1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/blk-mq.h> 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-tag.h" 16 17 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 18 { 19 if (!tags) 20 return true; 21 22 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb); 23 } 24 25 /* 26 * If a previously inactive queue goes active, bump the active user count. 27 * We need to do this before try to allocate driver tag, then even if fail 28 * to get tag when first time, the other shared-tag users could reserve 29 * budget for it. 30 */ 31 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 32 { 33 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 34 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 35 atomic_inc(&hctx->tags->active_queues); 36 37 return true; 38 } 39 40 /* 41 * Wakeup all potentially sleeping on tags 42 */ 43 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 44 { 45 sbitmap_queue_wake_all(&tags->bitmap_tags); 46 if (include_reserve) 47 sbitmap_queue_wake_all(&tags->breserved_tags); 48 } 49 50 /* 51 * If a previously busy queue goes inactive, potential waiters could now 52 * be allowed to queue. Wake them up and check. 53 */ 54 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 55 { 56 struct blk_mq_tags *tags = hctx->tags; 57 58 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 59 return; 60 61 atomic_dec(&tags->active_queues); 62 63 blk_mq_tag_wakeup_all(tags, false); 64 } 65 66 /* 67 * For shared tag users, we track the number of currently active users 68 * and attempt to provide a fair share of the tag depth for each of them. 69 */ 70 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 71 struct sbitmap_queue *bt) 72 { 73 unsigned int depth, users; 74 75 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 76 return true; 77 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 78 return true; 79 80 /* 81 * Don't try dividing an ant 82 */ 83 if (bt->sb.depth == 1) 84 return true; 85 86 users = atomic_read(&hctx->tags->active_queues); 87 if (!users) 88 return true; 89 90 /* 91 * Allow at least some tags 92 */ 93 depth = max((bt->sb.depth + users - 1) / users, 4U); 94 return atomic_read(&hctx->nr_active) < depth; 95 } 96 97 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 98 struct sbitmap_queue *bt) 99 { 100 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 101 !hctx_may_queue(data->hctx, bt)) 102 return -1; 103 if (data->shallow_depth) 104 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 105 else 106 return __sbitmap_queue_get(bt); 107 } 108 109 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 110 { 111 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 112 struct sbitmap_queue *bt; 113 struct sbq_wait_state *ws; 114 DEFINE_SBQ_WAIT(wait); 115 unsigned int tag_offset; 116 int tag; 117 118 if (data->flags & BLK_MQ_REQ_RESERVED) { 119 if (unlikely(!tags->nr_reserved_tags)) { 120 WARN_ON_ONCE(1); 121 return BLK_MQ_TAG_FAIL; 122 } 123 bt = &tags->breserved_tags; 124 tag_offset = 0; 125 } else { 126 bt = &tags->bitmap_tags; 127 tag_offset = tags->nr_reserved_tags; 128 } 129 130 tag = __blk_mq_get_tag(data, bt); 131 if (tag != -1) 132 goto found_tag; 133 134 if (data->flags & BLK_MQ_REQ_NOWAIT) 135 return BLK_MQ_TAG_FAIL; 136 137 ws = bt_wait_ptr(bt, data->hctx); 138 do { 139 struct sbitmap_queue *bt_prev; 140 141 /* 142 * We're out of tags on this hardware queue, kick any 143 * pending IO submits before going to sleep waiting for 144 * some to complete. 145 */ 146 blk_mq_run_hw_queue(data->hctx, false); 147 148 /* 149 * Retry tag allocation after running the hardware queue, 150 * as running the queue may also have found completions. 151 */ 152 tag = __blk_mq_get_tag(data, bt); 153 if (tag != -1) 154 break; 155 156 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 157 158 tag = __blk_mq_get_tag(data, bt); 159 if (tag != -1) 160 break; 161 162 bt_prev = bt; 163 io_schedule(); 164 165 sbitmap_finish_wait(bt, ws, &wait); 166 167 data->ctx = blk_mq_get_ctx(data->q); 168 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 169 data->ctx); 170 tags = blk_mq_tags_from_data(data); 171 if (data->flags & BLK_MQ_REQ_RESERVED) 172 bt = &tags->breserved_tags; 173 else 174 bt = &tags->bitmap_tags; 175 176 /* 177 * If destination hw queue is changed, fake wake up on 178 * previous queue for compensating the wake up miss, so 179 * other allocations on previous queue won't be starved. 180 */ 181 if (bt != bt_prev) 182 sbitmap_queue_wake_up(bt_prev); 183 184 ws = bt_wait_ptr(bt, data->hctx); 185 } while (1); 186 187 sbitmap_finish_wait(bt, ws, &wait); 188 189 found_tag: 190 return tag + tag_offset; 191 } 192 193 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags, 194 struct blk_mq_ctx *ctx, unsigned int tag) 195 { 196 if (!blk_mq_tag_is_reserved(tags, tag)) { 197 const int real_tag = tag - tags->nr_reserved_tags; 198 199 BUG_ON(real_tag >= tags->nr_tags); 200 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 201 } else { 202 BUG_ON(tag >= tags->nr_reserved_tags); 203 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 204 } 205 } 206 207 struct bt_iter_data { 208 struct blk_mq_hw_ctx *hctx; 209 busy_iter_fn *fn; 210 void *data; 211 bool reserved; 212 }; 213 214 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 215 { 216 struct bt_iter_data *iter_data = data; 217 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 218 struct blk_mq_tags *tags = hctx->tags; 219 bool reserved = iter_data->reserved; 220 struct request *rq; 221 222 if (!reserved) 223 bitnr += tags->nr_reserved_tags; 224 rq = tags->rqs[bitnr]; 225 226 /* 227 * We can hit rq == NULL here, because the tagging functions 228 * test and set the bit before assigning ->rqs[]. 229 */ 230 if (rq && rq->q == hctx->queue) 231 return iter_data->fn(hctx, rq, iter_data->data, reserved); 232 return true; 233 } 234 235 /** 236 * bt_for_each - iterate over the requests associated with a hardware queue 237 * @hctx: Hardware queue to examine. 238 * @bt: sbitmap to examine. This is either the breserved_tags member 239 * or the bitmap_tags member of struct blk_mq_tags. 240 * @fn: Pointer to the function that will be called for each request 241 * associated with @hctx that has been assigned a driver tag. 242 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 243 * where rq is a pointer to a request. Return true to continue 244 * iterating tags, false to stop. 245 * @data: Will be passed as third argument to @fn. 246 * @reserved: Indicates whether @bt is the breserved_tags member or the 247 * bitmap_tags member of struct blk_mq_tags. 248 */ 249 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 250 busy_iter_fn *fn, void *data, bool reserved) 251 { 252 struct bt_iter_data iter_data = { 253 .hctx = hctx, 254 .fn = fn, 255 .data = data, 256 .reserved = reserved, 257 }; 258 259 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 260 } 261 262 struct bt_tags_iter_data { 263 struct blk_mq_tags *tags; 264 busy_tag_iter_fn *fn; 265 void *data; 266 bool reserved; 267 }; 268 269 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 270 { 271 struct bt_tags_iter_data *iter_data = data; 272 struct blk_mq_tags *tags = iter_data->tags; 273 bool reserved = iter_data->reserved; 274 struct request *rq; 275 276 if (!reserved) 277 bitnr += tags->nr_reserved_tags; 278 279 /* 280 * We can hit rq == NULL here, because the tagging functions 281 * test and set the bit before assining ->rqs[]. 282 */ 283 rq = tags->rqs[bitnr]; 284 if (rq && blk_mq_request_started(rq)) 285 return iter_data->fn(rq, iter_data->data, reserved); 286 287 return true; 288 } 289 290 /** 291 * bt_tags_for_each - iterate over the requests in a tag map 292 * @tags: Tag map to iterate over. 293 * @bt: sbitmap to examine. This is either the breserved_tags member 294 * or the bitmap_tags member of struct blk_mq_tags. 295 * @fn: Pointer to the function that will be called for each started 296 * request. @fn will be called as follows: @fn(rq, @data, 297 * @reserved) where rq is a pointer to a request. Return true 298 * to continue iterating tags, false to stop. 299 * @data: Will be passed as second argument to @fn. 300 * @reserved: Indicates whether @bt is the breserved_tags member or the 301 * bitmap_tags member of struct blk_mq_tags. 302 */ 303 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 304 busy_tag_iter_fn *fn, void *data, bool reserved) 305 { 306 struct bt_tags_iter_data iter_data = { 307 .tags = tags, 308 .fn = fn, 309 .data = data, 310 .reserved = reserved, 311 }; 312 313 if (tags->rqs) 314 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 315 } 316 317 /** 318 * blk_mq_all_tag_busy_iter - iterate over all started requests in a tag map 319 * @tags: Tag map to iterate over. 320 * @fn: Pointer to the function that will be called for each started 321 * request. @fn will be called as follows: @fn(rq, @priv, 322 * reserved) where rq is a pointer to a request. 'reserved' 323 * indicates whether or not @rq is a reserved request. Return 324 * true to continue iterating tags, false to stop. 325 * @priv: Will be passed as second argument to @fn. 326 */ 327 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 328 busy_tag_iter_fn *fn, void *priv) 329 { 330 if (tags->nr_reserved_tags) 331 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true); 332 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false); 333 } 334 335 /** 336 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 337 * @tagset: Tag set to iterate over. 338 * @fn: Pointer to the function that will be called for each started 339 * request. @fn will be called as follows: @fn(rq, @priv, 340 * reserved) where rq is a pointer to a request. 'reserved' 341 * indicates whether or not @rq is a reserved request. Return 342 * true to continue iterating tags, false to stop. 343 * @priv: Will be passed as second argument to @fn. 344 */ 345 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 346 busy_tag_iter_fn *fn, void *priv) 347 { 348 int i; 349 350 for (i = 0; i < tagset->nr_hw_queues; i++) { 351 if (tagset->tags && tagset->tags[i]) 352 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 353 } 354 } 355 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 356 357 /** 358 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 359 * @q: Request queue to examine. 360 * @fn: Pointer to the function that will be called for each request 361 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 362 * reserved) where rq is a pointer to a request and hctx points 363 * to the hardware queue associated with the request. 'reserved' 364 * indicates whether or not @rq is a reserved request. 365 * @priv: Will be passed as third argument to @fn. 366 * 367 * Note: if @q->tag_set is shared with other request queues then @fn will be 368 * called for all requests on all queues that share that tag set and not only 369 * for requests associated with @q. 370 */ 371 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 372 void *priv) 373 { 374 struct blk_mq_hw_ctx *hctx; 375 int i; 376 377 /* 378 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx 379 * while the queue is frozen. So we can use q_usage_counter to avoid 380 * racing with it. __blk_mq_update_nr_hw_queues() uses 381 * synchronize_rcu() to ensure this function left the critical section 382 * below. 383 */ 384 if (!percpu_ref_tryget(&q->q_usage_counter)) 385 return; 386 387 queue_for_each_hw_ctx(q, hctx, i) { 388 struct blk_mq_tags *tags = hctx->tags; 389 390 /* 391 * If no software queues are currently mapped to this 392 * hardware queue, there's nothing to check 393 */ 394 if (!blk_mq_hw_queue_mapped(hctx)) 395 continue; 396 397 if (tags->nr_reserved_tags) 398 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 399 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 400 } 401 blk_queue_exit(q); 402 } 403 404 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 405 bool round_robin, int node) 406 { 407 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 408 node); 409 } 410 411 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 412 int node, int alloc_policy) 413 { 414 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 415 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 416 417 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 418 goto free_tags; 419 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 420 node)) 421 goto free_bitmap_tags; 422 423 return tags; 424 free_bitmap_tags: 425 sbitmap_queue_free(&tags->bitmap_tags); 426 free_tags: 427 kfree(tags); 428 return NULL; 429 } 430 431 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 432 unsigned int reserved_tags, 433 int node, int alloc_policy) 434 { 435 struct blk_mq_tags *tags; 436 437 if (total_tags > BLK_MQ_TAG_MAX) { 438 pr_err("blk-mq: tag depth too large\n"); 439 return NULL; 440 } 441 442 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 443 if (!tags) 444 return NULL; 445 446 tags->nr_tags = total_tags; 447 tags->nr_reserved_tags = reserved_tags; 448 449 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 450 } 451 452 void blk_mq_free_tags(struct blk_mq_tags *tags) 453 { 454 sbitmap_queue_free(&tags->bitmap_tags); 455 sbitmap_queue_free(&tags->breserved_tags); 456 kfree(tags); 457 } 458 459 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 460 struct blk_mq_tags **tagsptr, unsigned int tdepth, 461 bool can_grow) 462 { 463 struct blk_mq_tags *tags = *tagsptr; 464 465 if (tdepth <= tags->nr_reserved_tags) 466 return -EINVAL; 467 468 /* 469 * If we are allowed to grow beyond the original size, allocate 470 * a new set of tags before freeing the old one. 471 */ 472 if (tdepth > tags->nr_tags) { 473 struct blk_mq_tag_set *set = hctx->queue->tag_set; 474 struct blk_mq_tags *new; 475 bool ret; 476 477 if (!can_grow) 478 return -EINVAL; 479 480 /* 481 * We need some sort of upper limit, set it high enough that 482 * no valid use cases should require more. 483 */ 484 if (tdepth > 16 * BLKDEV_MAX_RQ) 485 return -EINVAL; 486 487 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 488 tags->nr_reserved_tags); 489 if (!new) 490 return -ENOMEM; 491 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 492 if (ret) { 493 blk_mq_free_rq_map(new); 494 return -ENOMEM; 495 } 496 497 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 498 blk_mq_free_rq_map(*tagsptr); 499 *tagsptr = new; 500 } else { 501 /* 502 * Don't need (or can't) update reserved tags here, they 503 * remain static and should never need resizing. 504 */ 505 sbitmap_queue_resize(&tags->bitmap_tags, 506 tdepth - tags->nr_reserved_tags); 507 } 508 509 return 0; 510 } 511 512 /** 513 * blk_mq_unique_tag() - return a tag that is unique queue-wide 514 * @rq: request for which to compute a unique tag 515 * 516 * The tag field in struct request is unique per hardware queue but not over 517 * all hardware queues. Hence this function that returns a tag with the 518 * hardware context index in the upper bits and the per hardware queue tag in 519 * the lower bits. 520 * 521 * Note: When called for a request that is queued on a non-multiqueue request 522 * queue, the hardware context index is set to zero. 523 */ 524 u32 blk_mq_unique_tag(struct request *rq) 525 { 526 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 527 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 528 } 529 EXPORT_SYMBOL(blk_mq_unique_tag); 530