rq_cur_bytes(req);
969 }
970
971 /* recalculate the number of segments */
972 req->nr_phys_segments = blk_recalc_rq_segments(req);
973 }
974
975 return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978
blk_account_io_done(struct request * req,u64 now)979 static inline void blk_account_io_done(struct request *req, u64 now)
980 {
981 trace_block_io_done(req);
982
983 /*
984 * Account IO completion. flush_rq isn't accounted as a
985 * normal IO on queueing nor completion. Accounting the
986 * containing request is enough.
987 */
988 if (blk_do_io_stat(req) && req->part &&
989 !(req->rq_flags & RQF_FLUSH_SEQ)) {
990 const int sgrp = op_stat_group(req_op(req));
991
992 part_stat_lock();
993 update_io_ticks(req->part, jiffies, true);
994 part_stat_inc(req->part, ios[sgrp]);
995 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
996 part_stat_local_dec(req->part,
997 in_flight[op_is_write(req_op(req))]);
998 part_stat_unlock();
999 }
1000 }
1001
blk_account_io_start(struct request * req)1002 static inline void blk_account_io_start(struct request *req)
1003 {
1004 trace_block_io_start(req);
1005
1006 if (blk_do_io_stat(req)) {
1007 /*
1008 * All non-passthrough requests are created from a bio with one
1009 * exception: when a flush command that is part of a flush sequence
1010 * generated by the state machine in blk-flush.c is cloned onto the
1011 * lower device by dm-multipath we can get here without a bio.
1012 */
1013 if (req->bio)
1014 req->part = req->bio->bi_bdev;
1015 else
1016 req->part = req->q->disk->part0;
1017
1018 part_stat_lock();
1019 update_io_ticks(req->part, jiffies, false);
1020 part_stat_local_inc(req->part,
1021 in_flight[op_is_write(req_op(req))]);
1022 part_stat_unlock();
1023 }
1024 }
1025
__blk_mq_end_request_acct(struct request * rq,u64 now)1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 if (rq->rq_flags & RQF_STATS)
1029 blk_stat_add(rq, now);
1030
1031 blk_mq_sched_completed_request(rq, now);
1032 blk_account_io_done(rq, now);
1033 }
1034
__blk_mq_end_request(struct request * rq,blk_status_t error)1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1036 {
1037 if (blk_mq_need_time_stamp(rq))
1038 __blk_mq_end_request_acct(rq, ktime_get_ns());
1039
1040 blk_mq_finish_request(rq);
1041
1042 if (rq->end_io) {
1043 rq_qos_done(rq->q, rq);
1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 blk_mq_free_request(rq);
1046 } else {
1047 blk_mq_free_request(rq);
1048 }
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051
blk_mq_end_request(struct request * rq,blk_status_t error)1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 BUG();
1056 __blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059
1060 #define TAG_COMP_BATCH 32
1061
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 int *tag_array, int nr_tags)
1064 {
1065 struct request_queue *q = hctx->queue;
1066
1067 /*
1068 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 * update hctx->nr_active in batch
1070 */
1071 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 __blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
blk_mq_end_request_batch(struct io_comp_batch * iob)1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 struct request *rq;
1083 u64 now = 0;
1084
1085 if (iob->need_ts)
1086 now = ktime_get_ns();
1087
1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 prefetch(rq->bio);
1090 prefetch(rq->rq_next);
1091
1092 blk_complete_request(rq);
1093 if (iob->need_ts)
1094 __blk_mq_end_request_acct(rq, now);
1095
1096 blk_mq_finish_request(rq);
1097
1098 rq_qos_done(rq->q, rq);
1099
1100 /*
1101 * If end_io handler returns NONE, then it still has
1102 * ownership of the request.
1103 */
1104 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105 continue;
1106
1107 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1108 if (!req_ref_put_and_test(rq))
1109 continue;
1110
1111 blk_crypto_free_request(rq);
1112 blk_pm_mark_last_busy(rq);
1113
1114 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1115 if (cur_hctx)
1116 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117 nr_tags = 0;
1118 cur_hctx = rq->mq_hctx;
1119 }
1120 tags[nr_tags++] = rq->tag;
1121 }
1122
1123 if (nr_tags)
1124 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1125 }
1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1127
blk_complete_reqs(struct llist_head * list)1128 static void blk_complete_reqs(struct llist_head *list)
1129 {
1130 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1131 struct request *rq, *next;
1132
1133 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1134 rq->q->mq_ops->complete(rq);
1135 }
1136
blk_done_softirq(struct softirq_action * h)1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1138 {
1139 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 }
1141
blk_softirq_cpu_dead(unsigned int cpu)1142 static int blk_softirq_cpu_dead(unsigned int cpu)
1143 {
1144 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145 return 0;
1146 }
1147
__blk_mq_complete_request_remote(void * data)1148 static void __blk_mq_complete_request_remote(void *data)
1149 {
1150 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 }
1152
blk_mq_complete_need_ipi(struct request * rq)1153 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1154 {
1155 int cpu = raw_smp_processor_id();
1156
1157 if (!IS_ENABLED(CONFIG_SMP) ||
1158 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159 return false;
1160 /*
1161 * With force threaded interrupts enabled, raising softirq from an SMP
1162 * function call will always result in waking the ksoftirqd thread.
1163 * This is probably worse than completing the request on a different
1164 * cache domain.
1165 */
1166 if (force_irqthreads())
1167 return false;
1168
1169 /* same CPU or cache domain? Complete locally */
1170 if (cpu == rq->mq_ctx->cpu ||
1171 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1172 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1173 return false;
1174
1175 /* don't try to IPI to an offline CPU */
1176 return cpu_online(rq->mq_ctx->cpu);
1177 }
1178
blk_mq_complete_send_ipi(struct request * rq)1179 static void blk_mq_complete_send_ipi(struct request *rq)
1180 {
1181 unsigned int cpu;
1182
1183 cpu = rq->mq_ctx->cpu;
1184 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1185 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1186 }
1187
blk_mq_raise_softirq(struct request * rq)1188 static void blk_mq_raise_softirq(struct request *rq)
1189 {
1190 struct llist_head *list;
1191
1192 preempt_disable();
1193 list = this_cpu_ptr(&blk_cpu_done);
1194 if (llist_add(&rq->ipi_list, list))
1195 raise_softirq(BLOCK_SOFTIRQ);
1196 preempt_enable();
1197 }
1198
blk_mq_complete_request_remote(struct request * rq)1199 bool blk_mq_complete_request_remote(struct request *rq)
1200 {
1201 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202
1203 /*
1204 * For request which hctx has only one ctx mapping,
1205 * or a polled request, always complete locally,
1206 * it's pointless to redirect the completion.
1207 */
1208 if ((rq->mq_hctx->nr_ctx == 1 &&
1209 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210 rq->cmd_flags & REQ_POLLED)
1211 return false;
1212
1213 if (blk_mq_complete_need_ipi(rq)) {
1214 blk_mq_complete_send_ipi(rq);
1215 return true;
1216 }
1217
1218 if (rq->q->nr_hw_queues == 1) {
1219 blk_mq_raise_softirq(rq);
1220 return true;
1221 }
1222 return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226 /**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq: the request being processed
1229 *
1230 * Description:
1231 * Complete a request by scheduling the ->complete_rq operation.
1232 **/
blk_mq_complete_request(struct request * rq)1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235 if (!blk_mq_complete_request_remote(rq))
1236 rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240 /**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
blk_mq_start_request(struct request * rq)1248 void blk_mq_start_request(struct request *rq)
1249 {
1250 struct request_queue *q = rq->q;
1251
1252 trace_block_rq_issue(rq);
1253
1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255 rq->io_start_time_ns = ktime_get_ns();
1256 rq->stats_sectors = blk_rq_sectors(rq);
1257 rq->rq_flags |= RQF_STATS;
1258 rq_qos_issue(q, rq);
1259 }
1260
1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263 blk_add_timer(rq);
1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268 q->integrity.profile->prepare_fn(rq);
1269 #endif
1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274
1275 /*
1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277 * queues. This is important for md arrays to benefit from merging
1278 * requests.
1279 */
blk_plug_max_rq_count(struct blk_plug * plug)1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282 if (plug->multiple_queues)
1283 return BLK_MAX_REQUEST_COUNT * 2;
1284 return BLK_MAX_REQUEST_COUNT;
1285 }
1286
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289 struct request *last = rq_list_peek(&plug->mq_list);
1290
1291 if (!plug->rq_count) {
1292 trace_block_plug(rq->q);
1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294 (!blk_queue_nomerges(rq->q) &&
1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296 blk_mq_flush_plug_list(plug, false);
1297 last = NULL;
1298 trace_block_plug(rq->q);
1299 }
1300
1301 if (!plug->multiple_queues && last && last->q != rq->q)
1302 plug->multiple_queues = true;
1303 /*
1304 * Any request allocated from sched tags can't be issued to
1305 * ->queue_rqs() directly
1306 */
1307 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1308 plug->has_elevator = true;
1309 rq->rq_next = NULL;
1310 rq_list_add(&plug->mq_list, rq);
1311 plug->rq_count++;
1312 }
1313
1314 /**
1315 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1316 * @rq: request to insert
1317 * @at_head: insert request at head or tail of queue
1318 *
1319 * Description:
1320 * Insert a fully prepared request at the back of the I/O scheduler queue
1321 * for execution. Don't wait for completion.
1322 *
1323 * Note:
1324 * This function will invoke @done directly if the queue is dead.
1325 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1326 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1327 {
1328 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1329
1330 WARN_ON(irqs_disabled());
1331 WARN_ON(!blk_rq_is_passthrough(rq));
1332
1333 blk_account_io_start(rq);
1334
1335 /*
1336 * As plugging can be enabled for passthrough requests on a zoned
1337 * device, directly accessing the plug instead of using blk_mq_plug()
1338 * should not have any consequences.
1339 */
1340 if (current->plug && !at_head) {
1341 blk_add_rq_to_plug(current->plug, rq);
1342 return;
1343 }
1344
1345 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1346 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1347 }
1348 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1349
1350 struct blk_rq_wait {
1351 struct completion done;
1352 blk_status_t ret;
1353 };
1354
blk_end_sync_rq(struct request * rq,blk_status_t ret)1355 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1356 {
1357 struct blk_rq_wait *wait = rq->end_io_data;
1358
1359 wait->ret = ret;
1360 complete(&wait->done);
1361 return RQ_END_IO_NONE;
1362 }
1363
blk_rq_is_poll(struct request * rq)1364 bool blk_rq_is_poll(struct request *rq)
1365 {
1366 if (!rq->mq_hctx)
1367 return false;
1368 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1369 return false;
1370 return true;
1371 }
1372 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1373
blk_rq_poll_completion(struct request * rq,struct completion * wait)1374 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1375 {
1376 do {
1377 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1378 cond_resched();
1379 } while (!completion_done(wait));
1380 }
1381
1382 /**
1383 * blk_execute_rq - insert a request into queue for execution
1384 * @rq: request to insert
1385 * @at_head: insert request at head or tail of queue
1386 *
1387 * Description:
1388 * Insert a fully prepared request at the back of the I/O scheduler queue
1389 * for execution and wait for completion.
1390 * Return: The blk_status_t result provided to blk_mq_end_request().
1391 */
blk_execute_rq(struct request * rq,bool at_head)1392 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1393 {
1394 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1395 struct blk_rq_wait wait = {
1396 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1397 };
1398
1399 WARN_ON(irqs_disabled());
1400 WARN_ON(!blk_rq_is_passthrough(rq));
1401
1402 rq->end_io_data = &wait;
1403 rq->end_io = blk_end_sync_rq;
1404
1405 blk_account_io_start(rq);
1406 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1407 blk_mq_run_hw_queue(hctx, false);
1408
1409 if (blk_rq_is_poll(rq)) {
1410 blk_rq_poll_completion(rq, &wait.done);
1411 } else {
1412 /*
1413 * Prevent hang_check timer from firing at us during very long
1414 * I/O
1415 */
1416 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1417
1418 if (hang_check)
1419 while (!wait_for_completion_io_timeout(&wait.done,
1420 hang_check * (HZ/2)))
1421 ;
1422 else
1423 wait_for_completion_io(&wait.done);
1424 }
1425
1426 return wait.ret;
1427 }
1428 EXPORT_SYMBOL(blk_execute_rq);
1429
__blk_mq_requeue_request(struct request * rq)1430 static void __blk_mq_requeue_request(struct request *rq)
1431 {
1432 struct request_queue *q = rq->q;
1433
1434 blk_mq_put_driver_tag(rq);
1435
1436 trace_block_rq_requeue(rq);
1437 rq_qos_requeue(q, rq);
1438
1439 if (blk_mq_request_started(rq)) {
1440 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1441 rq->rq_flags &= ~RQF_TIMED_OUT;
1442 }
1443 }
1444
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1445 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1446 {
1447 struct request_queue *q = rq->q;
1448 unsigned long flags;
1449
1450 __blk_mq_requeue_request(rq);
1451
1452 /* this request will be re-inserted to io scheduler queue */
1453 blk_mq_sched_requeue_request(rq);
1454
1455 spin_lock_irqsave(&q->requeue_lock, flags);
1456 list_add_tail(&rq->queuelist, &q->requeue_list);
1457 spin_unlock_irqrestore(&q->requeue_lock, flags);
1458
1459 if (kick_requeue_list)
1460 blk_mq_kick_requeue_list(q);
1461 }
1462 EXPORT_SYMBOL(blk_mq_requeue_request);
1463
blk_mq_requeue_work(struct work_struct * work)1464 static void blk_mq_requeue_work(struct work_struct *work)
1465 {
1466 struct request_queue *q =
1467 container_of(work, struct request_queue, requeue_work.work);
1468 LIST_HEAD(rq_list);
1469 LIST_HEAD(flush_list);
1470 struct request *rq;
1471
1472 spin_lock_irq(&q->requeue_lock);
1473 list_splice_init(&q->requeue_list, &rq_list);
1474 list_splice_init(&q->flush_list, &flush_list);
1475 spin_unlock_irq(&q->requeue_lock);
1476
1477 while (!list_empty(&rq_list)) {
1478 rq = list_entry(rq_list.next, struct request, queuelist);
1479 /*
1480 * If RQF_DONTPREP ist set, the request has been started by the
1481 * driver already and might have driver-specific data allocated
1482 * already. Insert it into the hctx dispatch list to avoid
1483 * block layer merges for the request.
1484 */
1485 if (rq->rq_flags & RQF_DONTPREP) {
1486 list_del_init(&rq->queuelist);
1487 blk_mq_request_bypass_insert(rq, 0);
1488 } else {
1489 list_del_init(&rq->queuelist);
1490 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1491 }
1492 }
1493
1494 while (!list_empty(&flush_list)) {
1495 rq = list_entry(flush_list.next, struct request, queuelist);
1496 list_del_init(&rq->queuelist);
1497 blk_mq_insert_request(rq, 0);
1498 }
1499
1500 blk_mq_run_hw_queues(q, false);
1501 }
1502
blk_mq_kick_requeue_list(struct request_queue * q)1503 void blk_mq_kick_requeue_list(struct request_queue *q)
1504 {
1505 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1506 }
1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1508
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1510 unsigned long msecs)
1511 {
1512 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1513 msecs_to_jiffies(msecs));
1514 }
1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1516
blk_is_flush_data_rq(struct request * rq)1517 static bool blk_is_flush_data_rq(struct request *rq)
1518 {
1519 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1520 }
1521
blk_mq_rq_inflight(struct request * rq,void * priv)1522 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1523 {
1524 /*
1525 * If we find a request that isn't idle we know the queue is busy
1526 * as it's checked in the iter.
1527 * Return false to stop the iteration.
1528 *
1529 * In case of queue quiesce, if one flush data request is completed,
1530 * don't count it as inflight given the flush sequence is suspended,
1531 * and the original flush data request is invisible to driver, just
1532 * like other pending requests because of quiesce
1533 */
1534 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1535 blk_is_flush_data_rq(rq) &&
1536 blk_mq_request_completed(rq))) {
1537 bool *busy = priv;
1538
1539 *busy = true;
1540 return false;
1541 }
1542
1543 return true;
1544 }
1545
blk_mq_queue_inflight(struct request_queue * q)1546 bool blk_mq_queue_inflight(struct request_queue *q)
1547 {
1548 bool busy = false;
1549
1550 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1551 return busy;
1552 }
1553 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1554
blk_mq_rq_timed_out(struct request * req)1555 static void blk_mq_rq_timed_out(struct request *req)
1556 {
1557 req->rq_flags |= RQF_TIMED_OUT;
1558 if (req->q->mq_ops->timeout) {
1559 enum blk_eh_timer_return ret;
1560
1561 ret = req->q->mq_ops->timeout(req);
1562 if (ret == BLK_EH_DONE)
1563 return;
1564 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1565 }
1566
1567 blk_add_timer(req);
1568 }
1569
1570 struct blk_expired_data {
1571 bool has_timedout_rq;
1572 unsigned long next;
1573 unsigned long timeout_start;
1574 };
1575
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1576 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1577 {
1578 unsigned long deadline;
1579
1580 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1581 return false;
1582 if (rq->rq_flags & RQF_TIMED_OUT)
1583 return false;
1584
1585 deadline = READ_ONCE(rq->deadline);
1586 if (time_after_eq(expired->timeout_start, deadline))
1587 return true;
1588
1589 if (expired->next == 0)
1590 expired->next = deadline;
1591 else if (time_after(expired->next, deadline))
1592 expired->next = deadline;
1593 return false;
1594 }
1595
blk_mq_put_rq_ref(struct request * rq)1596 void blk_mq_put_rq_ref(struct request *rq)
1597 {
1598 if (is_flush_rq(rq)) {
1599 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1600 blk_mq_free_request(rq);
1601 } else if (req_ref_put_and_test(rq)) {
1602 __blk_mq_free_request(rq);
1603 }
1604 }
1605
blk_mq_check_expired(struct request * rq,void * priv)1606 static bool blk_mq_check_expired(struct request *rq, void *priv)
1607 {
1608 struct blk_expired_data *expired = priv;
1609
1610 /*
1611 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1612 * be reallocated underneath the timeout handler's processing, then
1613 * the expire check is reliable. If the request is not expired, then
1614 * it was completed and reallocated as a new request after returning
1615 * from blk_mq_check_expired().
1616 */
1617 if (blk_mq_req_expired(rq, expired)) {
1618 expired->has_timedout_rq = true;
1619 return false;
1620 }
1621 return true;
1622 }
1623
blk_mq_handle_expired(struct request * rq,void * priv)1624 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1625 {
1626 struct blk_expired_data *expired = priv;
1627
1628 if (blk_mq_req_expired(rq, expired))
1629 blk_mq_rq_timed_out(rq);
1630 return true;
1631 }
1632
blk_mq_timeout_work(struct work_struct * work)1633 static void blk_mq_timeout_work(struct work_struct *work)
1634 {
1635 struct request_queue *q =
1636 container_of(work, struct request_queue, timeout_work);
1637 struct blk_expired_data expired = {
1638 .timeout_start = jiffies,
1639 };
1640 struct blk_mq_hw_ctx *hctx;
1641 unsigned long i;
1642
1643 /* A deadlock might occur if a request is stuck requiring a
1644 * timeout at the same time a queue freeze is waiting
1645 * completion, since the timeout code would not be able to
1646 * acquire the queue reference here.
1647 *
1648 * That's why we don't use blk_queue_enter here; instead, we use
1649 * percpu_ref_tryget directly, because we need to be able to
1650 * obtain a reference even in the short window between the queue
1651 * starting to freeze, by dropping the first reference in
1652 * blk_freeze_queue_start, and the moment the last request is
1653 * consumed, marked by the instant q_usage_counter reaches
1654 * zero.
1655 */
1656 if (!percpu_ref_tryget(&q->q_usage_counter))
1657 return;
1658
1659 /* check if there is any timed-out request */
1660 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1661 if (expired.has_timedout_rq) {
1662 /*
1663 * Before walking tags, we must ensure any submit started
1664 * before the current time has finished. Since the submit
1665 * uses srcu or rcu, wait for a synchronization point to
1666 * ensure all running submits have finished
1667 */
1668 blk_mq_wait_quiesce_done(q->tag_set);
1669
1670 expired.next = 0;
1671 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1672 }
1673
1674 if (expired.next != 0) {
1675 mod_timer(&q->timeout, expired.next);
1676 } else {
1677 /*
1678 * Request timeouts are handled as a forward rolling timer. If
1679 * we end up here it means that no requests are pending and
1680 * also that no request has been pending for a while. Mark
1681 * each hctx as idle.
1682 */
1683 queue_for_each_hw_ctx(q, hctx, i) {
1684 /* the hctx may be unmapped, so check it here */
1685 if (blk_mq_hw_queue_mapped(hctx))
1686 blk_mq_tag_idle(hctx);
1687 }
1688 }
1689 blk_queue_exit(q);
1690 }
1691
1692 struct flush_busy_ctx_data {
1693 struct blk_mq_hw_ctx *hctx;
1694 struct list_head *list;
1695 };
1696
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1697 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1698 {
1699 struct flush_busy_ctx_data *flush_data = data;
1700 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1701 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1702 enum hctx_type type = hctx->type;
1703
1704 spin_lock(&ctx->lock);
1705 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1706 sbitmap_clear_bit(sb, bitnr);
1707 spin_unlock(&ctx->lock);
1708 return true;
1709 }
1710
1711 /*
1712 * Process software queues that have been marked busy, splicing them
1713 * to the for-dispatch
1714 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1715 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1716 {
1717 struct flush_busy_ctx_data data = {
1718 .hctx = hctx,
1719 .list = list,
1720 };
1721
1722 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1723 }
1724 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1725
1726 struct dispatch_rq_data {
1727 struct blk_mq_hw_ctx *hctx;
1728 struct request *rq;
1729 };
1730
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1731 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1732 void *data)
1733 {
1734 struct dispatch_rq_data *dispatch_data = data;
1735 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1736 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1737 enum hctx_type type = hctx->type;
1738
1739 spin_lock(&ctx->lock);
1740 if (!list_empty(&ctx->rq_lists[type])) {
1741 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1742 list_del_init(&dispatch_data->rq->queuelist);
1743 if (list_empty(&ctx->rq_lists[type]))
1744 sbitmap_clear_bit(sb, bitnr);
1745 }
1746 spin_unlock(&ctx->lock);
1747
1748 return !dispatch_data->rq;
1749 }
1750
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1751 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1752 struct blk_mq_ctx *start)
1753 {
1754 unsigned off = start ? start->index_hw[hctx->type] : 0;
1755 struct dispatch_rq_data data = {
1756 .hctx = hctx,
1757 .rq = NULL,
1758 };
1759
1760 __sbitmap_for_each_set(&hctx->ctx_map, off,
1761 dispatch_rq_from_ctx, &data);
1762
1763 return data.rq;
1764 }
1765
__blk_mq_alloc_driver_tag(struct request * rq)1766 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1767 {
1768 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1769 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1770 int tag;
1771
1772 blk_mq_tag_busy(rq->mq_hctx);
1773
1774 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1775 bt = &rq->mq_hctx->tags->breserved_tags;
1776 tag_offset = 0;
1777 } else {
1778 if (!hctx_may_queue(rq->mq_hctx, bt))
1779 return false;
1780 }
1781
1782 tag = __sbitmap_queue_get(bt);
1783 if (tag == BLK_MQ_NO_TAG)
1784 return false;
1785
1786 rq->tag = tag + tag_offset;
1787 return true;
1788 }
1789
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1790 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1791 {
1792 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1793 return false;
1794
1795 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1796 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1797 rq->rq_flags |= RQF_MQ_INFLIGHT;
1798 __blk_mq_inc_active_requests(hctx);
1799 }
1800 hctx->tags->rqs[rq->tag] = rq;
1801 return true;
1802 }
1803
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1804 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1805 int flags, void *key)
1806 {
1807 struct blk_mq_hw_ctx *hctx;
1808
1809 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1810
1811 spin_lock(&hctx->dispatch_wait_lock);
1812 if (!list_empty(&wait->entry)) {
1813 struct sbitmap_queue *sbq;
1814
1815 list_del_init(&wait->entry);
1816 sbq = &hctx->tags->bitmap_tags;
1817 atomic_dec(&sbq->ws_active);
1818 }
1819 spin_unlock(&hctx->dispatch_wait_lock);
1820
1821 blk_mq_run_hw_queue(hctx, true);
1822 return 1;
1823 }
1824
1825 /*
1826 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1827 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1828 * restart. For both cases, take care to check the condition again after
1829 * marking us as waiting.
1830 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1831 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1832 struct request *rq)
1833 {
1834 struct sbitmap_queue *sbq;
1835 struct wait_queue_head *wq;
1836 wait_queue_entry_t *wait;
1837 bool ret;
1838
1839 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1840 !(blk_mq_is_shared_tags(hctx->flags))) {
1841 blk_mq_sched_mark_restart_hctx(hctx);
1842
1843 /*
1844 * It's possible that a tag was freed in the window between the
1845 * allocation failure and adding the hardware queue to the wait
1846 * queue.
1847 *
1848 * Don't clear RESTART here, someone else could have set it.
1849 * At most this will cost an extra queue run.
1850 */
1851 return blk_mq_get_driver_tag(rq);
1852 }
1853
1854 wait = &hctx->dispatch_wait;
1855 if (!list_empty_careful(&wait->entry))
1856 return false;
1857
1858 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1859 sbq = &hctx->tags->breserved_tags;
1860 else
1861 sbq = &hctx->tags->bitmap_tags;
1862 wq = &bt_wait_ptr(sbq, hctx)->wait;
1863
1864 spin_lock_irq(&wq->lock);
1865 spin_lock(&hctx->dispatch_wait_lock);
1866 if (!list_empty(&wait->entry)) {
1867 spin_unlock(&hctx->dispatch_wait_lock);
1868 spin_unlock_irq(&wq->lock);
1869 return false;
1870 }
1871
1872 atomic_inc(&sbq->ws_active);
1873 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1874 __add_wait_queue(wq, wait);
1875
1876 /*
1877 * Add one explicit barrier since blk_mq_get_driver_tag() may
1878 * not imply barrier in case of failure.
1879 *
1880 * Order adding us to wait queue and allocating driver tag.
1881 *
1882 * The pair is the one implied in sbitmap_queue_wake_up() which
1883 * orders clearing sbitmap tag bits and waitqueue_active() in
1884 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1885 *
1886 * Otherwise, re-order of adding wait queue and getting driver tag
1887 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1888 * the waitqueue_active() may not observe us in wait queue.
1889 */
1890 smp_mb();
1891
1892 /*
1893 * It's possible that a tag was freed in the window between the
1894 * allocation failure and adding the hardware queue to the wait
1895 * queue.
1896 */
1897 ret = blk_mq_get_driver_tag(rq);
1898 if (!ret) {
1899 spin_unlock(&hctx->dispatch_wait_lock);
1900 spin_unlock_irq(&wq->lock);
1901 return false;
1902 }
1903
1904 /*
1905 * We got a tag, remove ourselves from the wait queue to ensure
1906 * someone else gets the wakeup.
1907 */
1908 list_del_init(&wait->entry);
1909 atomic_dec(&sbq->ws_active);
1910 spin_unlock(&hctx->dispatch_wait_lock);
1911 spin_unlock_irq(&wq->lock);
1912
1913 return true;
1914 }
1915
1916 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1918 /*
1919 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1920 * - EWMA is one simple way to compute running average value
1921 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1922 * - take 4 as factor for avoiding to get too small(0) result, and this
1923 * factor doesn't matter because EWMA decreases exponentially
1924 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1925 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1926 {
1927 unsigned int ewma;
1928
1929 ewma = hctx->dispatch_busy;
1930
1931 if (!ewma && !busy)
1932 return;
1933
1934 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1935 if (busy)
1936 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1937 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1938
1939 hctx->dispatch_busy = ewma;
1940 }
1941
1942 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1943
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1944 static void blk_mq_handle_dev_resource(struct request *rq,
1945 struct list_head *list)
1946 {
1947 list_add(&rq->queuelist, list);
1948 __blk_mq_requeue_request(rq);
1949 }
1950
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1951 static void blk_mq_handle_zone_resource(struct request *rq,
1952 struct list_head *zone_list)
1953 {
1954 /*
1955 * If we end up here it is because we cannot dispatch a request to a
1956 * specific zone due to LLD level zone-write locking or other zone
1957 * related resource not being available. In this case, set the request
1958 * aside in zone_list for retrying it later.
1959 */
1960 list_add(&rq->queuelist, zone_list);
1961 __blk_mq_requeue_request(rq);
1962 }
1963
1964 enum prep_dispatch {
1965 PREP_DISPATCH_OK,
1966 PREP_DISPATCH_NO_TAG,
1967 PREP_DISPATCH_NO_BUDGET,
1968 };
1969
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1970 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1971 bool need_budget)
1972 {
1973 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1974 int budget_token = -1;
1975
1976 if (need_budget) {
1977 budget_token = blk_mq_get_dispatch_budget(rq->q);
1978 if (budget_token < 0) {
1979 blk_mq_put_driver_tag(rq);
1980 return PREP_DISPATCH_NO_BUDGET;
1981 }
1982 blk_mq_set_rq_budget_token(rq, budget_token);
1983 }
1984
1985 if (!blk_mq_get_driver_tag(rq)) {
1986 /*
1987 * The initial allocation attempt failed, so we need to
1988 * rerun the hardware queue when a tag is freed. The
1989 * waitqueue takes care of that. If the queue is run
1990 * before we add this entry back on the dispatch list,
1991 * we'll re-run it below.
1992 */
1993 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1994 /*
1995 * All budgets not got from this function will be put
1996 * together during handling partial dispatch
1997 */
1998 if (need_budget)
1999 blk_mq_put_dispatch_budget(rq->q, budget_token);
2000 return PREP_DISPATCH_NO_TAG;
2001 }
2002 }
2003
2004 return PREP_DISPATCH_OK;
2005 }
2006
2007 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2008 static void blk_mq_release_budgets(struct request_queue *q,
2009 struct list_head *list)
2010 {
2011 struct request *rq;
2012
2013 list_for_each_entry(rq, list, queuelist) {
2014 int budget_token = blk_mq_get_rq_budget_token(rq);
2015
2016 if (budget_token >= 0)
2017 blk_mq_put_dispatch_budget(q, budget_token);
2018 }
2019 }
2020
2021 /*
2022 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2023 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2024 * details)
2025 * Attention, we should explicitly call this in unusual cases:
2026 * 1) did not queue everything initially scheduled to queue
2027 * 2) the last attempt to queue a request failed
2028 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2029 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2030 bool from_schedule)
2031 {
2032 if (hctx->queue->mq_ops->commit_rqs && queued) {
2033 trace_block_unplug(hctx->queue, queued, !from_schedule);
2034 hctx->queue->mq_ops->commit_rqs(hctx);
2035 }
2036 }
2037
2038 /*
2039 * Returns true if we did some work AND can potentially do more.
2040 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2041 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2042 unsigned int nr_budgets)
2043 {
2044 enum prep_dispatch prep;
2045 struct request_queue *q = hctx->queue;
2046 struct request *rq;
2047 int queued;
2048 blk_status_t ret = BLK_STS_OK;
2049 LIST_HEAD(zone_list);
2050 bool needs_resource = false;
2051
2052 if (list_empty(list))
2053 return false;
2054
2055 /*
2056 * Now process all the entries, sending them to the driver.
2057 */
2058 queued = 0;
2059 do {
2060 struct blk_mq_queue_data bd;
2061
2062 rq = list_first_entry(list, struct request, queuelist);
2063
2064 WARN_ON_ONCE(hctx != rq->mq_hctx);
2065 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2066 if (prep != PREP_DISPATCH_OK)
2067 break;
2068
2069 list_del_init(&rq->queuelist);
2070
2071 bd.rq = rq;
2072 bd.last = list_empty(list);
2073
2074 /*
2075 * once the request is queued to lld, no need to cover the
2076 * budget any more
2077 */
2078 if (nr_budgets)
2079 nr_budgets--;
2080 ret = q->mq_ops->queue_rq(hctx, &bd);
2081 switch (ret) {
2082 case BLK_STS_OK:
2083 queued++;
2084 break;
2085 case BLK_STS_RESOURCE:
2086 needs_resource = true;
2087 fallthrough;
2088 case BLK_STS_DEV_RESOURCE:
2089 blk_mq_handle_dev_resource(rq, list);
2090 goto out;
2091 case BLK_STS_ZONE_RESOURCE:
2092 /*
2093 * Move the request to zone_list and keep going through
2094 * the dispatch list to find more requests the drive can
2095 * accept.
2096 */
2097 blk_mq_handle_zone_resource(rq, &zone_list);
2098 needs_resource = true;
2099 break;
2100 default:
2101 blk_mq_end_request(rq, ret);
2102 }
2103 } while (!list_empty(list));
2104 out:
2105 if (!list_empty(&zone_list))
2106 list_splice_tail_init(&zone_list, list);
2107
2108 /* If we didn't flush the entire list, we could have told the driver
2109 * there was more coming, but that turned out to be a lie.
2110 */
2111 if (!list_empty(list) || ret != BLK_STS_OK)
2112 blk_mq_commit_rqs(hctx, queued, false);
2113
2114 /*
2115 * Any items that need requeuing? Stuff them into hctx->dispatch,
2116 * that is where we will continue on next queue run.
2117 */
2118 if (!list_empty(list)) {
2119 bool needs_restart;
2120 /* For non-shared tags, the RESTART check will suffice */
2121 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2122 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2123 blk_mq_is_shared_tags(hctx->flags));
2124
2125 if (nr_budgets)
2126 blk_mq_release_budgets(q, list);
2127
2128 spin_lock(&hctx->lock);
2129 list_splice_tail_init(list, &hctx->dispatch);
2130 spin_unlock(&hctx->lock);
2131
2132 /*
2133 * Order adding requests to hctx->dispatch and checking
2134 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2135 * in blk_mq_sched_restart(). Avoid restart code path to
2136 * miss the new added requests to hctx->dispatch, meantime
2137 * SCHED_RESTART is observed here.
2138 */
2139 smp_mb();
2140
2141 /*
2142 * If SCHED_RESTART was set by the caller of this function and
2143 * it is no longer set that means that it was cleared by another
2144 * thread and hence that a queue rerun is needed.
2145 *
2146 * If 'no_tag' is set, that means that we failed getting
2147 * a driver tag with an I/O scheduler attached. If our dispatch
2148 * waitqueue is no longer active, ensure that we run the queue
2149 * AFTER adding our entries back to the list.
2150 *
2151 * If no I/O scheduler has been configured it is possible that
2152 * the hardware queue got stopped and restarted before requests
2153 * were pushed back onto the dispatch list. Rerun the queue to
2154 * avoid starvation. Notes:
2155 * - blk_mq_run_hw_queue() checks whether or not a queue has
2156 * been stopped before rerunning a queue.
2157 * - Some but not all block drivers stop a queue before
2158 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2159 * and dm-rq.
2160 *
2161 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2162 * bit is set, run queue after a delay to avoid IO stalls
2163 * that could otherwise occur if the queue is idle. We'll do
2164 * similar if we couldn't get budget or couldn't lock a zone
2165 * and SCHED_RESTART is set.
2166 */
2167 needs_restart = blk_mq_sched_needs_restart(hctx);
2168 if (prep == PREP_DISPATCH_NO_BUDGET)
2169 needs_resource = true;
2170 if (!needs_restart ||
2171 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2172 blk_mq_run_hw_queue(hctx, true);
2173 else if (needs_resource)
2174 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2175
2176 blk_mq_update_dispatch_busy(hctx, true);
2177 return false;
2178 }
2179
2180 blk_mq_update_dispatch_busy(hctx, false);
2181 return true;
2182 }
2183
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2184 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2185 {
2186 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2187
2188 if (cpu >= nr_cpu_ids)
2189 cpu = cpumask_first(hctx->cpumask);
2190 return cpu;
2191 }
2192
2193 /*
2194 * It'd be great if the workqueue API had a way to pass
2195 * in a mask and had some smarts for more clever placement.
2196 * For now we just round-robin here, switching for every
2197 * BLK_MQ_CPU_WORK_BATCH queued items.
2198 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2199 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2200 {
2201 bool tried = false;
2202 int next_cpu = hctx->next_cpu;
2203
2204 if (hctx->queue->nr_hw_queues == 1)
2205 return WORK_CPU_UNBOUND;
2206
2207 if (--hctx->next_cpu_batch <= 0) {
2208 select_cpu:
2209 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2210 cpu_online_mask);
2211 if (next_cpu >= nr_cpu_ids)
2212 next_cpu = blk_mq_first_mapped_cpu(hctx);
2213 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2214 }
2215
2216 /*
2217 * Do unbound schedule if we can't find a online CPU for this hctx,
2218 * and it should only happen in the path of handling CPU DEAD.
2219 */
2220 if (!cpu_online(next_cpu)) {
2221 if (!tried) {
2222 tried = true;
2223 goto select_cpu;
2224 }
2225
2226 /*
2227 * Make sure to re-select CPU next time once after CPUs
2228 * in hctx->cpumask become online again.
2229 */
2230 hctx->next_cpu = next_cpu;
2231 hctx->next_cpu_batch = 1;
2232 return WORK_CPU_UNBOUND;
2233 }
2234
2235 hctx->next_cpu = next_cpu;
2236 return next_cpu;
2237 }
2238
2239 /**
2240 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2241 * @hctx: Pointer to the hardware queue to run.
2242 * @msecs: Milliseconds of delay to wait before running the queue.
2243 *
2244 * Run a hardware queue asynchronously with a delay of @msecs.
2245 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2246 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2247 {
2248 if (unlikely(blk_mq_hctx_stopped(hctx)))
2249 return;
2250 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2251 msecs_to_jiffies(msecs));
2252 }
2253 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2254
2255 /**
2256 * blk_mq_run_hw_queue - Start to run a hardware queue.
2257 * @hctx: Pointer to the hardware queue to run.
2258 * @async: If we want to run the queue asynchronously.
2259 *
2260 * Check if the request queue is not in a quiesced state and if there are
2261 * pending requests to be sent. If this is true, run the queue to send requests
2262 * to hardware.
2263 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2264 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2265 {
2266 bool need_run;
2267
2268 /*
2269 * We can't run the queue inline with interrupts disabled.
2270 */
2271 WARN_ON_ONCE(!async && in_interrupt());
2272
2273 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2274
2275 /*
2276 * When queue is quiesced, we may be switching io scheduler, or
2277 * updating nr_hw_queues, or other things, and we can't run queue
2278 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2279 *
2280 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2281 * quiesced.
2282 */
2283 __blk_mq_run_dispatch_ops(hctx->queue, false,
2284 need_run = !blk_queue_quiesced(hctx->queue) &&
2285 blk_mq_hctx_has_pending(hctx));
2286
2287 if (!need_run)
2288 return;
2289
2290 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2291 blk_mq_delay_run_hw_queue(hctx, 0);
2292 return;
2293 }
2294
2295 blk_mq_run_dispatch_ops(hctx->queue,
2296 blk_mq_sched_dispatch_requests(hctx));
2297 }
2298 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2299
2300 /*
2301 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2302 * scheduler.
2303 */
blk_mq_get_sq_hctx(struct request_queue * q)2304 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2305 {
2306 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2307 /*
2308 * If the IO scheduler does not respect hardware queues when
2309 * dispatching, we just don't bother with multiple HW queues and
2310 * dispatch from hctx for the current CPU since running multiple queues
2311 * just causes lock contention inside the scheduler and pointless cache
2312 * bouncing.
2313 */
2314 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2315
2316 if (!blk_mq_hctx_stopped(hctx))
2317 return hctx;
2318 return NULL;
2319 }
2320
2321 /**
2322 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2323 * @q: Pointer to the request queue to run.
2324 * @async: If we want to run the queue asynchronously.
2325 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2326 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2327 {
2328 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2329 unsigned long i;
2330
2331 sq_hctx = NULL;
2332 if (blk_queue_sq_sched(q))
2333 sq_hctx = blk_mq_get_sq_hctx(q);
2334 queue_for_each_hw_ctx(q, hctx, i) {
2335 if (blk_mq_hctx_stopped(hctx))
2336 continue;
2337 /*
2338 * Dispatch from this hctx either if there's no hctx preferred
2339 * by IO scheduler or if it has requests that bypass the
2340 * scheduler.
2341 */
2342 if (!sq_hctx || sq_hctx == hctx ||
2343 !list_empty_careful(&hctx->dispatch))
2344 blk_mq_run_hw_queue(hctx, async);
2345 }
2346 }
2347 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2348
2349 /**
2350 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2351 * @q: Pointer to the request queue to run.
2352 * @msecs: Milliseconds of delay to wait before running the queues.
2353 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2354 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2355 {
2356 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2357 unsigned long i;
2358
2359 sq_hctx = NULL;
2360 if (blk_queue_sq_sched(q))
2361 sq_hctx = blk_mq_get_sq_hctx(q);
2362 queue_for_each_hw_ctx(q, hctx, i) {
2363 if (blk_mq_hctx_stopped(hctx))
2364 continue;
2365 /*
2366 * If there is already a run_work pending, leave the
2367 * pending delay untouched. Otherwise, a hctx can stall
2368 * if another hctx is re-delaying the other's work
2369 * before the work executes.
2370 */
2371 if (delayed_work_pending(&hctx->run_work))
2372 continue;
2373 /*
2374 * Dispatch from this hctx either if there's no hctx preferred
2375 * by IO scheduler or if it has requests that bypass the
2376 * scheduler.
2377 */
2378 if (!sq_hctx || sq_hctx == hctx ||
2379 !list_empty_careful(&hctx->dispatch))
2380 blk_mq_delay_run_hw_queue(hctx, msecs);
2381 }
2382 }
2383 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2384
2385 /*
2386 * This function is often used for pausing .queue_rq() by driver when
2387 * there isn't enough resource or some conditions aren't satisfied, and
2388 * BLK_STS_RESOURCE is usually returned.
2389 *
2390 * We do not guarantee that dispatch can be drained or blocked
2391 * after blk_mq_stop_hw_queue() returns. Please use
2392 * blk_mq_quiesce_queue() for that requirement.
2393 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2394 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2395 {
2396 cancel_delayed_work(&hctx->run_work);
2397
2398 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399 }
2400 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2401
2402 /*
2403 * This function is often used for pausing .queue_rq() by driver when
2404 * there isn't enough resource or some conditions aren't satisfied, and
2405 * BLK_STS_RESOURCE is usually returned.
2406 *
2407 * We do not guarantee that dispatch can be drained or blocked
2408 * after blk_mq_stop_hw_queues() returns. Please use
2409 * blk_mq_quiesce_queue() for that requirement.
2410 */
blk_mq_stop_hw_queues(struct request_queue * q)2411 void blk_mq_stop_hw_queues(struct request_queue *q)
2412 {
2413 struct blk_mq_hw_ctx *hctx;
2414 unsigned long i;
2415
2416 queue_for_each_hw_ctx(q, hctx, i)
2417 blk_mq_stop_hw_queue(hctx);
2418 }
2419 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2420
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2421 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2422 {
2423 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2424
2425 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2428
blk_mq_start_hw_queues(struct request_queue * q)2429 void blk_mq_start_hw_queues(struct request_queue *q)
2430 {
2431 struct blk_mq_hw_ctx *hctx;
2432 unsigned long i;
2433
2434 queue_for_each_hw_ctx(q, hctx, i)
2435 blk_mq_start_hw_queue(hctx);
2436 }
2437 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2438
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2439 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2440 {
2441 if (!blk_mq_hctx_stopped(hctx))
2442 return;
2443
2444 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2445 blk_mq_run_hw_queue(hctx, async);
2446 }
2447 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2448
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2449 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2450 {
2451 struct blk_mq_hw_ctx *hctx;
2452 unsigned long i;
2453
2454 queue_for_each_hw_ctx(q, hctx, i)
2455 blk_mq_start_stopped_hw_queue(hctx, async ||
2456 (hctx->flags & BLK_MQ_F_BLOCKING));
2457 }
2458 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2459
blk_mq_run_work_fn(struct work_struct * work)2460 static void blk_mq_run_work_fn(struct work_struct *work)
2461 {
2462 struct blk_mq_hw_ctx *hctx =
2463 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2464
2465 blk_mq_run_dispatch_ops(hctx->queue,
2466 blk_mq_sched_dispatch_requests(hctx));
2467 }
2468
2469 /**
2470 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2471 * @rq: Pointer to request to be inserted.
2472 * @flags: BLK_MQ_INSERT_*
2473 *
2474 * Should only be used carefully, when the caller knows we want to
2475 * bypass a potential IO scheduler on the target device.
2476 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2477 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2478 {
2479 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2480
2481 spin_lock(&hctx->lock);
2482 if (flags & BLK_MQ_INSERT_AT_HEAD)
2483 list_add(&rq->queuelist, &hctx->dispatch);
2484 else
2485 list_add_tail(&rq->queuelist, &hctx->dispatch);
2486 spin_unlock(&hctx->lock);
2487 }
2488
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2489 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2490 struct blk_mq_ctx *ctx, struct list_head *list,
2491 bool run_queue_async)
2492 {
2493 struct request *rq;
2494 enum hctx_type type = hctx->type;
2495
2496 /*
2497 * Try to issue requests directly if the hw queue isn't busy to save an
2498 * extra enqueue & dequeue to the sw queue.
2499 */
2500 if (!hctx->dispatch_busy && !run_queue_async) {
2501 blk_mq_run_dispatch_ops(hctx->queue,
2502 blk_mq_try_issue_list_directly(hctx, list));
2503 if (list_empty(list))
2504 goto out;
2505 }
2506
2507 /*
2508 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2509 * offline now
2510 */
2511 list_for_each_entry(rq, list, queuelist) {
2512 BUG_ON(rq->mq_ctx != ctx);
2513 trace_block_rq_insert(rq);
2514 if (rq->cmd_flags & REQ_NOWAIT)
2515 run_queue_async = true;
2516 }
2517
2518 spin_lock(&ctx->lock);
2519 list_splice_tail_init(list, &ctx->rq_lists[type]);
2520 blk_mq_hctx_mark_pending(hctx, ctx);
2521 spin_unlock(&ctx->lock);
2522 out:
2523 blk_mq_run_hw_queue(hctx, run_queue_async);
2524 }
2525
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2526 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2527 {
2528 struct request_queue *q = rq->q;
2529 struct blk_mq_ctx *ctx = rq->mq_ctx;
2530 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2531
2532 if (blk_rq_is_passthrough(rq)) {
2533 /*
2534 * Passthrough request have to be added to hctx->dispatch
2535 * directly. The device may be in a situation where it can't
2536 * handle FS request, and always returns BLK_STS_RESOURCE for
2537 * them, which gets them added to hctx->dispatch.
2538 *
2539 * If a passthrough request is required to unblock the queues,
2540 * and it is added to the scheduler queue, there is no chance to
2541 * dispatch it given we prioritize requests in hctx->dispatch.
2542 */
2543 blk_mq_request_bypass_insert(rq, flags);
2544 } else if (req_op(rq) == REQ_OP_FLUSH) {
2545 /*
2546 * Firstly normal IO request is inserted to scheduler queue or
2547 * sw queue, meantime we add flush request to dispatch queue(
2548 * hctx->dispatch) directly and there is at most one in-flight
2549 * flush request for each hw queue, so it doesn't matter to add
2550 * flush request to tail or front of the dispatch queue.
2551 *
2552 * Secondly in case of NCQ, flush request belongs to non-NCQ
2553 * command, and queueing it will fail when there is any
2554 * in-flight normal IO request(NCQ command). When adding flush
2555 * rq to the front of hctx->dispatch, it is easier to introduce
2556 * extra time to flush rq's latency because of S_SCHED_RESTART
2557 * compared with adding to the tail of dispatch queue, then
2558 * chance of flush merge is increased, and less flush requests
2559 * will be issued to controller. It is observed that ~10% time
2560 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2561 * drive when adding flush rq to the front of hctx->dispatch.
2562 *
2563 * Simply queue flush rq to the front of hctx->dispatch so that
2564 * intensive flush workloads can benefit in case of NCQ HW.
2565 */
2566 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2567 } else if (q->elevator) {
2568 LIST_HEAD(list);
2569
2570 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2571
2572 list_add(&rq->queuelist, &list);
2573 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2574 } else {
2575 trace_block_rq_insert(rq);
2576
2577 spin_lock(&ctx->lock);
2578 if (flags & BLK_MQ_INSERT_AT_HEAD)
2579 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2580 else
2581 list_add_tail(&rq->queuelist,
2582 &ctx->rq_lists[hctx->type]);
2583 blk_mq_hctx_mark_pending(hctx, ctx);
2584 spin_unlock(&ctx->lock);
2585 }
2586 }
2587
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2588 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2589 unsigned int nr_segs)
2590 {
2591 int err;
2592
2593 if (bio->bi_opf & REQ_RAHEAD)
2594 rq->cmd_flags |= REQ_FAILFAST_MASK;
2595
2596 rq->__sector = bio->bi_iter.bi_sector;
2597 blk_rq_bio_prep(rq, bio, nr_segs);
2598
2599 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2600 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2601 WARN_ON_ONCE(err);
2602
2603 blk_account_io_start(rq);
2604 }
2605
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2606 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2607 struct request *rq, bool last)
2608 {
2609 struct request_queue *q = rq->q;
2610 struct blk_mq_queue_data bd = {
2611 .rq = rq,
2612 .last = last,
2613 };
2614 blk_status_t ret;
2615
2616 /*
2617 * For OK queue, we are done. For error, caller may kill it.
2618 * Any other error (busy), just add it to our list as we
2619 * previously would have done.
2620 */
2621 ret = q->mq_ops->queue_rq(hctx, &bd);
2622 switch (ret) {
2623 case BLK_STS_OK:
2624 blk_mq_update_dispatch_busy(hctx, false);
2625 break;
2626 case BLK_STS_RESOURCE:
2627 case BLK_STS_DEV_RESOURCE:
2628 blk_mq_update_dispatch_busy(hctx, true);
2629 __blk_mq_requeue_request(rq);
2630 break;
2631 default:
2632 blk_mq_update_dispatch_busy(hctx, false);
2633 break;
2634 }
2635
2636 return ret;
2637 }
2638
blk_mq_get_budget_and_tag(struct request * rq)2639 static bool blk_mq_get_budget_and_tag(struct request *rq)
2640 {
2641 int budget_token;
2642
2643 budget_token = blk_mq_get_dispatch_budget(rq->q);
2644 if (budget_token < 0)
2645 return false;
2646 blk_mq_set_rq_budget_token(rq, budget_token);
2647 if (!blk_mq_get_driver_tag(rq)) {
2648 blk_mq_put_dispatch_budget(rq->q, budget_token);
2649 return false;
2650 }
2651 return true;
2652 }
2653
2654 /**
2655 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2656 * @hctx: Pointer of the associated hardware queue.
2657 * @rq: Pointer to request to be sent.
2658 *
2659 * If the device has enough resources to accept a new request now, send the
2660 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2661 * we can try send it another time in the future. Requests inserted at this
2662 * queue have higher priority.
2663 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2664 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2665 struct request *rq)
2666 {
2667 blk_status_t ret;
2668
2669 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2670 blk_mq_insert_request(rq, 0);
2671 return;
2672 }
2673
2674 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2675 blk_mq_insert_request(rq, 0);
2676 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2677 return;
2678 }
2679
2680 ret = __blk_mq_issue_directly(hctx, rq, true);
2681 switch (ret) {
2682 case BLK_STS_OK:
2683 break;
2684 case BLK_STS_RESOURCE:
2685 case BLK_STS_DEV_RESOURCE:
2686 blk_mq_request_bypass_insert(rq, 0);
2687 blk_mq_run_hw_queue(hctx, false);
2688 break;
2689 default:
2690 blk_mq_end_request(rq, ret);
2691 break;
2692 }
2693 }
2694
blk_mq_request_issue_directly(struct request * rq,bool last)2695 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2696 {
2697 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2698
2699 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2700 blk_mq_insert_request(rq, 0);
2701 return BLK_STS_OK;
2702 }
2703
2704 if (!blk_mq_get_budget_and_tag(rq))
2705 return BLK_STS_RESOURCE;
2706 return __blk_mq_issue_directly(hctx, rq, last);
2707 }
2708
blk_mq_plug_issue_direct(struct blk_plug * plug)2709 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2710 {
2711 struct blk_mq_hw_ctx *hctx = NULL;
2712 struct request *rq;
2713 int queued = 0;
2714 blk_status_t ret = BLK_STS_OK;
2715
2716 while ((rq = rq_list_pop(&plug->mq_list))) {
2717 bool last = rq_list_empty(plug->mq_list);
2718
2719 if (hctx != rq->mq_hctx) {
2720 if (hctx) {
2721 blk_mq_commit_rqs(hctx, queued, false);
2722 queued = 0;
2723 }
2724 hctx = rq->mq_hctx;
2725 }
2726
2727 ret = blk_mq_request_issue_directly(rq, last);
2728 switch (ret) {
2729 case BLK_STS_OK:
2730 queued++;
2731 break;
2732 case BLK_STS_RESOURCE:
2733 case BLK_STS_DEV_RESOURCE:
2734 blk_mq_request_bypass_insert(rq, 0);
2735 blk_mq_run_hw_queue(hctx, false);
2736 goto out;
2737 default:
2738 blk_mq_end_request(rq, ret);
2739 break;
2740 }
2741 }
2742
2743 out:
2744 if (ret != BLK_STS_OK)
2745 blk_mq_commit_rqs(hctx, queued, false);
2746 }
2747
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2748 static void __blk_mq_flush_plug_list(struct request_queue *q,
2749 struct blk_plug *plug)
2750 {
2751 if (blk_queue_quiesced(q))
2752 return;
2753 q->mq_ops->queue_rqs(&plug->mq_list);
2754 }
2755
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2756 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2757 {
2758 struct blk_mq_hw_ctx *this_hctx = NULL;
2759 struct blk_mq_ctx *this_ctx = NULL;
2760 struct request *requeue_list = NULL;
2761 struct request **requeue_lastp = &requeue_list;
2762 unsigned int depth = 0;
2763 bool is_passthrough = false;
2764 LIST_HEAD(list);
2765
2766 do {
2767 struct request *rq = rq_list_pop(&plug->mq_list);
2768
2769 if (!this_hctx) {
2770 this_hctx = rq->mq_hctx;
2771 this_ctx = rq->mq_ctx;
2772 is_passthrough = blk_rq_is_passthrough(rq);
2773 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2774 is_passthrough != blk_rq_is_passthrough(rq)) {
2775 rq_list_add_tail(&requeue_lastp, rq);
2776 continue;
2777 }
2778 list_add(&rq->queuelist, &list);
2779 depth++;
2780 } while (!rq_list_empty(plug->mq_list));
2781
2782 plug->mq_list = requeue_list;
2783 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2784
2785 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2786 /* passthrough requests should never be issued to the I/O scheduler */
2787 if (is_passthrough) {
2788 spin_lock(&this_hctx->lock);
2789 list_splice_tail_init(&list, &this_hctx->dispatch);
2790 spin_unlock(&this_hctx->lock);
2791 blk_mq_run_hw_queue(this_hctx, from_sched);
2792 } else if (this_hctx->queue->elevator) {
2793 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2794 &list, 0);
2795 blk_mq_run_hw_queue(this_hctx, from_sched);
2796 } else {
2797 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2798 }
2799 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2800 }
2801
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2802 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2803 {
2804 struct request *rq;
2805
2806 /*
2807 * We may have been called recursively midway through handling
2808 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2809 * To avoid mq_list changing under our feet, clear rq_count early and
2810 * bail out specifically if rq_count is 0 rather than checking
2811 * whether the mq_list is empty.
2812 */
2813 if (plug->rq_count == 0)
2814 return;
2815 plug->rq_count = 0;
2816
2817 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2818 struct request_queue *q;
2819
2820 rq = rq_list_peek(&plug->mq_list);
2821 q = rq->q;
2822
2823 /*
2824 * Peek first request and see if we have a ->queue_rqs() hook.
2825 * If we do, we can dispatch the whole plug list in one go. We
2826 * already know at this point that all requests belong to the
2827 * same queue, caller must ensure that's the case.
2828 *
2829 * Since we pass off the full list to the driver at this point,
2830 * we do not increment the active request count for the queue.
2831 * Bypass shared tags for now because of that.
2832 */
2833 if (q->mq_ops->queue_rqs &&
2834 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2835 blk_mq_run_dispatch_ops(q,
2836 __blk_mq_flush_plug_list(q, plug));
2837 if (rq_list_empty(plug->mq_list))
2838 return;
2839 }
2840
2841 blk_mq_run_dispatch_ops(q,
2842 blk_mq_plug_issue_direct(plug));
2843 if (rq_list_empty(plug->mq_list))
2844 return;
2845 }
2846
2847 do {
2848 blk_mq_dispatch_plug_list(plug, from_schedule);
2849 } while (!rq_list_empty(plug->mq_list));
2850 }
2851
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2852 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2853 struct list_head *list)
2854 {
2855 int queued = 0;
2856 blk_status_t ret = BLK_STS_OK;
2857
2858 while (!list_empty(list)) {
2859 struct request *rq = list_first_entry(list, struct request,
2860 queuelist);
2861
2862 list_del_init(&rq->queuelist);
2863 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2864 switch (ret) {
2865 case BLK_STS_OK:
2866 queued++;
2867 break;
2868 case BLK_STS_RESOURCE:
2869 case BLK_STS_DEV_RESOURCE:
2870 blk_mq_request_bypass_insert(rq, 0);
2871 if (list_empty(list))
2872 blk_mq_run_hw_queue(hctx, false);
2873 goto out;
2874 default:
2875 blk_mq_end_request(rq, ret);
2876 break;
2877 }
2878 }
2879
2880 out:
2881 if (ret != BLK_STS_OK)
2882 blk_mq_commit_rqs(hctx, queued, false);
2883 }
2884
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2885 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2886 struct bio *bio, unsigned int nr_segs)
2887 {
2888 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2889 if (blk_attempt_plug_merge(q, bio, nr_segs))
2890 return true;
2891 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2892 return true;
2893 }
2894 return false;
2895 }
2896
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2897 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2898 struct blk_plug *plug,
2899 struct bio *bio,
2900 unsigned int nsegs)
2901 {
2902 struct blk_mq_alloc_data data = {
2903 .q = q,
2904 .nr_tags = 1,
2905 .cmd_flags = bio->bi_opf,
2906 };
2907 struct request *rq;
2908
2909 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2910 return NULL;
2911
2912 rq_qos_throttle(q, bio);
2913
2914 if (plug) {
2915 data.nr_tags = plug->nr_ios;
2916 plug->nr_ios = 1;
2917 data.cached_rq = &plug->cached_rq;
2918 }
2919
2920 rq = __blk_mq_alloc_requests(&data);
2921 if (rq)
2922 return rq;
2923 rq_qos_cleanup(q, bio);
2924 if (bio->bi_opf & REQ_NOWAIT)
2925 bio_wouldblock_error(bio);
2926 return NULL;
2927 }
2928
2929 /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2930 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2931 struct bio *bio)
2932 {
2933 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2934 enum hctx_type hctx_type = rq->mq_hctx->type;
2935
2936 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2937
2938 if (type != hctx_type &&
2939 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2940 return false;
2941 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2942 return false;
2943
2944 /*
2945 * If any qos ->throttle() end up blocking, we will have flushed the
2946 * plug and hence killed the cached_rq list as well. Pop this entry
2947 * before we throttle.
2948 */
2949 plug->cached_rq = rq_list_next(rq);
2950 rq_qos_throttle(rq->q, bio);
2951
2952 blk_mq_rq_time_init(rq, 0);
2953 rq->cmd_flags = bio->bi_opf;
2954 INIT_LIST_HEAD(&rq->queuelist);
2955 return true;
2956 }
2957
2958 /**
2959 * blk_mq_submit_bio - Create and send a request to block device.
2960 * @bio: Bio pointer.
2961 *
2962 * Builds up a request structure from @q and @bio and send to the device. The
2963 * request may not be queued directly to hardware if:
2964 * * This request can be merged with another one
2965 * * We want to place request at plug queue for possible future merging
2966 * * There is an IO scheduler active at this queue
2967 *
2968 * It will not queue the request if there is an error with the bio, or at the
2969 * request creation.
2970 */
blk_mq_submit_bio(struct bio * bio)2971 void blk_mq_submit_bio(struct bio *bio)
2972 {
2973 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2974 struct blk_plug *plug = blk_mq_plug(bio);
2975 const int is_sync = op_is_sync(bio->bi_opf);
2976 struct blk_mq_hw_ctx *hctx;
2977 struct request *rq = NULL;
2978 unsigned int nr_segs = 1;
2979 blk_status_t ret;
2980
2981 bio = blk_queue_bounce(bio, q);
2982
2983 if (plug) {
2984 rq = rq_list_peek(&plug->cached_rq);
2985 if (rq && rq->q != q)
2986 rq = NULL;
2987 }
2988 if (rq) {
2989 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2990 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2991 if (!bio)
2992 return;
2993 }
2994 if (!bio_integrity_prep(bio))
2995 return;
2996 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2997 return;
2998 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2999 goto done;
3000 percpu_ref_get(&q->q_usage_counter);
3001 } else {
3002 if (unlikely(bio_queue_enter(bio)))
3003 return;
3004 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3005 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3006 if (!bio)
3007 goto fail;
3008 }
3009 if (!bio_integrity_prep(bio))
3010 goto fail;
3011 }
3012
3013 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3014 if (unlikely(!rq)) {
3015 fail:
3016 blk_queue_exit(q);
3017 return;
3018 }
3019
3020 done:
3021 trace_block_getrq(bio);
3022
3023 rq_qos_track(q, rq, bio);
3024
3025 blk_mq_bio_to_request(rq, bio, nr_segs);
3026
3027 ret = blk_crypto_rq_get_keyslot(rq);
3028 if (ret != BLK_STS_OK) {
3029 bio->bi_status = ret;
3030 bio_endio(bio);
3031 blk_mq_free_request(rq);
3032 return;
3033 }
3034
3035 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3036 return;
3037
3038 if (plug) {
3039 blk_add_rq_to_plug(plug, rq);
3040 return;
3041 }
3042
3043 hctx = rq->mq_hctx;
3044 if ((rq->rq_flags & RQF_USE_SCHED) ||
3045 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3046 blk_mq_insert_request(rq, 0);
3047 blk_mq_run_hw_queue(hctx, true);
3048 } else {
3049 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3050 }
3051 }
3052
3053 #ifdef CONFIG_BLK_MQ_STACKING
3054 /**
3055 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3056 * @rq: the request being queued
3057 */
blk_insert_cloned_request(struct request * rq)3058 blk_status_t blk_insert_cloned_request(struct request *rq)
3059 {
3060 struct request_queue *q = rq->q;
3061 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3062 unsigned int max_segments = blk_rq_get_max_segments(rq);
3063 blk_status_t ret;
3064
3065 if (blk_rq_sectors(rq) > max_sectors) {
3066 /*
3067 * SCSI device does not have a good way to return if
3068 * Write Same/Zero is actually supported. If a device rejects
3069 * a non-read/write command (discard, write same,etc.) the
3070 * low-level device driver will set the relevant queue limit to
3071 * 0 to prevent blk-lib from issuing more of the offending
3072 * operations. Commands queued prior to the queue limit being
3073 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3074 * errors being propagated to upper layers.
3075 */
3076 if (max_sectors == 0)
3077 return BLK_STS_NOTSUPP;
3078
3079 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3080 __func__, blk_rq_sectors(rq), max_sectors);
3081 return BLK_STS_IOERR;
3082 }
3083
3084 /*
3085 * The queue settings related to segment counting may differ from the
3086 * original queue.
3087 */
3088 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3089 if (rq->nr_phys_segments > max_segments) {
3090 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3091 __func__, rq->nr_phys_segments, max_segments);
3092 return BLK_STS_IOERR;
3093 }
3094
3095 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3096 return BLK_STS_IOERR;
3097
3098 ret = blk_crypto_rq_get_keyslot(rq);
3099 if (ret != BLK_STS_OK)
3100 return ret;
3101
3102 blk_account_io_start(rq);
3103
3104 /*
3105 * Since we have a scheduler attached on the top device,
3106 * bypass a potential scheduler on the bottom device for
3107 * insert.
3108 */
3109 blk_mq_run_dispatch_ops(q,
3110 ret = blk_mq_request_issue_directly(rq, true));
3111 if (ret)
3112 blk_account_io_done(rq, ktime_get_ns());
3113 return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3116
3117 /**
3118 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3119 * @rq: the clone request to be cleaned up
3120 *
3121 * Description:
3122 * Free all bios in @rq for a cloned request.
3123 */
blk_rq_unprep_clone(struct request * rq)3124 void blk_rq_unprep_clone(struct request *rq)
3125 {
3126 struct bio *bio;
3127
3128 while ((bio = rq->bio) != NULL) {
3129 rq->bio = bio->bi_next;
3130
3131 bio_put(bio);
3132 }
3133 }
3134 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3135
3136 /**
3137 * blk_rq_prep_clone - Helper function to setup clone request
3138 * @rq: the request to be setup
3139 * @rq_src: original request to be cloned
3140 * @bs: bio_set that bios for clone are allocated from
3141 * @gfp_mask: memory allocation mask for bio
3142 * @bio_ctr: setup function to be called for each clone bio.
3143 * Returns %0 for success, non %0 for failure.
3144 * @data: private data to be passed to @bio_ctr
3145 *
3146 * Description:
3147 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3148 * Also, pages which the original bios are pointing to are not copied
3149 * and the cloned bios just point same pages.
3150 * So cloned bios must be completed before original bios, which means
3151 * the caller must complete @rq before @rq_src.
3152 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3153 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3154 struct bio_set *bs, gfp_t gfp_mask,
3155 int (*bio_ctr)(struct bio *, struct bio *, void *),
3156 void *data)
3157 {
3158 struct bio *bio, *bio_src;
3159
3160 if (!bs)
3161 bs = &fs_bio_set;
3162
3163 __rq_for_each_bio(bio_src, rq_src) {
3164 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3165 bs);
3166 if (!bio)
3167 goto free_and_out;
3168
3169 if (bio_ctr && bio_ctr(bio, bio_src, data))
3170 goto free_and_out;
3171
3172 if (rq->bio) {
3173 rq->biotail->bi_next = bio;
3174 rq->biotail = bio;
3175 } else {
3176 rq->bio = rq->biotail = bio;
3177 }
3178 bio = NULL;
3179 }
3180
3181 /* Copy attributes of the original request to the clone request. */
3182 rq->__sector = blk_rq_pos(rq_src);
3183 rq->__data_len = blk_rq_bytes(rq_src);
3184 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3185 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3186 rq->special_vec = rq_src->special_vec;
3187 }
3188 rq->nr_phys_segments = rq_src->nr_phys_segments;
3189 rq->ioprio = rq_src->ioprio;
3190
3191 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3192 goto free_and_out;
3193
3194 return 0;
3195
3196 free_and_out:
3197 if (bio)
3198 bio_put(bio);
3199 blk_rq_unprep_clone(rq);
3200
3201 return -ENOMEM;
3202 }
3203 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3204 #endif /* CONFIG_BLK_MQ_STACKING */
3205
3206 /*
3207 * Steal bios from a request and add them to a bio list.
3208 * The request must not have been partially completed before.
3209 */
blk_steal_bios(struct bio_list * list,struct request * rq)3210 void blk_steal_bios(struct bio_list *list, struct request *rq)
3211 {
3212 if (rq->bio) {
3213 if (list->tail)
3214 list->tail->bi_next = rq->bio;
3215 else
3216 list->head = rq->bio;
3217 list->tail = rq->biotail;
3218
3219 rq->bio = NULL;
3220 rq->biotail = NULL;
3221 }
3222
3223 rq->__data_len = 0;
3224 }
3225 EXPORT_SYMBOL_GPL(blk_steal_bios);
3226
order_to_size(unsigned int order)3227 static size_t order_to_size(unsigned int order)
3228 {
3229 return (size_t)PAGE_SIZE << order;
3230 }
3231
3232 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3233 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3234 struct blk_mq_tags *tags)
3235 {
3236 struct page *page;
3237 unsigned long flags;
3238
3239 /*
3240 * There is no need to clear mapping if driver tags is not initialized
3241 * or the mapping belongs to the driver tags.
3242 */
3243 if (!drv_tags || drv_tags == tags)
3244 return;
3245
3246 list_for_each_entry(page, &tags->page_list, lru) {
3247 unsigned long start = (unsigned long)page_address(page);
3248 unsigned long end = start + order_to_size(page->private);
3249 int i;
3250
3251 for (i = 0; i < drv_tags->nr_tags; i++) {
3252 struct request *rq = drv_tags->rqs[i];
3253 unsigned long rq_addr = (unsigned long)rq;
3254
3255 if (rq_addr >= start && rq_addr < end) {
3256 WARN_ON_ONCE(req_ref_read(rq) != 0);
3257 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3258 }
3259 }
3260 }
3261
3262 /*
3263 * Wait until all pending iteration is done.
3264 *
3265 * Request reference is cleared and it is guaranteed to be observed
3266 * after the ->lock is released.
3267 */
3268 spin_lock_irqsave(&drv_tags->lock, flags);
3269 spin_unlock_irqrestore(&drv_tags->lock, flags);
3270 }
3271
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3272 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3273 unsigned int hctx_idx)
3274 {
3275 struct blk_mq_tags *drv_tags;
3276 struct page *page;
3277
3278 if (list_empty(&tags->page_list))
3279 return;
3280
3281 if (blk_mq_is_shared_tags(set->flags))
3282 drv_tags = set->shared_tags;
3283 else
3284 drv_tags = set->tags[hctx_idx];
3285
3286 if (tags->static_rqs && set->ops->exit_request) {
3287 int i;
3288
3289 for (i = 0; i < tags->nr_tags; i++) {
3290 struct request *rq = tags->static_rqs[i];
3291
3292 if (!rq)
3293 continue;
3294 set->ops->exit_request(set, rq, hctx_idx);
3295 tags->static_rqs[i] = NULL;
3296 }
3297 }
3298
3299 blk_mq_clear_rq_mapping(drv_tags, tags);
3300
3301 while (!list_empty(&tags->page_list)) {
3302 page = list_first_entry(&tags->page_list, struct page, lru);
3303 list_del_init(&page->lru);
3304 /*
3305 * Remove kmemleak object previously allocated in
3306 * blk_mq_alloc_rqs().
3307 */
3308 kmemleak_free(page_address(page));
3309 __free_pages(page, page->private);
3310 }
3311 }
3312
blk_mq_free_rq_map(struct blk_mq_tags * tags)3313 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3314 {
3315 kfree(tags->rqs);
3316 tags->rqs = NULL;
3317 kfree(tags->static_rqs);
3318 tags->static_rqs = NULL;
3319
3320 blk_mq_free_tags(tags);
3321 }
3322
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3323 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3324 unsigned int hctx_idx)
3325 {
3326 int i;
3327
3328 for (i = 0; i < set->nr_maps; i++) {
3329 unsigned int start = set->map[i].queue_offset;
3330 unsigned int end = start + set->map[i].nr_queues;
3331
3332 if (hctx_idx >= start && hctx_idx < end)
3333 break;
3334 }
3335
3336 if (i >= set->nr_maps)
3337 i = HCTX_TYPE_DEFAULT;
3338
3339 return i;
3340 }
3341
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3342 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3343 unsigned int hctx_idx)
3344 {
3345 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3346
3347 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3348 }
3349
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3350 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3351 unsigned int hctx_idx,
3352 unsigned int nr_tags,
3353 unsigned int reserved_tags)
3354 {
3355 int node = blk_mq_get_hctx_node(set, hctx_idx);
3356 struct blk_mq_tags *tags;
3357
3358 if (node == NUMA_NO_NODE)
3359 node = set->numa_node;
3360
3361 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3362 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3363 if (!tags)
3364 return NULL;
3365
3366 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3367 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3368 node);
3369 if (!tags->rqs)
3370 goto err_free_tags;
3371
3372 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3373 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3374 node);
3375 if (!tags->static_rqs)
3376 goto err_free_rqs;
3377
3378 return tags;
3379
3380 err_free_rqs:
3381 kfree(tags->rqs);
3382 err_free_tags:
3383 blk_mq_free_tags(tags);
3384 return NULL;
3385 }
3386
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3387 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3388 unsigned int hctx_idx, int node)
3389 {
3390 int ret;
3391
3392 if (set->ops->init_request) {
3393 ret = set->ops->init_request(set, rq, hctx_idx, node);
3394 if (ret)
3395 return ret;
3396 }
3397
3398 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3399 return 0;
3400 }
3401
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3402 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3403 struct blk_mq_tags *tags,
3404 unsigned int hctx_idx, unsigned int depth)
3405 {
3406 unsigned int i, j, entries_per_page, max_order = 4;
3407 int node = blk_mq_get_hctx_node(set, hctx_idx);
3408 size_t rq_size, left;
3409
3410 if (node == NUMA_NO_NODE)
3411 node = set->numa_node;
3412
3413 INIT_LIST_HEAD(&tags->page_list);
3414
3415 /*
3416 * rq_size is the size of the request plus driver payload, rounded
3417 * to the cacheline size
3418 */
3419 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3420 cache_line_size());
3421 left = rq_size * depth;
3422
3423 for (i = 0; i < depth; ) {
3424 int this_order = max_order;
3425 struct page *page;
3426 int to_do;
3427 void *p;
3428
3429 while (this_order && left < order_to_size(this_order - 1))
3430 this_order--;
3431
3432 do {
3433 page = alloc_pages_node(node,
3434 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3435 this_order);
3436 if (page)
3437 break;
3438 if (!this_order--)
3439 break;
3440 if (order_to_size(this_order) < rq_size)
3441 break;
3442 } while (1);
3443
3444 if (!page)
3445 goto fail;
3446
3447 page->private = this_order;
3448 list_add_tail(&page->lru, &tags->page_list);
3449
3450 p = page_address(page);
3451 /*
3452 * Allow kmemleak to scan these pages as they contain pointers
3453 * to additional allocations like via ops->init_request().
3454 */
3455 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3456 entries_per_page = order_to_size(this_order) / rq_size;
3457 to_do = min(entries_per_page, depth - i);
3458 left -= to_do * rq_size;
3459 for (j = 0; j < to_do; j++) {
3460 struct request *rq = p;
3461
3462 tags->static_rqs[i] = rq;
3463 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3464 tags->static_rqs[i] = NULL;
3465 goto fail;
3466 }
3467
3468 p += rq_size;
3469 i++;
3470 }
3471 }
3472 return 0;
3473
3474 fail:
3475 blk_mq_free_rqs(set, tags, hctx_idx);
3476 return -ENOMEM;
3477 }
3478
3479 struct rq_iter_data {
3480 struct blk_mq_hw_ctx *hctx;
3481 bool has_rq;
3482 };
3483
blk_mq_has_request(struct request * rq,void * data)3484 static bool blk_mq_has_request(struct request *rq, void *data)
3485 {
3486 struct rq_iter_data *iter_data = data;
3487
3488 if (rq->mq_hctx != iter_data->hctx)
3489 return true;
3490 iter_data->has_rq = true;
3491 return false;
3492 }
3493
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3494 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3495 {
3496 struct blk_mq_tags *tags = hctx->sched_tags ?
3497 hctx->sched_tags : hctx->tags;
3498 struct rq_iter_data data = {
3499 .hctx = hctx,
3500 };
3501
3502 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3503 return data.has_rq;
3504 }
3505
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3506 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3507 struct blk_mq_hw_ctx *hctx)
3508 {
3509 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3510 return false;
3511 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3512 return false;
3513 return true;
3514 }
3515
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3517 {
3518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3519 struct blk_mq_hw_ctx, cpuhp_online);
3520
3521 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3522 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3523 return 0;
3524
3525 /*
3526 * Prevent new request from being allocated on the current hctx.
3527 *
3528 * The smp_mb__after_atomic() Pairs with the implied barrier in
3529 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3530 * seen once we return from the tag allocator.
3531 */
3532 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3533 smp_mb__after_atomic();
3534
3535 /*
3536 * Try to grab a reference to the queue and wait for any outstanding
3537 * requests. If we could not grab a reference the queue has been
3538 * frozen and there are no requests.
3539 */
3540 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3541 while (blk_mq_hctx_has_requests(hctx))
3542 msleep(5);
3543 percpu_ref_put(&hctx->queue->q_usage_counter);
3544 }
3545
3546 return 0;
3547 }
3548
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3549 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3550 {
3551 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3552 struct blk_mq_hw_ctx, cpuhp_online);
3553
3554 if (cpumask_test_cpu(cpu, hctx->cpumask))
3555 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3556 return 0;
3557 }
3558
3559 /*
3560 * 'cpu' is going away. splice any existing rq_list entries from this
3561 * software queue to the hw queue dispatch list, and ensure that it
3562 * gets run.
3563 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3565 {
3566 struct blk_mq_hw_ctx *hctx;
3567 struct blk_mq_ctx *ctx;
3568 LIST_HEAD(tmp);
3569 enum hctx_type type;
3570
3571 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3572 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3573 return 0;
3574
3575 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3576 type = hctx->type;
3577
3578 spin_lock(&ctx->lock);
3579 if (!list_empty(&ctx->rq_lists[type])) {
3580 list_splice_init(&ctx->rq_lists[type], &tmp);
3581 blk_mq_hctx_clear_pending(hctx, ctx);
3582 }
3583 spin_unlock(&ctx->lock);
3584
3585 if (list_empty(&tmp))
3586 return 0;
3587
3588 spin_lock(&hctx->lock);
3589 list_splice_tail_init(&tmp, &hctx->dispatch);
3590 spin_unlock(&hctx->lock);
3591
3592 blk_mq_run_hw_queue(hctx, true);
3593 return 0;
3594 }
3595
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3597 {
3598 if (!(hctx->flags & BLK_MQ_F_STACKING))
3599 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3600 &hctx->cpuhp_online);
3601 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3602 &hctx->cpuhp_dead);
3603 }
3604
3605 /*
3606 * Before freeing hw queue, clearing the flush request reference in
3607 * tags->rqs[] for avoiding potential UAF.
3608 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3609 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3610 unsigned int queue_depth, struct request *flush_rq)
3611 {
3612 int i;
3613 unsigned long flags;
3614
3615 /* The hw queue may not be mapped yet */
3616 if (!tags)
3617 return;
3618
3619 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3620
3621 for (i = 0; i < queue_depth; i++)
3622 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3623
3624 /*
3625 * Wait until all pending iteration is done.
3626 *
3627 * Request reference is cleared and it is guaranteed to be observed
3628 * after the ->lock is released.
3629 */
3630 spin_lock_irqsave(&tags->lock, flags);
3631 spin_unlock_irqrestore(&tags->lock, flags);
3632 }
3633
3634 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3635 static void blk_mq_exit_hctx(struct request_queue *q,
3636 struct blk_mq_tag_set *set,
3637 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3638 {
3639 struct request *flush_rq = hctx->fq->flush_rq;
3640
3641 if (blk_mq_hw_queue_mapped(hctx))
3642 blk_mq_tag_idle(hctx);
3643
3644 if (blk_queue_init_done(q))
3645 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3646 set->queue_depth, flush_rq);
3647 if (set->ops->exit_request)
3648 set->ops->exit_request(set, flush_rq, hctx_idx);
3649
3650 if (set->ops->exit_hctx)
3651 set->ops->exit_hctx(hctx, hctx_idx);
3652
3653 blk_mq_remove_cpuhp(hctx);
3654
3655 xa_erase(&q->hctx_table, hctx_idx);
3656
3657 spin_lock(&q->unused_hctx_lock);
3658 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3659 spin_unlock(&q->unused_hctx_lock);
3660 }
3661
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3662 static void blk_mq_exit_hw_queues(struct request_queue *q,
3663 struct blk_mq_tag_set *set, int nr_queue)
3664 {
3665 struct blk_mq_hw_ctx *hctx;
3666 unsigned long i;
3667
3668 queue_for_each_hw_ctx(q, hctx, i) {
3669 if (i == nr_queue)
3670 break;
3671 blk_mq_exit_hctx(q, set, hctx, i);
3672 }
3673 }
3674
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3675 static int blk_mq_init_hctx(struct request_queue *q,
3676 struct blk_mq_tag_set *set,
3677 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3678 {
3679 hctx->queue_num = hctx_idx;
3680
3681 if (!(hctx->flags & BLK_MQ_F_STACKING))
3682 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3683 &hctx->cpuhp_online);
3684 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3685
3686 hctx->tags = set->tags[hctx_idx];
3687
3688 if (set->ops->init_hctx &&
3689 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3690 goto unregister_cpu_notifier;
3691
3692 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3693 hctx->numa_node))
3694 goto exit_hctx;
3695
3696 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3697 goto exit_flush_rq;
3698
3699 return 0;
3700
3701 exit_flush_rq:
3702 if (set->ops->exit_request)
3703 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3704 exit_hctx:
3705 if (set->ops->exit_hctx)
3706 set->ops->exit_hctx(hctx, hctx_idx);
3707 unregister_cpu_notifier:
3708 blk_mq_remove_cpuhp(hctx);
3709 return -1;
3710 }
3711
3712 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3713 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3714 int node)
3715 {
3716 struct blk_mq_hw_ctx *hctx;
3717 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3718
3719 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3720 if (!hctx)
3721 goto fail_alloc_hctx;
3722
3723 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3724 goto free_hctx;
3725
3726 atomic_set(&hctx->nr_active, 0);
3727 if (node == NUMA_NO_NODE)
3728 node = set->numa_node;
3729 hctx->numa_node = node;
3730
3731 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3732 spin_lock_init(&hctx->lock);
3733 INIT_LIST_HEAD(&hctx->dispatch);
3734 hctx->queue = q;
3735 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3736
3737 INIT_LIST_HEAD(&hctx->hctx_list);
3738
3739 /*
3740 * Allocate space for all possible cpus to avoid allocation at
3741 * runtime
3742 */
3743 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3744 gfp, node);
3745 if (!hctx->ctxs)
3746 goto free_cpumask;
3747
3748 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3749 gfp, node, false, false))
3750 goto free_ctxs;
3751 hctx->nr_ctx = 0;
3752
3753 spin_lock_init(&hctx->dispatch_wait_lock);
3754 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3755 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3756
3757 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3758 if (!hctx->fq)
3759 goto free_bitmap;
3760
3761 blk_mq_hctx_kobj_init(hctx);
3762
3763 return hctx;
3764
3765 free_bitmap:
3766 sbitmap_free(&hctx->ctx_map);
3767 free_ctxs:
3768 kfree(hctx->ctxs);
3769 free_cpumask:
3770 free_cpumask_var(hctx->cpumask);
3771 free_hctx:
3772 kfree(hctx);
3773 fail_alloc_hctx:
3774 return NULL;
3775 }
3776
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3777 static void blk_mq_init_cpu_queues(struct request_queue *q,
3778 unsigned int nr_hw_queues)
3779 {
3780 struct blk_mq_tag_set *set = q->tag_set;
3781 unsigned int i, j;
3782
3783 for_each_possible_cpu(i) {
3784 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3785 struct blk_mq_hw_ctx *hctx;
3786 int k;
3787
3788 __ctx->cpu = i;
3789 spin_lock_init(&__ctx->lock);
3790 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3791 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3792
3793 __ctx->queue = q;
3794
3795 /*
3796 * Set local node, IFF we have more than one hw queue. If
3797 * not, we remain on the home node of the device
3798 */
3799 for (j = 0; j < set->nr_maps; j++) {
3800 hctx = blk_mq_map_queue_type(q, j, i);
3801 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3802 hctx->numa_node = cpu_to_node(i);
3803 }
3804 }
3805 }
3806
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3807 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3808 unsigned int hctx_idx,
3809 unsigned int depth)
3810 {
3811 struct blk_mq_tags *tags;
3812 int ret;
3813
3814 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3815 if (!tags)
3816 return NULL;
3817
3818 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3819 if (ret) {
3820 blk_mq_free_rq_map(tags);
3821 return NULL;
3822 }
3823
3824 return tags;
3825 }
3826
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3827 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3828 int hctx_idx)
3829 {
3830 if (blk_mq_is_shared_tags(set->flags)) {
3831 set->tags[hctx_idx] = set->shared_tags;
3832
3833 return true;
3834 }
3835
3836 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3837 set->queue_depth);
3838
3839 return set->tags[hctx_idx];
3840 }
3841
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3842 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3843 struct blk_mq_tags *tags,
3844 unsigned int hctx_idx)
3845 {
3846 if (tags) {
3847 blk_mq_free_rqs(set, tags, hctx_idx);
3848 blk_mq_free_rq_map(tags);
3849 }
3850 }
3851
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3852 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3853 unsigned int hctx_idx)
3854 {
3855 if (!blk_mq_is_shared_tags(set->flags))
3856 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3857
3858 set->tags[hctx_idx] = NULL;
3859 }
3860
blk_mq_map_swqueue(struct request_queue * q)3861 static void blk_mq_map_swqueue(struct request_queue *q)
3862 {
3863 unsigned int j, hctx_idx;
3864 unsigned long i;
3865 struct blk_mq_hw_ctx *hctx;
3866 struct blk_mq_ctx *ctx;
3867 struct blk_mq_tag_set *set = q->tag_set;
3868
3869 queue_for_each_hw_ctx(q, hctx, i) {
3870 cpumask_clear(hctx->cpumask);
3871 hctx->nr_ctx = 0;
3872 hctx->dispatch_from = NULL;
3873 }
3874
3875 /*
3876 * Map software to hardware queues.
3877 *
3878 * If the cpu isn't present, the cpu is mapped to first hctx.
3879 */
3880 for_each_possible_cpu(i) {
3881
3882 ctx = per_cpu_ptr(q->queue_ctx, i);
3883 for (j = 0; j < set->nr_maps; j++) {
3884 if (!set->map[j].nr_queues) {
3885 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3886 HCTX_TYPE_DEFAULT, i);
3887 continue;
3888 }
3889 hctx_idx = set->map[j].mq_map[i];
3890 /* unmapped hw queue can be remapped after CPU topo changed */
3891 if (!set->tags[hctx_idx] &&
3892 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3893 /*
3894 * If tags initialization fail for some hctx,
3895 * that hctx won't be brought online. In this
3896 * case, remap the current ctx to hctx[0] which
3897 * is guaranteed to always have tags allocated
3898 */
3899 set->map[j].mq_map[i] = 0;
3900 }
3901
3902 hctx = blk_mq_map_queue_type(q, j, i);
3903 ctx->hctxs[j] = hctx;
3904 /*
3905 * If the CPU is already set in the mask, then we've
3906 * mapped this one already. This can happen if
3907 * devices share queues across queue maps.
3908 */
3909 if (cpumask_test_cpu(i, hctx->cpumask))
3910 continue;
3911
3912 cpumask_set_cpu(i, hctx->cpumask);
3913 hctx->type = j;
3914 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3915 hctx->ctxs[hctx->nr_ctx++] = ctx;
3916
3917 /*
3918 * If the nr_ctx type overflows, we have exceeded the
3919 * amount of sw queues we can support.
3920 */
3921 BUG_ON(!hctx->nr_ctx);
3922 }
3923
3924 for (; j < HCTX_MAX_TYPES; j++)
3925 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3926 HCTX_TYPE_DEFAULT, i);
3927 }
3928
3929 queue_for_each_hw_ctx(q, hctx, i) {
3930 /*
3931 * If no software queues are mapped to this hardware queue,
3932 * disable it and free the request entries.
3933 */
3934 if (!hctx->nr_ctx) {
3935 /* Never unmap queue 0. We need it as a
3936 * fallback in case of a new remap fails
3937 * allocation
3938 */
3939 if (i)
3940 __blk_mq_free_map_and_rqs(set, i);
3941
3942 hctx->tags = NULL;
3943 continue;
3944 }
3945
3946 hctx->tags = set->tags[i];
3947 WARN_ON(!hctx->tags);
3948
3949 /*
3950 * Set the map size to the number of mapped software queues.
3951 * This is more accurate and more efficient than looping
3952 * over all possibly mapped software queues.
3953 */
3954 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3955
3956 /*
3957 * Initialize batch roundrobin counts
3958 */
3959 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3960 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3961 }
3962 }
3963
3964 /*
3965 * Caller needs to ensure that we're either frozen/quiesced, or that
3966 * the queue isn't live yet.
3967 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3968 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3969 {
3970 struct blk_mq_hw_ctx *hctx;
3971 unsigned long i;
3972
3973 queue_for_each_hw_ctx(q, hctx, i) {
3974 if (shared) {
3975 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3976 } else {
3977 blk_mq_tag_idle(hctx);
3978 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3979 }
3980 }
3981 }
3982
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3983 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3984 bool shared)
3985 {
3986 struct request_queue *q;
3987
3988 lockdep_assert_held(&set->tag_list_lock);
3989
3990 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3991 blk_mq_freeze_queue(q);
3992 queue_set_hctx_shared(q, shared);
3993 blk_mq_unfreeze_queue(q);
3994 }
3995 }
3996
blk_mq_del_queue_tag_set(struct request_queue * q)3997 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3998 {
3999 struct blk_mq_tag_set *set = q->tag_set;
4000
4001 mutex_lock(&set->tag_list_lock);
4002 list_del(&q->tag_set_list);
4003 if (list_is_singular(&set->tag_list)) {
4004 /* just transitioned to unshared */
4005 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4006 /* update existing queue */
4007 blk_mq_update_tag_set_shared(set, false);
4008 }
4009 mutex_unlock(&set->tag_list_lock);
4010 INIT_LIST_HEAD(&q->tag_set_list);
4011 }
4012
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4013 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4014 struct request_queue *q)
4015 {
4016 mutex_lock(&set->tag_list_lock);
4017
4018 /*
4019 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4020 */
4021 if (!list_empty(&set->tag_list) &&
4022 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4023 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4024 /* update existing queue */
4025 blk_mq_update_tag_set_shared(set, true);
4026 }
4027 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4028 queue_set_hctx_shared(q, true);
4029 list_add_tail(&q->tag_set_list, &set->tag_list);
4030
4031 mutex_unlock(&set->tag_list_lock);
4032 }
4033
4034 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4035 static int blk_mq_alloc_ctxs(struct request_queue *q)
4036 {
4037 struct blk_mq_ctxs *ctxs;
4038 int cpu;
4039
4040 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4041 if (!ctxs)
4042 return -ENOMEM;
4043
4044 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4045 if (!ctxs->queue_ctx)
4046 goto fail;
4047
4048 for_each_possible_cpu(cpu) {
4049 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4050 ctx->ctxs = ctxs;
4051 }
4052
4053 q->mq_kobj = &ctxs->kobj;
4054 q->queue_ctx = ctxs->queue_ctx;
4055
4056 return 0;
4057 fail:
4058 kfree(ctxs);
4059 return -ENOMEM;
4060 }
4061
4062 /*
4063 * It is the actual release handler for mq, but we do it from
4064 * request queue's release handler for avoiding use-after-free
4065 * and headache because q->mq_kobj shouldn't have been introduced,
4066 * but we can't group ctx/kctx kobj without it.
4067 */
blk_mq_release(struct request_queue * q)4068 void blk_mq_release(struct request_queue *q)
4069 {
4070 struct blk_mq_hw_ctx *hctx, *next;
4071 unsigned long i;
4072
4073 queue_for_each_hw_ctx(q, hctx, i)
4074 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4075
4076 /* all hctx are in .unused_hctx_list now */
4077 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4078 list_del_init(&hctx->hctx_list);
4079 kobject_put(&hctx->kobj);
4080 }
4081
4082 xa_destroy(&q->hctx_table);
4083
4084 /*
4085 * release .mq_kobj and sw queue's kobject now because
4086 * both share lifetime with request queue.
4087 */
4088 blk_mq_sysfs_deinit(q);
4089 }
4090
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4091 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4092 void *queuedata)
4093 {
4094 struct request_queue *q;
4095 int ret;
4096
4097 q = blk_alloc_queue(set->numa_node);
4098 if (!q)
4099 return ERR_PTR(-ENOMEM);
4100 q->queuedata = queuedata;
4101 ret = blk_mq_init_allocated_queue(set, q);
4102 if (ret) {
4103 blk_put_queue(q);
4104 return ERR_PTR(ret);
4105 }
4106 return q;
4107 }
4108
blk_mq_init_queue(struct blk_mq_tag_set * set)4109 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4110 {
4111 return blk_mq_init_queue_data(set, NULL);
4112 }
4113 EXPORT_SYMBOL(blk_mq_init_queue);
4114
4115 /**
4116 * blk_mq_destroy_queue - shutdown a request queue
4117 * @q: request queue to shutdown
4118 *
4119 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4120 * requests will be failed with -ENODEV. The caller is responsible for dropping
4121 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4122 *
4123 * Context: can sleep
4124 */
blk_mq_destroy_queue(struct request_queue * q)4125 void blk_mq_destroy_queue(struct request_queue *q)
4126 {
4127 WARN_ON_ONCE(!queue_is_mq(q));
4128 WARN_ON_ONCE(blk_queue_registered(q));
4129
4130 might_sleep();
4131
4132 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4133 blk_queue_start_drain(q);
4134 blk_mq_freeze_queue_wait(q);
4135
4136 blk_sync_queue(q);
4137 blk_mq_cancel_work_sync(q);
4138 blk_mq_exit_queue(q);
4139 }
4140 EXPORT_SYMBOL(blk_mq_destroy_queue);
4141
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4142 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4143 struct lock_class_key *lkclass)
4144 {
4145 struct request_queue *q;
4146 struct gendisk *disk;
4147
4148 q = blk_mq_init_queue_data(set, queuedata);
4149 if (IS_ERR(q))
4150 return ERR_CAST(q);
4151
4152 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4153 if (!disk) {
4154 blk_mq_destroy_queue(q);
4155 blk_put_queue(q);
4156 return ERR_PTR(-ENOMEM);
4157 }
4158 set_bit(GD_OWNS_QUEUE, &disk->state);
4159 return disk;
4160 }
4161 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4162
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4163 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4164 struct lock_class_key *lkclass)
4165 {
4166 struct gendisk *disk;
4167
4168 if (!blk_get_queue(q))
4169 return NULL;
4170 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4171 if (!disk)
4172 blk_put_queue(q);
4173 return disk;
4174 }
4175 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4176
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4177 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4178 struct blk_mq_tag_set *set, struct request_queue *q,
4179 int hctx_idx, int node)
4180 {
4181 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4182
4183 /* reuse dead hctx first */
4184 spin_lock(&q->unused_hctx_lock);
4185 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4186 if (tmp->numa_node == node) {
4187 hctx = tmp;
4188 break;
4189 }
4190 }
4191 if (hctx)
4192 list_del_init(&hctx->hctx_list);
4193 spin_unlock(&q->unused_hctx_lock);
4194
4195 if (!hctx)
4196 hctx = blk_mq_alloc_hctx(q, set, node);
4197 if (!hctx)
4198 goto fail;
4199
4200 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4201 goto free_hctx;
4202
4203 return hctx;
4204
4205 free_hctx:
4206 kobject_put(&hctx->kobj);
4207 fail:
4208 return NULL;
4209 }
4210
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4211 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4212 struct request_queue *q)
4213 {
4214 struct blk_mq_hw_ctx *hctx;
4215 unsigned long i, j;
4216
4217 /* protect against switching io scheduler */
4218 mutex_lock(&q->sysfs_lock);
4219 for (i = 0; i < set->nr_hw_queues; i++) {
4220 int old_node;
4221 int node = blk_mq_get_hctx_node(set, i);
4222 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4223
4224 if (old_hctx) {
4225 old_node = old_hctx->numa_node;
4226 blk_mq_exit_hctx(q, set, old_hctx, i);
4227 }
4228
4229 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4230 if (!old_hctx)
4231 break;
4232 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4233 node, old_node);
4234 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4235 WARN_ON_ONCE(!hctx);
4236 }
4237 }
4238 /*
4239 * Increasing nr_hw_queues fails. Free the newly allocated
4240 * hctxs and keep the previous q->nr_hw_queues.
4241 */
4242 if (i != set->nr_hw_queues) {
4243 j = q->nr_hw_queues;
4244 } else {
4245 j = i;
4246 q->nr_hw_queues = set->nr_hw_queues;
4247 }
4248
4249 xa_for_each_start(&q->hctx_table, j, hctx, j)
4250 blk_mq_exit_hctx(q, set, hctx, j);
4251 mutex_unlock(&q->sysfs_lock);
4252 }
4253
blk_mq_update_poll_flag(struct request_queue * q)4254 static void blk_mq_update_poll_flag(struct request_queue *q)
4255 {
4256 struct blk_mq_tag_set *set = q->tag_set;
4257
4258 if (set->nr_maps > HCTX_TYPE_POLL &&
4259 set->map[HCTX_TYPE_POLL].nr_queues)
4260 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4261 else
4262 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4263 }
4264
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4265 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4266 struct request_queue *q)
4267 {
4268 /* mark the queue as mq asap */
4269 q->mq_ops = set->ops;
4270
4271 if (blk_mq_alloc_ctxs(q))
4272 goto err_exit;
4273
4274 /* init q->mq_kobj and sw queues' kobjects */
4275 blk_mq_sysfs_init(q);
4276
4277 INIT_LIST_HEAD(&q->unused_hctx_list);
4278 spin_lock_init(&q->unused_hctx_lock);
4279
4280 xa_init(&q->hctx_table);
4281
4282 blk_mq_realloc_hw_ctxs(set, q);
4283 if (!q->nr_hw_queues)
4284 goto err_hctxs;
4285
4286 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4287 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4288
4289 q->tag_set = set;
4290
4291 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4292 blk_mq_update_poll_flag(q);
4293
4294 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4295 INIT_LIST_HEAD(&q->flush_list);
4296 INIT_LIST_HEAD(&q->requeue_list);
4297 spin_lock_init(&q->requeue_lock);
4298
4299 q->nr_requests = set->queue_depth;
4300
4301 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4302 blk_mq_add_queue_tag_set(set, q);
4303 blk_mq_map_swqueue(q);
4304 return 0;
4305
4306 err_hctxs:
4307 blk_mq_release(q);
4308 err_exit:
4309 q->mq_ops = NULL;
4310 return -ENOMEM;
4311 }
4312 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4313
4314 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4315 void blk_mq_exit_queue(struct request_queue *q)
4316 {
4317 struct blk_mq_tag_set *set = q->tag_set;
4318
4319 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4320 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4321 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4322 blk_mq_del_queue_tag_set(q);
4323 }
4324
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4325 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4326 {
4327 int i;
4328
4329 if (blk_mq_is_shared_tags(set->flags)) {
4330 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4331 BLK_MQ_NO_HCTX_IDX,
4332 set->queue_depth);
4333 if (!set->shared_tags)
4334 return -ENOMEM;
4335 }
4336
4337 for (i = 0; i < set->nr_hw_queues; i++) {
4338 if (!__blk_mq_alloc_map_and_rqs(set, i))
4339 goto out_unwind;
4340 cond_resched();
4341 }
4342
4343 return 0;
4344
4345 out_unwind:
4346 while (--i >= 0)
4347 __blk_mq_free_map_and_rqs(set, i);
4348
4349 if (blk_mq_is_shared_tags(set->flags)) {
4350 blk_mq_free_map_and_rqs(set, set->shared_tags,
4351 BLK_MQ_NO_HCTX_IDX);
4352 }
4353
4354 return -ENOMEM;
4355 }
4356
4357 /*
4358 * Allocate the request maps associated with this tag_set. Note that this
4359 * may reduce the depth asked for, if memory is tight. set->queue_depth
4360 * will be updated to reflect the allocated depth.
4361 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4362 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4363 {
4364 unsigned int depth;
4365 int err;
4366
4367 depth = set->queue_depth;
4368 do {
4369 err = __blk_mq_alloc_rq_maps(set);
4370 if (!err)
4371 break;
4372
4373 set->queue_depth >>= 1;
4374 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4375 err = -ENOMEM;
4376 break;
4377 }
4378 } while (set->queue_depth);
4379
4380 if (!set->queue_depth || err) {
4381 pr_err("blk-mq: failed to allocate request map\n");
4382 return -ENOMEM;
4383 }
4384
4385 if (depth != set->queue_depth)
4386 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4387 depth, set->queue_depth);
4388
4389 return 0;
4390 }
4391
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4392 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4393 {
4394 /*
4395 * blk_mq_map_queues() and multiple .map_queues() implementations
4396 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4397 * number of hardware queues.
4398 */
4399 if (set->nr_maps == 1)
4400 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4401
4402 if (set->ops->map_queues && !is_kdump_kernel()) {
4403 int i;
4404
4405 /*
4406 * transport .map_queues is usually done in the following
4407 * way:
4408 *
4409 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4410 * mask = get_cpu_mask(queue)
4411 * for_each_cpu(cpu, mask)
4412 * set->map[x].mq_map[cpu] = queue;
4413 * }
4414 *
4415 * When we need to remap, the table has to be cleared for
4416 * killing stale mapping since one CPU may not be mapped
4417 * to any hw queue.
4418 */
4419 for (i = 0; i < set->nr_maps; i++)
4420 blk_mq_clear_mq_map(&set->map[i]);
4421
4422 set->ops->map_queues(set);
4423 } else {
4424 BUG_ON(set->nr_maps > 1);
4425 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4426 }
4427 }
4428
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4429 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4430 int new_nr_hw_queues)
4431 {
4432 struct blk_mq_tags **new_tags;
4433 int i;
4434
4435 if (set->nr_hw_queues >= new_nr_hw_queues)
4436 goto done;
4437
4438 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4439 GFP_KERNEL, set->numa_node);
4440 if (!new_tags)
4441 return -ENOMEM;
4442
4443 if (set->tags)
4444 memcpy(new_tags, set->tags, set->nr_hw_queues *
4445 sizeof(*set->tags));
4446 kfree(set->tags);
4447 set->tags = new_tags;
4448
4449 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4450 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4451 while (--i >= set->nr_hw_queues)
4452 __blk_mq_free_map_and_rqs(set, i);
4453 return -ENOMEM;
4454 }
4455 cond_resched();
4456 }
4457
4458 done:
4459 set->nr_hw_queues = new_nr_hw_queues;
4460 return 0;
4461 }
4462
4463 /*
4464 * Alloc a tag set to be associated with one or more request queues.
4465 * May fail with EINVAL for various error conditions. May adjust the
4466 * requested depth down, if it's too large. In that case, the set
4467 * value will be stored in set->queue_depth.
4468 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4469 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4470 {
4471 int i, ret;
4472
4473 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4474
4475 if (!set->nr_hw_queues)
4476 return -EINVAL;
4477 if (!set->queue_depth)
4478 return -EINVAL;
4479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4480 return -EINVAL;
4481
4482 if (!set->ops->queue_rq)
4483 return -EINVAL;
4484
4485 if (!set->ops->get_budget ^ !set->ops->put_budget)
4486 return -EINVAL;
4487
4488 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4489 pr_info("blk-mq: reduced tag depth to %u\n",
4490 BLK_MQ_MAX_DEPTH);
4491 set->queue_depth = BLK_MQ_MAX_DEPTH;
4492 }
4493
4494 if (!set->nr_maps)
4495 set->nr_maps = 1;
4496 else if (set->nr_maps > HCTX_MAX_TYPES)
4497 return -EINVAL;
4498
4499 /*
4500 * If a crashdump is active, then we are potentially in a very
4501 * memory constrained environment. Limit us to 1 queue and
4502 * 64 tags to prevent using too much memory.
4503 */
4504 if (is_kdump_kernel()) {
4505 set->nr_hw_queues = 1;
4506 set->nr_maps = 1;
4507 set->queue_depth = min(64U, set->queue_depth);
4508 }
4509 /*
4510 * There is no use for more h/w queues than cpus if we just have
4511 * a single map
4512 */
4513 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4514 set->nr_hw_queues = nr_cpu_ids;
4515
4516 if (set->flags & BLK_MQ_F_BLOCKING) {
4517 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4518 if (!set->srcu)
4519 return -ENOMEM;
4520 ret = init_srcu_struct(set->srcu);
4521 if (ret)
4522 goto out_free_srcu;
4523 }
4524
4525 ret = -ENOMEM;
4526 set->tags = kcalloc_node(set->nr_hw_queues,
4527 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4528 set->numa_node);
4529 if (!set->tags)
4530 goto out_cleanup_srcu;
4531
4532 for (i = 0; i < set->nr_maps; i++) {
4533 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4534 sizeof(set->map[i].mq_map[0]),
4535 GFP_KERNEL, set->numa_node);
4536 if (!set->map[i].mq_map)
4537 goto out_free_mq_map;
4538 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4539 }
4540
4541 blk_mq_update_queue_map(set);
4542
4543 ret = blk_mq_alloc_set_map_and_rqs(set);
4544 if (ret)
4545 goto out_free_mq_map;
4546
4547 mutex_init(&set->tag_list_lock);
4548 INIT_LIST_HEAD(&set->tag_list);
4549
4550 return 0;
4551
4552 out_free_mq_map:
4553 for (i = 0; i < set->nr_maps; i++) {
4554 kfree(set->map[i].mq_map);
4555 set->map[i].mq_map = NULL;
4556 }
4557 kfree(set->tags);
4558 set->tags = NULL;
4559 out_cleanup_srcu:
4560 if (set->flags & BLK_MQ_F_BLOCKING)
4561 cleanup_srcu_struct(set->srcu);
4562 out_free_srcu:
4563 if (set->flags & BLK_MQ_F_BLOCKING)
4564 kfree(set->srcu);
4565 return ret;
4566 }
4567 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4568
4569 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4570 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4571 const struct blk_mq_ops *ops, unsigned int queue_depth,
4572 unsigned int set_flags)
4573 {
4574 memset(set, 0, sizeof(*set));
4575 set->ops = ops;
4576 set->nr_hw_queues = 1;
4577 set->nr_maps = 1;
4578 set->queue_depth = queue_depth;
4579 set->numa_node = NUMA_NO_NODE;
4580 set->flags = set_flags;
4581 return blk_mq_alloc_tag_set(set);
4582 }
4583 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4584
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4585 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4586 {
4587 int i, j;
4588
4589 for (i = 0; i < set->nr_hw_queues; i++)
4590 __blk_mq_free_map_and_rqs(set, i);
4591
4592 if (blk_mq_is_shared_tags(set->flags)) {
4593 blk_mq_free_map_and_rqs(set, set->shared_tags,
4594 BLK_MQ_NO_HCTX_IDX);
4595 }
4596
4597 for (j = 0; j < set->nr_maps; j++) {
4598 kfree(set->map[j].mq_map);
4599 set->map[j].mq_map = NULL;
4600 }
4601
4602 kfree(set->tags);
4603 set->tags = NULL;
4604 if (set->flags & BLK_MQ_F_BLOCKING) {
4605 cleanup_srcu_struct(set->srcu);
4606 kfree(set->srcu);
4607 }
4608 }
4609 EXPORT_SYMBOL(blk_mq_free_tag_set);
4610
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4611 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4612 {
4613 struct blk_mq_tag_set *set = q->tag_set;
4614 struct blk_mq_hw_ctx *hctx;
4615 int ret;
4616 unsigned long i;
4617
4618 if (!set)
4619 return -EINVAL;
4620
4621 if (q->nr_requests == nr)
4622 return 0;
4623
4624 blk_mq_freeze_queue(q);
4625 blk_mq_quiesce_queue(q);
4626
4627 ret = 0;
4628 queue_for_each_hw_ctx(q, hctx, i) {
4629 if (!hctx->tags)
4630 continue;
4631 /*
4632 * If we're using an MQ scheduler, just update the scheduler
4633 * queue depth. This is similar to what the old code would do.
4634 */
4635 if (hctx->sched_tags) {
4636 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4637 nr, true);
4638 } else {
4639 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4640 false);
4641 }
4642 if (ret)
4643 break;
4644 if (q->elevator && q->elevator->type->ops.depth_updated)
4645 q->elevator->type->ops.depth_updated(hctx);
4646 }
4647 if (!ret) {
4648 q->nr_requests = nr;
4649 if (blk_mq_is_shared_tags(set->flags)) {
4650 if (q->elevator)
4651 blk_mq_tag_update_sched_shared_tags(q);
4652 else
4653 blk_mq_tag_resize_shared_tags(set, nr);
4654 }
4655 }
4656
4657 blk_mq_unquiesce_queue(q);
4658 blk_mq_unfreeze_queue(q);
4659
4660 return ret;
4661 }
4662
4663 /*
4664 * request_queue and elevator_type pair.
4665 * It is just used by __blk_mq_update_nr_hw_queues to cache
4666 * the elevator_type associated with a request_queue.
4667 */
4668 struct blk_mq_qe_pair {
4669 struct list_head node;
4670 struct request_queue *q;
4671 struct elevator_type *type;
4672 };
4673
4674 /*
4675 * Cache the elevator_type in qe pair list and switch the
4676 * io scheduler to 'none'
4677 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4678 static bool blk_mq_elv_switch_none(struct list_head *head,
4679 struct request_queue *q)
4680 {
4681 struct blk_mq_qe_pair *qe;
4682
4683 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4684 if (!qe)
4685 return false;
4686
4687 /* q->elevator needs protection from ->sysfs_lock */
4688 mutex_lock(&q->sysfs_lock);
4689
4690 /* the check has to be done with holding sysfs_lock */
4691 if (!q->elevator) {
4692 kfree(qe);
4693 goto unlock;
4694 }
4695
4696 INIT_LIST_HEAD(&qe->node);
4697 qe->q = q;
4698 qe->type = q->elevator->type;
4699 /* keep a reference to the elevator module as we'll switch back */
4700 __elevator_get(qe->type);
4701 list_add(&qe->node, head);
4702 elevator_disable(q);
4703 unlock:
4704 mutex_unlock(&q->sysfs_lock);
4705
4706 return true;
4707 }
4708
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4709 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4710 struct request_queue *q)
4711 {
4712 struct blk_mq_qe_pair *qe;
4713
4714 list_for_each_entry(qe, head, node)
4715 if (qe->q == q)
4716 return qe;
4717
4718 return NULL;
4719 }
4720
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4721 static void blk_mq_elv_switch_back(struct list_head *head,
4722 struct request_queue *q)
4723 {
4724 struct blk_mq_qe_pair *qe;
4725 struct elevator_type *t;
4726
4727 qe = blk_lookup_qe_pair(head, q);
4728 if (!qe)
4729 return;
4730 t = qe->type;
4731 list_del(&qe->node);
4732 kfree(qe);
4733
4734 mutex_lock(&q->sysfs_lock);
4735 elevator_switch(q, t);
4736 /* drop the reference acquired in blk_mq_elv_switch_none */
4737 elevator_put(t);
4738 mutex_unlock(&q->sysfs_lock);
4739 }
4740
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4741 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4742 int nr_hw_queues)
4743 {
4744 struct request_queue *q;
4745 LIST_HEAD(head);
4746 int prev_nr_hw_queues = set->nr_hw_queues;
4747 int i;
4748
4749 lockdep_assert_held(&set->tag_list_lock);
4750
4751 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4752 nr_hw_queues = nr_cpu_ids;
4753 if (nr_hw_queues < 1)
4754 return;
4755 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4756 return;
4757
4758 list_for_each_entry(q, &set->tag_list, tag_set_list)
4759 blk_mq_freeze_queue(q);
4760 /*
4761 * Switch IO scheduler to 'none', cleaning up the data associated
4762 * with the previous scheduler. We will switch back once we are done
4763 * updating the new sw to hw queue mappings.
4764 */
4765 list_for_each_entry(q, &set->tag_list, tag_set_list)
4766 if (!blk_mq_elv_switch_none(&head, q))
4767 goto switch_back;
4768
4769 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4770 blk_mq_debugfs_unregister_hctxs(q);
4771 blk_mq_sysfs_unregister_hctxs(q);
4772 }
4773
4774 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4775 goto reregister;
4776
4777 fallback:
4778 blk_mq_update_queue_map(set);
4779 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4780 blk_mq_realloc_hw_ctxs(set, q);
4781 blk_mq_update_poll_flag(q);
4782 if (q->nr_hw_queues != set->nr_hw_queues) {
4783 int i = prev_nr_hw_queues;
4784
4785 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4786 nr_hw_queues, prev_nr_hw_queues);
4787 for (; i < set->nr_hw_queues; i++)
4788 __blk_mq_free_map_and_rqs(set, i);
4789
4790 set->nr_hw_queues = prev_nr_hw_queues;
4791 goto fallback;
4792 }
4793 blk_mq_map_swqueue(q);
4794 }
4795
4796 reregister:
4797 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4798 blk_mq_sysfs_register_hctxs(q);
4799 blk_mq_debugfs_register_hctxs(q);
4800 }
4801
4802 switch_back:
4803 list_for_each_entry(q, &set->tag_list, tag_set_list)
4804 blk_mq_elv_switch_back(&head, q);
4805
4806 list_for_each_entry(q, &set->tag_list, tag_set_list)
4807 blk_mq_unfreeze_queue(q);
4808
4809 /* Free the excess tags when nr_hw_queues shrink. */
4810 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4811 __blk_mq_free_map_and_rqs(set, i);
4812 }
4813
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4814 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4815 {
4816 mutex_lock(&set->tag_list_lock);
4817 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4818 mutex_unlock(&set->tag_list_lock);
4819 }
4820 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4821
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4822 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4823 struct io_comp_batch *iob, unsigned int flags)
4824 {
4825 long state = get_current_state();
4826 int ret;
4827
4828 do {
4829 ret = q->mq_ops->poll(hctx, iob);
4830 if (ret > 0) {
4831 __set_current_state(TASK_RUNNING);
4832 return ret;
4833 }
4834
4835 if (signal_pending_state(state, current))
4836 __set_current_state(TASK_RUNNING);
4837 if (task_is_running(current))
4838 return 1;
4839
4840 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4841 break;
4842 cpu_relax();
4843 } while (!need_resched());
4844
4845 __set_current_state(TASK_RUNNING);
4846 return 0;
4847 }
4848
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4849 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4850 struct io_comp_batch *iob, unsigned int flags)
4851 {
4852 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4853
4854 return blk_hctx_poll(q, hctx, iob, flags);
4855 }
4856
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4857 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4858 unsigned int poll_flags)
4859 {
4860 struct request_queue *q = rq->q;
4861 int ret;
4862
4863 if (!blk_rq_is_poll(rq))
4864 return 0;
4865 if (!percpu_ref_tryget(&q->q_usage_counter))
4866 return 0;
4867
4868 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4869 blk_queue_exit(q);
4870
4871 return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(blk_rq_poll);
4874
blk_mq_rq_cpu(struct request * rq)4875 unsigned int blk_mq_rq_cpu(struct request *rq)
4876 {
4877 return rq->mq_ctx->cpu;
4878 }
4879 EXPORT_SYMBOL(blk_mq_rq_cpu);
4880
blk_mq_cancel_work_sync(struct request_queue * q)4881 void blk_mq_cancel_work_sync(struct request_queue *q)
4882 {
4883 struct blk_mq_hw_ctx *hctx;
4884 unsigned long i;
4885
4886 cancel_delayed_work_sync(&q->requeue_work);
4887
4888 queue_for_each_hw_ctx(q, hctx, i)
4889 cancel_delayed_work_sync(&hctx->run_work);
4890 }
4891
blk_mq_init(void)4892 static int __init blk_mq_init(void)
4893 {
4894 int i;
4895
4896 for_each_possible_cpu(i)
4897 init_llist_head(&per_cpu(blk_cpu_done, i));
4898 for_each_possible_cpu(i)
4899 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4900 __blk_mq_complete_request_remote, NULL);
4901 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4902
4903 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4904 "block/softirq:dead", NULL,
4905 blk_softirq_cpu_dead);
4906 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4907 blk_mq_hctx_notify_dead);
4908 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4909 blk_mq_hctx_notify_online,
4910 blk_mq_hctx_notify_offline);
4911 return 0;
4912 }
4913 subsys_initcall(blk_mq_init);
4914