1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
58 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
63 blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 const int bit = ctx->index_hw[hctx->type];
73
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 const int bit = ctx->index_hw[hctx->type];
82
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87 struct block_device *part;
88 unsigned int inflight[2];
89 };
90
blk_mq_check_inflight(struct request * rq,void * priv)91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 struct mq_inflight *mi = priv;
94
95 if (rq->part && blk_do_io_stat(rq) &&
96 (!mi->part->bd_partno || rq->part == mi->part) &&
97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 mi->inflight[rq_data_dir(rq)]++;
99
100 return true;
101 }
102
blk_mq_in_flight(struct request_queue * q,struct block_device * part)103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
105 {
106 struct mq_inflight mi = { .part = part };
107
108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110 return mi.inflight[0] + mi.inflight[1];
111 }
112
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part };
117
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
121 }
122
blk_freeze_queue_start(struct request_queue * q)123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 mutex_unlock(&q->mq_freeze_lock);
129 if (queue_is_mq(q))
130 blk_mq_run_hw_queues(q, false);
131 } else {
132 mutex_unlock(&q->mq_freeze_lock);
133 }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
blk_mq_freeze_queue_wait(struct request_queue * q)137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
145 {
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
148 timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
155 */
blk_freeze_queue(struct request_queue * q)156 void blk_freeze_queue(struct request_queue *q)
157 {
158 /*
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
164 */
165 blk_freeze_queue_start(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
blk_mq_freeze_queue(struct request_queue * q)169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 mutex_lock(&q->mq_freeze_lock);
182 if (force_atomic)
183 q->q_usage_counter.data->force_atomic = true;
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
187 percpu_ref_resurrect(&q->q_usage_counter);
188 wake_up_all(&q->mq_freeze_wq);
189 }
190 mutex_unlock(&q->mq_freeze_lock);
191 }
192
blk_mq_unfreeze_queue(struct request_queue * q)193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 unsigned long flags;
206
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
217 *
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
227 else
228 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234 * @q: request queue.
235 *
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
240 */
blk_mq_quiesce_queue(struct request_queue * q)241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 blk_mq_quiesce_queue_nowait(q);
244 /* nothing to wait for non-mq queues */
245 if (queue_is_mq(q))
246 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
253 *
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
256 */
blk_mq_unquiesce_queue(struct request_queue * q)257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 unsigned long flags;
260 bool run_queue = false;
261
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 ;
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 run_queue = true;
268 }
269 spin_unlock_irqrestore(&q->queue_lock, flags);
270
271 /* dispatch requests which are inserted during quiescing */
272 if (run_queue)
273 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 struct request_queue *q;
280
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
285 }
286 mutex_unlock(&set->tag_list_lock);
287
288 blk_mq_wait_quiesce_done(set);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 struct request_queue *q;
295
296 mutex_lock(&set->tag_list_lock);
297 list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 if (!blk_queue_skip_tagset_quiesce(q))
299 blk_mq_unquiesce_queue(q);
300 }
301 mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
blk_mq_wake_waiters(struct request_queue * q)305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 struct blk_mq_hw_ctx *hctx;
308 unsigned long i;
309
310 queue_for_each_hw_ctx(q, hctx, i)
311 if (blk_mq_hw_queue_mapped(hctx))
312 blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
blk_rq_init(struct request_queue * q,struct request * rq)315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 memset(rq, 0, sizeof(*rq));
318
319 INIT_LIST_HEAD(&rq->queuelist);
320 rq->q = q;
321 rq->__sector = (sector_t) -1;
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->tag = BLK_MQ_NO_TAG;
325 rq->internal_tag = BLK_MQ_NO_TAG;
326 rq->start_time_ns = ktime_get_ns();
327 rq->part = NULL;
328 blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 if (blk_mq_need_time_stamp(rq))
336 rq->start_time_ns = ktime_get_ns();
337 else
338 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 if (blk_queue_rq_alloc_time(rq->q))
342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 else
344 rq->alloc_time_ns = 0;
345 #endif
346 }
347
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 struct blk_mq_tags *tags, unsigned int tag)
350 {
351 struct blk_mq_ctx *ctx = data->ctx;
352 struct blk_mq_hw_ctx *hctx = data->hctx;
353 struct request_queue *q = data->q;
354 struct request *rq = tags->static_rqs[tag];
355
356 rq->q = q;
357 rq->mq_ctx = ctx;
358 rq->mq_hctx = hctx;
359 rq->cmd_flags = data->cmd_flags;
360
361 if (data->flags & BLK_MQ_REQ_PM)
362 data->rq_flags |= RQF_PM;
363 if (blk_queue_io_stat(q))
364 data->rq_flags |= RQF_IO_STAT;
365 rq->rq_flags = data->rq_flags;
366
367 if (data->rq_flags & RQF_SCHED_TAGS) {
368 rq->tag = BLK_MQ_NO_TAG;
369 rq->internal_tag = tag;
370 } else {
371 rq->tag = tag;
372 rq->internal_tag = BLK_MQ_NO_TAG;
373 }
374 rq->timeout = 0;
375
376 rq->part = NULL;
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_USE_SCHED) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (e->type->ops.prepare_request)
399 e->type->ops.prepare_request(rq);
400 }
401
402 return rq;
403 }
404
405 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 unsigned int tag, tag_offset;
409 struct blk_mq_tags *tags;
410 struct request *rq;
411 unsigned long tag_mask;
412 int i, nr = 0;
413
414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 if (unlikely(!tag_mask))
416 return NULL;
417
418 tags = blk_mq_tags_from_data(data);
419 for (i = 0; tag_mask; i++) {
420 if (!(tag_mask & (1UL << i)))
421 continue;
422 tag = tag_offset + i;
423 prefetch(tags->static_rqs[tag]);
424 tag_mask &= ~(1UL << i);
425 rq = blk_mq_rq_ctx_init(data, tags, tag);
426 rq_list_add(data->cached_rq, rq);
427 nr++;
428 }
429 /* caller already holds a reference, add for remainder */
430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 data->nr_tags -= nr;
432
433 return rq_list_pop(data->cached_rq);
434 }
435
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 struct request_queue *q = data->q;
439 u64 alloc_time_ns = 0;
440 struct request *rq;
441 unsigned int tag;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 if (data->cmd_flags & REQ_NOWAIT)
448 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450 retry:
451 data->ctx = blk_mq_get_ctx(q);
452 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
453
454 if (q->elevator) {
455 /*
456 * All requests use scheduler tags when an I/O scheduler is
457 * enabled for the queue.
458 */
459 data->rq_flags |= RQF_SCHED_TAGS;
460
461 /*
462 * Flush/passthrough requests are special and go directly to the
463 * dispatch list.
464 */
465 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
466 !blk_op_is_passthrough(data->cmd_flags)) {
467 struct elevator_mq_ops *ops = &q->elevator->type->ops;
468
469 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
470
471 data->rq_flags |= RQF_USE_SCHED;
472 if (ops->limit_depth)
473 ops->limit_depth(data->cmd_flags, data);
474 }
475 } else {
476 blk_mq_tag_busy(data->hctx);
477 }
478
479 if (data->flags & BLK_MQ_REQ_RESERVED)
480 data->rq_flags |= RQF_RESV;
481
482 /*
483 * Try batched alloc if we want more than 1 tag.
484 */
485 if (data->nr_tags > 1) {
486 rq = __blk_mq_alloc_requests_batch(data);
487 if (rq) {
488 blk_mq_rq_time_init(rq, alloc_time_ns);
489 return rq;
490 }
491 data->nr_tags = 1;
492 }
493
494 /*
495 * Waiting allocations only fail because of an inactive hctx. In that
496 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 * should have migrated us to an online CPU by now.
498 */
499 tag = blk_mq_get_tag(data);
500 if (tag == BLK_MQ_NO_TAG) {
501 if (data->flags & BLK_MQ_REQ_NOWAIT)
502 return NULL;
503 /*
504 * Give up the CPU and sleep for a random short time to
505 * ensure that thread using a realtime scheduling class
506 * are migrated off the CPU, and thus off the hctx that
507 * is going away.
508 */
509 msleep(3);
510 goto retry;
511 }
512
513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 blk_mq_rq_time_init(rq, alloc_time_ns);
515 return rq;
516 }
517
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 struct blk_plug *plug,
520 blk_opf_t opf,
521 blk_mq_req_flags_t flags)
522 {
523 struct blk_mq_alloc_data data = {
524 .q = q,
525 .flags = flags,
526 .cmd_flags = opf,
527 .nr_tags = plug->nr_ios,
528 .cached_rq = &plug->cached_rq,
529 };
530 struct request *rq;
531
532 if (blk_queue_enter(q, flags))
533 return NULL;
534
535 plug->nr_ios = 1;
536
537 rq = __blk_mq_alloc_requests(&data);
538 if (unlikely(!rq))
539 blk_queue_exit(q);
540 return rq;
541 }
542
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 blk_opf_t opf,
545 blk_mq_req_flags_t flags)
546 {
547 struct blk_plug *plug = current->plug;
548 struct request *rq;
549
550 if (!plug)
551 return NULL;
552
553 if (rq_list_empty(plug->cached_rq)) {
554 if (plug->nr_ios == 1)
555 return NULL;
556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 if (!rq)
558 return NULL;
559 } else {
560 rq = rq_list_peek(&plug->cached_rq);
561 if (!rq || rq->q != q)
562 return NULL;
563
564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 return NULL;
566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 return NULL;
568
569 plug->cached_rq = rq_list_next(rq);
570 blk_mq_rq_time_init(rq, 0);
571 }
572
573 rq->cmd_flags = opf;
574 INIT_LIST_HEAD(&rq->queuelist);
575 return rq;
576 }
577
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 blk_mq_req_flags_t flags)
580 {
581 struct request *rq;
582
583 rq = blk_mq_alloc_cached_request(q, opf, flags);
584 if (!rq) {
585 struct blk_mq_alloc_data data = {
586 .q = q,
587 .flags = flags,
588 .cmd_flags = opf,
589 .nr_tags = 1,
590 };
591 int ret;
592
593 ret = blk_queue_enter(q, flags);
594 if (ret)
595 return ERR_PTR(ret);
596
597 rq = __blk_mq_alloc_requests(&data);
598 if (!rq)
599 goto out_queue_exit;
600 }
601 rq->__data_len = 0;
602 rq->__sector = (sector_t) -1;
603 rq->bio = rq->biotail = NULL;
604 return rq;
605 out_queue_exit:
606 blk_queue_exit(q);
607 return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 struct blk_mq_alloc_data data = {
615 .q = q,
616 .flags = flags,
617 .cmd_flags = opf,
618 .nr_tags = 1,
619 };
620 u64 alloc_time_ns = 0;
621 struct request *rq;
622 unsigned int cpu;
623 unsigned int tag;
624 int ret;
625
626 /* alloc_time includes depth and tag waits */
627 if (blk_queue_rq_alloc_time(q))
628 alloc_time_ns = ktime_get_ns();
629
630 /*
631 * If the tag allocator sleeps we could get an allocation for a
632 * different hardware context. No need to complicate the low level
633 * allocator for this for the rare use case of a command tied to
634 * a specific queue.
635 */
636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 return ERR_PTR(-EINVAL);
639
640 if (hctx_idx >= q->nr_hw_queues)
641 return ERR_PTR(-EIO);
642
643 ret = blk_queue_enter(q, flags);
644 if (ret)
645 return ERR_PTR(ret);
646
647 /*
648 * Check if the hardware context is actually mapped to anything.
649 * If not tell the caller that it should skip this queue.
650 */
651 ret = -EXDEV;
652 data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 if (!blk_mq_hw_queue_mapped(data.hctx))
654 goto out_queue_exit;
655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 if (cpu >= nr_cpu_ids)
657 goto out_queue_exit;
658 data.ctx = __blk_mq_get_ctx(q, cpu);
659
660 if (q->elevator)
661 data.rq_flags |= RQF_SCHED_TAGS;
662 else
663 blk_mq_tag_busy(data.hctx);
664
665 if (flags & BLK_MQ_REQ_RESERVED)
666 data.rq_flags |= RQF_RESV;
667
668 ret = -EWOULDBLOCK;
669 tag = blk_mq_get_tag(&data);
670 if (tag == BLK_MQ_NO_TAG)
671 goto out_queue_exit;
672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 blk_mq_rq_time_init(rq, alloc_time_ns);
674 rq->__data_len = 0;
675 rq->__sector = (sector_t) -1;
676 rq->bio = rq->biotail = NULL;
677 return rq;
678
679 out_queue_exit:
680 blk_queue_exit(q);
681 return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684
blk_mq_finish_request(struct request * rq)685 static void blk_mq_finish_request(struct request *rq)
686 {
687 struct request_queue *q = rq->q;
688
689 if (rq->rq_flags & RQF_USE_SCHED) {
690 q->elevator->type->ops.finish_request(rq);
691 /*
692 * For postflush request that may need to be
693 * completed twice, we should clear this flag
694 * to avoid double finish_request() on the rq.
695 */
696 rq->rq_flags &= ~RQF_USE_SCHED;
697 }
698 }
699
__blk_mq_free_request(struct request * rq)700 static void __blk_mq_free_request(struct request *rq)
701 {
702 struct request_queue *q = rq->q;
703 struct blk_mq_ctx *ctx = rq->mq_ctx;
704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 const int sched_tag = rq->internal_tag;
706
707 blk_crypto_free_request(rq);
708 blk_pm_mark_last_busy(rq);
709 rq->mq_hctx = NULL;
710
711 if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 __blk_mq_dec_active_requests(hctx);
713
714 if (rq->tag != BLK_MQ_NO_TAG)
715 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 if (sched_tag != BLK_MQ_NO_TAG)
717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 blk_mq_sched_restart(hctx);
719 blk_queue_exit(q);
720 }
721
blk_mq_free_request(struct request * rq)722 void blk_mq_free_request(struct request *rq)
723 {
724 struct request_queue *q = rq->q;
725
726 blk_mq_finish_request(rq);
727
728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 laptop_io_completion(q->disk->bdi);
730
731 rq_qos_done(q, rq);
732
733 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 if (req_ref_put_and_test(rq))
735 __blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738
blk_mq_free_plug_rqs(struct blk_plug * plug)739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 struct request *rq;
742
743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 blk_mq_free_request(rq);
745 }
746
blk_dump_rq_flags(struct request * rq,char * msg)747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 rq->q->disk ? rq->q->disk->disk_name : "?",
751 (__force unsigned long long) rq->cmd_flags);
752
753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
754 (unsigned long long)blk_rq_pos(rq),
755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
757 rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 unsigned int nbytes, blk_status_t error)
763 {
764 if (unlikely(error)) {
765 bio->bi_status = error;
766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 /*
768 * Partial zone append completions cannot be supported as the
769 * BIO fragments may end up not being written sequentially.
770 */
771 if (bio->bi_iter.bi_size != nbytes)
772 bio->bi_status = BLK_STS_IOERR;
773 else
774 bio->bi_iter.bi_sector = rq->__sector;
775 }
776
777 bio_advance(bio, nbytes);
778
779 if (unlikely(rq->rq_flags & RQF_QUIET))
780 bio_set_flag(bio, BIO_QUIET);
781 /* don't actually finish bio if it's part of flush sequence */
782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 bio_endio(bio);
784 }
785
blk_account_io_completion(struct request * req,unsigned int bytes)786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 if (req->part && blk_do_io_stat(req)) {
789 const int sgrp = op_stat_group(req_op(req));
790
791 part_stat_lock();
792 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 part_stat_unlock();
794 }
795 }
796
blk_print_req_error(struct request * req,blk_status_t status)797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 printk_ratelimited(KERN_ERR
800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 "phys_seg %u prio class %u\n",
802 blk_status_to_str(status),
803 req->q->disk ? req->q->disk->disk_name : "?",
804 blk_rq_pos(req), (__force u32)req_op(req),
805 blk_op_str(req_op(req)),
806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 req->nr_phys_segments,
808 IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810
811 /*
812 * Fully end IO on a request. Does not support partial completions, or
813 * errors.
814 */
blk_complete_request(struct request * req)815 static void blk_complete_request(struct request *req)
816 {
817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 int total_bytes = blk_rq_bytes(req);
819 struct bio *bio = req->bio;
820
821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822
823 if (!bio)
824 return;
825
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830
831 /*
832 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 * bio_endio(). Therefore, the keyslot must be released before that.
834 */
835 blk_crypto_rq_put_keyslot(req);
836
837 blk_account_io_completion(req, total_bytes);
838
839 do {
840 struct bio *next = bio->bi_next;
841
842 /* Completion has already been traced */
843 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844
845 if (req_op(req) == REQ_OP_ZONE_APPEND)
846 bio->bi_iter.bi_sector = req->__sector;
847
848 if (!is_flush)
849 bio_endio(bio);
850 bio = next;
851 } while (bio);
852
853 /*
854 * Reset counters so that the request stacking driver
855 * can find how many bytes remain in the request
856 * later.
857 */
858 if (!req->end_io) {
859 req->bio = NULL;
860 req->__data_len = 0;
861 }
862 }
863
864 /**
865 * blk_update_request - Complete multiple bytes without completing the request
866 * @req: the request being processed
867 * @error: block status code
868 * @nr_bytes: number of bytes to complete for @req
869 *
870 * Description:
871 * Ends I/O on a number of bytes attached to @req, but doesn't complete
872 * the request structure even if @req doesn't have leftover.
873 * If @req has leftover, sets it up for the next range of segments.
874 *
875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876 * %false return from this function.
877 *
878 * Note:
879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880 * except in the consistency check at the end of this function.
881 *
882 * Return:
883 * %false - this request doesn't have any more data
884 * %true - this request has more data
885 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)886 bool blk_update_request(struct request *req, blk_status_t error,
887 unsigned int nr_bytes)
888 {
889 int total_bytes;
890
891 trace_block_rq_complete(req, error, nr_bytes);
892
893 if (!req->bio)
894 return false;
895
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 error == BLK_STS_OK)
899 req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901
902 /*
903 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 * bio_endio(). Therefore, the keyslot must be released before that.
905 */
906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 __blk_crypto_rq_put_keyslot(req);
908
909 if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 !(req->rq_flags & RQF_QUIET)) &&
911 !test_bit(GD_DEAD, &req->q->disk->state)) {
912 blk_print_req_error(req, error);
913 trace_block_rq_error(req, error, nr_bytes);
914 }
915
916 blk_account_io_completion(req, nr_bytes);
917
918 total_bytes = 0;
919 while (req->bio) {
920 struct bio *bio = req->bio;
921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922
923 if (bio_bytes == bio->bi_iter.bi_size)
924 req->bio = bio->bi_next;
925
926 /* Completion has already been traced */
927 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 req_bio_endio(req, bio, bio_bytes, error);
929
930 total_bytes += bio_bytes;
931 nr_bytes -= bio_bytes;
932
933 if (!nr_bytes)
934 break;
935 }
936
937 /*
938 * completely done
939 */
940 if (!req->bio) {
941 /*
942 * Reset counters so that the request stacking driver
943 * can find how many bytes remain in the request
944 * later.
945 */
946 req->__data_len = 0;
947 return false;
948 }
949
950 req->__data_len -= total_bytes;
951
952 /* update sector only for requests with clear definition of sector */
953 if (!blk_rq_is_passthrough(req))
954 req->__sector += total_bytes >> 9;
955
956 /* mixed attributes always follow the first bio */
957 if (req->rq_flags & RQF_MIXED_MERGE) {
958 req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 }
961
962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 /*
964 * If total number of sectors is less than the first segment
965 * size, something has gone terribly wrong.
966 */
967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 blk_dump_rq_flags(req, "request botched");
969 req->__data_len = blk_rq_cur_bytes(req);
970 }
971
972 /* recalculate the number of segments */
973 req->nr_phys_segments = blk_recalc_rq_segments(req);
974 }
975
976 return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979
blk_account_io_done(struct request * req,u64 now)980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 trace_block_io_done(req);
983
984 /*
985 * Account IO completion. flush_rq isn't accounted as a
986 * normal IO on queueing nor completion. Accounting the
987 * containing request is enough.
988 */
989 if (blk_do_io_stat(req) && req->part &&
990 !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 const int sgrp = op_stat_group(req_op(req));
992
993 part_stat_lock();
994 update_io_ticks(req->part, jiffies, true);
995 part_stat_inc(req->part, ios[sgrp]);
996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 part_stat_local_dec(req->part,
998 in_flight[op_is_write(req_op(req))]);
999 part_stat_unlock();
1000 }
1001 }
1002
blk_account_io_start(struct request * req)1003 static inline void blk_account_io_start(struct request *req)
1004 {
1005 trace_block_io_start(req);
1006
1007 if (blk_do_io_stat(req)) {
1008 /*
1009 * All non-passthrough requests are created from a bio with one
1010 * exception: when a flush command that is part of a flush sequence
1011 * generated by the state machine in blk-flush.c is cloned onto the
1012 * lower device by dm-multipath we can get here without a bio.
1013 */
1014 if (req->bio)
1015 req->part = req->bio->bi_bdev;
1016 else
1017 req->part = req->q->disk->part0;
1018
1019 part_stat_lock();
1020 update_io_ticks(req->part, jiffies, false);
1021 part_stat_local_inc(req->part,
1022 in_flight[op_is_write(req_op(req))]);
1023 part_stat_unlock();
1024 }
1025 }
1026
__blk_mq_end_request_acct(struct request * rq,u64 now)1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 {
1029 if (rq->rq_flags & RQF_STATS)
1030 blk_stat_add(rq, now);
1031
1032 blk_mq_sched_completed_request(rq, now);
1033 blk_account_io_done(rq, now);
1034 }
1035
__blk_mq_end_request(struct request * rq,blk_status_t error)1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038 if (blk_mq_need_time_stamp(rq))
1039 __blk_mq_end_request_acct(rq, ktime_get_ns());
1040
1041 blk_mq_finish_request(rq);
1042
1043 if (rq->end_io) {
1044 rq_qos_done(rq->q, rq);
1045 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1046 blk_mq_free_request(rq);
1047 } else {
1048 blk_mq_free_request(rq);
1049 }
1050 }
1051 EXPORT_SYMBOL(__blk_mq_end_request);
1052
blk_mq_end_request(struct request * rq,blk_status_t error)1053 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 {
1055 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056 BUG();
1057 __blk_mq_end_request(rq, error);
1058 }
1059 EXPORT_SYMBOL(blk_mq_end_request);
1060
1061 #define TAG_COMP_BATCH 32
1062
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1064 int *tag_array, int nr_tags)
1065 {
1066 struct request_queue *q = hctx->queue;
1067
1068 /*
1069 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1070 * update hctx->nr_active in batch
1071 */
1072 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1073 __blk_mq_sub_active_requests(hctx, nr_tags);
1074
1075 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077 }
1078
blk_mq_end_request_batch(struct io_comp_batch * iob)1079 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080 {
1081 int tags[TAG_COMP_BATCH], nr_tags = 0;
1082 struct blk_mq_hw_ctx *cur_hctx = NULL;
1083 struct request *rq;
1084 u64 now = 0;
1085
1086 if (iob->need_ts)
1087 now = ktime_get_ns();
1088
1089 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090 prefetch(rq->bio);
1091 prefetch(rq->rq_next);
1092
1093 blk_complete_request(rq);
1094 if (iob->need_ts)
1095 __blk_mq_end_request_acct(rq, now);
1096
1097 blk_mq_finish_request(rq);
1098
1099 rq_qos_done(rq->q, rq);
1100
1101 /*
1102 * If end_io handler returns NONE, then it still has
1103 * ownership of the request.
1104 */
1105 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1106 continue;
1107
1108 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109 if (!req_ref_put_and_test(rq))
1110 continue;
1111
1112 blk_crypto_free_request(rq);
1113 blk_pm_mark_last_busy(rq);
1114
1115 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1116 if (cur_hctx)
1117 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118 nr_tags = 0;
1119 cur_hctx = rq->mq_hctx;
1120 }
1121 tags[nr_tags++] = rq->tag;
1122 }
1123
1124 if (nr_tags)
1125 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1126 }
1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1128
blk_complete_reqs(struct llist_head * list)1129 static void blk_complete_reqs(struct llist_head *list)
1130 {
1131 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132 struct request *rq, *next;
1133
1134 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135 rq->q->mq_ops->complete(rq);
1136 }
1137
blk_done_softirq(struct softirq_action * h)1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1139 {
1140 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1141 }
1142
blk_softirq_cpu_dead(unsigned int cpu)1143 static int blk_softirq_cpu_dead(unsigned int cpu)
1144 {
1145 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146 return 0;
1147 }
1148
__blk_mq_complete_request_remote(void * data)1149 static void __blk_mq_complete_request_remote(void *data)
1150 {
1151 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1152 }
1153
blk_mq_complete_need_ipi(struct request * rq)1154 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1155 {
1156 int cpu = raw_smp_processor_id();
1157
1158 if (!IS_ENABLED(CONFIG_SMP) ||
1159 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1160 return false;
1161 /*
1162 * With force threaded interrupts enabled, raising softirq from an SMP
1163 * function call will always result in waking the ksoftirqd thread.
1164 * This is probably worse than completing the request on a different
1165 * cache domain.
1166 */
1167 if (force_irqthreads())
1168 return false;
1169
1170 /* same CPU or cache domain? Complete locally */
1171 if (cpu == rq->mq_ctx->cpu ||
1172 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1174 return false;
1175
1176 /* don't try to IPI to an offline CPU */
1177 return cpu_online(rq->mq_ctx->cpu);
1178 }
1179
blk_mq_complete_send_ipi(struct request * rq)1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 unsigned int cpu;
1183
1184 cpu = rq->mq_ctx->cpu;
1185 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188
blk_mq_raise_softirq(struct request * rq)1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 struct llist_head *list;
1192
1193 preempt_disable();
1194 list = this_cpu_ptr(&blk_cpu_done);
1195 if (llist_add(&rq->ipi_list, list))
1196 raise_softirq(BLOCK_SOFTIRQ);
1197 preempt_enable();
1198 }
1199
blk_mq_complete_request_remote(struct request * rq)1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204 /*
1205 * For request which hctx has only one ctx mapping,
1206 * or a polled request, always complete locally,
1207 * it's pointless to redirect the completion.
1208 */
1209 if ((rq->mq_hctx->nr_ctx == 1 &&
1210 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 rq->cmd_flags & REQ_POLLED)
1212 return false;
1213
1214 if (blk_mq_complete_need_ipi(rq)) {
1215 blk_mq_complete_send_ipi(rq);
1216 return true;
1217 }
1218
1219 if (rq->q->nr_hw_queues == 1) {
1220 blk_mq_raise_softirq(rq);
1221 return true;
1222 }
1223 return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227 /**
1228 * blk_mq_complete_request - end I/O on a request
1229 * @rq: the request being processed
1230 *
1231 * Description:
1232 * Complete a request by scheduling the ->complete_rq operation.
1233 **/
blk_mq_complete_request(struct request * rq)1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 if (!blk_mq_complete_request_remote(rq))
1237 rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241 /**
1242 * blk_mq_start_request - Start processing a request
1243 * @rq: Pointer to request to be started
1244 *
1245 * Function used by device drivers to notify the block layer that a request
1246 * is going to be processed now, so blk layer can do proper initializations
1247 * such as starting the timeout timer.
1248 */
blk_mq_start_request(struct request * rq)1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 struct request_queue *q = rq->q;
1252
1253 trace_block_rq_issue(rq);
1254
1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 rq->io_start_time_ns = ktime_get_ns();
1257 rq->stats_sectors = blk_rq_sectors(rq);
1258 rq->rq_flags |= RQF_STATS;
1259 rq_qos_issue(q, rq);
1260 }
1261
1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264 blk_add_timer(rq);
1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275
1276 /*
1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278 * queues. This is important for md arrays to benefit from merging
1279 * requests.
1280 */
blk_plug_max_rq_count(struct blk_plug * plug)1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 if (plug->multiple_queues)
1284 return BLK_MAX_REQUEST_COUNT * 2;
1285 return BLK_MAX_REQUEST_COUNT;
1286 }
1287
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 struct request *last = rq_list_peek(&plug->mq_list);
1291
1292 if (!plug->rq_count) {
1293 trace_block_plug(rq->q);
1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 (!blk_queue_nomerges(rq->q) &&
1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 blk_mq_flush_plug_list(plug, false);
1298 last = NULL;
1299 trace_block_plug(rq->q);
1300 }
1301
1302 if (!plug->multiple_queues && last && last->q != rq->q)
1303 plug->multiple_queues = true;
1304 /*
1305 * Any request allocated from sched tags can't be issued to
1306 * ->queue_rqs() directly
1307 */
1308 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309 plug->has_elevator = true;
1310 rq->rq_next = NULL;
1311 rq_list_add(&plug->mq_list, rq);
1312 plug->rq_count++;
1313 }
1314
1315 /**
1316 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317 * @rq: request to insert
1318 * @at_head: insert request at head or tail of queue
1319 *
1320 * Description:
1321 * Insert a fully prepared request at the back of the I/O scheduler queue
1322 * for execution. Don't wait for completion.
1323 *
1324 * Note:
1325 * This function will invoke @done directly if the queue is dead.
1326 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330
1331 WARN_ON(irqs_disabled());
1332 WARN_ON(!blk_rq_is_passthrough(rq));
1333
1334 blk_account_io_start(rq);
1335
1336 /*
1337 * As plugging can be enabled for passthrough requests on a zoned
1338 * device, directly accessing the plug instead of using blk_mq_plug()
1339 * should not have any consequences.
1340 */
1341 if (current->plug && !at_head) {
1342 blk_add_rq_to_plug(current->plug, rq);
1343 return;
1344 }
1345
1346 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1347 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1348 }
1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1350
1351 struct blk_rq_wait {
1352 struct completion done;
1353 blk_status_t ret;
1354 };
1355
blk_end_sync_rq(struct request * rq,blk_status_t ret)1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1357 {
1358 struct blk_rq_wait *wait = rq->end_io_data;
1359
1360 wait->ret = ret;
1361 complete(&wait->done);
1362 return RQ_END_IO_NONE;
1363 }
1364
blk_rq_is_poll(struct request * rq)1365 bool blk_rq_is_poll(struct request *rq)
1366 {
1367 if (!rq->mq_hctx)
1368 return false;
1369 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1370 return false;
1371 return true;
1372 }
1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1374
blk_rq_poll_completion(struct request * rq,struct completion * wait)1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1376 {
1377 do {
1378 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1379 cond_resched();
1380 } while (!completion_done(wait));
1381 }
1382
1383 /**
1384 * blk_execute_rq - insert a request into queue for execution
1385 * @rq: request to insert
1386 * @at_head: insert request at head or tail of queue
1387 *
1388 * Description:
1389 * Insert a fully prepared request at the back of the I/O scheduler queue
1390 * for execution and wait for completion.
1391 * Return: The blk_status_t result provided to blk_mq_end_request().
1392 */
blk_execute_rq(struct request * rq,bool at_head)1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1394 {
1395 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1396 struct blk_rq_wait wait = {
1397 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1398 };
1399
1400 WARN_ON(irqs_disabled());
1401 WARN_ON(!blk_rq_is_passthrough(rq));
1402
1403 rq->end_io_data = &wait;
1404 rq->end_io = blk_end_sync_rq;
1405
1406 blk_account_io_start(rq);
1407 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1408 blk_mq_run_hw_queue(hctx, false);
1409
1410 if (blk_rq_is_poll(rq)) {
1411 blk_rq_poll_completion(rq, &wait.done);
1412 } else {
1413 /*
1414 * Prevent hang_check timer from firing at us during very long
1415 * I/O
1416 */
1417 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1418
1419 if (hang_check)
1420 while (!wait_for_completion_io_timeout(&wait.done,
1421 hang_check * (HZ/2)))
1422 ;
1423 else
1424 wait_for_completion_io(&wait.done);
1425 }
1426
1427 return wait.ret;
1428 }
1429 EXPORT_SYMBOL(blk_execute_rq);
1430
__blk_mq_requeue_request(struct request * rq)1431 static void __blk_mq_requeue_request(struct request *rq)
1432 {
1433 struct request_queue *q = rq->q;
1434
1435 blk_mq_put_driver_tag(rq);
1436
1437 trace_block_rq_requeue(rq);
1438 rq_qos_requeue(q, rq);
1439
1440 if (blk_mq_request_started(rq)) {
1441 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1442 rq->rq_flags &= ~RQF_TIMED_OUT;
1443 }
1444 }
1445
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1447 {
1448 struct request_queue *q = rq->q;
1449 unsigned long flags;
1450
1451 __blk_mq_requeue_request(rq);
1452
1453 /* this request will be re-inserted to io scheduler queue */
1454 blk_mq_sched_requeue_request(rq);
1455
1456 spin_lock_irqsave(&q->requeue_lock, flags);
1457 list_add_tail(&rq->queuelist, &q->requeue_list);
1458 spin_unlock_irqrestore(&q->requeue_lock, flags);
1459
1460 if (kick_requeue_list)
1461 blk_mq_kick_requeue_list(q);
1462 }
1463 EXPORT_SYMBOL(blk_mq_requeue_request);
1464
blk_mq_requeue_work(struct work_struct * work)1465 static void blk_mq_requeue_work(struct work_struct *work)
1466 {
1467 struct request_queue *q =
1468 container_of(work, struct request_queue, requeue_work.work);
1469 LIST_HEAD(rq_list);
1470 LIST_HEAD(flush_list);
1471 struct request *rq;
1472
1473 spin_lock_irq(&q->requeue_lock);
1474 list_splice_init(&q->requeue_list, &rq_list);
1475 list_splice_init(&q->flush_list, &flush_list);
1476 spin_unlock_irq(&q->requeue_lock);
1477
1478 while (!list_empty(&rq_list)) {
1479 rq = list_entry(rq_list.next, struct request, queuelist);
1480 /*
1481 * If RQF_DONTPREP ist set, the request has been started by the
1482 * driver already and might have driver-specific data allocated
1483 * already. Insert it into the hctx dispatch list to avoid
1484 * block layer merges for the request.
1485 */
1486 if (rq->rq_flags & RQF_DONTPREP) {
1487 list_del_init(&rq->queuelist);
1488 blk_mq_request_bypass_insert(rq, 0);
1489 } else {
1490 list_del_init(&rq->queuelist);
1491 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1492 }
1493 }
1494
1495 while (!list_empty(&flush_list)) {
1496 rq = list_entry(flush_list.next, struct request, queuelist);
1497 list_del_init(&rq->queuelist);
1498 blk_mq_insert_request(rq, 0);
1499 }
1500
1501 blk_mq_run_hw_queues(q, false);
1502 }
1503
blk_mq_kick_requeue_list(struct request_queue * q)1504 void blk_mq_kick_requeue_list(struct request_queue *q)
1505 {
1506 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1507 }
1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1509
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1511 unsigned long msecs)
1512 {
1513 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1514 msecs_to_jiffies(msecs));
1515 }
1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1517
blk_is_flush_data_rq(struct request * rq)1518 static bool blk_is_flush_data_rq(struct request *rq)
1519 {
1520 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1521 }
1522
blk_mq_rq_inflight(struct request * rq,void * priv)1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525 /*
1526 * If we find a request that isn't idle we know the queue is busy
1527 * as it's checked in the iter.
1528 * Return false to stop the iteration.
1529 *
1530 * In case of queue quiesce, if one flush data request is completed,
1531 * don't count it as inflight given the flush sequence is suspended,
1532 * and the original flush data request is invisible to driver, just
1533 * like other pending requests because of quiesce
1534 */
1535 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1536 blk_is_flush_data_rq(rq) &&
1537 blk_mq_request_completed(rq))) {
1538 bool *busy = priv;
1539
1540 *busy = true;
1541 return false;
1542 }
1543
1544 return true;
1545 }
1546
blk_mq_queue_inflight(struct request_queue * q)1547 bool blk_mq_queue_inflight(struct request_queue *q)
1548 {
1549 bool busy = false;
1550
1551 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1552 return busy;
1553 }
1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1555
blk_mq_rq_timed_out(struct request * req)1556 static void blk_mq_rq_timed_out(struct request *req)
1557 {
1558 req->rq_flags |= RQF_TIMED_OUT;
1559 if (req->q->mq_ops->timeout) {
1560 enum blk_eh_timer_return ret;
1561
1562 ret = req->q->mq_ops->timeout(req);
1563 if (ret == BLK_EH_DONE)
1564 return;
1565 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1566 }
1567
1568 blk_add_timer(req);
1569 }
1570
1571 struct blk_expired_data {
1572 bool has_timedout_rq;
1573 unsigned long next;
1574 unsigned long timeout_start;
1575 };
1576
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1578 {
1579 unsigned long deadline;
1580
1581 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1582 return false;
1583 if (rq->rq_flags & RQF_TIMED_OUT)
1584 return false;
1585
1586 deadline = READ_ONCE(rq->deadline);
1587 if (time_after_eq(expired->timeout_start, deadline))
1588 return true;
1589
1590 if (expired->next == 0)
1591 expired->next = deadline;
1592 else if (time_after(expired->next, deadline))
1593 expired->next = deadline;
1594 return false;
1595 }
1596
blk_mq_put_rq_ref(struct request * rq)1597 void blk_mq_put_rq_ref(struct request *rq)
1598 {
1599 if (is_flush_rq(rq)) {
1600 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1601 blk_mq_free_request(rq);
1602 } else if (req_ref_put_and_test(rq)) {
1603 __blk_mq_free_request(rq);
1604 }
1605 }
1606
blk_mq_check_expired(struct request * rq,void * priv)1607 static bool blk_mq_check_expired(struct request *rq, void *priv)
1608 {
1609 struct blk_expired_data *expired = priv;
1610
1611 /*
1612 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1613 * be reallocated underneath the timeout handler's processing, then
1614 * the expire check is reliable. If the request is not expired, then
1615 * it was completed and reallocated as a new request after returning
1616 * from blk_mq_check_expired().
1617 */
1618 if (blk_mq_req_expired(rq, expired)) {
1619 expired->has_timedout_rq = true;
1620 return false;
1621 }
1622 return true;
1623 }
1624
blk_mq_handle_expired(struct request * rq,void * priv)1625 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1626 {
1627 struct blk_expired_data *expired = priv;
1628
1629 if (blk_mq_req_expired(rq, expired))
1630 blk_mq_rq_timed_out(rq);
1631 return true;
1632 }
1633
blk_mq_timeout_work(struct work_struct * work)1634 static void blk_mq_timeout_work(struct work_struct *work)
1635 {
1636 struct request_queue *q =
1637 container_of(work, struct request_queue, timeout_work);
1638 struct blk_expired_data expired = {
1639 .timeout_start = jiffies,
1640 };
1641 struct blk_mq_hw_ctx *hctx;
1642 unsigned long i;
1643
1644 /* A deadlock might occur if a request is stuck requiring a
1645 * timeout at the same time a queue freeze is waiting
1646 * completion, since the timeout code would not be able to
1647 * acquire the queue reference here.
1648 *
1649 * That's why we don't use blk_queue_enter here; instead, we use
1650 * percpu_ref_tryget directly, because we need to be able to
1651 * obtain a reference even in the short window between the queue
1652 * starting to freeze, by dropping the first reference in
1653 * blk_freeze_queue_start, and the moment the last request is
1654 * consumed, marked by the instant q_usage_counter reaches
1655 * zero.
1656 */
1657 if (!percpu_ref_tryget(&q->q_usage_counter))
1658 return;
1659
1660 /* check if there is any timed-out request */
1661 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1662 if (expired.has_timedout_rq) {
1663 /*
1664 * Before walking tags, we must ensure any submit started
1665 * before the current time has finished. Since the submit
1666 * uses srcu or rcu, wait for a synchronization point to
1667 * ensure all running submits have finished
1668 */
1669 blk_mq_wait_quiesce_done(q->tag_set);
1670
1671 expired.next = 0;
1672 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1673 }
1674
1675 if (expired.next != 0) {
1676 mod_timer(&q->timeout, expired.next);
1677 } else {
1678 /*
1679 * Request timeouts are handled as a forward rolling timer. If
1680 * we end up here it means that no requests are pending and
1681 * also that no request has been pending for a while. Mark
1682 * each hctx as idle.
1683 */
1684 queue_for_each_hw_ctx(q, hctx, i) {
1685 /* the hctx may be unmapped, so check it here */
1686 if (blk_mq_hw_queue_mapped(hctx))
1687 blk_mq_tag_idle(hctx);
1688 }
1689 }
1690 blk_queue_exit(q);
1691 }
1692
1693 struct flush_busy_ctx_data {
1694 struct blk_mq_hw_ctx *hctx;
1695 struct list_head *list;
1696 };
1697
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1699 {
1700 struct flush_busy_ctx_data *flush_data = data;
1701 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1702 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1703 enum hctx_type type = hctx->type;
1704
1705 spin_lock(&ctx->lock);
1706 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1707 sbitmap_clear_bit(sb, bitnr);
1708 spin_unlock(&ctx->lock);
1709 return true;
1710 }
1711
1712 /*
1713 * Process software queues that have been marked busy, splicing them
1714 * to the for-dispatch
1715 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1717 {
1718 struct flush_busy_ctx_data data = {
1719 .hctx = hctx,
1720 .list = list,
1721 };
1722
1723 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1724 }
1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1726
1727 struct dispatch_rq_data {
1728 struct blk_mq_hw_ctx *hctx;
1729 struct request *rq;
1730 };
1731
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1733 void *data)
1734 {
1735 struct dispatch_rq_data *dispatch_data = data;
1736 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1737 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1738 enum hctx_type type = hctx->type;
1739
1740 spin_lock(&ctx->lock);
1741 if (!list_empty(&ctx->rq_lists[type])) {
1742 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1743 list_del_init(&dispatch_data->rq->queuelist);
1744 if (list_empty(&ctx->rq_lists[type]))
1745 sbitmap_clear_bit(sb, bitnr);
1746 }
1747 spin_unlock(&ctx->lock);
1748
1749 return !dispatch_data->rq;
1750 }
1751
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1753 struct blk_mq_ctx *start)
1754 {
1755 unsigned off = start ? start->index_hw[hctx->type] : 0;
1756 struct dispatch_rq_data data = {
1757 .hctx = hctx,
1758 .rq = NULL,
1759 };
1760
1761 __sbitmap_for_each_set(&hctx->ctx_map, off,
1762 dispatch_rq_from_ctx, &data);
1763
1764 return data.rq;
1765 }
1766
__blk_mq_alloc_driver_tag(struct request * rq)1767 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1768 {
1769 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1770 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1771 int tag;
1772
1773 blk_mq_tag_busy(rq->mq_hctx);
1774
1775 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1776 bt = &rq->mq_hctx->tags->breserved_tags;
1777 tag_offset = 0;
1778 } else {
1779 if (!hctx_may_queue(rq->mq_hctx, bt))
1780 return false;
1781 }
1782
1783 tag = __sbitmap_queue_get(bt);
1784 if (tag == BLK_MQ_NO_TAG)
1785 return false;
1786
1787 rq->tag = tag + tag_offset;
1788 return true;
1789 }
1790
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1791 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1792 {
1793 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1794 return false;
1795
1796 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1797 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1798 rq->rq_flags |= RQF_MQ_INFLIGHT;
1799 __blk_mq_inc_active_requests(hctx);
1800 }
1801 hctx->tags->rqs[rq->tag] = rq;
1802 return true;
1803 }
1804
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1805 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1806 int flags, void *key)
1807 {
1808 struct blk_mq_hw_ctx *hctx;
1809
1810 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1811
1812 spin_lock(&hctx->dispatch_wait_lock);
1813 if (!list_empty(&wait->entry)) {
1814 struct sbitmap_queue *sbq;
1815
1816 list_del_init(&wait->entry);
1817 sbq = &hctx->tags->bitmap_tags;
1818 atomic_dec(&sbq->ws_active);
1819 }
1820 spin_unlock(&hctx->dispatch_wait_lock);
1821
1822 blk_mq_run_hw_queue(hctx, true);
1823 return 1;
1824 }
1825
1826 /*
1827 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1828 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1829 * restart. For both cases, take care to check the condition again after
1830 * marking us as waiting.
1831 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1832 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1833 struct request *rq)
1834 {
1835 struct sbitmap_queue *sbq;
1836 struct wait_queue_head *wq;
1837 wait_queue_entry_t *wait;
1838 bool ret;
1839
1840 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1841 !(blk_mq_is_shared_tags(hctx->flags))) {
1842 blk_mq_sched_mark_restart_hctx(hctx);
1843
1844 /*
1845 * It's possible that a tag was freed in the window between the
1846 * allocation failure and adding the hardware queue to the wait
1847 * queue.
1848 *
1849 * Don't clear RESTART here, someone else could have set it.
1850 * At most this will cost an extra queue run.
1851 */
1852 return blk_mq_get_driver_tag(rq);
1853 }
1854
1855 wait = &hctx->dispatch_wait;
1856 if (!list_empty_careful(&wait->entry))
1857 return false;
1858
1859 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1860 sbq = &hctx->tags->breserved_tags;
1861 else
1862 sbq = &hctx->tags->bitmap_tags;
1863 wq = &bt_wait_ptr(sbq, hctx)->wait;
1864
1865 spin_lock_irq(&wq->lock);
1866 spin_lock(&hctx->dispatch_wait_lock);
1867 if (!list_empty(&wait->entry)) {
1868 spin_unlock(&hctx->dispatch_wait_lock);
1869 spin_unlock_irq(&wq->lock);
1870 return false;
1871 }
1872
1873 atomic_inc(&sbq->ws_active);
1874 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1875 __add_wait_queue(wq, wait);
1876
1877 /*
1878 * Add one explicit barrier since blk_mq_get_driver_tag() may
1879 * not imply barrier in case of failure.
1880 *
1881 * Order adding us to wait queue and allocating driver tag.
1882 *
1883 * The pair is the one implied in sbitmap_queue_wake_up() which
1884 * orders clearing sbitmap tag bits and waitqueue_active() in
1885 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1886 *
1887 * Otherwise, re-order of adding wait queue and getting driver tag
1888 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1889 * the waitqueue_active() may not observe us in wait queue.
1890 */
1891 smp_mb();
1892
1893 /*
1894 * It's possible that a tag was freed in the window between the
1895 * allocation failure and adding the hardware queue to the wait
1896 * queue.
1897 */
1898 ret = blk_mq_get_driver_tag(rq);
1899 if (!ret) {
1900 spin_unlock(&hctx->dispatch_wait_lock);
1901 spin_unlock_irq(&wq->lock);
1902 return false;
1903 }
1904
1905 /*
1906 * We got a tag, remove ourselves from the wait queue to ensure
1907 * someone else gets the wakeup.
1908 */
1909 list_del_init(&wait->entry);
1910 atomic_dec(&sbq->ws_active);
1911 spin_unlock(&hctx->dispatch_wait_lock);
1912 spin_unlock_irq(&wq->lock);
1913
1914 return true;
1915 }
1916
1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1919 /*
1920 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1921 * - EWMA is one simple way to compute running average value
1922 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1923 * - take 4 as factor for avoiding to get too small(0) result, and this
1924 * factor doesn't matter because EWMA decreases exponentially
1925 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1926 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1927 {
1928 unsigned int ewma;
1929
1930 ewma = hctx->dispatch_busy;
1931
1932 if (!ewma && !busy)
1933 return;
1934
1935 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1936 if (busy)
1937 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1938 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1939
1940 hctx->dispatch_busy = ewma;
1941 }
1942
1943 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1944
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1945 static void blk_mq_handle_dev_resource(struct request *rq,
1946 struct list_head *list)
1947 {
1948 list_add(&rq->queuelist, list);
1949 __blk_mq_requeue_request(rq);
1950 }
1951
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1952 static void blk_mq_handle_zone_resource(struct request *rq,
1953 struct list_head *zone_list)
1954 {
1955 /*
1956 * If we end up here it is because we cannot dispatch a request to a
1957 * specific zone due to LLD level zone-write locking or other zone
1958 * related resource not being available. In this case, set the request
1959 * aside in zone_list for retrying it later.
1960 */
1961 list_add(&rq->queuelist, zone_list);
1962 __blk_mq_requeue_request(rq);
1963 }
1964
1965 enum prep_dispatch {
1966 PREP_DISPATCH_OK,
1967 PREP_DISPATCH_NO_TAG,
1968 PREP_DISPATCH_NO_BUDGET,
1969 };
1970
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1971 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1972 bool need_budget)
1973 {
1974 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1975 int budget_token = -1;
1976
1977 if (need_budget) {
1978 budget_token = blk_mq_get_dispatch_budget(rq->q);
1979 if (budget_token < 0) {
1980 blk_mq_put_driver_tag(rq);
1981 return PREP_DISPATCH_NO_BUDGET;
1982 }
1983 blk_mq_set_rq_budget_token(rq, budget_token);
1984 }
1985
1986 if (!blk_mq_get_driver_tag(rq)) {
1987 /*
1988 * The initial allocation attempt failed, so we need to
1989 * rerun the hardware queue when a tag is freed. The
1990 * waitqueue takes care of that. If the queue is run
1991 * before we add this entry back on the dispatch list,
1992 * we'll re-run it below.
1993 */
1994 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1995 /*
1996 * All budgets not got from this function will be put
1997 * together during handling partial dispatch
1998 */
1999 if (need_budget)
2000 blk_mq_put_dispatch_budget(rq->q, budget_token);
2001 return PREP_DISPATCH_NO_TAG;
2002 }
2003 }
2004
2005 return PREP_DISPATCH_OK;
2006 }
2007
2008 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2009 static void blk_mq_release_budgets(struct request_queue *q,
2010 struct list_head *list)
2011 {
2012 struct request *rq;
2013
2014 list_for_each_entry(rq, list, queuelist) {
2015 int budget_token = blk_mq_get_rq_budget_token(rq);
2016
2017 if (budget_token >= 0)
2018 blk_mq_put_dispatch_budget(q, budget_token);
2019 }
2020 }
2021
2022 /*
2023 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2024 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2025 * details)
2026 * Attention, we should explicitly call this in unusual cases:
2027 * 1) did not queue everything initially scheduled to queue
2028 * 2) the last attempt to queue a request failed
2029 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2030 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2031 bool from_schedule)
2032 {
2033 if (hctx->queue->mq_ops->commit_rqs && queued) {
2034 trace_block_unplug(hctx->queue, queued, !from_schedule);
2035 hctx->queue->mq_ops->commit_rqs(hctx);
2036 }
2037 }
2038
2039 /*
2040 * Returns true if we did some work AND can potentially do more.
2041 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2042 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2043 unsigned int nr_budgets)
2044 {
2045 enum prep_dispatch prep;
2046 struct request_queue *q = hctx->queue;
2047 struct request *rq;
2048 int queued;
2049 blk_status_t ret = BLK_STS_OK;
2050 LIST_HEAD(zone_list);
2051 bool needs_resource = false;
2052
2053 if (list_empty(list))
2054 return false;
2055
2056 /*
2057 * Now process all the entries, sending them to the driver.
2058 */
2059 queued = 0;
2060 do {
2061 struct blk_mq_queue_data bd;
2062
2063 rq = list_first_entry(list, struct request, queuelist);
2064
2065 WARN_ON_ONCE(hctx != rq->mq_hctx);
2066 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2067 if (prep != PREP_DISPATCH_OK)
2068 break;
2069
2070 list_del_init(&rq->queuelist);
2071
2072 bd.rq = rq;
2073 bd.last = list_empty(list);
2074
2075 /*
2076 * once the request is queued to lld, no need to cover the
2077 * budget any more
2078 */
2079 if (nr_budgets)
2080 nr_budgets--;
2081 ret = q->mq_ops->queue_rq(hctx, &bd);
2082 switch (ret) {
2083 case BLK_STS_OK:
2084 queued++;
2085 break;
2086 case BLK_STS_RESOURCE:
2087 needs_resource = true;
2088 fallthrough;
2089 case BLK_STS_DEV_RESOURCE:
2090 blk_mq_handle_dev_resource(rq, list);
2091 goto out;
2092 case BLK_STS_ZONE_RESOURCE:
2093 /*
2094 * Move the request to zone_list and keep going through
2095 * the dispatch list to find more requests the drive can
2096 * accept.
2097 */
2098 blk_mq_handle_zone_resource(rq, &zone_list);
2099 needs_resource = true;
2100 break;
2101 default:
2102 blk_mq_end_request(rq, ret);
2103 }
2104 } while (!list_empty(list));
2105 out:
2106 if (!list_empty(&zone_list))
2107 list_splice_tail_init(&zone_list, list);
2108
2109 /* If we didn't flush the entire list, we could have told the driver
2110 * there was more coming, but that turned out to be a lie.
2111 */
2112 if (!list_empty(list) || ret != BLK_STS_OK)
2113 blk_mq_commit_rqs(hctx, queued, false);
2114
2115 /*
2116 * Any items that need requeuing? Stuff them into hctx->dispatch,
2117 * that is where we will continue on next queue run.
2118 */
2119 if (!list_empty(list)) {
2120 bool needs_restart;
2121 /* For non-shared tags, the RESTART check will suffice */
2122 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2123 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2124 blk_mq_is_shared_tags(hctx->flags));
2125
2126 if (nr_budgets)
2127 blk_mq_release_budgets(q, list);
2128
2129 spin_lock(&hctx->lock);
2130 list_splice_tail_init(list, &hctx->dispatch);
2131 spin_unlock(&hctx->lock);
2132
2133 /*
2134 * Order adding requests to hctx->dispatch and checking
2135 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2136 * in blk_mq_sched_restart(). Avoid restart code path to
2137 * miss the new added requests to hctx->dispatch, meantime
2138 * SCHED_RESTART is observed here.
2139 */
2140 smp_mb();
2141
2142 /*
2143 * If SCHED_RESTART was set by the caller of this function and
2144 * it is no longer set that means that it was cleared by another
2145 * thread and hence that a queue rerun is needed.
2146 *
2147 * If 'no_tag' is set, that means that we failed getting
2148 * a driver tag with an I/O scheduler attached. If our dispatch
2149 * waitqueue is no longer active, ensure that we run the queue
2150 * AFTER adding our entries back to the list.
2151 *
2152 * If no I/O scheduler has been configured it is possible that
2153 * the hardware queue got stopped and restarted before requests
2154 * were pushed back onto the dispatch list. Rerun the queue to
2155 * avoid starvation. Notes:
2156 * - blk_mq_run_hw_queue() checks whether or not a queue has
2157 * been stopped before rerunning a queue.
2158 * - Some but not all block drivers stop a queue before
2159 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2160 * and dm-rq.
2161 *
2162 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2163 * bit is set, run queue after a delay to avoid IO stalls
2164 * that could otherwise occur if the queue is idle. We'll do
2165 * similar if we couldn't get budget or couldn't lock a zone
2166 * and SCHED_RESTART is set.
2167 */
2168 needs_restart = blk_mq_sched_needs_restart(hctx);
2169 if (prep == PREP_DISPATCH_NO_BUDGET)
2170 needs_resource = true;
2171 if (!needs_restart ||
2172 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2173 blk_mq_run_hw_queue(hctx, true);
2174 else if (needs_resource)
2175 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2176
2177 blk_mq_update_dispatch_busy(hctx, true);
2178 return false;
2179 }
2180
2181 blk_mq_update_dispatch_busy(hctx, false);
2182 return true;
2183 }
2184
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2185 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2186 {
2187 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2188
2189 if (cpu >= nr_cpu_ids)
2190 cpu = cpumask_first(hctx->cpumask);
2191 return cpu;
2192 }
2193
2194 /*
2195 * It'd be great if the workqueue API had a way to pass
2196 * in a mask and had some smarts for more clever placement.
2197 * For now we just round-robin here, switching for every
2198 * BLK_MQ_CPU_WORK_BATCH queued items.
2199 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2201 {
2202 bool tried = false;
2203 int next_cpu = hctx->next_cpu;
2204
2205 if (hctx->queue->nr_hw_queues == 1)
2206 return WORK_CPU_UNBOUND;
2207
2208 if (--hctx->next_cpu_batch <= 0) {
2209 select_cpu:
2210 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2211 cpu_online_mask);
2212 if (next_cpu >= nr_cpu_ids)
2213 next_cpu = blk_mq_first_mapped_cpu(hctx);
2214 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2215 }
2216
2217 /*
2218 * Do unbound schedule if we can't find a online CPU for this hctx,
2219 * and it should only happen in the path of handling CPU DEAD.
2220 */
2221 if (!cpu_online(next_cpu)) {
2222 if (!tried) {
2223 tried = true;
2224 goto select_cpu;
2225 }
2226
2227 /*
2228 * Make sure to re-select CPU next time once after CPUs
2229 * in hctx->cpumask become online again.
2230 */
2231 hctx->next_cpu = next_cpu;
2232 hctx->next_cpu_batch = 1;
2233 return WORK_CPU_UNBOUND;
2234 }
2235
2236 hctx->next_cpu = next_cpu;
2237 return next_cpu;
2238 }
2239
2240 /**
2241 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2242 * @hctx: Pointer to the hardware queue to run.
2243 * @msecs: Milliseconds of delay to wait before running the queue.
2244 *
2245 * Run a hardware queue asynchronously with a delay of @msecs.
2246 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2247 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2248 {
2249 if (unlikely(blk_mq_hctx_stopped(hctx)))
2250 return;
2251 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2252 msecs_to_jiffies(msecs));
2253 }
2254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2255
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2256 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2257 {
2258 bool need_run;
2259
2260 /*
2261 * When queue is quiesced, we may be switching io scheduler, or
2262 * updating nr_hw_queues, or other things, and we can't run queue
2263 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2264 *
2265 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2266 * quiesced.
2267 */
2268 __blk_mq_run_dispatch_ops(hctx->queue, false,
2269 need_run = !blk_queue_quiesced(hctx->queue) &&
2270 blk_mq_hctx_has_pending(hctx));
2271 return need_run;
2272 }
2273
2274 /**
2275 * blk_mq_run_hw_queue - Start to run a hardware queue.
2276 * @hctx: Pointer to the hardware queue to run.
2277 * @async: If we want to run the queue asynchronously.
2278 *
2279 * Check if the request queue is not in a quiesced state and if there are
2280 * pending requests to be sent. If this is true, run the queue to send requests
2281 * to hardware.
2282 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2283 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2284 {
2285 bool need_run;
2286
2287 /*
2288 * We can't run the queue inline with interrupts disabled.
2289 */
2290 WARN_ON_ONCE(!async && in_interrupt());
2291
2292 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2293
2294 need_run = blk_mq_hw_queue_need_run(hctx);
2295 if (!need_run) {
2296 unsigned long flags;
2297
2298 /*
2299 * Synchronize with blk_mq_unquiesce_queue(), because we check
2300 * if hw queue is quiesced locklessly above, we need the use
2301 * ->queue_lock to make sure we see the up-to-date status to
2302 * not miss rerunning the hw queue.
2303 */
2304 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2305 need_run = blk_mq_hw_queue_need_run(hctx);
2306 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2307
2308 if (!need_run)
2309 return;
2310 }
2311
2312 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2313 blk_mq_delay_run_hw_queue(hctx, 0);
2314 return;
2315 }
2316
2317 blk_mq_run_dispatch_ops(hctx->queue,
2318 blk_mq_sched_dispatch_requests(hctx));
2319 }
2320 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2321
2322 /*
2323 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2324 * scheduler.
2325 */
blk_mq_get_sq_hctx(struct request_queue * q)2326 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2327 {
2328 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2329 /*
2330 * If the IO scheduler does not respect hardware queues when
2331 * dispatching, we just don't bother with multiple HW queues and
2332 * dispatch from hctx for the current CPU since running multiple queues
2333 * just causes lock contention inside the scheduler and pointless cache
2334 * bouncing.
2335 */
2336 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2337
2338 if (!blk_mq_hctx_stopped(hctx))
2339 return hctx;
2340 return NULL;
2341 }
2342
2343 /**
2344 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2345 * @q: Pointer to the request queue to run.
2346 * @async: If we want to run the queue asynchronously.
2347 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2348 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2349 {
2350 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2351 unsigned long i;
2352
2353 sq_hctx = NULL;
2354 if (blk_queue_sq_sched(q))
2355 sq_hctx = blk_mq_get_sq_hctx(q);
2356 queue_for_each_hw_ctx(q, hctx, i) {
2357 if (blk_mq_hctx_stopped(hctx))
2358 continue;
2359 /*
2360 * Dispatch from this hctx either if there's no hctx preferred
2361 * by IO scheduler or if it has requests that bypass the
2362 * scheduler.
2363 */
2364 if (!sq_hctx || sq_hctx == hctx ||
2365 !list_empty_careful(&hctx->dispatch))
2366 blk_mq_run_hw_queue(hctx, async);
2367 }
2368 }
2369 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2370
2371 /**
2372 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2373 * @q: Pointer to the request queue to run.
2374 * @msecs: Milliseconds of delay to wait before running the queues.
2375 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2376 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2377 {
2378 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2379 unsigned long i;
2380
2381 sq_hctx = NULL;
2382 if (blk_queue_sq_sched(q))
2383 sq_hctx = blk_mq_get_sq_hctx(q);
2384 queue_for_each_hw_ctx(q, hctx, i) {
2385 if (blk_mq_hctx_stopped(hctx))
2386 continue;
2387 /*
2388 * If there is already a run_work pending, leave the
2389 * pending delay untouched. Otherwise, a hctx can stall
2390 * if another hctx is re-delaying the other's work
2391 * before the work executes.
2392 */
2393 if (delayed_work_pending(&hctx->run_work))
2394 continue;
2395 /*
2396 * Dispatch from this hctx either if there's no hctx preferred
2397 * by IO scheduler or if it has requests that bypass the
2398 * scheduler.
2399 */
2400 if (!sq_hctx || sq_hctx == hctx ||
2401 !list_empty_careful(&hctx->dispatch))
2402 blk_mq_delay_run_hw_queue(hctx, msecs);
2403 }
2404 }
2405 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2406
2407 /*
2408 * This function is often used for pausing .queue_rq() by driver when
2409 * there isn't enough resource or some conditions aren't satisfied, and
2410 * BLK_STS_RESOURCE is usually returned.
2411 *
2412 * We do not guarantee that dispatch can be drained or blocked
2413 * after blk_mq_stop_hw_queue() returns. Please use
2414 * blk_mq_quiesce_queue() for that requirement.
2415 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2416 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2417 {
2418 cancel_delayed_work(&hctx->run_work);
2419
2420 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2421 }
2422 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2423
2424 /*
2425 * This function is often used for pausing .queue_rq() by driver when
2426 * there isn't enough resource or some conditions aren't satisfied, and
2427 * BLK_STS_RESOURCE is usually returned.
2428 *
2429 * We do not guarantee that dispatch can be drained or blocked
2430 * after blk_mq_stop_hw_queues() returns. Please use
2431 * blk_mq_quiesce_queue() for that requirement.
2432 */
blk_mq_stop_hw_queues(struct request_queue * q)2433 void blk_mq_stop_hw_queues(struct request_queue *q)
2434 {
2435 struct blk_mq_hw_ctx *hctx;
2436 unsigned long i;
2437
2438 queue_for_each_hw_ctx(q, hctx, i)
2439 blk_mq_stop_hw_queue(hctx);
2440 }
2441 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2442
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2443 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2444 {
2445 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2446
2447 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2448 }
2449 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2450
blk_mq_start_hw_queues(struct request_queue * q)2451 void blk_mq_start_hw_queues(struct request_queue *q)
2452 {
2453 struct blk_mq_hw_ctx *hctx;
2454 unsigned long i;
2455
2456 queue_for_each_hw_ctx(q, hctx, i)
2457 blk_mq_start_hw_queue(hctx);
2458 }
2459 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2460
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2461 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2462 {
2463 if (!blk_mq_hctx_stopped(hctx))
2464 return;
2465
2466 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2467 /*
2468 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2469 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2470 * list in the subsequent routine.
2471 */
2472 smp_mb__after_atomic();
2473 blk_mq_run_hw_queue(hctx, async);
2474 }
2475 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2476
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2477 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2478 {
2479 struct blk_mq_hw_ctx *hctx;
2480 unsigned long i;
2481
2482 queue_for_each_hw_ctx(q, hctx, i)
2483 blk_mq_start_stopped_hw_queue(hctx, async ||
2484 (hctx->flags & BLK_MQ_F_BLOCKING));
2485 }
2486 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2487
blk_mq_run_work_fn(struct work_struct * work)2488 static void blk_mq_run_work_fn(struct work_struct *work)
2489 {
2490 struct blk_mq_hw_ctx *hctx =
2491 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2492
2493 blk_mq_run_dispatch_ops(hctx->queue,
2494 blk_mq_sched_dispatch_requests(hctx));
2495 }
2496
2497 /**
2498 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2499 * @rq: Pointer to request to be inserted.
2500 * @flags: BLK_MQ_INSERT_*
2501 *
2502 * Should only be used carefully, when the caller knows we want to
2503 * bypass a potential IO scheduler on the target device.
2504 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2505 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2506 {
2507 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2508
2509 spin_lock(&hctx->lock);
2510 if (flags & BLK_MQ_INSERT_AT_HEAD)
2511 list_add(&rq->queuelist, &hctx->dispatch);
2512 else
2513 list_add_tail(&rq->queuelist, &hctx->dispatch);
2514 spin_unlock(&hctx->lock);
2515 }
2516
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2517 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2518 struct blk_mq_ctx *ctx, struct list_head *list,
2519 bool run_queue_async)
2520 {
2521 struct request *rq;
2522 enum hctx_type type = hctx->type;
2523
2524 /*
2525 * Try to issue requests directly if the hw queue isn't busy to save an
2526 * extra enqueue & dequeue to the sw queue.
2527 */
2528 if (!hctx->dispatch_busy && !run_queue_async) {
2529 blk_mq_run_dispatch_ops(hctx->queue,
2530 blk_mq_try_issue_list_directly(hctx, list));
2531 if (list_empty(list))
2532 goto out;
2533 }
2534
2535 /*
2536 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2537 * offline now
2538 */
2539 list_for_each_entry(rq, list, queuelist) {
2540 BUG_ON(rq->mq_ctx != ctx);
2541 trace_block_rq_insert(rq);
2542 if (rq->cmd_flags & REQ_NOWAIT)
2543 run_queue_async = true;
2544 }
2545
2546 spin_lock(&ctx->lock);
2547 list_splice_tail_init(list, &ctx->rq_lists[type]);
2548 blk_mq_hctx_mark_pending(hctx, ctx);
2549 spin_unlock(&ctx->lock);
2550 out:
2551 blk_mq_run_hw_queue(hctx, run_queue_async);
2552 }
2553
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2554 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2555 {
2556 struct request_queue *q = rq->q;
2557 struct blk_mq_ctx *ctx = rq->mq_ctx;
2558 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2559
2560 if (blk_rq_is_passthrough(rq)) {
2561 /*
2562 * Passthrough request have to be added to hctx->dispatch
2563 * directly. The device may be in a situation where it can't
2564 * handle FS request, and always returns BLK_STS_RESOURCE for
2565 * them, which gets them added to hctx->dispatch.
2566 *
2567 * If a passthrough request is required to unblock the queues,
2568 * and it is added to the scheduler queue, there is no chance to
2569 * dispatch it given we prioritize requests in hctx->dispatch.
2570 */
2571 blk_mq_request_bypass_insert(rq, flags);
2572 } else if (req_op(rq) == REQ_OP_FLUSH) {
2573 /*
2574 * Firstly normal IO request is inserted to scheduler queue or
2575 * sw queue, meantime we add flush request to dispatch queue(
2576 * hctx->dispatch) directly and there is at most one in-flight
2577 * flush request for each hw queue, so it doesn't matter to add
2578 * flush request to tail or front of the dispatch queue.
2579 *
2580 * Secondly in case of NCQ, flush request belongs to non-NCQ
2581 * command, and queueing it will fail when there is any
2582 * in-flight normal IO request(NCQ command). When adding flush
2583 * rq to the front of hctx->dispatch, it is easier to introduce
2584 * extra time to flush rq's latency because of S_SCHED_RESTART
2585 * compared with adding to the tail of dispatch queue, then
2586 * chance of flush merge is increased, and less flush requests
2587 * will be issued to controller. It is observed that ~10% time
2588 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2589 * drive when adding flush rq to the front of hctx->dispatch.
2590 *
2591 * Simply queue flush rq to the front of hctx->dispatch so that
2592 * intensive flush workloads can benefit in case of NCQ HW.
2593 */
2594 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2595 } else if (q->elevator) {
2596 LIST_HEAD(list);
2597
2598 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2599
2600 list_add(&rq->queuelist, &list);
2601 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2602 } else {
2603 trace_block_rq_insert(rq);
2604
2605 spin_lock(&ctx->lock);
2606 if (flags & BLK_MQ_INSERT_AT_HEAD)
2607 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2608 else
2609 list_add_tail(&rq->queuelist,
2610 &ctx->rq_lists[hctx->type]);
2611 blk_mq_hctx_mark_pending(hctx, ctx);
2612 spin_unlock(&ctx->lock);
2613 }
2614 }
2615
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2616 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2617 unsigned int nr_segs)
2618 {
2619 int err;
2620
2621 if (bio->bi_opf & REQ_RAHEAD)
2622 rq->cmd_flags |= REQ_FAILFAST_MASK;
2623
2624 rq->__sector = bio->bi_iter.bi_sector;
2625 blk_rq_bio_prep(rq, bio, nr_segs);
2626
2627 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2628 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2629 WARN_ON_ONCE(err);
2630
2631 blk_account_io_start(rq);
2632 }
2633
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2634 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2635 struct request *rq, bool last)
2636 {
2637 struct request_queue *q = rq->q;
2638 struct blk_mq_queue_data bd = {
2639 .rq = rq,
2640 .last = last,
2641 };
2642 blk_status_t ret;
2643
2644 /*
2645 * For OK queue, we are done. For error, caller may kill it.
2646 * Any other error (busy), just add it to our list as we
2647 * previously would have done.
2648 */
2649 ret = q->mq_ops->queue_rq(hctx, &bd);
2650 switch (ret) {
2651 case BLK_STS_OK:
2652 blk_mq_update_dispatch_busy(hctx, false);
2653 break;
2654 case BLK_STS_RESOURCE:
2655 case BLK_STS_DEV_RESOURCE:
2656 blk_mq_update_dispatch_busy(hctx, true);
2657 __blk_mq_requeue_request(rq);
2658 break;
2659 default:
2660 blk_mq_update_dispatch_busy(hctx, false);
2661 break;
2662 }
2663
2664 return ret;
2665 }
2666
blk_mq_get_budget_and_tag(struct request * rq)2667 static bool blk_mq_get_budget_and_tag(struct request *rq)
2668 {
2669 int budget_token;
2670
2671 budget_token = blk_mq_get_dispatch_budget(rq->q);
2672 if (budget_token < 0)
2673 return false;
2674 blk_mq_set_rq_budget_token(rq, budget_token);
2675 if (!blk_mq_get_driver_tag(rq)) {
2676 blk_mq_put_dispatch_budget(rq->q, budget_token);
2677 return false;
2678 }
2679 return true;
2680 }
2681
2682 /**
2683 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2684 * @hctx: Pointer of the associated hardware queue.
2685 * @rq: Pointer to request to be sent.
2686 *
2687 * If the device has enough resources to accept a new request now, send the
2688 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2689 * we can try send it another time in the future. Requests inserted at this
2690 * queue have higher priority.
2691 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2692 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2693 struct request *rq)
2694 {
2695 blk_status_t ret;
2696
2697 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2698 blk_mq_insert_request(rq, 0);
2699 blk_mq_run_hw_queue(hctx, false);
2700 return;
2701 }
2702
2703 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2704 blk_mq_insert_request(rq, 0);
2705 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2706 return;
2707 }
2708
2709 ret = __blk_mq_issue_directly(hctx, rq, true);
2710 switch (ret) {
2711 case BLK_STS_OK:
2712 break;
2713 case BLK_STS_RESOURCE:
2714 case BLK_STS_DEV_RESOURCE:
2715 blk_mq_request_bypass_insert(rq, 0);
2716 blk_mq_run_hw_queue(hctx, false);
2717 break;
2718 default:
2719 blk_mq_end_request(rq, ret);
2720 break;
2721 }
2722 }
2723
blk_mq_request_issue_directly(struct request * rq,bool last)2724 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2725 {
2726 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2727
2728 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2729 blk_mq_insert_request(rq, 0);
2730 blk_mq_run_hw_queue(hctx, false);
2731 return BLK_STS_OK;
2732 }
2733
2734 if (!blk_mq_get_budget_and_tag(rq))
2735 return BLK_STS_RESOURCE;
2736 return __blk_mq_issue_directly(hctx, rq, last);
2737 }
2738
blk_mq_plug_issue_direct(struct blk_plug * plug)2739 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2740 {
2741 struct blk_mq_hw_ctx *hctx = NULL;
2742 struct request *rq;
2743 int queued = 0;
2744 blk_status_t ret = BLK_STS_OK;
2745
2746 while ((rq = rq_list_pop(&plug->mq_list))) {
2747 bool last = rq_list_empty(plug->mq_list);
2748
2749 if (hctx != rq->mq_hctx) {
2750 if (hctx) {
2751 blk_mq_commit_rqs(hctx, queued, false);
2752 queued = 0;
2753 }
2754 hctx = rq->mq_hctx;
2755 }
2756
2757 ret = blk_mq_request_issue_directly(rq, last);
2758 switch (ret) {
2759 case BLK_STS_OK:
2760 queued++;
2761 break;
2762 case BLK_STS_RESOURCE:
2763 case BLK_STS_DEV_RESOURCE:
2764 blk_mq_request_bypass_insert(rq, 0);
2765 blk_mq_run_hw_queue(hctx, false);
2766 goto out;
2767 default:
2768 blk_mq_end_request(rq, ret);
2769 break;
2770 }
2771 }
2772
2773 out:
2774 if (ret != BLK_STS_OK)
2775 blk_mq_commit_rqs(hctx, queued, false);
2776 }
2777
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2778 static void __blk_mq_flush_plug_list(struct request_queue *q,
2779 struct blk_plug *plug)
2780 {
2781 if (blk_queue_quiesced(q))
2782 return;
2783 q->mq_ops->queue_rqs(&plug->mq_list);
2784 }
2785
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2786 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2787 {
2788 struct blk_mq_hw_ctx *this_hctx = NULL;
2789 struct blk_mq_ctx *this_ctx = NULL;
2790 struct request *requeue_list = NULL;
2791 struct request **requeue_lastp = &requeue_list;
2792 unsigned int depth = 0;
2793 bool is_passthrough = false;
2794 LIST_HEAD(list);
2795
2796 do {
2797 struct request *rq = rq_list_pop(&plug->mq_list);
2798
2799 if (!this_hctx) {
2800 this_hctx = rq->mq_hctx;
2801 this_ctx = rq->mq_ctx;
2802 is_passthrough = blk_rq_is_passthrough(rq);
2803 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2804 is_passthrough != blk_rq_is_passthrough(rq)) {
2805 rq_list_add_tail(&requeue_lastp, rq);
2806 continue;
2807 }
2808 list_add(&rq->queuelist, &list);
2809 depth++;
2810 } while (!rq_list_empty(plug->mq_list));
2811
2812 plug->mq_list = requeue_list;
2813 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2814
2815 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2816 /* passthrough requests should never be issued to the I/O scheduler */
2817 if (is_passthrough) {
2818 spin_lock(&this_hctx->lock);
2819 list_splice_tail_init(&list, &this_hctx->dispatch);
2820 spin_unlock(&this_hctx->lock);
2821 blk_mq_run_hw_queue(this_hctx, from_sched);
2822 } else if (this_hctx->queue->elevator) {
2823 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2824 &list, 0);
2825 blk_mq_run_hw_queue(this_hctx, from_sched);
2826 } else {
2827 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2828 }
2829 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2830 }
2831
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2832 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2833 {
2834 struct request *rq;
2835
2836 /*
2837 * We may have been called recursively midway through handling
2838 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2839 * To avoid mq_list changing under our feet, clear rq_count early and
2840 * bail out specifically if rq_count is 0 rather than checking
2841 * whether the mq_list is empty.
2842 */
2843 if (plug->rq_count == 0)
2844 return;
2845 plug->rq_count = 0;
2846
2847 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2848 struct request_queue *q;
2849
2850 rq = rq_list_peek(&plug->mq_list);
2851 q = rq->q;
2852
2853 /*
2854 * Peek first request and see if we have a ->queue_rqs() hook.
2855 * If we do, we can dispatch the whole plug list in one go. We
2856 * already know at this point that all requests belong to the
2857 * same queue, caller must ensure that's the case.
2858 *
2859 * Since we pass off the full list to the driver at this point,
2860 * we do not increment the active request count for the queue.
2861 * Bypass shared tags for now because of that.
2862 */
2863 if (q->mq_ops->queue_rqs &&
2864 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2865 blk_mq_run_dispatch_ops(q,
2866 __blk_mq_flush_plug_list(q, plug));
2867 if (rq_list_empty(plug->mq_list))
2868 return;
2869 }
2870
2871 blk_mq_run_dispatch_ops(q,
2872 blk_mq_plug_issue_direct(plug));
2873 if (rq_list_empty(plug->mq_list))
2874 return;
2875 }
2876
2877 do {
2878 blk_mq_dispatch_plug_list(plug, from_schedule);
2879 } while (!rq_list_empty(plug->mq_list));
2880 }
2881
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2882 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2883 struct list_head *list)
2884 {
2885 int queued = 0;
2886 blk_status_t ret = BLK_STS_OK;
2887
2888 while (!list_empty(list)) {
2889 struct request *rq = list_first_entry(list, struct request,
2890 queuelist);
2891
2892 list_del_init(&rq->queuelist);
2893 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2894 switch (ret) {
2895 case BLK_STS_OK:
2896 queued++;
2897 break;
2898 case BLK_STS_RESOURCE:
2899 case BLK_STS_DEV_RESOURCE:
2900 blk_mq_request_bypass_insert(rq, 0);
2901 if (list_empty(list))
2902 blk_mq_run_hw_queue(hctx, false);
2903 goto out;
2904 default:
2905 blk_mq_end_request(rq, ret);
2906 break;
2907 }
2908 }
2909
2910 out:
2911 if (ret != BLK_STS_OK)
2912 blk_mq_commit_rqs(hctx, queued, false);
2913 }
2914
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2915 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2916 struct bio *bio, unsigned int nr_segs)
2917 {
2918 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2919 if (blk_attempt_plug_merge(q, bio, nr_segs))
2920 return true;
2921 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2922 return true;
2923 }
2924 return false;
2925 }
2926
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2927 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2928 struct blk_plug *plug,
2929 struct bio *bio,
2930 unsigned int nsegs)
2931 {
2932 struct blk_mq_alloc_data data = {
2933 .q = q,
2934 .nr_tags = 1,
2935 .cmd_flags = bio->bi_opf,
2936 };
2937 struct request *rq;
2938
2939 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2940 return NULL;
2941
2942 rq_qos_throttle(q, bio);
2943
2944 if (plug) {
2945 data.nr_tags = plug->nr_ios;
2946 plug->nr_ios = 1;
2947 data.cached_rq = &plug->cached_rq;
2948 }
2949
2950 rq = __blk_mq_alloc_requests(&data);
2951 if (rq)
2952 return rq;
2953 rq_qos_cleanup(q, bio);
2954 if (bio->bi_opf & REQ_NOWAIT)
2955 bio_wouldblock_error(bio);
2956 return NULL;
2957 }
2958
2959 /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2960 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2961 struct bio *bio)
2962 {
2963 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2964 enum hctx_type hctx_type = rq->mq_hctx->type;
2965
2966 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2967
2968 if (type != hctx_type &&
2969 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2970 return false;
2971 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2972 return false;
2973
2974 /*
2975 * If any qos ->throttle() end up blocking, we will have flushed the
2976 * plug and hence killed the cached_rq list as well. Pop this entry
2977 * before we throttle.
2978 */
2979 plug->cached_rq = rq_list_next(rq);
2980 rq_qos_throttle(rq->q, bio);
2981
2982 blk_mq_rq_time_init(rq, 0);
2983 rq->cmd_flags = bio->bi_opf;
2984 INIT_LIST_HEAD(&rq->queuelist);
2985 return true;
2986 }
2987
2988 /**
2989 * blk_mq_submit_bio - Create and send a request to block device.
2990 * @bio: Bio pointer.
2991 *
2992 * Builds up a request structure from @q and @bio and send to the device. The
2993 * request may not be queued directly to hardware if:
2994 * * This request can be merged with another one
2995 * * We want to place request at plug queue for possible future merging
2996 * * There is an IO scheduler active at this queue
2997 *
2998 * It will not queue the request if there is an error with the bio, or at the
2999 * request creation.
3000 */
blk_mq_submit_bio(struct bio * bio)3001 void blk_mq_submit_bio(struct bio *bio)
3002 {
3003 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3004 struct blk_plug *plug = blk_mq_plug(bio);
3005 const int is_sync = op_is_sync(bio->bi_opf);
3006 struct blk_mq_hw_ctx *hctx;
3007 struct request *rq = NULL;
3008 unsigned int nr_segs = 1;
3009 blk_status_t ret;
3010
3011 bio = blk_queue_bounce(bio, q);
3012
3013 if (plug) {
3014 rq = rq_list_peek(&plug->cached_rq);
3015 if (rq && rq->q != q)
3016 rq = NULL;
3017 }
3018 if (rq) {
3019 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3020 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3021 if (!bio)
3022 return;
3023 }
3024 if (!bio_integrity_prep(bio))
3025 return;
3026 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3027 return;
3028 if (blk_mq_can_use_cached_rq(rq, plug, bio))
3029 goto done;
3030 percpu_ref_get(&q->q_usage_counter);
3031 } else {
3032 if (unlikely(bio_queue_enter(bio)))
3033 return;
3034 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3035 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3036 if (!bio)
3037 goto fail;
3038 }
3039 if (!bio_integrity_prep(bio))
3040 goto fail;
3041 }
3042
3043 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3044 if (unlikely(!rq)) {
3045 fail:
3046 blk_queue_exit(q);
3047 return;
3048 }
3049
3050 done:
3051 trace_block_getrq(bio);
3052
3053 rq_qos_track(q, rq, bio);
3054
3055 blk_mq_bio_to_request(rq, bio, nr_segs);
3056
3057 ret = blk_crypto_rq_get_keyslot(rq);
3058 if (ret != BLK_STS_OK) {
3059 bio->bi_status = ret;
3060 bio_endio(bio);
3061 blk_mq_free_request(rq);
3062 return;
3063 }
3064
3065 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3066 return;
3067
3068 if (plug) {
3069 blk_add_rq_to_plug(plug, rq);
3070 return;
3071 }
3072
3073 hctx = rq->mq_hctx;
3074 if ((rq->rq_flags & RQF_USE_SCHED) ||
3075 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3076 blk_mq_insert_request(rq, 0);
3077 blk_mq_run_hw_queue(hctx, true);
3078 } else {
3079 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3080 }
3081 }
3082
3083 #ifdef CONFIG_BLK_MQ_STACKING
3084 /**
3085 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3086 * @rq: the request being queued
3087 */
blk_insert_cloned_request(struct request * rq)3088 blk_status_t blk_insert_cloned_request(struct request *rq)
3089 {
3090 struct request_queue *q = rq->q;
3091 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3092 unsigned int max_segments = blk_rq_get_max_segments(rq);
3093 blk_status_t ret;
3094
3095 if (blk_rq_sectors(rq) > max_sectors) {
3096 /*
3097 * SCSI device does not have a good way to return if
3098 * Write Same/Zero is actually supported. If a device rejects
3099 * a non-read/write command (discard, write same,etc.) the
3100 * low-level device driver will set the relevant queue limit to
3101 * 0 to prevent blk-lib from issuing more of the offending
3102 * operations. Commands queued prior to the queue limit being
3103 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3104 * errors being propagated to upper layers.
3105 */
3106 if (max_sectors == 0)
3107 return BLK_STS_NOTSUPP;
3108
3109 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3110 __func__, blk_rq_sectors(rq), max_sectors);
3111 return BLK_STS_IOERR;
3112 }
3113
3114 /*
3115 * The queue settings related to segment counting may differ from the
3116 * original queue.
3117 */
3118 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3119 if (rq->nr_phys_segments > max_segments) {
3120 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3121 __func__, rq->nr_phys_segments, max_segments);
3122 return BLK_STS_IOERR;
3123 }
3124
3125 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3126 return BLK_STS_IOERR;
3127
3128 ret = blk_crypto_rq_get_keyslot(rq);
3129 if (ret != BLK_STS_OK)
3130 return ret;
3131
3132 blk_account_io_start(rq);
3133
3134 /*
3135 * Since we have a scheduler attached on the top device,
3136 * bypass a potential scheduler on the bottom device for
3137 * insert.
3138 */
3139 blk_mq_run_dispatch_ops(q,
3140 ret = blk_mq_request_issue_directly(rq, true));
3141 if (ret)
3142 blk_account_io_done(rq, ktime_get_ns());
3143 return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3146
3147 /**
3148 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3149 * @rq: the clone request to be cleaned up
3150 *
3151 * Description:
3152 * Free all bios in @rq for a cloned request.
3153 */
blk_rq_unprep_clone(struct request * rq)3154 void blk_rq_unprep_clone(struct request *rq)
3155 {
3156 struct bio *bio;
3157
3158 while ((bio = rq->bio) != NULL) {
3159 rq->bio = bio->bi_next;
3160
3161 bio_put(bio);
3162 }
3163 }
3164 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3165
3166 /**
3167 * blk_rq_prep_clone - Helper function to setup clone request
3168 * @rq: the request to be setup
3169 * @rq_src: original request to be cloned
3170 * @bs: bio_set that bios for clone are allocated from
3171 * @gfp_mask: memory allocation mask for bio
3172 * @bio_ctr: setup function to be called for each clone bio.
3173 * Returns %0 for success, non %0 for failure.
3174 * @data: private data to be passed to @bio_ctr
3175 *
3176 * Description:
3177 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3178 * Also, pages which the original bios are pointing to are not copied
3179 * and the cloned bios just point same pages.
3180 * So cloned bios must be completed before original bios, which means
3181 * the caller must complete @rq before @rq_src.
3182 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3183 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3184 struct bio_set *bs, gfp_t gfp_mask,
3185 int (*bio_ctr)(struct bio *, struct bio *, void *),
3186 void *data)
3187 {
3188 struct bio *bio, *bio_src;
3189
3190 if (!bs)
3191 bs = &fs_bio_set;
3192
3193 __rq_for_each_bio(bio_src, rq_src) {
3194 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3195 bs);
3196 if (!bio)
3197 goto free_and_out;
3198
3199 if (bio_ctr && bio_ctr(bio, bio_src, data))
3200 goto free_and_out;
3201
3202 if (rq->bio) {
3203 rq->biotail->bi_next = bio;
3204 rq->biotail = bio;
3205 } else {
3206 rq->bio = rq->biotail = bio;
3207 }
3208 bio = NULL;
3209 }
3210
3211 /* Copy attributes of the original request to the clone request. */
3212 rq->__sector = blk_rq_pos(rq_src);
3213 rq->__data_len = blk_rq_bytes(rq_src);
3214 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3215 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3216 rq->special_vec = rq_src->special_vec;
3217 }
3218 rq->nr_phys_segments = rq_src->nr_phys_segments;
3219 rq->ioprio = rq_src->ioprio;
3220
3221 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3222 goto free_and_out;
3223
3224 return 0;
3225
3226 free_and_out:
3227 if (bio)
3228 bio_put(bio);
3229 blk_rq_unprep_clone(rq);
3230
3231 return -ENOMEM;
3232 }
3233 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3234 #endif /* CONFIG_BLK_MQ_STACKING */
3235
3236 /*
3237 * Steal bios from a request and add them to a bio list.
3238 * The request must not have been partially completed before.
3239 */
blk_steal_bios(struct bio_list * list,struct request * rq)3240 void blk_steal_bios(struct bio_list *list, struct request *rq)
3241 {
3242 if (rq->bio) {
3243 if (list->tail)
3244 list->tail->bi_next = rq->bio;
3245 else
3246 list->head = rq->bio;
3247 list->tail = rq->biotail;
3248
3249 rq->bio = NULL;
3250 rq->biotail = NULL;
3251 }
3252
3253 rq->__data_len = 0;
3254 }
3255 EXPORT_SYMBOL_GPL(blk_steal_bios);
3256
order_to_size(unsigned int order)3257 static size_t order_to_size(unsigned int order)
3258 {
3259 return (size_t)PAGE_SIZE << order;
3260 }
3261
3262 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3263 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3264 struct blk_mq_tags *tags)
3265 {
3266 struct page *page;
3267 unsigned long flags;
3268
3269 /*
3270 * There is no need to clear mapping if driver tags is not initialized
3271 * or the mapping belongs to the driver tags.
3272 */
3273 if (!drv_tags || drv_tags == tags)
3274 return;
3275
3276 list_for_each_entry(page, &tags->page_list, lru) {
3277 unsigned long start = (unsigned long)page_address(page);
3278 unsigned long end = start + order_to_size(page->private);
3279 int i;
3280
3281 for (i = 0; i < drv_tags->nr_tags; i++) {
3282 struct request *rq = drv_tags->rqs[i];
3283 unsigned long rq_addr = (unsigned long)rq;
3284
3285 if (rq_addr >= start && rq_addr < end) {
3286 WARN_ON_ONCE(req_ref_read(rq) != 0);
3287 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3288 }
3289 }
3290 }
3291
3292 /*
3293 * Wait until all pending iteration is done.
3294 *
3295 * Request reference is cleared and it is guaranteed to be observed
3296 * after the ->lock is released.
3297 */
3298 spin_lock_irqsave(&drv_tags->lock, flags);
3299 spin_unlock_irqrestore(&drv_tags->lock, flags);
3300 }
3301
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3302 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3303 unsigned int hctx_idx)
3304 {
3305 struct blk_mq_tags *drv_tags;
3306 struct page *page;
3307
3308 if (list_empty(&tags->page_list))
3309 return;
3310
3311 if (blk_mq_is_shared_tags(set->flags))
3312 drv_tags = set->shared_tags;
3313 else
3314 drv_tags = set->tags[hctx_idx];
3315
3316 if (tags->static_rqs && set->ops->exit_request) {
3317 int i;
3318
3319 for (i = 0; i < tags->nr_tags; i++) {
3320 struct request *rq = tags->static_rqs[i];
3321
3322 if (!rq)
3323 continue;
3324 set->ops->exit_request(set, rq, hctx_idx);
3325 tags->static_rqs[i] = NULL;
3326 }
3327 }
3328
3329 blk_mq_clear_rq_mapping(drv_tags, tags);
3330
3331 while (!list_empty(&tags->page_list)) {
3332 page = list_first_entry(&tags->page_list, struct page, lru);
3333 list_del_init(&page->lru);
3334 /*
3335 * Remove kmemleak object previously allocated in
3336 * blk_mq_alloc_rqs().
3337 */
3338 kmemleak_free(page_address(page));
3339 __free_pages(page, page->private);
3340 }
3341 }
3342
blk_mq_free_rq_map(struct blk_mq_tags * tags)3343 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3344 {
3345 kfree(tags->rqs);
3346 tags->rqs = NULL;
3347 kfree(tags->static_rqs);
3348 tags->static_rqs = NULL;
3349
3350 blk_mq_free_tags(tags);
3351 }
3352
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3353 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3354 unsigned int hctx_idx)
3355 {
3356 int i;
3357
3358 for (i = 0; i < set->nr_maps; i++) {
3359 unsigned int start = set->map[i].queue_offset;
3360 unsigned int end = start + set->map[i].nr_queues;
3361
3362 if (hctx_idx >= start && hctx_idx < end)
3363 break;
3364 }
3365
3366 if (i >= set->nr_maps)
3367 i = HCTX_TYPE_DEFAULT;
3368
3369 return i;
3370 }
3371
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3372 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3373 unsigned int hctx_idx)
3374 {
3375 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3376
3377 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3378 }
3379
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3380 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3381 unsigned int hctx_idx,
3382 unsigned int nr_tags,
3383 unsigned int reserved_tags)
3384 {
3385 int node = blk_mq_get_hctx_node(set, hctx_idx);
3386 struct blk_mq_tags *tags;
3387
3388 if (node == NUMA_NO_NODE)
3389 node = set->numa_node;
3390
3391 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3392 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3393 if (!tags)
3394 return NULL;
3395
3396 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3397 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3398 node);
3399 if (!tags->rqs)
3400 goto err_free_tags;
3401
3402 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3403 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3404 node);
3405 if (!tags->static_rqs)
3406 goto err_free_rqs;
3407
3408 return tags;
3409
3410 err_free_rqs:
3411 kfree(tags->rqs);
3412 err_free_tags:
3413 blk_mq_free_tags(tags);
3414 return NULL;
3415 }
3416
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3417 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3418 unsigned int hctx_idx, int node)
3419 {
3420 int ret;
3421
3422 if (set->ops->init_request) {
3423 ret = set->ops->init_request(set, rq, hctx_idx, node);
3424 if (ret)
3425 return ret;
3426 }
3427
3428 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3429 return 0;
3430 }
3431
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3432 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3433 struct blk_mq_tags *tags,
3434 unsigned int hctx_idx, unsigned int depth)
3435 {
3436 unsigned int i, j, entries_per_page, max_order = 4;
3437 int node = blk_mq_get_hctx_node(set, hctx_idx);
3438 size_t rq_size, left;
3439
3440 if (node == NUMA_NO_NODE)
3441 node = set->numa_node;
3442
3443 INIT_LIST_HEAD(&tags->page_list);
3444
3445 /*
3446 * rq_size is the size of the request plus driver payload, rounded
3447 * to the cacheline size
3448 */
3449 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3450 cache_line_size());
3451 left = rq_size * depth;
3452
3453 for (i = 0; i < depth; ) {
3454 int this_order = max_order;
3455 struct page *page;
3456 int to_do;
3457 void *p;
3458
3459 while (this_order && left < order_to_size(this_order - 1))
3460 this_order--;
3461
3462 do {
3463 page = alloc_pages_node(node,
3464 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3465 this_order);
3466 if (page)
3467 break;
3468 if (!this_order--)
3469 break;
3470 if (order_to_size(this_order) < rq_size)
3471 break;
3472 } while (1);
3473
3474 if (!page)
3475 goto fail;
3476
3477 page->private = this_order;
3478 list_add_tail(&page->lru, &tags->page_list);
3479
3480 p = page_address(page);
3481 /*
3482 * Allow kmemleak to scan these pages as they contain pointers
3483 * to additional allocations like via ops->init_request().
3484 */
3485 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3486 entries_per_page = order_to_size(this_order) / rq_size;
3487 to_do = min(entries_per_page, depth - i);
3488 left -= to_do * rq_size;
3489 for (j = 0; j < to_do; j++) {
3490 struct request *rq = p;
3491
3492 tags->static_rqs[i] = rq;
3493 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3494 tags->static_rqs[i] = NULL;
3495 goto fail;
3496 }
3497
3498 p += rq_size;
3499 i++;
3500 }
3501 }
3502 return 0;
3503
3504 fail:
3505 blk_mq_free_rqs(set, tags, hctx_idx);
3506 return -ENOMEM;
3507 }
3508
3509 struct rq_iter_data {
3510 struct blk_mq_hw_ctx *hctx;
3511 bool has_rq;
3512 };
3513
blk_mq_has_request(struct request * rq,void * data)3514 static bool blk_mq_has_request(struct request *rq, void *data)
3515 {
3516 struct rq_iter_data *iter_data = data;
3517
3518 if (rq->mq_hctx != iter_data->hctx)
3519 return true;
3520 iter_data->has_rq = true;
3521 return false;
3522 }
3523
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3524 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3525 {
3526 struct blk_mq_tags *tags = hctx->sched_tags ?
3527 hctx->sched_tags : hctx->tags;
3528 struct rq_iter_data data = {
3529 .hctx = hctx,
3530 };
3531
3532 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3533 return data.has_rq;
3534 }
3535
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3536 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3537 struct blk_mq_hw_ctx *hctx)
3538 {
3539 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3540 return false;
3541 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3542 return false;
3543 return true;
3544 }
3545
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3546 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3547 {
3548 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3549 struct blk_mq_hw_ctx, cpuhp_online);
3550
3551 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3552 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3553 return 0;
3554
3555 /*
3556 * Prevent new request from being allocated on the current hctx.
3557 *
3558 * The smp_mb__after_atomic() Pairs with the implied barrier in
3559 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3560 * seen once we return from the tag allocator.
3561 */
3562 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3563 smp_mb__after_atomic();
3564
3565 /*
3566 * Try to grab a reference to the queue and wait for any outstanding
3567 * requests. If we could not grab a reference the queue has been
3568 * frozen and there are no requests.
3569 */
3570 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3571 while (blk_mq_hctx_has_requests(hctx))
3572 msleep(5);
3573 percpu_ref_put(&hctx->queue->q_usage_counter);
3574 }
3575
3576 return 0;
3577 }
3578
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3580 {
3581 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3582 struct blk_mq_hw_ctx, cpuhp_online);
3583
3584 if (cpumask_test_cpu(cpu, hctx->cpumask))
3585 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3586 return 0;
3587 }
3588
3589 /*
3590 * 'cpu' is going away. splice any existing rq_list entries from this
3591 * software queue to the hw queue dispatch list, and ensure that it
3592 * gets run.
3593 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3595 {
3596 struct blk_mq_hw_ctx *hctx;
3597 struct blk_mq_ctx *ctx;
3598 LIST_HEAD(tmp);
3599 enum hctx_type type;
3600
3601 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3602 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3603 return 0;
3604
3605 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3606 type = hctx->type;
3607
3608 spin_lock(&ctx->lock);
3609 if (!list_empty(&ctx->rq_lists[type])) {
3610 list_splice_init(&ctx->rq_lists[type], &tmp);
3611 blk_mq_hctx_clear_pending(hctx, ctx);
3612 }
3613 spin_unlock(&ctx->lock);
3614
3615 if (list_empty(&tmp))
3616 return 0;
3617
3618 spin_lock(&hctx->lock);
3619 list_splice_tail_init(&tmp, &hctx->dispatch);
3620 spin_unlock(&hctx->lock);
3621
3622 blk_mq_run_hw_queue(hctx, true);
3623 return 0;
3624 }
3625
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3627 {
3628 if (!(hctx->flags & BLK_MQ_F_STACKING))
3629 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3630 &hctx->cpuhp_online);
3631 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3632 &hctx->cpuhp_dead);
3633 }
3634
3635 /*
3636 * Before freeing hw queue, clearing the flush request reference in
3637 * tags->rqs[] for avoiding potential UAF.
3638 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3640 unsigned int queue_depth, struct request *flush_rq)
3641 {
3642 int i;
3643 unsigned long flags;
3644
3645 /* The hw queue may not be mapped yet */
3646 if (!tags)
3647 return;
3648
3649 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3650
3651 for (i = 0; i < queue_depth; i++)
3652 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3653
3654 /*
3655 * Wait until all pending iteration is done.
3656 *
3657 * Request reference is cleared and it is guaranteed to be observed
3658 * after the ->lock is released.
3659 */
3660 spin_lock_irqsave(&tags->lock, flags);
3661 spin_unlock_irqrestore(&tags->lock, flags);
3662 }
3663
3664 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3665 static void blk_mq_exit_hctx(struct request_queue *q,
3666 struct blk_mq_tag_set *set,
3667 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3668 {
3669 struct request *flush_rq = hctx->fq->flush_rq;
3670
3671 if (blk_mq_hw_queue_mapped(hctx))
3672 blk_mq_tag_idle(hctx);
3673
3674 if (blk_queue_init_done(q))
3675 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3676 set->queue_depth, flush_rq);
3677 if (set->ops->exit_request)
3678 set->ops->exit_request(set, flush_rq, hctx_idx);
3679
3680 if (set->ops->exit_hctx)
3681 set->ops->exit_hctx(hctx, hctx_idx);
3682
3683 blk_mq_remove_cpuhp(hctx);
3684
3685 xa_erase(&q->hctx_table, hctx_idx);
3686
3687 spin_lock(&q->unused_hctx_lock);
3688 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3689 spin_unlock(&q->unused_hctx_lock);
3690 }
3691
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3692 static void blk_mq_exit_hw_queues(struct request_queue *q,
3693 struct blk_mq_tag_set *set, int nr_queue)
3694 {
3695 struct blk_mq_hw_ctx *hctx;
3696 unsigned long i;
3697
3698 queue_for_each_hw_ctx(q, hctx, i) {
3699 if (i == nr_queue)
3700 break;
3701 blk_mq_exit_hctx(q, set, hctx, i);
3702 }
3703 }
3704
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3705 static int blk_mq_init_hctx(struct request_queue *q,
3706 struct blk_mq_tag_set *set,
3707 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3708 {
3709 hctx->queue_num = hctx_idx;
3710
3711 if (!(hctx->flags & BLK_MQ_F_STACKING))
3712 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3713 &hctx->cpuhp_online);
3714 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3715
3716 hctx->tags = set->tags[hctx_idx];
3717
3718 if (set->ops->init_hctx &&
3719 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3720 goto unregister_cpu_notifier;
3721
3722 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3723 hctx->numa_node))
3724 goto exit_hctx;
3725
3726 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3727 goto exit_flush_rq;
3728
3729 return 0;
3730
3731 exit_flush_rq:
3732 if (set->ops->exit_request)
3733 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3734 exit_hctx:
3735 if (set->ops->exit_hctx)
3736 set->ops->exit_hctx(hctx, hctx_idx);
3737 unregister_cpu_notifier:
3738 blk_mq_remove_cpuhp(hctx);
3739 return -1;
3740 }
3741
3742 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3744 int node)
3745 {
3746 struct blk_mq_hw_ctx *hctx;
3747 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3748
3749 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3750 if (!hctx)
3751 goto fail_alloc_hctx;
3752
3753 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3754 goto free_hctx;
3755
3756 atomic_set(&hctx->nr_active, 0);
3757 if (node == NUMA_NO_NODE)
3758 node = set->numa_node;
3759 hctx->numa_node = node;
3760
3761 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3762 spin_lock_init(&hctx->lock);
3763 INIT_LIST_HEAD(&hctx->dispatch);
3764 hctx->queue = q;
3765 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3766
3767 INIT_LIST_HEAD(&hctx->hctx_list);
3768
3769 /*
3770 * Allocate space for all possible cpus to avoid allocation at
3771 * runtime
3772 */
3773 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3774 gfp, node);
3775 if (!hctx->ctxs)
3776 goto free_cpumask;
3777
3778 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3779 gfp, node, false, false))
3780 goto free_ctxs;
3781 hctx->nr_ctx = 0;
3782
3783 spin_lock_init(&hctx->dispatch_wait_lock);
3784 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3785 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3786
3787 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3788 if (!hctx->fq)
3789 goto free_bitmap;
3790
3791 blk_mq_hctx_kobj_init(hctx);
3792
3793 return hctx;
3794
3795 free_bitmap:
3796 sbitmap_free(&hctx->ctx_map);
3797 free_ctxs:
3798 kfree(hctx->ctxs);
3799 free_cpumask:
3800 free_cpumask_var(hctx->cpumask);
3801 free_hctx:
3802 kfree(hctx);
3803 fail_alloc_hctx:
3804 return NULL;
3805 }
3806
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3807 static void blk_mq_init_cpu_queues(struct request_queue *q,
3808 unsigned int nr_hw_queues)
3809 {
3810 struct blk_mq_tag_set *set = q->tag_set;
3811 unsigned int i, j;
3812
3813 for_each_possible_cpu(i) {
3814 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3815 struct blk_mq_hw_ctx *hctx;
3816 int k;
3817
3818 __ctx->cpu = i;
3819 spin_lock_init(&__ctx->lock);
3820 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3821 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3822
3823 __ctx->queue = q;
3824
3825 /*
3826 * Set local node, IFF we have more than one hw queue. If
3827 * not, we remain on the home node of the device
3828 */
3829 for (j = 0; j < set->nr_maps; j++) {
3830 hctx = blk_mq_map_queue_type(q, j, i);
3831 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3832 hctx->numa_node = cpu_to_node(i);
3833 }
3834 }
3835 }
3836
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3837 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3838 unsigned int hctx_idx,
3839 unsigned int depth)
3840 {
3841 struct blk_mq_tags *tags;
3842 int ret;
3843
3844 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3845 if (!tags)
3846 return NULL;
3847
3848 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3849 if (ret) {
3850 blk_mq_free_rq_map(tags);
3851 return NULL;
3852 }
3853
3854 return tags;
3855 }
3856
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3857 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3858 int hctx_idx)
3859 {
3860 if (blk_mq_is_shared_tags(set->flags)) {
3861 set->tags[hctx_idx] = set->shared_tags;
3862
3863 return true;
3864 }
3865
3866 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3867 set->queue_depth);
3868
3869 return set->tags[hctx_idx];
3870 }
3871
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3872 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3873 struct blk_mq_tags *tags,
3874 unsigned int hctx_idx)
3875 {
3876 if (tags) {
3877 blk_mq_free_rqs(set, tags, hctx_idx);
3878 blk_mq_free_rq_map(tags);
3879 }
3880 }
3881
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3882 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3883 unsigned int hctx_idx)
3884 {
3885 if (!blk_mq_is_shared_tags(set->flags))
3886 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3887
3888 set->tags[hctx_idx] = NULL;
3889 }
3890
blk_mq_map_swqueue(struct request_queue * q)3891 static void blk_mq_map_swqueue(struct request_queue *q)
3892 {
3893 unsigned int j, hctx_idx;
3894 unsigned long i;
3895 struct blk_mq_hw_ctx *hctx;
3896 struct blk_mq_ctx *ctx;
3897 struct blk_mq_tag_set *set = q->tag_set;
3898
3899 queue_for_each_hw_ctx(q, hctx, i) {
3900 cpumask_clear(hctx->cpumask);
3901 hctx->nr_ctx = 0;
3902 hctx->dispatch_from = NULL;
3903 }
3904
3905 /*
3906 * Map software to hardware queues.
3907 *
3908 * If the cpu isn't present, the cpu is mapped to first hctx.
3909 */
3910 for_each_possible_cpu(i) {
3911
3912 ctx = per_cpu_ptr(q->queue_ctx, i);
3913 for (j = 0; j < set->nr_maps; j++) {
3914 if (!set->map[j].nr_queues) {
3915 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3916 HCTX_TYPE_DEFAULT, i);
3917 continue;
3918 }
3919 hctx_idx = set->map[j].mq_map[i];
3920 /* unmapped hw queue can be remapped after CPU topo changed */
3921 if (!set->tags[hctx_idx] &&
3922 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3923 /*
3924 * If tags initialization fail for some hctx,
3925 * that hctx won't be brought online. In this
3926 * case, remap the current ctx to hctx[0] which
3927 * is guaranteed to always have tags allocated
3928 */
3929 set->map[j].mq_map[i] = 0;
3930 }
3931
3932 hctx = blk_mq_map_queue_type(q, j, i);
3933 ctx->hctxs[j] = hctx;
3934 /*
3935 * If the CPU is already set in the mask, then we've
3936 * mapped this one already. This can happen if
3937 * devices share queues across queue maps.
3938 */
3939 if (cpumask_test_cpu(i, hctx->cpumask))
3940 continue;
3941
3942 cpumask_set_cpu(i, hctx->cpumask);
3943 hctx->type = j;
3944 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3945 hctx->ctxs[hctx->nr_ctx++] = ctx;
3946
3947 /*
3948 * If the nr_ctx type overflows, we have exceeded the
3949 * amount of sw queues we can support.
3950 */
3951 BUG_ON(!hctx->nr_ctx);
3952 }
3953
3954 for (; j < HCTX_MAX_TYPES; j++)
3955 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3956 HCTX_TYPE_DEFAULT, i);
3957 }
3958
3959 queue_for_each_hw_ctx(q, hctx, i) {
3960 /*
3961 * If no software queues are mapped to this hardware queue,
3962 * disable it and free the request entries.
3963 */
3964 if (!hctx->nr_ctx) {
3965 /* Never unmap queue 0. We need it as a
3966 * fallback in case of a new remap fails
3967 * allocation
3968 */
3969 if (i)
3970 __blk_mq_free_map_and_rqs(set, i);
3971
3972 hctx->tags = NULL;
3973 continue;
3974 }
3975
3976 hctx->tags = set->tags[i];
3977 WARN_ON(!hctx->tags);
3978
3979 /*
3980 * Set the map size to the number of mapped software queues.
3981 * This is more accurate and more efficient than looping
3982 * over all possibly mapped software queues.
3983 */
3984 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3985
3986 /*
3987 * Initialize batch roundrobin counts
3988 */
3989 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3990 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3991 }
3992 }
3993
3994 /*
3995 * Caller needs to ensure that we're either frozen/quiesced, or that
3996 * the queue isn't live yet.
3997 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3998 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3999 {
4000 struct blk_mq_hw_ctx *hctx;
4001 unsigned long i;
4002
4003 queue_for_each_hw_ctx(q, hctx, i) {
4004 if (shared) {
4005 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4006 } else {
4007 blk_mq_tag_idle(hctx);
4008 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4009 }
4010 }
4011 }
4012
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4013 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4014 bool shared)
4015 {
4016 struct request_queue *q;
4017
4018 lockdep_assert_held(&set->tag_list_lock);
4019
4020 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4021 blk_mq_freeze_queue(q);
4022 queue_set_hctx_shared(q, shared);
4023 blk_mq_unfreeze_queue(q);
4024 }
4025 }
4026
blk_mq_del_queue_tag_set(struct request_queue * q)4027 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4028 {
4029 struct blk_mq_tag_set *set = q->tag_set;
4030
4031 mutex_lock(&set->tag_list_lock);
4032 list_del(&q->tag_set_list);
4033 if (list_is_singular(&set->tag_list)) {
4034 /* just transitioned to unshared */
4035 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4036 /* update existing queue */
4037 blk_mq_update_tag_set_shared(set, false);
4038 }
4039 mutex_unlock(&set->tag_list_lock);
4040 INIT_LIST_HEAD(&q->tag_set_list);
4041 }
4042
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4043 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4044 struct request_queue *q)
4045 {
4046 mutex_lock(&set->tag_list_lock);
4047
4048 /*
4049 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4050 */
4051 if (!list_empty(&set->tag_list) &&
4052 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4053 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4054 /* update existing queue */
4055 blk_mq_update_tag_set_shared(set, true);
4056 }
4057 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4058 queue_set_hctx_shared(q, true);
4059 list_add_tail(&q->tag_set_list, &set->tag_list);
4060
4061 mutex_unlock(&set->tag_list_lock);
4062 }
4063
4064 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4065 static int blk_mq_alloc_ctxs(struct request_queue *q)
4066 {
4067 struct blk_mq_ctxs *ctxs;
4068 int cpu;
4069
4070 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4071 if (!ctxs)
4072 return -ENOMEM;
4073
4074 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4075 if (!ctxs->queue_ctx)
4076 goto fail;
4077
4078 for_each_possible_cpu(cpu) {
4079 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4080 ctx->ctxs = ctxs;
4081 }
4082
4083 q->mq_kobj = &ctxs->kobj;
4084 q->queue_ctx = ctxs->queue_ctx;
4085
4086 return 0;
4087 fail:
4088 kfree(ctxs);
4089 return -ENOMEM;
4090 }
4091
4092 /*
4093 * It is the actual release handler for mq, but we do it from
4094 * request queue's release handler for avoiding use-after-free
4095 * and headache because q->mq_kobj shouldn't have been introduced,
4096 * but we can't group ctx/kctx kobj without it.
4097 */
blk_mq_release(struct request_queue * q)4098 void blk_mq_release(struct request_queue *q)
4099 {
4100 struct blk_mq_hw_ctx *hctx, *next;
4101 unsigned long i;
4102
4103 queue_for_each_hw_ctx(q, hctx, i)
4104 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4105
4106 /* all hctx are in .unused_hctx_list now */
4107 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4108 list_del_init(&hctx->hctx_list);
4109 kobject_put(&hctx->kobj);
4110 }
4111
4112 xa_destroy(&q->hctx_table);
4113
4114 /*
4115 * release .mq_kobj and sw queue's kobject now because
4116 * both share lifetime with request queue.
4117 */
4118 blk_mq_sysfs_deinit(q);
4119 }
4120
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4121 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4122 void *queuedata)
4123 {
4124 struct request_queue *q;
4125 int ret;
4126
4127 q = blk_alloc_queue(set->numa_node);
4128 if (!q)
4129 return ERR_PTR(-ENOMEM);
4130 q->queuedata = queuedata;
4131 ret = blk_mq_init_allocated_queue(set, q);
4132 if (ret) {
4133 blk_put_queue(q);
4134 return ERR_PTR(ret);
4135 }
4136 return q;
4137 }
4138
blk_mq_init_queue(struct blk_mq_tag_set * set)4139 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4140 {
4141 return blk_mq_init_queue_data(set, NULL);
4142 }
4143 EXPORT_SYMBOL(blk_mq_init_queue);
4144
4145 /**
4146 * blk_mq_destroy_queue - shutdown a request queue
4147 * @q: request queue to shutdown
4148 *
4149 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4150 * requests will be failed with -ENODEV. The caller is responsible for dropping
4151 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4152 *
4153 * Context: can sleep
4154 */
blk_mq_destroy_queue(struct request_queue * q)4155 void blk_mq_destroy_queue(struct request_queue *q)
4156 {
4157 WARN_ON_ONCE(!queue_is_mq(q));
4158 WARN_ON_ONCE(blk_queue_registered(q));
4159
4160 might_sleep();
4161
4162 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4163 blk_queue_start_drain(q);
4164 blk_mq_freeze_queue_wait(q);
4165
4166 blk_sync_queue(q);
4167 blk_mq_cancel_work_sync(q);
4168 blk_mq_exit_queue(q);
4169 }
4170 EXPORT_SYMBOL(blk_mq_destroy_queue);
4171
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4172 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4173 struct lock_class_key *lkclass)
4174 {
4175 struct request_queue *q;
4176 struct gendisk *disk;
4177
4178 q = blk_mq_init_queue_data(set, queuedata);
4179 if (IS_ERR(q))
4180 return ERR_CAST(q);
4181
4182 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4183 if (!disk) {
4184 blk_mq_destroy_queue(q);
4185 blk_put_queue(q);
4186 return ERR_PTR(-ENOMEM);
4187 }
4188 set_bit(GD_OWNS_QUEUE, &disk->state);
4189 return disk;
4190 }
4191 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4192
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4193 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4194 struct lock_class_key *lkclass)
4195 {
4196 struct gendisk *disk;
4197
4198 if (!blk_get_queue(q))
4199 return NULL;
4200 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4201 if (!disk)
4202 blk_put_queue(q);
4203 return disk;
4204 }
4205 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4206
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4207 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4208 struct blk_mq_tag_set *set, struct request_queue *q,
4209 int hctx_idx, int node)
4210 {
4211 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4212
4213 /* reuse dead hctx first */
4214 spin_lock(&q->unused_hctx_lock);
4215 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4216 if (tmp->numa_node == node) {
4217 hctx = tmp;
4218 break;
4219 }
4220 }
4221 if (hctx)
4222 list_del_init(&hctx->hctx_list);
4223 spin_unlock(&q->unused_hctx_lock);
4224
4225 if (!hctx)
4226 hctx = blk_mq_alloc_hctx(q, set, node);
4227 if (!hctx)
4228 goto fail;
4229
4230 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4231 goto free_hctx;
4232
4233 return hctx;
4234
4235 free_hctx:
4236 kobject_put(&hctx->kobj);
4237 fail:
4238 return NULL;
4239 }
4240
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4241 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4242 struct request_queue *q)
4243 {
4244 struct blk_mq_hw_ctx *hctx;
4245 unsigned long i, j;
4246
4247 /* protect against switching io scheduler */
4248 mutex_lock(&q->sysfs_lock);
4249 for (i = 0; i < set->nr_hw_queues; i++) {
4250 int old_node;
4251 int node = blk_mq_get_hctx_node(set, i);
4252 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4253
4254 if (old_hctx) {
4255 old_node = old_hctx->numa_node;
4256 blk_mq_exit_hctx(q, set, old_hctx, i);
4257 }
4258
4259 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4260 if (!old_hctx)
4261 break;
4262 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4263 node, old_node);
4264 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4265 WARN_ON_ONCE(!hctx);
4266 }
4267 }
4268 /*
4269 * Increasing nr_hw_queues fails. Free the newly allocated
4270 * hctxs and keep the previous q->nr_hw_queues.
4271 */
4272 if (i != set->nr_hw_queues) {
4273 j = q->nr_hw_queues;
4274 } else {
4275 j = i;
4276 q->nr_hw_queues = set->nr_hw_queues;
4277 }
4278
4279 xa_for_each_start(&q->hctx_table, j, hctx, j)
4280 blk_mq_exit_hctx(q, set, hctx, j);
4281 mutex_unlock(&q->sysfs_lock);
4282 }
4283
blk_mq_update_poll_flag(struct request_queue * q)4284 static void blk_mq_update_poll_flag(struct request_queue *q)
4285 {
4286 struct blk_mq_tag_set *set = q->tag_set;
4287
4288 if (set->nr_maps > HCTX_TYPE_POLL &&
4289 set->map[HCTX_TYPE_POLL].nr_queues)
4290 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4291 else
4292 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4293 }
4294
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4295 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4296 struct request_queue *q)
4297 {
4298 /* mark the queue as mq asap */
4299 q->mq_ops = set->ops;
4300
4301 if (blk_mq_alloc_ctxs(q))
4302 goto err_exit;
4303
4304 /* init q->mq_kobj and sw queues' kobjects */
4305 blk_mq_sysfs_init(q);
4306
4307 INIT_LIST_HEAD(&q->unused_hctx_list);
4308 spin_lock_init(&q->unused_hctx_lock);
4309
4310 xa_init(&q->hctx_table);
4311
4312 blk_mq_realloc_hw_ctxs(set, q);
4313 if (!q->nr_hw_queues)
4314 goto err_hctxs;
4315
4316 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4317 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4318
4319 q->tag_set = set;
4320
4321 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4322 blk_mq_update_poll_flag(q);
4323
4324 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4325 INIT_LIST_HEAD(&q->flush_list);
4326 INIT_LIST_HEAD(&q->requeue_list);
4327 spin_lock_init(&q->requeue_lock);
4328
4329 q->nr_requests = set->queue_depth;
4330
4331 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4332 blk_mq_add_queue_tag_set(set, q);
4333 blk_mq_map_swqueue(q);
4334 return 0;
4335
4336 err_hctxs:
4337 blk_mq_release(q);
4338 err_exit:
4339 q->mq_ops = NULL;
4340 return -ENOMEM;
4341 }
4342 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4343
4344 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4345 void blk_mq_exit_queue(struct request_queue *q)
4346 {
4347 struct blk_mq_tag_set *set = q->tag_set;
4348
4349 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4350 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4351 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4352 blk_mq_del_queue_tag_set(q);
4353 }
4354
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4356 {
4357 int i;
4358
4359 if (blk_mq_is_shared_tags(set->flags)) {
4360 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4361 BLK_MQ_NO_HCTX_IDX,
4362 set->queue_depth);
4363 if (!set->shared_tags)
4364 return -ENOMEM;
4365 }
4366
4367 for (i = 0; i < set->nr_hw_queues; i++) {
4368 if (!__blk_mq_alloc_map_and_rqs(set, i))
4369 goto out_unwind;
4370 cond_resched();
4371 }
4372
4373 return 0;
4374
4375 out_unwind:
4376 while (--i >= 0)
4377 __blk_mq_free_map_and_rqs(set, i);
4378
4379 if (blk_mq_is_shared_tags(set->flags)) {
4380 blk_mq_free_map_and_rqs(set, set->shared_tags,
4381 BLK_MQ_NO_HCTX_IDX);
4382 }
4383
4384 return -ENOMEM;
4385 }
4386
4387 /*
4388 * Allocate the request maps associated with this tag_set. Note that this
4389 * may reduce the depth asked for, if memory is tight. set->queue_depth
4390 * will be updated to reflect the allocated depth.
4391 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4392 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4393 {
4394 unsigned int depth;
4395 int err;
4396
4397 depth = set->queue_depth;
4398 do {
4399 err = __blk_mq_alloc_rq_maps(set);
4400 if (!err)
4401 break;
4402
4403 set->queue_depth >>= 1;
4404 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4405 err = -ENOMEM;
4406 break;
4407 }
4408 } while (set->queue_depth);
4409
4410 if (!set->queue_depth || err) {
4411 pr_err("blk-mq: failed to allocate request map\n");
4412 return -ENOMEM;
4413 }
4414
4415 if (depth != set->queue_depth)
4416 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4417 depth, set->queue_depth);
4418
4419 return 0;
4420 }
4421
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4422 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4423 {
4424 /*
4425 * blk_mq_map_queues() and multiple .map_queues() implementations
4426 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4427 * number of hardware queues.
4428 */
4429 if (set->nr_maps == 1)
4430 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4431
4432 if (set->ops->map_queues && !is_kdump_kernel()) {
4433 int i;
4434
4435 /*
4436 * transport .map_queues is usually done in the following
4437 * way:
4438 *
4439 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4440 * mask = get_cpu_mask(queue)
4441 * for_each_cpu(cpu, mask)
4442 * set->map[x].mq_map[cpu] = queue;
4443 * }
4444 *
4445 * When we need to remap, the table has to be cleared for
4446 * killing stale mapping since one CPU may not be mapped
4447 * to any hw queue.
4448 */
4449 for (i = 0; i < set->nr_maps; i++)
4450 blk_mq_clear_mq_map(&set->map[i]);
4451
4452 set->ops->map_queues(set);
4453 } else {
4454 BUG_ON(set->nr_maps > 1);
4455 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4456 }
4457 }
4458
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4459 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4460 int new_nr_hw_queues)
4461 {
4462 struct blk_mq_tags **new_tags;
4463 int i;
4464
4465 if (set->nr_hw_queues >= new_nr_hw_queues)
4466 goto done;
4467
4468 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4469 GFP_KERNEL, set->numa_node);
4470 if (!new_tags)
4471 return -ENOMEM;
4472
4473 if (set->tags)
4474 memcpy(new_tags, set->tags, set->nr_hw_queues *
4475 sizeof(*set->tags));
4476 kfree(set->tags);
4477 set->tags = new_tags;
4478
4479 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4480 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4481 while (--i >= set->nr_hw_queues)
4482 __blk_mq_free_map_and_rqs(set, i);
4483 return -ENOMEM;
4484 }
4485 cond_resched();
4486 }
4487
4488 done:
4489 set->nr_hw_queues = new_nr_hw_queues;
4490 return 0;
4491 }
4492
4493 /*
4494 * Alloc a tag set to be associated with one or more request queues.
4495 * May fail with EINVAL for various error conditions. May adjust the
4496 * requested depth down, if it's too large. In that case, the set
4497 * value will be stored in set->queue_depth.
4498 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4499 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4500 {
4501 int i, ret;
4502
4503 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4504
4505 if (!set->nr_hw_queues)
4506 return -EINVAL;
4507 if (!set->queue_depth)
4508 return -EINVAL;
4509 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4510 return -EINVAL;
4511
4512 if (!set->ops->queue_rq)
4513 return -EINVAL;
4514
4515 if (!set->ops->get_budget ^ !set->ops->put_budget)
4516 return -EINVAL;
4517
4518 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4519 pr_info("blk-mq: reduced tag depth to %u\n",
4520 BLK_MQ_MAX_DEPTH);
4521 set->queue_depth = BLK_MQ_MAX_DEPTH;
4522 }
4523
4524 if (!set->nr_maps)
4525 set->nr_maps = 1;
4526 else if (set->nr_maps > HCTX_MAX_TYPES)
4527 return -EINVAL;
4528
4529 /*
4530 * If a crashdump is active, then we are potentially in a very
4531 * memory constrained environment. Limit us to 1 queue and
4532 * 64 tags to prevent using too much memory.
4533 */
4534 if (is_kdump_kernel()) {
4535 set->nr_hw_queues = 1;
4536 set->nr_maps = 1;
4537 set->queue_depth = min(64U, set->queue_depth);
4538 }
4539 /*
4540 * There is no use for more h/w queues than cpus if we just have
4541 * a single map
4542 */
4543 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4544 set->nr_hw_queues = nr_cpu_ids;
4545
4546 if (set->flags & BLK_MQ_F_BLOCKING) {
4547 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4548 if (!set->srcu)
4549 return -ENOMEM;
4550 ret = init_srcu_struct(set->srcu);
4551 if (ret)
4552 goto out_free_srcu;
4553 }
4554
4555 ret = -ENOMEM;
4556 set->tags = kcalloc_node(set->nr_hw_queues,
4557 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4558 set->numa_node);
4559 if (!set->tags)
4560 goto out_cleanup_srcu;
4561
4562 for (i = 0; i < set->nr_maps; i++) {
4563 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4564 sizeof(set->map[i].mq_map[0]),
4565 GFP_KERNEL, set->numa_node);
4566 if (!set->map[i].mq_map)
4567 goto out_free_mq_map;
4568 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4569 }
4570
4571 blk_mq_update_queue_map(set);
4572
4573 ret = blk_mq_alloc_set_map_and_rqs(set);
4574 if (ret)
4575 goto out_free_mq_map;
4576
4577 mutex_init(&set->tag_list_lock);
4578 INIT_LIST_HEAD(&set->tag_list);
4579
4580 return 0;
4581
4582 out_free_mq_map:
4583 for (i = 0; i < set->nr_maps; i++) {
4584 kfree(set->map[i].mq_map);
4585 set->map[i].mq_map = NULL;
4586 }
4587 kfree(set->tags);
4588 set->tags = NULL;
4589 out_cleanup_srcu:
4590 if (set->flags & BLK_MQ_F_BLOCKING)
4591 cleanup_srcu_struct(set->srcu);
4592 out_free_srcu:
4593 if (set->flags & BLK_MQ_F_BLOCKING)
4594 kfree(set->srcu);
4595 return ret;
4596 }
4597 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4598
4599 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4600 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4601 const struct blk_mq_ops *ops, unsigned int queue_depth,
4602 unsigned int set_flags)
4603 {
4604 memset(set, 0, sizeof(*set));
4605 set->ops = ops;
4606 set->nr_hw_queues = 1;
4607 set->nr_maps = 1;
4608 set->queue_depth = queue_depth;
4609 set->numa_node = NUMA_NO_NODE;
4610 set->flags = set_flags;
4611 return blk_mq_alloc_tag_set(set);
4612 }
4613 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4614
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4615 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4616 {
4617 int i, j;
4618
4619 for (i = 0; i < set->nr_hw_queues; i++)
4620 __blk_mq_free_map_and_rqs(set, i);
4621
4622 if (blk_mq_is_shared_tags(set->flags)) {
4623 blk_mq_free_map_and_rqs(set, set->shared_tags,
4624 BLK_MQ_NO_HCTX_IDX);
4625 }
4626
4627 for (j = 0; j < set->nr_maps; j++) {
4628 kfree(set->map[j].mq_map);
4629 set->map[j].mq_map = NULL;
4630 }
4631
4632 kfree(set->tags);
4633 set->tags = NULL;
4634 if (set->flags & BLK_MQ_F_BLOCKING) {
4635 cleanup_srcu_struct(set->srcu);
4636 kfree(set->srcu);
4637 }
4638 }
4639 EXPORT_SYMBOL(blk_mq_free_tag_set);
4640
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4641 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4642 {
4643 struct blk_mq_tag_set *set = q->tag_set;
4644 struct blk_mq_hw_ctx *hctx;
4645 int ret;
4646 unsigned long i;
4647
4648 if (!set)
4649 return -EINVAL;
4650
4651 if (q->nr_requests == nr)
4652 return 0;
4653
4654 blk_mq_freeze_queue(q);
4655 blk_mq_quiesce_queue(q);
4656
4657 ret = 0;
4658 queue_for_each_hw_ctx(q, hctx, i) {
4659 if (!hctx->tags)
4660 continue;
4661 /*
4662 * If we're using an MQ scheduler, just update the scheduler
4663 * queue depth. This is similar to what the old code would do.
4664 */
4665 if (hctx->sched_tags) {
4666 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4667 nr, true);
4668 } else {
4669 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4670 false);
4671 }
4672 if (ret)
4673 break;
4674 if (q->elevator && q->elevator->type->ops.depth_updated)
4675 q->elevator->type->ops.depth_updated(hctx);
4676 }
4677 if (!ret) {
4678 q->nr_requests = nr;
4679 if (blk_mq_is_shared_tags(set->flags)) {
4680 if (q->elevator)
4681 blk_mq_tag_update_sched_shared_tags(q);
4682 else
4683 blk_mq_tag_resize_shared_tags(set, nr);
4684 }
4685 }
4686
4687 blk_mq_unquiesce_queue(q);
4688 blk_mq_unfreeze_queue(q);
4689
4690 return ret;
4691 }
4692
4693 /*
4694 * request_queue and elevator_type pair.
4695 * It is just used by __blk_mq_update_nr_hw_queues to cache
4696 * the elevator_type associated with a request_queue.
4697 */
4698 struct blk_mq_qe_pair {
4699 struct list_head node;
4700 struct request_queue *q;
4701 struct elevator_type *type;
4702 };
4703
4704 /*
4705 * Cache the elevator_type in qe pair list and switch the
4706 * io scheduler to 'none'
4707 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4708 static bool blk_mq_elv_switch_none(struct list_head *head,
4709 struct request_queue *q)
4710 {
4711 struct blk_mq_qe_pair *qe;
4712
4713 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4714 if (!qe)
4715 return false;
4716
4717 /* q->elevator needs protection from ->sysfs_lock */
4718 mutex_lock(&q->sysfs_lock);
4719
4720 /* the check has to be done with holding sysfs_lock */
4721 if (!q->elevator) {
4722 kfree(qe);
4723 goto unlock;
4724 }
4725
4726 INIT_LIST_HEAD(&qe->node);
4727 qe->q = q;
4728 qe->type = q->elevator->type;
4729 /* keep a reference to the elevator module as we'll switch back */
4730 __elevator_get(qe->type);
4731 list_add(&qe->node, head);
4732 elevator_disable(q);
4733 unlock:
4734 mutex_unlock(&q->sysfs_lock);
4735
4736 return true;
4737 }
4738
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4739 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4740 struct request_queue *q)
4741 {
4742 struct blk_mq_qe_pair *qe;
4743
4744 list_for_each_entry(qe, head, node)
4745 if (qe->q == q)
4746 return qe;
4747
4748 return NULL;
4749 }
4750
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4751 static void blk_mq_elv_switch_back(struct list_head *head,
4752 struct request_queue *q)
4753 {
4754 struct blk_mq_qe_pair *qe;
4755 struct elevator_type *t;
4756
4757 qe = blk_lookup_qe_pair(head, q);
4758 if (!qe)
4759 return;
4760 t = qe->type;
4761 list_del(&qe->node);
4762 kfree(qe);
4763
4764 mutex_lock(&q->sysfs_lock);
4765 elevator_switch(q, t);
4766 /* drop the reference acquired in blk_mq_elv_switch_none */
4767 elevator_put(t);
4768 mutex_unlock(&q->sysfs_lock);
4769 }
4770
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4771 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4772 int nr_hw_queues)
4773 {
4774 struct request_queue *q;
4775 LIST_HEAD(head);
4776 int prev_nr_hw_queues = set->nr_hw_queues;
4777 int i;
4778
4779 lockdep_assert_held(&set->tag_list_lock);
4780
4781 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4782 nr_hw_queues = nr_cpu_ids;
4783 if (nr_hw_queues < 1)
4784 return;
4785 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4786 return;
4787
4788 list_for_each_entry(q, &set->tag_list, tag_set_list)
4789 blk_mq_freeze_queue(q);
4790 /*
4791 * Switch IO scheduler to 'none', cleaning up the data associated
4792 * with the previous scheduler. We will switch back once we are done
4793 * updating the new sw to hw queue mappings.
4794 */
4795 list_for_each_entry(q, &set->tag_list, tag_set_list)
4796 if (!blk_mq_elv_switch_none(&head, q))
4797 goto switch_back;
4798
4799 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4800 blk_mq_debugfs_unregister_hctxs(q);
4801 blk_mq_sysfs_unregister_hctxs(q);
4802 }
4803
4804 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4805 goto reregister;
4806
4807 fallback:
4808 blk_mq_update_queue_map(set);
4809 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4810 blk_mq_realloc_hw_ctxs(set, q);
4811 blk_mq_update_poll_flag(q);
4812 if (q->nr_hw_queues != set->nr_hw_queues) {
4813 int i = prev_nr_hw_queues;
4814
4815 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4816 nr_hw_queues, prev_nr_hw_queues);
4817 for (; i < set->nr_hw_queues; i++)
4818 __blk_mq_free_map_and_rqs(set, i);
4819
4820 set->nr_hw_queues = prev_nr_hw_queues;
4821 goto fallback;
4822 }
4823 blk_mq_map_swqueue(q);
4824 }
4825
4826 reregister:
4827 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4828 blk_mq_sysfs_register_hctxs(q);
4829 blk_mq_debugfs_register_hctxs(q);
4830 }
4831
4832 switch_back:
4833 list_for_each_entry(q, &set->tag_list, tag_set_list)
4834 blk_mq_elv_switch_back(&head, q);
4835
4836 list_for_each_entry(q, &set->tag_list, tag_set_list)
4837 blk_mq_unfreeze_queue(q);
4838
4839 /* Free the excess tags when nr_hw_queues shrink. */
4840 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4841 __blk_mq_free_map_and_rqs(set, i);
4842 }
4843
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4844 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4845 {
4846 mutex_lock(&set->tag_list_lock);
4847 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4848 mutex_unlock(&set->tag_list_lock);
4849 }
4850 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4851
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4852 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4853 struct io_comp_batch *iob, unsigned int flags)
4854 {
4855 long state = get_current_state();
4856 int ret;
4857
4858 do {
4859 ret = q->mq_ops->poll(hctx, iob);
4860 if (ret > 0) {
4861 __set_current_state(TASK_RUNNING);
4862 return ret;
4863 }
4864
4865 if (signal_pending_state(state, current))
4866 __set_current_state(TASK_RUNNING);
4867 if (task_is_running(current))
4868 return 1;
4869
4870 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4871 break;
4872 cpu_relax();
4873 } while (!need_resched());
4874
4875 __set_current_state(TASK_RUNNING);
4876 return 0;
4877 }
4878
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4879 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4880 struct io_comp_batch *iob, unsigned int flags)
4881 {
4882 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4883
4884 return blk_hctx_poll(q, hctx, iob, flags);
4885 }
4886
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4887 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4888 unsigned int poll_flags)
4889 {
4890 struct request_queue *q = rq->q;
4891 int ret;
4892
4893 if (!blk_rq_is_poll(rq))
4894 return 0;
4895 if (!percpu_ref_tryget(&q->q_usage_counter))
4896 return 0;
4897
4898 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4899 blk_queue_exit(q);
4900
4901 return ret;
4902 }
4903 EXPORT_SYMBOL_GPL(blk_rq_poll);
4904
blk_mq_rq_cpu(struct request * rq)4905 unsigned int blk_mq_rq_cpu(struct request *rq)
4906 {
4907 return rq->mq_ctx->cpu;
4908 }
4909 EXPORT_SYMBOL(blk_mq_rq_cpu);
4910
blk_mq_cancel_work_sync(struct request_queue * q)4911 void blk_mq_cancel_work_sync(struct request_queue *q)
4912 {
4913 struct blk_mq_hw_ctx *hctx;
4914 unsigned long i;
4915
4916 cancel_delayed_work_sync(&q->requeue_work);
4917
4918 queue_for_each_hw_ctx(q, hctx, i)
4919 cancel_delayed_work_sync(&hctx->run_work);
4920 }
4921
blk_mq_init(void)4922 static int __init blk_mq_init(void)
4923 {
4924 int i;
4925
4926 for_each_possible_cpu(i)
4927 init_llist_head(&per_cpu(blk_cpu_done, i));
4928 for_each_possible_cpu(i)
4929 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4930 __blk_mq_complete_request_remote, NULL);
4931 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4932
4933 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4934 "block/softirq:dead", NULL,
4935 blk_softirq_cpu_dead);
4936 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4937 blk_mq_hctx_notify_dead);
4938 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4939 blk_mq_hctx_notify_online,
4940 blk_mq_hctx_notify_offline);
4941 return 0;
4942 }
4943 subsys_initcall(blk_mq_init);
4944