xref: /openbmc/linux/block/blk-mq-tag.c (revision b96fc2f3)
1 /*
2  * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3  * over multiple cachelines to avoid ping-pong between multiple submitters
4  * or submitter and completer. Uses rolling wakeups to avoid falling of
5  * the scaling cliff when we run out of tags and have to start putting
6  * submitters to sleep.
7  *
8  * Uses active queue tracking to support fairer distribution of tags
9  * between multiple submitters when a shared tag map is used.
10  *
11  * Copyright (C) 2013-2014 Jens Axboe
12  */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
21 
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
23 {
24 	int i;
25 
26 	for (i = 0; i < bt->map_nr; i++) {
27 		struct blk_align_bitmap *bm = &bt->map[i];
28 		int ret;
29 
30 		ret = find_first_zero_bit(&bm->word, bm->depth);
31 		if (ret < bm->depth)
32 			return true;
33 	}
34 
35 	return false;
36 }
37 
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
39 {
40 	if (!tags)
41 		return true;
42 
43 	return bt_has_free_tags(&tags->bitmap_tags);
44 }
45 
46 static inline int bt_index_inc(int index)
47 {
48 	return (index + 1) & (BT_WAIT_QUEUES - 1);
49 }
50 
51 static inline void bt_index_atomic_inc(atomic_t *index)
52 {
53 	int old = atomic_read(index);
54 	int new = bt_index_inc(old);
55 	atomic_cmpxchg(index, old, new);
56 }
57 
58 /*
59  * If a previously inactive queue goes active, bump the active user count.
60  */
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
62 {
63 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 		atomic_inc(&hctx->tags->active_queues);
66 
67 	return true;
68 }
69 
70 /*
71  * Wakeup all potentially sleeping on tags
72  */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 	struct blk_mq_bitmap_tags *bt;
76 	int i, wake_index;
77 
78 	bt = &tags->bitmap_tags;
79 	wake_index = atomic_read(&bt->wake_index);
80 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
81 		struct bt_wait_state *bs = &bt->bs[wake_index];
82 
83 		if (waitqueue_active(&bs->wait))
84 			wake_up(&bs->wait);
85 
86 		wake_index = bt_index_inc(wake_index);
87 	}
88 
89 	if (include_reserve) {
90 		bt = &tags->breserved_tags;
91 		if (waitqueue_active(&bt->bs[0].wait))
92 			wake_up(&bt->bs[0].wait);
93 	}
94 }
95 
96 /*
97  * If a previously busy queue goes inactive, potential waiters could now
98  * be allowed to queue. Wake them up and check.
99  */
100 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
101 {
102 	struct blk_mq_tags *tags = hctx->tags;
103 
104 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
105 		return;
106 
107 	atomic_dec(&tags->active_queues);
108 
109 	blk_mq_tag_wakeup_all(tags, false);
110 }
111 
112 /*
113  * For shared tag users, we track the number of currently active users
114  * and attempt to provide a fair share of the tag depth for each of them.
115  */
116 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
117 				  struct blk_mq_bitmap_tags *bt)
118 {
119 	unsigned int depth, users;
120 
121 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
122 		return true;
123 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
124 		return true;
125 
126 	/*
127 	 * Don't try dividing an ant
128 	 */
129 	if (bt->depth == 1)
130 		return true;
131 
132 	users = atomic_read(&hctx->tags->active_queues);
133 	if (!users)
134 		return true;
135 
136 	/*
137 	 * Allow at least some tags
138 	 */
139 	depth = max((bt->depth + users - 1) / users, 4U);
140 	return atomic_read(&hctx->nr_active) < depth;
141 }
142 
143 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
144 			 bool nowrap)
145 {
146 	int tag, org_last_tag = last_tag;
147 
148 	while (1) {
149 		tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
150 		if (unlikely(tag >= bm->depth)) {
151 			/*
152 			 * We started with an offset, and we didn't reset the
153 			 * offset to 0 in a failure case, so start from 0 to
154 			 * exhaust the map.
155 			 */
156 			if (org_last_tag && last_tag && !nowrap) {
157 				last_tag = org_last_tag = 0;
158 				continue;
159 			}
160 			return -1;
161 		}
162 
163 		if (!test_and_set_bit(tag, &bm->word))
164 			break;
165 
166 		last_tag = tag + 1;
167 		if (last_tag >= bm->depth - 1)
168 			last_tag = 0;
169 	}
170 
171 	return tag;
172 }
173 
174 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
175 
176 /*
177  * Straight forward bitmap tag implementation, where each bit is a tag
178  * (cleared == free, and set == busy). The small twist is using per-cpu
179  * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
180  * contexts. This enables us to drastically limit the space searched,
181  * without dirtying an extra shared cacheline like we would if we stored
182  * the cache value inside the shared blk_mq_bitmap_tags structure. On top
183  * of that, each word of tags is in a separate cacheline. This means that
184  * multiple users will tend to stick to different cachelines, at least
185  * until the map is exhausted.
186  */
187 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
188 		    unsigned int *tag_cache, struct blk_mq_tags *tags)
189 {
190 	unsigned int last_tag, org_last_tag;
191 	int index, i, tag;
192 
193 	if (!hctx_may_queue(hctx, bt))
194 		return -1;
195 
196 	last_tag = org_last_tag = *tag_cache;
197 	index = TAG_TO_INDEX(bt, last_tag);
198 
199 	for (i = 0; i < bt->map_nr; i++) {
200 		tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
201 				    BT_ALLOC_RR(tags));
202 		if (tag != -1) {
203 			tag += (index << bt->bits_per_word);
204 			goto done;
205 		}
206 
207 		/*
208 		 * Jump to next index, and reset the last tag to be the
209 		 * first tag of that index
210 		 */
211 		index++;
212 		last_tag = (index << bt->bits_per_word);
213 
214 		if (index >= bt->map_nr) {
215 			index = 0;
216 			last_tag = 0;
217 		}
218 	}
219 
220 	*tag_cache = 0;
221 	return -1;
222 
223 	/*
224 	 * Only update the cache from the allocation path, if we ended
225 	 * up using the specific cached tag.
226 	 */
227 done:
228 	if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
229 		last_tag = tag + 1;
230 		if (last_tag >= bt->depth - 1)
231 			last_tag = 0;
232 
233 		*tag_cache = last_tag;
234 	}
235 
236 	return tag;
237 }
238 
239 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
240 					 struct blk_mq_hw_ctx *hctx)
241 {
242 	struct bt_wait_state *bs;
243 	int wait_index;
244 
245 	if (!hctx)
246 		return &bt->bs[0];
247 
248 	wait_index = atomic_read(&hctx->wait_index);
249 	bs = &bt->bs[wait_index];
250 	bt_index_atomic_inc(&hctx->wait_index);
251 	return bs;
252 }
253 
254 static int bt_get(struct blk_mq_alloc_data *data,
255 		struct blk_mq_bitmap_tags *bt,
256 		struct blk_mq_hw_ctx *hctx,
257 		unsigned int *last_tag, struct blk_mq_tags *tags)
258 {
259 	struct bt_wait_state *bs;
260 	DEFINE_WAIT(wait);
261 	int tag;
262 
263 	tag = __bt_get(hctx, bt, last_tag, tags);
264 	if (tag != -1)
265 		return tag;
266 
267 	if (!(data->gfp & __GFP_WAIT))
268 		return -1;
269 
270 	bs = bt_wait_ptr(bt, hctx);
271 	do {
272 		prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
273 
274 		tag = __bt_get(hctx, bt, last_tag, tags);
275 		if (tag != -1)
276 			break;
277 
278 		/*
279 		 * We're out of tags on this hardware queue, kick any
280 		 * pending IO submits before going to sleep waiting for
281 		 * some to complete. Note that hctx can be NULL here for
282 		 * reserved tag allocation.
283 		 */
284 		if (hctx)
285 			blk_mq_run_hw_queue(hctx, false);
286 
287 		/*
288 		 * Retry tag allocation after running the hardware queue,
289 		 * as running the queue may also have found completions.
290 		 */
291 		tag = __bt_get(hctx, bt, last_tag, tags);
292 		if (tag != -1)
293 			break;
294 
295 		blk_mq_put_ctx(data->ctx);
296 
297 		io_schedule();
298 
299 		data->ctx = blk_mq_get_ctx(data->q);
300 		data->hctx = data->q->mq_ops->map_queue(data->q,
301 				data->ctx->cpu);
302 		if (data->reserved) {
303 			bt = &data->hctx->tags->breserved_tags;
304 		} else {
305 			last_tag = &data->ctx->last_tag;
306 			hctx = data->hctx;
307 			bt = &hctx->tags->bitmap_tags;
308 		}
309 		finish_wait(&bs->wait, &wait);
310 		bs = bt_wait_ptr(bt, hctx);
311 	} while (1);
312 
313 	finish_wait(&bs->wait, &wait);
314 	return tag;
315 }
316 
317 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
318 {
319 	int tag;
320 
321 	tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
322 			&data->ctx->last_tag, data->hctx->tags);
323 	if (tag >= 0)
324 		return tag + data->hctx->tags->nr_reserved_tags;
325 
326 	return BLK_MQ_TAG_FAIL;
327 }
328 
329 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
330 {
331 	int tag, zero = 0;
332 
333 	if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
334 		WARN_ON_ONCE(1);
335 		return BLK_MQ_TAG_FAIL;
336 	}
337 
338 	tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
339 		data->hctx->tags);
340 	if (tag < 0)
341 		return BLK_MQ_TAG_FAIL;
342 
343 	return tag;
344 }
345 
346 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
347 {
348 	if (!data->reserved)
349 		return __blk_mq_get_tag(data);
350 
351 	return __blk_mq_get_reserved_tag(data);
352 }
353 
354 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
355 {
356 	int i, wake_index;
357 
358 	wake_index = atomic_read(&bt->wake_index);
359 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
360 		struct bt_wait_state *bs = &bt->bs[wake_index];
361 
362 		if (waitqueue_active(&bs->wait)) {
363 			int o = atomic_read(&bt->wake_index);
364 			if (wake_index != o)
365 				atomic_cmpxchg(&bt->wake_index, o, wake_index);
366 
367 			return bs;
368 		}
369 
370 		wake_index = bt_index_inc(wake_index);
371 	}
372 
373 	return NULL;
374 }
375 
376 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
377 {
378 	const int index = TAG_TO_INDEX(bt, tag);
379 	struct bt_wait_state *bs;
380 	int wait_cnt;
381 
382 	clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
383 
384 	/* Ensure that the wait list checks occur after clear_bit(). */
385 	smp_mb();
386 
387 	bs = bt_wake_ptr(bt);
388 	if (!bs)
389 		return;
390 
391 	wait_cnt = atomic_dec_return(&bs->wait_cnt);
392 	if (unlikely(wait_cnt < 0))
393 		wait_cnt = atomic_inc_return(&bs->wait_cnt);
394 	if (wait_cnt == 0) {
395 		atomic_add(bt->wake_cnt, &bs->wait_cnt);
396 		bt_index_atomic_inc(&bt->wake_index);
397 		wake_up(&bs->wait);
398 	}
399 }
400 
401 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
402 		    unsigned int *last_tag)
403 {
404 	struct blk_mq_tags *tags = hctx->tags;
405 
406 	if (tag >= tags->nr_reserved_tags) {
407 		const int real_tag = tag - tags->nr_reserved_tags;
408 
409 		BUG_ON(real_tag >= tags->nr_tags);
410 		bt_clear_tag(&tags->bitmap_tags, real_tag);
411 		if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
412 			*last_tag = real_tag;
413 	} else {
414 		BUG_ON(tag >= tags->nr_reserved_tags);
415 		bt_clear_tag(&tags->breserved_tags, tag);
416 	}
417 }
418 
419 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
420 		struct blk_mq_bitmap_tags *bt, unsigned int off,
421 		busy_iter_fn *fn, void *data, bool reserved)
422 {
423 	struct request *rq;
424 	int bit, i;
425 
426 	for (i = 0; i < bt->map_nr; i++) {
427 		struct blk_align_bitmap *bm = &bt->map[i];
428 
429 		for (bit = find_first_bit(&bm->word, bm->depth);
430 		     bit < bm->depth;
431 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
432 			rq = hctx->tags->rqs[off + bit];
433 			if (rq->q == hctx->queue)
434 				fn(hctx, rq, data, reserved);
435 		}
436 
437 		off += (1 << bt->bits_per_word);
438 	}
439 }
440 
441 static void bt_tags_for_each(struct blk_mq_tags *tags,
442 		struct blk_mq_bitmap_tags *bt, unsigned int off,
443 		busy_tag_iter_fn *fn, void *data, bool reserved)
444 {
445 	struct request *rq;
446 	int bit, i;
447 
448 	if (!tags->rqs)
449 		return;
450 	for (i = 0; i < bt->map_nr; i++) {
451 		struct blk_align_bitmap *bm = &bt->map[i];
452 
453 		for (bit = find_first_bit(&bm->word, bm->depth);
454 		     bit < bm->depth;
455 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
456 			rq = tags->rqs[off + bit];
457 			fn(rq, data, reserved);
458 		}
459 
460 		off += (1 << bt->bits_per_word);
461 	}
462 }
463 
464 void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
465 		void *priv)
466 {
467 	if (tags->nr_reserved_tags)
468 		bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
469 	bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
470 			false);
471 }
472 EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
473 
474 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
475 		void *priv)
476 {
477 	struct blk_mq_hw_ctx *hctx;
478 	int i;
479 
480 
481 	queue_for_each_hw_ctx(q, hctx, i) {
482 		struct blk_mq_tags *tags = hctx->tags;
483 
484 		/*
485 		 * If not software queues are currently mapped to this
486 		 * hardware queue, there's nothing to check
487 		 */
488 		if (!blk_mq_hw_queue_mapped(hctx))
489 			continue;
490 
491 		if (tags->nr_reserved_tags)
492 			bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
493 		bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
494 		      false);
495 	}
496 
497 }
498 
499 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
500 {
501 	unsigned int i, used;
502 
503 	for (i = 0, used = 0; i < bt->map_nr; i++) {
504 		struct blk_align_bitmap *bm = &bt->map[i];
505 
506 		used += bitmap_weight(&bm->word, bm->depth);
507 	}
508 
509 	return bt->depth - used;
510 }
511 
512 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
513 			    unsigned int depth)
514 {
515 	unsigned int tags_per_word = 1U << bt->bits_per_word;
516 	unsigned int map_depth = depth;
517 
518 	if (depth) {
519 		int i;
520 
521 		for (i = 0; i < bt->map_nr; i++) {
522 			bt->map[i].depth = min(map_depth, tags_per_word);
523 			map_depth -= bt->map[i].depth;
524 		}
525 	}
526 
527 	bt->wake_cnt = BT_WAIT_BATCH;
528 	if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
529 		bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
530 
531 	bt->depth = depth;
532 }
533 
534 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
535 			int node, bool reserved)
536 {
537 	int i;
538 
539 	bt->bits_per_word = ilog2(BITS_PER_LONG);
540 
541 	/*
542 	 * Depth can be zero for reserved tags, that's not a failure
543 	 * condition.
544 	 */
545 	if (depth) {
546 		unsigned int nr, tags_per_word;
547 
548 		tags_per_word = (1 << bt->bits_per_word);
549 
550 		/*
551 		 * If the tag space is small, shrink the number of tags
552 		 * per word so we spread over a few cachelines, at least.
553 		 * If less than 4 tags, just forget about it, it's not
554 		 * going to work optimally anyway.
555 		 */
556 		if (depth >= 4) {
557 			while (tags_per_word * 4 > depth) {
558 				bt->bits_per_word--;
559 				tags_per_word = (1 << bt->bits_per_word);
560 			}
561 		}
562 
563 		nr = ALIGN(depth, tags_per_word) / tags_per_word;
564 		bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
565 						GFP_KERNEL, node);
566 		if (!bt->map)
567 			return -ENOMEM;
568 
569 		bt->map_nr = nr;
570 	}
571 
572 	bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
573 	if (!bt->bs) {
574 		kfree(bt->map);
575 		bt->map = NULL;
576 		return -ENOMEM;
577 	}
578 
579 	bt_update_count(bt, depth);
580 
581 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
582 		init_waitqueue_head(&bt->bs[i].wait);
583 		atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
584 	}
585 
586 	return 0;
587 }
588 
589 static void bt_free(struct blk_mq_bitmap_tags *bt)
590 {
591 	kfree(bt->map);
592 	kfree(bt->bs);
593 }
594 
595 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
596 						   int node, int alloc_policy)
597 {
598 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
599 
600 	tags->alloc_policy = alloc_policy;
601 
602 	if (bt_alloc(&tags->bitmap_tags, depth, node, false))
603 		goto enomem;
604 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
605 		goto enomem;
606 
607 	return tags;
608 enomem:
609 	bt_free(&tags->bitmap_tags);
610 	kfree(tags);
611 	return NULL;
612 }
613 
614 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
615 				     unsigned int reserved_tags,
616 				     int node, int alloc_policy)
617 {
618 	struct blk_mq_tags *tags;
619 
620 	if (total_tags > BLK_MQ_TAG_MAX) {
621 		pr_err("blk-mq: tag depth too large\n");
622 		return NULL;
623 	}
624 
625 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
626 	if (!tags)
627 		return NULL;
628 
629 	if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
630 		kfree(tags);
631 		return NULL;
632 	}
633 
634 	tags->nr_tags = total_tags;
635 	tags->nr_reserved_tags = reserved_tags;
636 
637 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
638 }
639 
640 void blk_mq_free_tags(struct blk_mq_tags *tags)
641 {
642 	bt_free(&tags->bitmap_tags);
643 	bt_free(&tags->breserved_tags);
644 	kfree(tags);
645 }
646 
647 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
648 {
649 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
650 
651 	*tag = prandom_u32() % depth;
652 }
653 
654 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
655 {
656 	tdepth -= tags->nr_reserved_tags;
657 	if (tdepth > tags->nr_tags)
658 		return -EINVAL;
659 
660 	/*
661 	 * Don't need (or can't) update reserved tags here, they remain
662 	 * static and should never need resizing.
663 	 */
664 	bt_update_count(&tags->bitmap_tags, tdepth);
665 	blk_mq_tag_wakeup_all(tags, false);
666 	return 0;
667 }
668 
669 /**
670  * blk_mq_unique_tag() - return a tag that is unique queue-wide
671  * @rq: request for which to compute a unique tag
672  *
673  * The tag field in struct request is unique per hardware queue but not over
674  * all hardware queues. Hence this function that returns a tag with the
675  * hardware context index in the upper bits and the per hardware queue tag in
676  * the lower bits.
677  *
678  * Note: When called for a request that is queued on a non-multiqueue request
679  * queue, the hardware context index is set to zero.
680  */
681 u32 blk_mq_unique_tag(struct request *rq)
682 {
683 	struct request_queue *q = rq->q;
684 	struct blk_mq_hw_ctx *hctx;
685 	int hwq = 0;
686 
687 	if (q->mq_ops) {
688 		hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
689 		hwq = hctx->queue_num;
690 	}
691 
692 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
693 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
694 }
695 EXPORT_SYMBOL(blk_mq_unique_tag);
696 
697 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
698 {
699 	char *orig_page = page;
700 	unsigned int free, res;
701 
702 	if (!tags)
703 		return 0;
704 
705 	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
706 			"bits_per_word=%u\n",
707 			tags->nr_tags, tags->nr_reserved_tags,
708 			tags->bitmap_tags.bits_per_word);
709 
710 	free = bt_unused_tags(&tags->bitmap_tags);
711 	res = bt_unused_tags(&tags->breserved_tags);
712 
713 	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
714 	page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
715 
716 	return page - orig_page;
717 }
718