xref: /openbmc/linux/block/blk-mq-tag.c (revision ccb01374)
1 /*
2  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3  * fairer distribution of tags between multiple submitters when a shared tag map
4  * is used.
5  *
6  * Copyright (C) 2013-2014 Jens Axboe
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
15 
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
17 {
18 	if (!tags)
19 		return true;
20 
21 	return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
22 }
23 
24 /*
25  * If a previously inactive queue goes active, bump the active user count.
26  * We need to do this before try to allocate driver tag, then even if fail
27  * to get tag when first time, the other shared-tag users could reserve
28  * budget for it.
29  */
30 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
31 {
32 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
33 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
34 		atomic_inc(&hctx->tags->active_queues);
35 
36 	return true;
37 }
38 
39 /*
40  * Wakeup all potentially sleeping on tags
41  */
42 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
43 {
44 	sbitmap_queue_wake_all(&tags->bitmap_tags);
45 	if (include_reserve)
46 		sbitmap_queue_wake_all(&tags->breserved_tags);
47 }
48 
49 /*
50  * If a previously busy queue goes inactive, potential waiters could now
51  * be allowed to queue. Wake them up and check.
52  */
53 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
54 {
55 	struct blk_mq_tags *tags = hctx->tags;
56 
57 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
58 		return;
59 
60 	atomic_dec(&tags->active_queues);
61 
62 	blk_mq_tag_wakeup_all(tags, false);
63 }
64 
65 /*
66  * For shared tag users, we track the number of currently active users
67  * and attempt to provide a fair share of the tag depth for each of them.
68  */
69 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
70 				  struct sbitmap_queue *bt)
71 {
72 	unsigned int depth, users;
73 
74 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
75 		return true;
76 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
77 		return true;
78 
79 	/*
80 	 * Don't try dividing an ant
81 	 */
82 	if (bt->sb.depth == 1)
83 		return true;
84 
85 	users = atomic_read(&hctx->tags->active_queues);
86 	if (!users)
87 		return true;
88 
89 	/*
90 	 * Allow at least some tags
91 	 */
92 	depth = max((bt->sb.depth + users - 1) / users, 4U);
93 	return atomic_read(&hctx->nr_active) < depth;
94 }
95 
96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
97 			    struct sbitmap_queue *bt)
98 {
99 	if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
100 	    !hctx_may_queue(data->hctx, bt))
101 		return -1;
102 	if (data->shallow_depth)
103 		return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
104 	else
105 		return __sbitmap_queue_get(bt);
106 }
107 
108 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
109 {
110 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
111 	struct sbitmap_queue *bt;
112 	struct sbq_wait_state *ws;
113 	DEFINE_SBQ_WAIT(wait);
114 	unsigned int tag_offset;
115 	bool drop_ctx;
116 	int tag;
117 
118 	if (data->flags & BLK_MQ_REQ_RESERVED) {
119 		if (unlikely(!tags->nr_reserved_tags)) {
120 			WARN_ON_ONCE(1);
121 			return BLK_MQ_TAG_FAIL;
122 		}
123 		bt = &tags->breserved_tags;
124 		tag_offset = 0;
125 	} else {
126 		bt = &tags->bitmap_tags;
127 		tag_offset = tags->nr_reserved_tags;
128 	}
129 
130 	tag = __blk_mq_get_tag(data, bt);
131 	if (tag != -1)
132 		goto found_tag;
133 
134 	if (data->flags & BLK_MQ_REQ_NOWAIT)
135 		return BLK_MQ_TAG_FAIL;
136 
137 	ws = bt_wait_ptr(bt, data->hctx);
138 	drop_ctx = data->ctx == NULL;
139 	do {
140 		struct sbitmap_queue *bt_prev;
141 
142 		/*
143 		 * We're out of tags on this hardware queue, kick any
144 		 * pending IO submits before going to sleep waiting for
145 		 * some to complete.
146 		 */
147 		blk_mq_run_hw_queue(data->hctx, false);
148 
149 		/*
150 		 * Retry tag allocation after running the hardware queue,
151 		 * as running the queue may also have found completions.
152 		 */
153 		tag = __blk_mq_get_tag(data, bt);
154 		if (tag != -1)
155 			break;
156 
157 		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
158 
159 		tag = __blk_mq_get_tag(data, bt);
160 		if (tag != -1)
161 			break;
162 
163 		if (data->ctx)
164 			blk_mq_put_ctx(data->ctx);
165 
166 		bt_prev = bt;
167 		io_schedule();
168 
169 		sbitmap_finish_wait(bt, ws, &wait);
170 
171 		data->ctx = blk_mq_get_ctx(data->q);
172 		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
173 						data->ctx->cpu);
174 		tags = blk_mq_tags_from_data(data);
175 		if (data->flags & BLK_MQ_REQ_RESERVED)
176 			bt = &tags->breserved_tags;
177 		else
178 			bt = &tags->bitmap_tags;
179 
180 		/*
181 		 * If destination hw queue is changed, fake wake up on
182 		 * previous queue for compensating the wake up miss, so
183 		 * other allocations on previous queue won't be starved.
184 		 */
185 		if (bt != bt_prev)
186 			sbitmap_queue_wake_up(bt_prev);
187 
188 		ws = bt_wait_ptr(bt, data->hctx);
189 	} while (1);
190 
191 	if (drop_ctx && data->ctx)
192 		blk_mq_put_ctx(data->ctx);
193 
194 	sbitmap_finish_wait(bt, ws, &wait);
195 
196 found_tag:
197 	return tag + tag_offset;
198 }
199 
200 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
201 		    struct blk_mq_ctx *ctx, unsigned int tag)
202 {
203 	if (!blk_mq_tag_is_reserved(tags, tag)) {
204 		const int real_tag = tag - tags->nr_reserved_tags;
205 
206 		BUG_ON(real_tag >= tags->nr_tags);
207 		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
208 	} else {
209 		BUG_ON(tag >= tags->nr_reserved_tags);
210 		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
211 	}
212 }
213 
214 struct bt_iter_data {
215 	struct blk_mq_hw_ctx *hctx;
216 	busy_iter_fn *fn;
217 	void *data;
218 	bool reserved;
219 };
220 
221 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
222 {
223 	struct bt_iter_data *iter_data = data;
224 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
225 	struct blk_mq_tags *tags = hctx->tags;
226 	bool reserved = iter_data->reserved;
227 	struct request *rq;
228 
229 	if (!reserved)
230 		bitnr += tags->nr_reserved_tags;
231 	rq = tags->rqs[bitnr];
232 
233 	/*
234 	 * We can hit rq == NULL here, because the tagging functions
235 	 * test and set the bit before assigning ->rqs[].
236 	 */
237 	if (rq && rq->q == hctx->queue)
238 		return iter_data->fn(hctx, rq, iter_data->data, reserved);
239 	return true;
240 }
241 
242 /**
243  * bt_for_each - iterate over the requests associated with a hardware queue
244  * @hctx:	Hardware queue to examine.
245  * @bt:		sbitmap to examine. This is either the breserved_tags member
246  *		or the bitmap_tags member of struct blk_mq_tags.
247  * @fn:		Pointer to the function that will be called for each request
248  *		associated with @hctx that has been assigned a driver tag.
249  *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
250  *		where rq is a pointer to a request. Return true to continue
251  *		iterating tags, false to stop.
252  * @data:	Will be passed as third argument to @fn.
253  * @reserved:	Indicates whether @bt is the breserved_tags member or the
254  *		bitmap_tags member of struct blk_mq_tags.
255  */
256 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
257 			busy_iter_fn *fn, void *data, bool reserved)
258 {
259 	struct bt_iter_data iter_data = {
260 		.hctx = hctx,
261 		.fn = fn,
262 		.data = data,
263 		.reserved = reserved,
264 	};
265 
266 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
267 }
268 
269 struct bt_tags_iter_data {
270 	struct blk_mq_tags *tags;
271 	busy_tag_iter_fn *fn;
272 	void *data;
273 	bool reserved;
274 };
275 
276 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
277 {
278 	struct bt_tags_iter_data *iter_data = data;
279 	struct blk_mq_tags *tags = iter_data->tags;
280 	bool reserved = iter_data->reserved;
281 	struct request *rq;
282 
283 	if (!reserved)
284 		bitnr += tags->nr_reserved_tags;
285 
286 	/*
287 	 * We can hit rq == NULL here, because the tagging functions
288 	 * test and set the bit before assining ->rqs[].
289 	 */
290 	rq = tags->rqs[bitnr];
291 	if (rq && blk_mq_request_started(rq))
292 		return iter_data->fn(rq, iter_data->data, reserved);
293 
294 	return true;
295 }
296 
297 /**
298  * bt_tags_for_each - iterate over the requests in a tag map
299  * @tags:	Tag map to iterate over.
300  * @bt:		sbitmap to examine. This is either the breserved_tags member
301  *		or the bitmap_tags member of struct blk_mq_tags.
302  * @fn:		Pointer to the function that will be called for each started
303  *		request. @fn will be called as follows: @fn(rq, @data,
304  *		@reserved) where rq is a pointer to a request. Return true
305  *		to continue iterating tags, false to stop.
306  * @data:	Will be passed as second argument to @fn.
307  * @reserved:	Indicates whether @bt is the breserved_tags member or the
308  *		bitmap_tags member of struct blk_mq_tags.
309  */
310 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
311 			     busy_tag_iter_fn *fn, void *data, bool reserved)
312 {
313 	struct bt_tags_iter_data iter_data = {
314 		.tags = tags,
315 		.fn = fn,
316 		.data = data,
317 		.reserved = reserved,
318 	};
319 
320 	if (tags->rqs)
321 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
322 }
323 
324 /**
325  * blk_mq_all_tag_busy_iter - iterate over all started requests in a tag map
326  * @tags:	Tag map to iterate over.
327  * @fn:		Pointer to the function that will be called for each started
328  *		request. @fn will be called as follows: @fn(rq, @priv,
329  *		reserved) where rq is a pointer to a request. 'reserved'
330  *		indicates whether or not @rq is a reserved request. Return
331  *		true to continue iterating tags, false to stop.
332  * @priv:	Will be passed as second argument to @fn.
333  */
334 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
335 		busy_tag_iter_fn *fn, void *priv)
336 {
337 	if (tags->nr_reserved_tags)
338 		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
339 	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
340 }
341 
342 /**
343  * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
344  * @tagset:	Tag set to iterate over.
345  * @fn:		Pointer to the function that will be called for each started
346  *		request. @fn will be called as follows: @fn(rq, @priv,
347  *		reserved) where rq is a pointer to a request. 'reserved'
348  *		indicates whether or not @rq is a reserved request. Return
349  *		true to continue iterating tags, false to stop.
350  * @priv:	Will be passed as second argument to @fn.
351  */
352 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
353 		busy_tag_iter_fn *fn, void *priv)
354 {
355 	int i;
356 
357 	for (i = 0; i < tagset->nr_hw_queues; i++) {
358 		if (tagset->tags && tagset->tags[i])
359 			blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
360 	}
361 }
362 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
363 
364 /**
365  * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
366  * @q:		Request queue to examine.
367  * @fn:		Pointer to the function that will be called for each request
368  *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
369  *		reserved) where rq is a pointer to a request and hctx points
370  *		to the hardware queue associated with the request. 'reserved'
371  *		indicates whether or not @rq is a reserved request.
372  * @priv:	Will be passed as third argument to @fn.
373  *
374  * Note: if @q->tag_set is shared with other request queues then @fn will be
375  * called for all requests on all queues that share that tag set and not only
376  * for requests associated with @q.
377  */
378 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
379 		void *priv)
380 {
381 	struct blk_mq_hw_ctx *hctx;
382 	int i;
383 
384 	/*
385 	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx
386 	 * while the queue is frozen. So we can use q_usage_counter to avoid
387 	 * racing with it. __blk_mq_update_nr_hw_queues() uses
388 	 * synchronize_rcu() to ensure this function left the critical section
389 	 * below.
390 	 */
391 	if (!percpu_ref_tryget(&q->q_usage_counter))
392 		return;
393 
394 	queue_for_each_hw_ctx(q, hctx, i) {
395 		struct blk_mq_tags *tags = hctx->tags;
396 
397 		/*
398 		 * If no software queues are currently mapped to this
399 		 * hardware queue, there's nothing to check
400 		 */
401 		if (!blk_mq_hw_queue_mapped(hctx))
402 			continue;
403 
404 		if (tags->nr_reserved_tags)
405 			bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
406 		bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
407 	}
408 	blk_queue_exit(q);
409 }
410 
411 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
412 		    bool round_robin, int node)
413 {
414 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
415 				       node);
416 }
417 
418 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
419 						   int node, int alloc_policy)
420 {
421 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
422 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
423 
424 	if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
425 		goto free_tags;
426 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
427 		     node))
428 		goto free_bitmap_tags;
429 
430 	return tags;
431 free_bitmap_tags:
432 	sbitmap_queue_free(&tags->bitmap_tags);
433 free_tags:
434 	kfree(tags);
435 	return NULL;
436 }
437 
438 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
439 				     unsigned int reserved_tags,
440 				     int node, int alloc_policy)
441 {
442 	struct blk_mq_tags *tags;
443 
444 	if (total_tags > BLK_MQ_TAG_MAX) {
445 		pr_err("blk-mq: tag depth too large\n");
446 		return NULL;
447 	}
448 
449 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
450 	if (!tags)
451 		return NULL;
452 
453 	tags->nr_tags = total_tags;
454 	tags->nr_reserved_tags = reserved_tags;
455 
456 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
457 }
458 
459 void blk_mq_free_tags(struct blk_mq_tags *tags)
460 {
461 	sbitmap_queue_free(&tags->bitmap_tags);
462 	sbitmap_queue_free(&tags->breserved_tags);
463 	kfree(tags);
464 }
465 
466 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
467 			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
468 			    bool can_grow)
469 {
470 	struct blk_mq_tags *tags = *tagsptr;
471 
472 	if (tdepth <= tags->nr_reserved_tags)
473 		return -EINVAL;
474 
475 	/*
476 	 * If we are allowed to grow beyond the original size, allocate
477 	 * a new set of tags before freeing the old one.
478 	 */
479 	if (tdepth > tags->nr_tags) {
480 		struct blk_mq_tag_set *set = hctx->queue->tag_set;
481 		struct blk_mq_tags *new;
482 		bool ret;
483 
484 		if (!can_grow)
485 			return -EINVAL;
486 
487 		/*
488 		 * We need some sort of upper limit, set it high enough that
489 		 * no valid use cases should require more.
490 		 */
491 		if (tdepth > 16 * BLKDEV_MAX_RQ)
492 			return -EINVAL;
493 
494 		new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth,
495 				tags->nr_reserved_tags);
496 		if (!new)
497 			return -ENOMEM;
498 		ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
499 		if (ret) {
500 			blk_mq_free_rq_map(new);
501 			return -ENOMEM;
502 		}
503 
504 		blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
505 		blk_mq_free_rq_map(*tagsptr);
506 		*tagsptr = new;
507 	} else {
508 		/*
509 		 * Don't need (or can't) update reserved tags here, they
510 		 * remain static and should never need resizing.
511 		 */
512 		sbitmap_queue_resize(&tags->bitmap_tags,
513 				tdepth - tags->nr_reserved_tags);
514 	}
515 
516 	return 0;
517 }
518 
519 /**
520  * blk_mq_unique_tag() - return a tag that is unique queue-wide
521  * @rq: request for which to compute a unique tag
522  *
523  * The tag field in struct request is unique per hardware queue but not over
524  * all hardware queues. Hence this function that returns a tag with the
525  * hardware context index in the upper bits and the per hardware queue tag in
526  * the lower bits.
527  *
528  * Note: When called for a request that is queued on a non-multiqueue request
529  * queue, the hardware context index is set to zero.
530  */
531 u32 blk_mq_unique_tag(struct request *rq)
532 {
533 	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
534 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
535 }
536 EXPORT_SYMBOL(blk_mq_unique_tag);
537