1 /* 2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread 3 * over multiple cachelines to avoid ping-pong between multiple submitters 4 * or submitter and completer. Uses rolling wakeups to avoid falling of 5 * the scaling cliff when we run out of tags and have to start putting 6 * submitters to sleep. 7 * 8 * Uses active queue tracking to support fairer distribution of tags 9 * between multiple submitters when a shared tag map is used. 10 * 11 * Copyright (C) 2013-2014 Jens Axboe 12 */ 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 17 #include <linux/blk-mq.h> 18 #include "blk.h" 19 #include "blk-mq.h" 20 #include "blk-mq-tag.h" 21 22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) 23 { 24 int i; 25 26 for (i = 0; i < bt->map_nr; i++) { 27 struct blk_align_bitmap *bm = &bt->map[i]; 28 int ret; 29 30 ret = find_first_zero_bit(&bm->word, bm->depth); 31 if (ret < bm->depth) 32 return true; 33 } 34 35 return false; 36 } 37 38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 39 { 40 if (!tags) 41 return true; 42 43 return bt_has_free_tags(&tags->bitmap_tags); 44 } 45 46 static inline int bt_index_inc(int index) 47 { 48 return (index + 1) & (BT_WAIT_QUEUES - 1); 49 } 50 51 static inline void bt_index_atomic_inc(atomic_t *index) 52 { 53 int old = atomic_read(index); 54 int new = bt_index_inc(old); 55 atomic_cmpxchg(index, old, new); 56 } 57 58 /* 59 * If a previously inactive queue goes active, bump the active user count. 60 */ 61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 62 { 63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 65 atomic_inc(&hctx->tags->active_queues); 66 67 return true; 68 } 69 70 /* 71 * Wakeup all potentially sleeping on tags 72 */ 73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 74 { 75 struct blk_mq_bitmap_tags *bt; 76 int i, wake_index; 77 78 /* 79 * Make sure all changes prior to this are visible from other CPUs. 80 */ 81 smp_mb(); 82 bt = &tags->bitmap_tags; 83 wake_index = atomic_read(&bt->wake_index); 84 for (i = 0; i < BT_WAIT_QUEUES; i++) { 85 struct bt_wait_state *bs = &bt->bs[wake_index]; 86 87 if (waitqueue_active(&bs->wait)) 88 wake_up(&bs->wait); 89 90 wake_index = bt_index_inc(wake_index); 91 } 92 93 if (include_reserve) { 94 bt = &tags->breserved_tags; 95 if (waitqueue_active(&bt->bs[0].wait)) 96 wake_up(&bt->bs[0].wait); 97 } 98 } 99 100 /* 101 * If a previously busy queue goes inactive, potential waiters could now 102 * be allowed to queue. Wake them up and check. 103 */ 104 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 105 { 106 struct blk_mq_tags *tags = hctx->tags; 107 108 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 109 return; 110 111 atomic_dec(&tags->active_queues); 112 113 blk_mq_tag_wakeup_all(tags, false); 114 } 115 116 /* 117 * For shared tag users, we track the number of currently active users 118 * and attempt to provide a fair share of the tag depth for each of them. 119 */ 120 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 121 struct blk_mq_bitmap_tags *bt) 122 { 123 unsigned int depth, users; 124 125 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 126 return true; 127 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 128 return true; 129 130 /* 131 * Don't try dividing an ant 132 */ 133 if (bt->depth == 1) 134 return true; 135 136 users = atomic_read(&hctx->tags->active_queues); 137 if (!users) 138 return true; 139 140 /* 141 * Allow at least some tags 142 */ 143 depth = max((bt->depth + users - 1) / users, 4U); 144 return atomic_read(&hctx->nr_active) < depth; 145 } 146 147 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag, 148 bool nowrap) 149 { 150 int tag, org_last_tag = last_tag; 151 152 while (1) { 153 tag = find_next_zero_bit(&bm->word, bm->depth, last_tag); 154 if (unlikely(tag >= bm->depth)) { 155 /* 156 * We started with an offset, and we didn't reset the 157 * offset to 0 in a failure case, so start from 0 to 158 * exhaust the map. 159 */ 160 if (org_last_tag && last_tag && !nowrap) { 161 last_tag = org_last_tag = 0; 162 continue; 163 } 164 return -1; 165 } 166 167 if (!test_and_set_bit(tag, &bm->word)) 168 break; 169 170 last_tag = tag + 1; 171 if (last_tag >= bm->depth - 1) 172 last_tag = 0; 173 } 174 175 return tag; 176 } 177 178 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR) 179 180 /* 181 * Straight forward bitmap tag implementation, where each bit is a tag 182 * (cleared == free, and set == busy). The small twist is using per-cpu 183 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue 184 * contexts. This enables us to drastically limit the space searched, 185 * without dirtying an extra shared cacheline like we would if we stored 186 * the cache value inside the shared blk_mq_bitmap_tags structure. On top 187 * of that, each word of tags is in a separate cacheline. This means that 188 * multiple users will tend to stick to different cachelines, at least 189 * until the map is exhausted. 190 */ 191 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, 192 unsigned int *tag_cache, struct blk_mq_tags *tags) 193 { 194 unsigned int last_tag, org_last_tag; 195 int index, i, tag; 196 197 if (!hctx_may_queue(hctx, bt)) 198 return -1; 199 200 last_tag = org_last_tag = *tag_cache; 201 index = TAG_TO_INDEX(bt, last_tag); 202 203 for (i = 0; i < bt->map_nr; i++) { 204 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag), 205 BT_ALLOC_RR(tags)); 206 if (tag != -1) { 207 tag += (index << bt->bits_per_word); 208 goto done; 209 } 210 211 /* 212 * Jump to next index, and reset the last tag to be the 213 * first tag of that index 214 */ 215 index++; 216 last_tag = (index << bt->bits_per_word); 217 218 if (index >= bt->map_nr) { 219 index = 0; 220 last_tag = 0; 221 } 222 } 223 224 *tag_cache = 0; 225 return -1; 226 227 /* 228 * Only update the cache from the allocation path, if we ended 229 * up using the specific cached tag. 230 */ 231 done: 232 if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) { 233 last_tag = tag + 1; 234 if (last_tag >= bt->depth - 1) 235 last_tag = 0; 236 237 *tag_cache = last_tag; 238 } 239 240 return tag; 241 } 242 243 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, 244 struct blk_mq_hw_ctx *hctx) 245 { 246 struct bt_wait_state *bs; 247 int wait_index; 248 249 if (!hctx) 250 return &bt->bs[0]; 251 252 wait_index = atomic_read(&hctx->wait_index); 253 bs = &bt->bs[wait_index]; 254 bt_index_atomic_inc(&hctx->wait_index); 255 return bs; 256 } 257 258 static int bt_get(struct blk_mq_alloc_data *data, 259 struct blk_mq_bitmap_tags *bt, 260 struct blk_mq_hw_ctx *hctx, 261 unsigned int *last_tag, struct blk_mq_tags *tags) 262 { 263 struct bt_wait_state *bs; 264 DEFINE_WAIT(wait); 265 int tag; 266 267 tag = __bt_get(hctx, bt, last_tag, tags); 268 if (tag != -1) 269 return tag; 270 271 if (data->flags & BLK_MQ_REQ_NOWAIT) 272 return -1; 273 274 bs = bt_wait_ptr(bt, hctx); 275 do { 276 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); 277 278 tag = __bt_get(hctx, bt, last_tag, tags); 279 if (tag != -1) 280 break; 281 282 /* 283 * We're out of tags on this hardware queue, kick any 284 * pending IO submits before going to sleep waiting for 285 * some to complete. Note that hctx can be NULL here for 286 * reserved tag allocation. 287 */ 288 if (hctx) 289 blk_mq_run_hw_queue(hctx, false); 290 291 /* 292 * Retry tag allocation after running the hardware queue, 293 * as running the queue may also have found completions. 294 */ 295 tag = __bt_get(hctx, bt, last_tag, tags); 296 if (tag != -1) 297 break; 298 299 blk_mq_put_ctx(data->ctx); 300 301 io_schedule(); 302 303 data->ctx = blk_mq_get_ctx(data->q); 304 data->hctx = data->q->mq_ops->map_queue(data->q, 305 data->ctx->cpu); 306 if (data->flags & BLK_MQ_REQ_RESERVED) { 307 bt = &data->hctx->tags->breserved_tags; 308 } else { 309 last_tag = &data->ctx->last_tag; 310 hctx = data->hctx; 311 bt = &hctx->tags->bitmap_tags; 312 } 313 finish_wait(&bs->wait, &wait); 314 bs = bt_wait_ptr(bt, hctx); 315 } while (1); 316 317 finish_wait(&bs->wait, &wait); 318 return tag; 319 } 320 321 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) 322 { 323 int tag; 324 325 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, 326 &data->ctx->last_tag, data->hctx->tags); 327 if (tag >= 0) 328 return tag + data->hctx->tags->nr_reserved_tags; 329 330 return BLK_MQ_TAG_FAIL; 331 } 332 333 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) 334 { 335 int tag, zero = 0; 336 337 if (unlikely(!data->hctx->tags->nr_reserved_tags)) { 338 WARN_ON_ONCE(1); 339 return BLK_MQ_TAG_FAIL; 340 } 341 342 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero, 343 data->hctx->tags); 344 if (tag < 0) 345 return BLK_MQ_TAG_FAIL; 346 347 return tag; 348 } 349 350 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 351 { 352 if (data->flags & BLK_MQ_REQ_RESERVED) 353 return __blk_mq_get_reserved_tag(data); 354 return __blk_mq_get_tag(data); 355 } 356 357 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) 358 { 359 int i, wake_index; 360 361 wake_index = atomic_read(&bt->wake_index); 362 for (i = 0; i < BT_WAIT_QUEUES; i++) { 363 struct bt_wait_state *bs = &bt->bs[wake_index]; 364 365 if (waitqueue_active(&bs->wait)) { 366 int o = atomic_read(&bt->wake_index); 367 if (wake_index != o) 368 atomic_cmpxchg(&bt->wake_index, o, wake_index); 369 370 return bs; 371 } 372 373 wake_index = bt_index_inc(wake_index); 374 } 375 376 return NULL; 377 } 378 379 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) 380 { 381 const int index = TAG_TO_INDEX(bt, tag); 382 struct bt_wait_state *bs; 383 int wait_cnt; 384 385 clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word); 386 387 /* Ensure that the wait list checks occur after clear_bit(). */ 388 smp_mb(); 389 390 bs = bt_wake_ptr(bt); 391 if (!bs) 392 return; 393 394 wait_cnt = atomic_dec_return(&bs->wait_cnt); 395 if (unlikely(wait_cnt < 0)) 396 wait_cnt = atomic_inc_return(&bs->wait_cnt); 397 if (wait_cnt == 0) { 398 atomic_add(bt->wake_cnt, &bs->wait_cnt); 399 bt_index_atomic_inc(&bt->wake_index); 400 wake_up(&bs->wait); 401 } 402 } 403 404 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, 405 unsigned int *last_tag) 406 { 407 struct blk_mq_tags *tags = hctx->tags; 408 409 if (tag >= tags->nr_reserved_tags) { 410 const int real_tag = tag - tags->nr_reserved_tags; 411 412 BUG_ON(real_tag >= tags->nr_tags); 413 bt_clear_tag(&tags->bitmap_tags, real_tag); 414 if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO)) 415 *last_tag = real_tag; 416 } else { 417 BUG_ON(tag >= tags->nr_reserved_tags); 418 bt_clear_tag(&tags->breserved_tags, tag); 419 } 420 } 421 422 static void bt_for_each(struct blk_mq_hw_ctx *hctx, 423 struct blk_mq_bitmap_tags *bt, unsigned int off, 424 busy_iter_fn *fn, void *data, bool reserved) 425 { 426 struct request *rq; 427 int bit, i; 428 429 for (i = 0; i < bt->map_nr; i++) { 430 struct blk_align_bitmap *bm = &bt->map[i]; 431 432 for (bit = find_first_bit(&bm->word, bm->depth); 433 bit < bm->depth; 434 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { 435 rq = hctx->tags->rqs[off + bit]; 436 if (rq->q == hctx->queue) 437 fn(hctx, rq, data, reserved); 438 } 439 440 off += (1 << bt->bits_per_word); 441 } 442 } 443 444 static void bt_tags_for_each(struct blk_mq_tags *tags, 445 struct blk_mq_bitmap_tags *bt, unsigned int off, 446 busy_tag_iter_fn *fn, void *data, bool reserved) 447 { 448 struct request *rq; 449 int bit, i; 450 451 if (!tags->rqs) 452 return; 453 for (i = 0; i < bt->map_nr; i++) { 454 struct blk_align_bitmap *bm = &bt->map[i]; 455 456 for (bit = find_first_bit(&bm->word, bm->depth); 457 bit < bm->depth; 458 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { 459 rq = tags->rqs[off + bit]; 460 fn(rq, data, reserved); 461 } 462 463 off += (1 << bt->bits_per_word); 464 } 465 } 466 467 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 468 busy_tag_iter_fn *fn, void *priv) 469 { 470 if (tags->nr_reserved_tags) 471 bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true); 472 bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, 473 false); 474 } 475 476 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 477 busy_tag_iter_fn *fn, void *priv) 478 { 479 int i; 480 481 for (i = 0; i < tagset->nr_hw_queues; i++) { 482 if (tagset->tags && tagset->tags[i]) 483 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 484 } 485 } 486 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 487 488 int blk_mq_reinit_tagset(struct blk_mq_tag_set *set) 489 { 490 int i, j, ret = 0; 491 492 if (!set->ops->reinit_request) 493 goto out; 494 495 for (i = 0; i < set->nr_hw_queues; i++) { 496 struct blk_mq_tags *tags = set->tags[i]; 497 498 for (j = 0; j < tags->nr_tags; j++) { 499 if (!tags->rqs[j]) 500 continue; 501 502 ret = set->ops->reinit_request(set->driver_data, 503 tags->rqs[j]); 504 if (ret) 505 goto out; 506 } 507 } 508 509 out: 510 return ret; 511 } 512 EXPORT_SYMBOL_GPL(blk_mq_reinit_tagset); 513 514 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 515 void *priv) 516 { 517 struct blk_mq_hw_ctx *hctx; 518 int i; 519 520 521 queue_for_each_hw_ctx(q, hctx, i) { 522 struct blk_mq_tags *tags = hctx->tags; 523 524 /* 525 * If not software queues are currently mapped to this 526 * hardware queue, there's nothing to check 527 */ 528 if (!blk_mq_hw_queue_mapped(hctx)) 529 continue; 530 531 if (tags->nr_reserved_tags) 532 bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true); 533 bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, 534 false); 535 } 536 537 } 538 539 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) 540 { 541 unsigned int i, used; 542 543 for (i = 0, used = 0; i < bt->map_nr; i++) { 544 struct blk_align_bitmap *bm = &bt->map[i]; 545 546 used += bitmap_weight(&bm->word, bm->depth); 547 } 548 549 return bt->depth - used; 550 } 551 552 static void bt_update_count(struct blk_mq_bitmap_tags *bt, 553 unsigned int depth) 554 { 555 unsigned int tags_per_word = 1U << bt->bits_per_word; 556 unsigned int map_depth = depth; 557 558 if (depth) { 559 int i; 560 561 for (i = 0; i < bt->map_nr; i++) { 562 bt->map[i].depth = min(map_depth, tags_per_word); 563 map_depth -= bt->map[i].depth; 564 } 565 } 566 567 bt->wake_cnt = BT_WAIT_BATCH; 568 if (bt->wake_cnt > depth / BT_WAIT_QUEUES) 569 bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES); 570 571 bt->depth = depth; 572 } 573 574 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, 575 int node, bool reserved) 576 { 577 int i; 578 579 bt->bits_per_word = ilog2(BITS_PER_LONG); 580 581 /* 582 * Depth can be zero for reserved tags, that's not a failure 583 * condition. 584 */ 585 if (depth) { 586 unsigned int nr, tags_per_word; 587 588 tags_per_word = (1 << bt->bits_per_word); 589 590 /* 591 * If the tag space is small, shrink the number of tags 592 * per word so we spread over a few cachelines, at least. 593 * If less than 4 tags, just forget about it, it's not 594 * going to work optimally anyway. 595 */ 596 if (depth >= 4) { 597 while (tags_per_word * 4 > depth) { 598 bt->bits_per_word--; 599 tags_per_word = (1 << bt->bits_per_word); 600 } 601 } 602 603 nr = ALIGN(depth, tags_per_word) / tags_per_word; 604 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), 605 GFP_KERNEL, node); 606 if (!bt->map) 607 return -ENOMEM; 608 609 bt->map_nr = nr; 610 } 611 612 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); 613 if (!bt->bs) { 614 kfree(bt->map); 615 bt->map = NULL; 616 return -ENOMEM; 617 } 618 619 bt_update_count(bt, depth); 620 621 for (i = 0; i < BT_WAIT_QUEUES; i++) { 622 init_waitqueue_head(&bt->bs[i].wait); 623 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); 624 } 625 626 return 0; 627 } 628 629 static void bt_free(struct blk_mq_bitmap_tags *bt) 630 { 631 kfree(bt->map); 632 kfree(bt->bs); 633 } 634 635 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 636 int node, int alloc_policy) 637 { 638 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 639 640 tags->alloc_policy = alloc_policy; 641 642 if (bt_alloc(&tags->bitmap_tags, depth, node, false)) 643 goto enomem; 644 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) 645 goto enomem; 646 647 return tags; 648 enomem: 649 bt_free(&tags->bitmap_tags); 650 kfree(tags); 651 return NULL; 652 } 653 654 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 655 unsigned int reserved_tags, 656 int node, int alloc_policy) 657 { 658 struct blk_mq_tags *tags; 659 660 if (total_tags > BLK_MQ_TAG_MAX) { 661 pr_err("blk-mq: tag depth too large\n"); 662 return NULL; 663 } 664 665 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 666 if (!tags) 667 return NULL; 668 669 if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) { 670 kfree(tags); 671 return NULL; 672 } 673 674 tags->nr_tags = total_tags; 675 tags->nr_reserved_tags = reserved_tags; 676 677 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 678 } 679 680 void blk_mq_free_tags(struct blk_mq_tags *tags) 681 { 682 bt_free(&tags->bitmap_tags); 683 bt_free(&tags->breserved_tags); 684 free_cpumask_var(tags->cpumask); 685 kfree(tags); 686 } 687 688 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) 689 { 690 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 691 692 *tag = prandom_u32() % depth; 693 } 694 695 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) 696 { 697 tdepth -= tags->nr_reserved_tags; 698 if (tdepth > tags->nr_tags) 699 return -EINVAL; 700 701 /* 702 * Don't need (or can't) update reserved tags here, they remain 703 * static and should never need resizing. 704 */ 705 bt_update_count(&tags->bitmap_tags, tdepth); 706 blk_mq_tag_wakeup_all(tags, false); 707 return 0; 708 } 709 710 /** 711 * blk_mq_unique_tag() - return a tag that is unique queue-wide 712 * @rq: request for which to compute a unique tag 713 * 714 * The tag field in struct request is unique per hardware queue but not over 715 * all hardware queues. Hence this function that returns a tag with the 716 * hardware context index in the upper bits and the per hardware queue tag in 717 * the lower bits. 718 * 719 * Note: When called for a request that is queued on a non-multiqueue request 720 * queue, the hardware context index is set to zero. 721 */ 722 u32 blk_mq_unique_tag(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 struct blk_mq_hw_ctx *hctx; 726 int hwq = 0; 727 728 if (q->mq_ops) { 729 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 730 hwq = hctx->queue_num; 731 } 732 733 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | 734 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 735 } 736 EXPORT_SYMBOL(blk_mq_unique_tag); 737 738 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) 739 { 740 char *orig_page = page; 741 unsigned int free, res; 742 743 if (!tags) 744 return 0; 745 746 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " 747 "bits_per_word=%u\n", 748 tags->nr_tags, tags->nr_reserved_tags, 749 tags->bitmap_tags.bits_per_word); 750 751 free = bt_unused_tags(&tags->bitmap_tags); 752 res = bt_unused_tags(&tags->breserved_tags); 753 754 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); 755 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); 756 757 return page - orig_page; 758 } 759