xref: /openbmc/linux/block/blk-mq-tag.c (revision d894fc60)
1 /*
2  * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3  * over multiple cachelines to avoid ping-pong between multiple submitters
4  * or submitter and completer. Uses rolling wakeups to avoid falling of
5  * the scaling cliff when we run out of tags and have to start putting
6  * submitters to sleep.
7  *
8  * Uses active queue tracking to support fairer distribution of tags
9  * between multiple submitters when a shared tag map is used.
10  *
11  * Copyright (C) 2013-2014 Jens Axboe
12  */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
21 
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
23 {
24 	int i;
25 
26 	for (i = 0; i < bt->map_nr; i++) {
27 		struct blk_align_bitmap *bm = &bt->map[i];
28 		int ret;
29 
30 		ret = find_first_zero_bit(&bm->word, bm->depth);
31 		if (ret < bm->depth)
32 			return true;
33 	}
34 
35 	return false;
36 }
37 
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
39 {
40 	if (!tags)
41 		return true;
42 
43 	return bt_has_free_tags(&tags->bitmap_tags);
44 }
45 
46 static inline int bt_index_inc(int index)
47 {
48 	return (index + 1) & (BT_WAIT_QUEUES - 1);
49 }
50 
51 static inline void bt_index_atomic_inc(atomic_t *index)
52 {
53 	int old = atomic_read(index);
54 	int new = bt_index_inc(old);
55 	atomic_cmpxchg(index, old, new);
56 }
57 
58 /*
59  * If a previously inactive queue goes active, bump the active user count.
60  */
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
62 {
63 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 		atomic_inc(&hctx->tags->active_queues);
66 
67 	return true;
68 }
69 
70 /*
71  * Wakeup all potentially sleeping on tags
72  */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 	struct blk_mq_bitmap_tags *bt;
76 	int i, wake_index;
77 
78 	bt = &tags->bitmap_tags;
79 	wake_index = atomic_read(&bt->wake_index);
80 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
81 		struct bt_wait_state *bs = &bt->bs[wake_index];
82 
83 		if (waitqueue_active(&bs->wait))
84 			wake_up(&bs->wait);
85 
86 		wake_index = bt_index_inc(wake_index);
87 	}
88 
89 	if (include_reserve) {
90 		bt = &tags->breserved_tags;
91 		if (waitqueue_active(&bt->bs[0].wait))
92 			wake_up(&bt->bs[0].wait);
93 	}
94 }
95 
96 /*
97  * If a previously busy queue goes inactive, potential waiters could now
98  * be allowed to queue. Wake them up and check.
99  */
100 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
101 {
102 	struct blk_mq_tags *tags = hctx->tags;
103 
104 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
105 		return;
106 
107 	atomic_dec(&tags->active_queues);
108 
109 	blk_mq_tag_wakeup_all(tags, false);
110 }
111 
112 /*
113  * For shared tag users, we track the number of currently active users
114  * and attempt to provide a fair share of the tag depth for each of them.
115  */
116 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
117 				  struct blk_mq_bitmap_tags *bt)
118 {
119 	unsigned int depth, users;
120 
121 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
122 		return true;
123 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
124 		return true;
125 
126 	/*
127 	 * Don't try dividing an ant
128 	 */
129 	if (bt->depth == 1)
130 		return true;
131 
132 	users = atomic_read(&hctx->tags->active_queues);
133 	if (!users)
134 		return true;
135 
136 	/*
137 	 * Allow at least some tags
138 	 */
139 	depth = max((bt->depth + users - 1) / users, 4U);
140 	return atomic_read(&hctx->nr_active) < depth;
141 }
142 
143 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
144 			 bool nowrap)
145 {
146 	int tag, org_last_tag = last_tag;
147 
148 	while (1) {
149 		tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
150 		if (unlikely(tag >= bm->depth)) {
151 			/*
152 			 * We started with an offset, and we didn't reset the
153 			 * offset to 0 in a failure case, so start from 0 to
154 			 * exhaust the map.
155 			 */
156 			if (org_last_tag && last_tag && !nowrap) {
157 				last_tag = org_last_tag = 0;
158 				continue;
159 			}
160 			return -1;
161 		}
162 
163 		if (!test_and_set_bit(tag, &bm->word))
164 			break;
165 
166 		last_tag = tag + 1;
167 		if (last_tag >= bm->depth - 1)
168 			last_tag = 0;
169 	}
170 
171 	return tag;
172 }
173 
174 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
175 
176 /*
177  * Straight forward bitmap tag implementation, where each bit is a tag
178  * (cleared == free, and set == busy). The small twist is using per-cpu
179  * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
180  * contexts. This enables us to drastically limit the space searched,
181  * without dirtying an extra shared cacheline like we would if we stored
182  * the cache value inside the shared blk_mq_bitmap_tags structure. On top
183  * of that, each word of tags is in a separate cacheline. This means that
184  * multiple users will tend to stick to different cachelines, at least
185  * until the map is exhausted.
186  */
187 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
188 		    unsigned int *tag_cache, struct blk_mq_tags *tags)
189 {
190 	unsigned int last_tag, org_last_tag;
191 	int index, i, tag;
192 
193 	if (!hctx_may_queue(hctx, bt))
194 		return -1;
195 
196 	last_tag = org_last_tag = *tag_cache;
197 	index = TAG_TO_INDEX(bt, last_tag);
198 
199 	for (i = 0; i < bt->map_nr; i++) {
200 		tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
201 				    BT_ALLOC_RR(tags));
202 		if (tag != -1) {
203 			tag += (index << bt->bits_per_word);
204 			goto done;
205 		}
206 
207 		/*
208 		 * Jump to next index, and reset the last tag to be the
209 		 * first tag of that index
210 		 */
211 		index++;
212 		last_tag = (index << bt->bits_per_word);
213 
214 		if (index >= bt->map_nr) {
215 			index = 0;
216 			last_tag = 0;
217 		}
218 	}
219 
220 	*tag_cache = 0;
221 	return -1;
222 
223 	/*
224 	 * Only update the cache from the allocation path, if we ended
225 	 * up using the specific cached tag.
226 	 */
227 done:
228 	if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
229 		last_tag = tag + 1;
230 		if (last_tag >= bt->depth - 1)
231 			last_tag = 0;
232 
233 		*tag_cache = last_tag;
234 	}
235 
236 	return tag;
237 }
238 
239 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
240 					 struct blk_mq_hw_ctx *hctx)
241 {
242 	struct bt_wait_state *bs;
243 	int wait_index;
244 
245 	if (!hctx)
246 		return &bt->bs[0];
247 
248 	wait_index = atomic_read(&hctx->wait_index);
249 	bs = &bt->bs[wait_index];
250 	bt_index_atomic_inc(&hctx->wait_index);
251 	return bs;
252 }
253 
254 static int bt_get(struct blk_mq_alloc_data *data,
255 		struct blk_mq_bitmap_tags *bt,
256 		struct blk_mq_hw_ctx *hctx,
257 		unsigned int *last_tag, struct blk_mq_tags *tags)
258 {
259 	struct bt_wait_state *bs;
260 	DEFINE_WAIT(wait);
261 	int tag;
262 
263 	tag = __bt_get(hctx, bt, last_tag, tags);
264 	if (tag != -1)
265 		return tag;
266 
267 	if (!(data->gfp & __GFP_WAIT))
268 		return -1;
269 
270 	bs = bt_wait_ptr(bt, hctx);
271 	do {
272 		prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
273 
274 		tag = __bt_get(hctx, bt, last_tag, tags);
275 		if (tag != -1)
276 			break;
277 
278 		/*
279 		 * We're out of tags on this hardware queue, kick any
280 		 * pending IO submits before going to sleep waiting for
281 		 * some to complete.
282 		 */
283 		blk_mq_run_hw_queue(hctx, false);
284 
285 		/*
286 		 * Retry tag allocation after running the hardware queue,
287 		 * as running the queue may also have found completions.
288 		 */
289 		tag = __bt_get(hctx, bt, last_tag, tags);
290 		if (tag != -1)
291 			break;
292 
293 		blk_mq_put_ctx(data->ctx);
294 
295 		io_schedule();
296 
297 		data->ctx = blk_mq_get_ctx(data->q);
298 		data->hctx = data->q->mq_ops->map_queue(data->q,
299 				data->ctx->cpu);
300 		if (data->reserved) {
301 			bt = &data->hctx->tags->breserved_tags;
302 		} else {
303 			last_tag = &data->ctx->last_tag;
304 			hctx = data->hctx;
305 			bt = &hctx->tags->bitmap_tags;
306 		}
307 		finish_wait(&bs->wait, &wait);
308 		bs = bt_wait_ptr(bt, hctx);
309 	} while (1);
310 
311 	finish_wait(&bs->wait, &wait);
312 	return tag;
313 }
314 
315 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
316 {
317 	int tag;
318 
319 	tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
320 			&data->ctx->last_tag, data->hctx->tags);
321 	if (tag >= 0)
322 		return tag + data->hctx->tags->nr_reserved_tags;
323 
324 	return BLK_MQ_TAG_FAIL;
325 }
326 
327 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
328 {
329 	int tag, zero = 0;
330 
331 	if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
332 		WARN_ON_ONCE(1);
333 		return BLK_MQ_TAG_FAIL;
334 	}
335 
336 	tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
337 		data->hctx->tags);
338 	if (tag < 0)
339 		return BLK_MQ_TAG_FAIL;
340 
341 	return tag;
342 }
343 
344 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
345 {
346 	if (!data->reserved)
347 		return __blk_mq_get_tag(data);
348 
349 	return __blk_mq_get_reserved_tag(data);
350 }
351 
352 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
353 {
354 	int i, wake_index;
355 
356 	wake_index = atomic_read(&bt->wake_index);
357 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
358 		struct bt_wait_state *bs = &bt->bs[wake_index];
359 
360 		if (waitqueue_active(&bs->wait)) {
361 			int o = atomic_read(&bt->wake_index);
362 			if (wake_index != o)
363 				atomic_cmpxchg(&bt->wake_index, o, wake_index);
364 
365 			return bs;
366 		}
367 
368 		wake_index = bt_index_inc(wake_index);
369 	}
370 
371 	return NULL;
372 }
373 
374 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
375 {
376 	const int index = TAG_TO_INDEX(bt, tag);
377 	struct bt_wait_state *bs;
378 	int wait_cnt;
379 
380 	clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
381 
382 	/* Ensure that the wait list checks occur after clear_bit(). */
383 	smp_mb();
384 
385 	bs = bt_wake_ptr(bt);
386 	if (!bs)
387 		return;
388 
389 	wait_cnt = atomic_dec_return(&bs->wait_cnt);
390 	if (unlikely(wait_cnt < 0))
391 		wait_cnt = atomic_inc_return(&bs->wait_cnt);
392 	if (wait_cnt == 0) {
393 		atomic_add(bt->wake_cnt, &bs->wait_cnt);
394 		bt_index_atomic_inc(&bt->wake_index);
395 		wake_up(&bs->wait);
396 	}
397 }
398 
399 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
400 		    unsigned int *last_tag)
401 {
402 	struct blk_mq_tags *tags = hctx->tags;
403 
404 	if (tag >= tags->nr_reserved_tags) {
405 		const int real_tag = tag - tags->nr_reserved_tags;
406 
407 		BUG_ON(real_tag >= tags->nr_tags);
408 		bt_clear_tag(&tags->bitmap_tags, real_tag);
409 		if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
410 			*last_tag = real_tag;
411 	} else {
412 		BUG_ON(tag >= tags->nr_reserved_tags);
413 		bt_clear_tag(&tags->breserved_tags, tag);
414 	}
415 }
416 
417 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
418 		struct blk_mq_bitmap_tags *bt, unsigned int off,
419 		busy_iter_fn *fn, void *data, bool reserved)
420 {
421 	struct request *rq;
422 	int bit, i;
423 
424 	for (i = 0; i < bt->map_nr; i++) {
425 		struct blk_align_bitmap *bm = &bt->map[i];
426 
427 		for (bit = find_first_bit(&bm->word, bm->depth);
428 		     bit < bm->depth;
429 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
430 		     	rq = blk_mq_tag_to_rq(hctx->tags, off + bit);
431 			if (rq->q == hctx->queue)
432 				fn(hctx, rq, data, reserved);
433 		}
434 
435 		off += (1 << bt->bits_per_word);
436 	}
437 }
438 
439 void blk_mq_tag_busy_iter(struct blk_mq_hw_ctx *hctx, busy_iter_fn *fn,
440 		void *priv)
441 {
442 	struct blk_mq_tags *tags = hctx->tags;
443 
444 	if (tags->nr_reserved_tags)
445 		bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
446 	bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
447 			false);
448 }
449 EXPORT_SYMBOL(blk_mq_tag_busy_iter);
450 
451 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
452 {
453 	unsigned int i, used;
454 
455 	for (i = 0, used = 0; i < bt->map_nr; i++) {
456 		struct blk_align_bitmap *bm = &bt->map[i];
457 
458 		used += bitmap_weight(&bm->word, bm->depth);
459 	}
460 
461 	return bt->depth - used;
462 }
463 
464 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
465 			    unsigned int depth)
466 {
467 	unsigned int tags_per_word = 1U << bt->bits_per_word;
468 	unsigned int map_depth = depth;
469 
470 	if (depth) {
471 		int i;
472 
473 		for (i = 0; i < bt->map_nr; i++) {
474 			bt->map[i].depth = min(map_depth, tags_per_word);
475 			map_depth -= bt->map[i].depth;
476 		}
477 	}
478 
479 	bt->wake_cnt = BT_WAIT_BATCH;
480 	if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
481 		bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
482 
483 	bt->depth = depth;
484 }
485 
486 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
487 			int node, bool reserved)
488 {
489 	int i;
490 
491 	bt->bits_per_word = ilog2(BITS_PER_LONG);
492 
493 	/*
494 	 * Depth can be zero for reserved tags, that's not a failure
495 	 * condition.
496 	 */
497 	if (depth) {
498 		unsigned int nr, tags_per_word;
499 
500 		tags_per_word = (1 << bt->bits_per_word);
501 
502 		/*
503 		 * If the tag space is small, shrink the number of tags
504 		 * per word so we spread over a few cachelines, at least.
505 		 * If less than 4 tags, just forget about it, it's not
506 		 * going to work optimally anyway.
507 		 */
508 		if (depth >= 4) {
509 			while (tags_per_word * 4 > depth) {
510 				bt->bits_per_word--;
511 				tags_per_word = (1 << bt->bits_per_word);
512 			}
513 		}
514 
515 		nr = ALIGN(depth, tags_per_word) / tags_per_word;
516 		bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
517 						GFP_KERNEL, node);
518 		if (!bt->map)
519 			return -ENOMEM;
520 
521 		bt->map_nr = nr;
522 	}
523 
524 	bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
525 	if (!bt->bs) {
526 		kfree(bt->map);
527 		bt->map = NULL;
528 		return -ENOMEM;
529 	}
530 
531 	bt_update_count(bt, depth);
532 
533 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
534 		init_waitqueue_head(&bt->bs[i].wait);
535 		atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
536 	}
537 
538 	return 0;
539 }
540 
541 static void bt_free(struct blk_mq_bitmap_tags *bt)
542 {
543 	kfree(bt->map);
544 	kfree(bt->bs);
545 }
546 
547 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
548 						   int node, int alloc_policy)
549 {
550 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
551 
552 	tags->alloc_policy = alloc_policy;
553 
554 	if (bt_alloc(&tags->bitmap_tags, depth, node, false))
555 		goto enomem;
556 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
557 		goto enomem;
558 
559 	return tags;
560 enomem:
561 	bt_free(&tags->bitmap_tags);
562 	kfree(tags);
563 	return NULL;
564 }
565 
566 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
567 				     unsigned int reserved_tags,
568 				     int node, int alloc_policy)
569 {
570 	struct blk_mq_tags *tags;
571 
572 	if (total_tags > BLK_MQ_TAG_MAX) {
573 		pr_err("blk-mq: tag depth too large\n");
574 		return NULL;
575 	}
576 
577 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
578 	if (!tags)
579 		return NULL;
580 
581 	tags->nr_tags = total_tags;
582 	tags->nr_reserved_tags = reserved_tags;
583 
584 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
585 }
586 
587 void blk_mq_free_tags(struct blk_mq_tags *tags)
588 {
589 	bt_free(&tags->bitmap_tags);
590 	bt_free(&tags->breserved_tags);
591 	kfree(tags);
592 }
593 
594 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
595 {
596 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
597 
598 	*tag = prandom_u32() % depth;
599 }
600 
601 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
602 {
603 	tdepth -= tags->nr_reserved_tags;
604 	if (tdepth > tags->nr_tags)
605 		return -EINVAL;
606 
607 	/*
608 	 * Don't need (or can't) update reserved tags here, they remain
609 	 * static and should never need resizing.
610 	 */
611 	bt_update_count(&tags->bitmap_tags, tdepth);
612 	blk_mq_tag_wakeup_all(tags, false);
613 	return 0;
614 }
615 
616 /**
617  * blk_mq_unique_tag() - return a tag that is unique queue-wide
618  * @rq: request for which to compute a unique tag
619  *
620  * The tag field in struct request is unique per hardware queue but not over
621  * all hardware queues. Hence this function that returns a tag with the
622  * hardware context index in the upper bits and the per hardware queue tag in
623  * the lower bits.
624  *
625  * Note: When called for a request that is queued on a non-multiqueue request
626  * queue, the hardware context index is set to zero.
627  */
628 u32 blk_mq_unique_tag(struct request *rq)
629 {
630 	struct request_queue *q = rq->q;
631 	struct blk_mq_hw_ctx *hctx;
632 	int hwq = 0;
633 
634 	if (q->mq_ops) {
635 		hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
636 		hwq = hctx->queue_num;
637 	}
638 
639 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
640 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
641 }
642 EXPORT_SYMBOL(blk_mq_unique_tag);
643 
644 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
645 {
646 	char *orig_page = page;
647 	unsigned int free, res;
648 
649 	if (!tags)
650 		return 0;
651 
652 	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
653 			"bits_per_word=%u\n",
654 			tags->nr_tags, tags->nr_reserved_tags,
655 			tags->bitmap_tags.bits_per_word);
656 
657 	free = bt_unused_tags(&tags->bitmap_tags);
658 	res = bt_unused_tags(&tags->breserved_tags);
659 
660 	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
661 	page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
662 
663 	return page - orig_page;
664 }
665