1 /* 2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread 3 * over multiple cachelines to avoid ping-pong between multiple submitters 4 * or submitter and completer. Uses rolling wakeups to avoid falling of 5 * the scaling cliff when we run out of tags and have to start putting 6 * submitters to sleep. 7 * 8 * Uses active queue tracking to support fairer distribution of tags 9 * between multiple submitters when a shared tag map is used. 10 * 11 * Copyright (C) 2013-2014 Jens Axboe 12 */ 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 17 #include <linux/blk-mq.h> 18 #include "blk.h" 19 #include "blk-mq.h" 20 #include "blk-mq-tag.h" 21 22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) 23 { 24 int i; 25 26 for (i = 0; i < bt->map_nr; i++) { 27 struct blk_align_bitmap *bm = &bt->map[i]; 28 int ret; 29 30 ret = find_first_zero_bit(&bm->word, bm->depth); 31 if (ret < bm->depth) 32 return true; 33 } 34 35 return false; 36 } 37 38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 39 { 40 if (!tags) 41 return true; 42 43 return bt_has_free_tags(&tags->bitmap_tags); 44 } 45 46 static inline int bt_index_inc(int index) 47 { 48 return (index + 1) & (BT_WAIT_QUEUES - 1); 49 } 50 51 static inline void bt_index_atomic_inc(atomic_t *index) 52 { 53 int old = atomic_read(index); 54 int new = bt_index_inc(old); 55 atomic_cmpxchg(index, old, new); 56 } 57 58 /* 59 * If a previously inactive queue goes active, bump the active user count. 60 */ 61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 62 { 63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 65 atomic_inc(&hctx->tags->active_queues); 66 67 return true; 68 } 69 70 /* 71 * Wakeup all potentially sleeping on normal (non-reserved) tags 72 */ 73 static void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags) 74 { 75 struct blk_mq_bitmap_tags *bt; 76 int i, wake_index; 77 78 bt = &tags->bitmap_tags; 79 wake_index = atomic_read(&bt->wake_index); 80 for (i = 0; i < BT_WAIT_QUEUES; i++) { 81 struct bt_wait_state *bs = &bt->bs[wake_index]; 82 83 if (waitqueue_active(&bs->wait)) 84 wake_up(&bs->wait); 85 86 wake_index = bt_index_inc(wake_index); 87 } 88 } 89 90 /* 91 * If a previously busy queue goes inactive, potential waiters could now 92 * be allowed to queue. Wake them up and check. 93 */ 94 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 95 { 96 struct blk_mq_tags *tags = hctx->tags; 97 98 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 99 return; 100 101 atomic_dec(&tags->active_queues); 102 103 blk_mq_tag_wakeup_all(tags); 104 } 105 106 /* 107 * For shared tag users, we track the number of currently active users 108 * and attempt to provide a fair share of the tag depth for each of them. 109 */ 110 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_bitmap_tags *bt) 112 { 113 unsigned int depth, users; 114 115 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 116 return true; 117 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 118 return true; 119 120 /* 121 * Don't try dividing an ant 122 */ 123 if (bt->depth == 1) 124 return true; 125 126 users = atomic_read(&hctx->tags->active_queues); 127 if (!users) 128 return true; 129 130 /* 131 * Allow at least some tags 132 */ 133 depth = max((bt->depth + users - 1) / users, 4U); 134 return atomic_read(&hctx->nr_active) < depth; 135 } 136 137 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag) 138 { 139 int tag, org_last_tag, end; 140 141 org_last_tag = last_tag; 142 end = bm->depth; 143 do { 144 restart: 145 tag = find_next_zero_bit(&bm->word, end, last_tag); 146 if (unlikely(tag >= end)) { 147 /* 148 * We started with an offset, start from 0 to 149 * exhaust the map. 150 */ 151 if (org_last_tag && last_tag) { 152 end = last_tag; 153 last_tag = 0; 154 goto restart; 155 } 156 return -1; 157 } 158 last_tag = tag + 1; 159 } while (test_and_set_bit_lock(tag, &bm->word)); 160 161 return tag; 162 } 163 164 /* 165 * Straight forward bitmap tag implementation, where each bit is a tag 166 * (cleared == free, and set == busy). The small twist is using per-cpu 167 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue 168 * contexts. This enables us to drastically limit the space searched, 169 * without dirtying an extra shared cacheline like we would if we stored 170 * the cache value inside the shared blk_mq_bitmap_tags structure. On top 171 * of that, each word of tags is in a separate cacheline. This means that 172 * multiple users will tend to stick to different cachelines, at least 173 * until the map is exhausted. 174 */ 175 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, 176 unsigned int *tag_cache) 177 { 178 unsigned int last_tag, org_last_tag; 179 int index, i, tag; 180 181 if (!hctx_may_queue(hctx, bt)) 182 return -1; 183 184 last_tag = org_last_tag = *tag_cache; 185 index = TAG_TO_INDEX(bt, last_tag); 186 187 for (i = 0; i < bt->map_nr; i++) { 188 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag)); 189 if (tag != -1) { 190 tag += (index << bt->bits_per_word); 191 goto done; 192 } 193 194 last_tag = 0; 195 if (++index >= bt->map_nr) 196 index = 0; 197 } 198 199 *tag_cache = 0; 200 return -1; 201 202 /* 203 * Only update the cache from the allocation path, if we ended 204 * up using the specific cached tag. 205 */ 206 done: 207 if (tag == org_last_tag) { 208 last_tag = tag + 1; 209 if (last_tag >= bt->depth - 1) 210 last_tag = 0; 211 212 *tag_cache = last_tag; 213 } 214 215 return tag; 216 } 217 218 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, 219 struct blk_mq_hw_ctx *hctx) 220 { 221 struct bt_wait_state *bs; 222 int wait_index; 223 224 if (!hctx) 225 return &bt->bs[0]; 226 227 wait_index = atomic_read(&hctx->wait_index); 228 bs = &bt->bs[wait_index]; 229 bt_index_atomic_inc(&hctx->wait_index); 230 return bs; 231 } 232 233 static int bt_get(struct blk_mq_alloc_data *data, 234 struct blk_mq_bitmap_tags *bt, 235 struct blk_mq_hw_ctx *hctx, 236 unsigned int *last_tag) 237 { 238 struct bt_wait_state *bs; 239 DEFINE_WAIT(wait); 240 int tag; 241 242 tag = __bt_get(hctx, bt, last_tag); 243 if (tag != -1) 244 return tag; 245 246 if (!(data->gfp & __GFP_WAIT)) 247 return -1; 248 249 bs = bt_wait_ptr(bt, hctx); 250 do { 251 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); 252 253 tag = __bt_get(hctx, bt, last_tag); 254 if (tag != -1) 255 break; 256 257 blk_mq_put_ctx(data->ctx); 258 259 io_schedule(); 260 261 data->ctx = blk_mq_get_ctx(data->q); 262 data->hctx = data->q->mq_ops->map_queue(data->q, 263 data->ctx->cpu); 264 if (data->reserved) { 265 bt = &data->hctx->tags->breserved_tags; 266 } else { 267 last_tag = &data->ctx->last_tag; 268 hctx = data->hctx; 269 bt = &hctx->tags->bitmap_tags; 270 } 271 finish_wait(&bs->wait, &wait); 272 bs = bt_wait_ptr(bt, hctx); 273 } while (1); 274 275 finish_wait(&bs->wait, &wait); 276 return tag; 277 } 278 279 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) 280 { 281 int tag; 282 283 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, 284 &data->ctx->last_tag); 285 if (tag >= 0) 286 return tag + data->hctx->tags->nr_reserved_tags; 287 288 return BLK_MQ_TAG_FAIL; 289 } 290 291 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) 292 { 293 int tag, zero = 0; 294 295 if (unlikely(!data->hctx->tags->nr_reserved_tags)) { 296 WARN_ON_ONCE(1); 297 return BLK_MQ_TAG_FAIL; 298 } 299 300 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero); 301 if (tag < 0) 302 return BLK_MQ_TAG_FAIL; 303 304 return tag; 305 } 306 307 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 308 { 309 if (!data->reserved) 310 return __blk_mq_get_tag(data); 311 312 return __blk_mq_get_reserved_tag(data); 313 } 314 315 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) 316 { 317 int i, wake_index; 318 319 wake_index = atomic_read(&bt->wake_index); 320 for (i = 0; i < BT_WAIT_QUEUES; i++) { 321 struct bt_wait_state *bs = &bt->bs[wake_index]; 322 323 if (waitqueue_active(&bs->wait)) { 324 int o = atomic_read(&bt->wake_index); 325 if (wake_index != o) 326 atomic_cmpxchg(&bt->wake_index, o, wake_index); 327 328 return bs; 329 } 330 331 wake_index = bt_index_inc(wake_index); 332 } 333 334 return NULL; 335 } 336 337 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) 338 { 339 const int index = TAG_TO_INDEX(bt, tag); 340 struct bt_wait_state *bs; 341 int wait_cnt; 342 343 /* 344 * The unlock memory barrier need to order access to req in free 345 * path and clearing tag bit 346 */ 347 clear_bit_unlock(TAG_TO_BIT(bt, tag), &bt->map[index].word); 348 349 bs = bt_wake_ptr(bt); 350 if (!bs) 351 return; 352 353 wait_cnt = atomic_dec_return(&bs->wait_cnt); 354 if (wait_cnt == 0) { 355 wake: 356 atomic_add(bt->wake_cnt, &bs->wait_cnt); 357 bt_index_atomic_inc(&bt->wake_index); 358 wake_up(&bs->wait); 359 } else if (wait_cnt < 0) { 360 wait_cnt = atomic_inc_return(&bs->wait_cnt); 361 if (!wait_cnt) 362 goto wake; 363 } 364 } 365 366 static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag) 367 { 368 BUG_ON(tag >= tags->nr_tags); 369 370 bt_clear_tag(&tags->bitmap_tags, tag); 371 } 372 373 static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags, 374 unsigned int tag) 375 { 376 BUG_ON(tag >= tags->nr_reserved_tags); 377 378 bt_clear_tag(&tags->breserved_tags, tag); 379 } 380 381 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, 382 unsigned int *last_tag) 383 { 384 struct blk_mq_tags *tags = hctx->tags; 385 386 if (tag >= tags->nr_reserved_tags) { 387 const int real_tag = tag - tags->nr_reserved_tags; 388 389 __blk_mq_put_tag(tags, real_tag); 390 *last_tag = real_tag; 391 } else 392 __blk_mq_put_reserved_tag(tags, tag); 393 } 394 395 static void bt_for_each_free(struct blk_mq_bitmap_tags *bt, 396 unsigned long *free_map, unsigned int off) 397 { 398 int i; 399 400 for (i = 0; i < bt->map_nr; i++) { 401 struct blk_align_bitmap *bm = &bt->map[i]; 402 int bit = 0; 403 404 do { 405 bit = find_next_zero_bit(&bm->word, bm->depth, bit); 406 if (bit >= bm->depth) 407 break; 408 409 __set_bit(bit + off, free_map); 410 bit++; 411 } while (1); 412 413 off += (1 << bt->bits_per_word); 414 } 415 } 416 417 void blk_mq_tag_busy_iter(struct blk_mq_tags *tags, 418 void (*fn)(void *, unsigned long *), void *data) 419 { 420 unsigned long *tag_map; 421 size_t map_size; 422 423 map_size = ALIGN(tags->nr_tags, BITS_PER_LONG) / BITS_PER_LONG; 424 tag_map = kzalloc(map_size * sizeof(unsigned long), GFP_ATOMIC); 425 if (!tag_map) 426 return; 427 428 bt_for_each_free(&tags->bitmap_tags, tag_map, tags->nr_reserved_tags); 429 if (tags->nr_reserved_tags) 430 bt_for_each_free(&tags->breserved_tags, tag_map, 0); 431 432 fn(data, tag_map); 433 kfree(tag_map); 434 } 435 EXPORT_SYMBOL(blk_mq_tag_busy_iter); 436 437 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) 438 { 439 unsigned int i, used; 440 441 for (i = 0, used = 0; i < bt->map_nr; i++) { 442 struct blk_align_bitmap *bm = &bt->map[i]; 443 444 used += bitmap_weight(&bm->word, bm->depth); 445 } 446 447 return bt->depth - used; 448 } 449 450 static void bt_update_count(struct blk_mq_bitmap_tags *bt, 451 unsigned int depth) 452 { 453 unsigned int tags_per_word = 1U << bt->bits_per_word; 454 unsigned int map_depth = depth; 455 456 if (depth) { 457 int i; 458 459 for (i = 0; i < bt->map_nr; i++) { 460 bt->map[i].depth = min(map_depth, tags_per_word); 461 map_depth -= bt->map[i].depth; 462 } 463 } 464 465 bt->wake_cnt = BT_WAIT_BATCH; 466 if (bt->wake_cnt > depth / 4) 467 bt->wake_cnt = max(1U, depth / 4); 468 469 bt->depth = depth; 470 } 471 472 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, 473 int node, bool reserved) 474 { 475 int i; 476 477 bt->bits_per_word = ilog2(BITS_PER_LONG); 478 479 /* 480 * Depth can be zero for reserved tags, that's not a failure 481 * condition. 482 */ 483 if (depth) { 484 unsigned int nr, tags_per_word; 485 486 tags_per_word = (1 << bt->bits_per_word); 487 488 /* 489 * If the tag space is small, shrink the number of tags 490 * per word so we spread over a few cachelines, at least. 491 * If less than 4 tags, just forget about it, it's not 492 * going to work optimally anyway. 493 */ 494 if (depth >= 4) { 495 while (tags_per_word * 4 > depth) { 496 bt->bits_per_word--; 497 tags_per_word = (1 << bt->bits_per_word); 498 } 499 } 500 501 nr = ALIGN(depth, tags_per_word) / tags_per_word; 502 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), 503 GFP_KERNEL, node); 504 if (!bt->map) 505 return -ENOMEM; 506 507 bt->map_nr = nr; 508 } 509 510 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); 511 if (!bt->bs) { 512 kfree(bt->map); 513 return -ENOMEM; 514 } 515 516 bt_update_count(bt, depth); 517 518 for (i = 0; i < BT_WAIT_QUEUES; i++) { 519 init_waitqueue_head(&bt->bs[i].wait); 520 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); 521 } 522 523 return 0; 524 } 525 526 static void bt_free(struct blk_mq_bitmap_tags *bt) 527 { 528 kfree(bt->map); 529 kfree(bt->bs); 530 } 531 532 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 533 int node) 534 { 535 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 536 537 if (bt_alloc(&tags->bitmap_tags, depth, node, false)) 538 goto enomem; 539 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) 540 goto enomem; 541 542 return tags; 543 enomem: 544 bt_free(&tags->bitmap_tags); 545 kfree(tags); 546 return NULL; 547 } 548 549 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 550 unsigned int reserved_tags, int node) 551 { 552 struct blk_mq_tags *tags; 553 554 if (total_tags > BLK_MQ_TAG_MAX) { 555 pr_err("blk-mq: tag depth too large\n"); 556 return NULL; 557 } 558 559 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 560 if (!tags) 561 return NULL; 562 563 tags->nr_tags = total_tags; 564 tags->nr_reserved_tags = reserved_tags; 565 566 return blk_mq_init_bitmap_tags(tags, node); 567 } 568 569 void blk_mq_free_tags(struct blk_mq_tags *tags) 570 { 571 bt_free(&tags->bitmap_tags); 572 bt_free(&tags->breserved_tags); 573 kfree(tags); 574 } 575 576 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) 577 { 578 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 579 580 *tag = prandom_u32() % depth; 581 } 582 583 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) 584 { 585 tdepth -= tags->nr_reserved_tags; 586 if (tdepth > tags->nr_tags) 587 return -EINVAL; 588 589 /* 590 * Don't need (or can't) update reserved tags here, they remain 591 * static and should never need resizing. 592 */ 593 bt_update_count(&tags->bitmap_tags, tdepth); 594 blk_mq_tag_wakeup_all(tags); 595 return 0; 596 } 597 598 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) 599 { 600 char *orig_page = page; 601 unsigned int free, res; 602 603 if (!tags) 604 return 0; 605 606 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " 607 "bits_per_word=%u\n", 608 tags->nr_tags, tags->nr_reserved_tags, 609 tags->bitmap_tags.bits_per_word); 610 611 free = bt_unused_tags(&tags->bitmap_tags); 612 res = bt_unused_tags(&tags->breserved_tags); 613 614 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); 615 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); 616 617 return page - orig_page; 618 } 619