xref: /openbmc/linux/block/blk-mq-tag.c (revision a8fe58ce)
1 /*
2  * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3  * over multiple cachelines to avoid ping-pong between multiple submitters
4  * or submitter and completer. Uses rolling wakeups to avoid falling of
5  * the scaling cliff when we run out of tags and have to start putting
6  * submitters to sleep.
7  *
8  * Uses active queue tracking to support fairer distribution of tags
9  * between multiple submitters when a shared tag map is used.
10  *
11  * Copyright (C) 2013-2014 Jens Axboe
12  */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
21 
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
23 {
24 	int i;
25 
26 	for (i = 0; i < bt->map_nr; i++) {
27 		struct blk_align_bitmap *bm = &bt->map[i];
28 		int ret;
29 
30 		ret = find_first_zero_bit(&bm->word, bm->depth);
31 		if (ret < bm->depth)
32 			return true;
33 	}
34 
35 	return false;
36 }
37 
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
39 {
40 	if (!tags)
41 		return true;
42 
43 	return bt_has_free_tags(&tags->bitmap_tags);
44 }
45 
46 static inline int bt_index_inc(int index)
47 {
48 	return (index + 1) & (BT_WAIT_QUEUES - 1);
49 }
50 
51 static inline void bt_index_atomic_inc(atomic_t *index)
52 {
53 	int old = atomic_read(index);
54 	int new = bt_index_inc(old);
55 	atomic_cmpxchg(index, old, new);
56 }
57 
58 /*
59  * If a previously inactive queue goes active, bump the active user count.
60  */
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
62 {
63 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 		atomic_inc(&hctx->tags->active_queues);
66 
67 	return true;
68 }
69 
70 /*
71  * Wakeup all potentially sleeping on tags
72  */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 	struct blk_mq_bitmap_tags *bt;
76 	int i, wake_index;
77 
78 	/*
79 	 * Make sure all changes prior to this are visible from other CPUs.
80 	 */
81 	smp_mb();
82 	bt = &tags->bitmap_tags;
83 	wake_index = atomic_read(&bt->wake_index);
84 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
85 		struct bt_wait_state *bs = &bt->bs[wake_index];
86 
87 		if (waitqueue_active(&bs->wait))
88 			wake_up(&bs->wait);
89 
90 		wake_index = bt_index_inc(wake_index);
91 	}
92 
93 	if (include_reserve) {
94 		bt = &tags->breserved_tags;
95 		if (waitqueue_active(&bt->bs[0].wait))
96 			wake_up(&bt->bs[0].wait);
97 	}
98 }
99 
100 /*
101  * If a previously busy queue goes inactive, potential waiters could now
102  * be allowed to queue. Wake them up and check.
103  */
104 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
105 {
106 	struct blk_mq_tags *tags = hctx->tags;
107 
108 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
109 		return;
110 
111 	atomic_dec(&tags->active_queues);
112 
113 	blk_mq_tag_wakeup_all(tags, false);
114 }
115 
116 /*
117  * For shared tag users, we track the number of currently active users
118  * and attempt to provide a fair share of the tag depth for each of them.
119  */
120 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
121 				  struct blk_mq_bitmap_tags *bt)
122 {
123 	unsigned int depth, users;
124 
125 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
126 		return true;
127 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
128 		return true;
129 
130 	/*
131 	 * Don't try dividing an ant
132 	 */
133 	if (bt->depth == 1)
134 		return true;
135 
136 	users = atomic_read(&hctx->tags->active_queues);
137 	if (!users)
138 		return true;
139 
140 	/*
141 	 * Allow at least some tags
142 	 */
143 	depth = max((bt->depth + users - 1) / users, 4U);
144 	return atomic_read(&hctx->nr_active) < depth;
145 }
146 
147 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
148 			 bool nowrap)
149 {
150 	int tag, org_last_tag = last_tag;
151 
152 	while (1) {
153 		tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
154 		if (unlikely(tag >= bm->depth)) {
155 			/*
156 			 * We started with an offset, and we didn't reset the
157 			 * offset to 0 in a failure case, so start from 0 to
158 			 * exhaust the map.
159 			 */
160 			if (org_last_tag && last_tag && !nowrap) {
161 				last_tag = org_last_tag = 0;
162 				continue;
163 			}
164 			return -1;
165 		}
166 
167 		if (!test_and_set_bit(tag, &bm->word))
168 			break;
169 
170 		last_tag = tag + 1;
171 		if (last_tag >= bm->depth - 1)
172 			last_tag = 0;
173 	}
174 
175 	return tag;
176 }
177 
178 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
179 
180 /*
181  * Straight forward bitmap tag implementation, where each bit is a tag
182  * (cleared == free, and set == busy). The small twist is using per-cpu
183  * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
184  * contexts. This enables us to drastically limit the space searched,
185  * without dirtying an extra shared cacheline like we would if we stored
186  * the cache value inside the shared blk_mq_bitmap_tags structure. On top
187  * of that, each word of tags is in a separate cacheline. This means that
188  * multiple users will tend to stick to different cachelines, at least
189  * until the map is exhausted.
190  */
191 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
192 		    unsigned int *tag_cache, struct blk_mq_tags *tags)
193 {
194 	unsigned int last_tag, org_last_tag;
195 	int index, i, tag;
196 
197 	if (!hctx_may_queue(hctx, bt))
198 		return -1;
199 
200 	last_tag = org_last_tag = *tag_cache;
201 	index = TAG_TO_INDEX(bt, last_tag);
202 
203 	for (i = 0; i < bt->map_nr; i++) {
204 		tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
205 				    BT_ALLOC_RR(tags));
206 		if (tag != -1) {
207 			tag += (index << bt->bits_per_word);
208 			goto done;
209 		}
210 
211 		/*
212 		 * Jump to next index, and reset the last tag to be the
213 		 * first tag of that index
214 		 */
215 		index++;
216 		last_tag = (index << bt->bits_per_word);
217 
218 		if (index >= bt->map_nr) {
219 			index = 0;
220 			last_tag = 0;
221 		}
222 	}
223 
224 	*tag_cache = 0;
225 	return -1;
226 
227 	/*
228 	 * Only update the cache from the allocation path, if we ended
229 	 * up using the specific cached tag.
230 	 */
231 done:
232 	if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
233 		last_tag = tag + 1;
234 		if (last_tag >= bt->depth - 1)
235 			last_tag = 0;
236 
237 		*tag_cache = last_tag;
238 	}
239 
240 	return tag;
241 }
242 
243 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
244 					 struct blk_mq_hw_ctx *hctx)
245 {
246 	struct bt_wait_state *bs;
247 	int wait_index;
248 
249 	if (!hctx)
250 		return &bt->bs[0];
251 
252 	wait_index = atomic_read(&hctx->wait_index);
253 	bs = &bt->bs[wait_index];
254 	bt_index_atomic_inc(&hctx->wait_index);
255 	return bs;
256 }
257 
258 static int bt_get(struct blk_mq_alloc_data *data,
259 		struct blk_mq_bitmap_tags *bt,
260 		struct blk_mq_hw_ctx *hctx,
261 		unsigned int *last_tag, struct blk_mq_tags *tags)
262 {
263 	struct bt_wait_state *bs;
264 	DEFINE_WAIT(wait);
265 	int tag;
266 
267 	tag = __bt_get(hctx, bt, last_tag, tags);
268 	if (tag != -1)
269 		return tag;
270 
271 	if (data->flags & BLK_MQ_REQ_NOWAIT)
272 		return -1;
273 
274 	bs = bt_wait_ptr(bt, hctx);
275 	do {
276 		prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
277 
278 		tag = __bt_get(hctx, bt, last_tag, tags);
279 		if (tag != -1)
280 			break;
281 
282 		/*
283 		 * We're out of tags on this hardware queue, kick any
284 		 * pending IO submits before going to sleep waiting for
285 		 * some to complete. Note that hctx can be NULL here for
286 		 * reserved tag allocation.
287 		 */
288 		if (hctx)
289 			blk_mq_run_hw_queue(hctx, false);
290 
291 		/*
292 		 * Retry tag allocation after running the hardware queue,
293 		 * as running the queue may also have found completions.
294 		 */
295 		tag = __bt_get(hctx, bt, last_tag, tags);
296 		if (tag != -1)
297 			break;
298 
299 		blk_mq_put_ctx(data->ctx);
300 
301 		io_schedule();
302 
303 		data->ctx = blk_mq_get_ctx(data->q);
304 		data->hctx = data->q->mq_ops->map_queue(data->q,
305 				data->ctx->cpu);
306 		if (data->flags & BLK_MQ_REQ_RESERVED) {
307 			bt = &data->hctx->tags->breserved_tags;
308 		} else {
309 			last_tag = &data->ctx->last_tag;
310 			hctx = data->hctx;
311 			bt = &hctx->tags->bitmap_tags;
312 		}
313 		finish_wait(&bs->wait, &wait);
314 		bs = bt_wait_ptr(bt, hctx);
315 	} while (1);
316 
317 	finish_wait(&bs->wait, &wait);
318 	return tag;
319 }
320 
321 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
322 {
323 	int tag;
324 
325 	tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
326 			&data->ctx->last_tag, data->hctx->tags);
327 	if (tag >= 0)
328 		return tag + data->hctx->tags->nr_reserved_tags;
329 
330 	return BLK_MQ_TAG_FAIL;
331 }
332 
333 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
334 {
335 	int tag, zero = 0;
336 
337 	if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
338 		WARN_ON_ONCE(1);
339 		return BLK_MQ_TAG_FAIL;
340 	}
341 
342 	tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
343 		data->hctx->tags);
344 	if (tag < 0)
345 		return BLK_MQ_TAG_FAIL;
346 
347 	return tag;
348 }
349 
350 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
351 {
352 	if (data->flags & BLK_MQ_REQ_RESERVED)
353 		return __blk_mq_get_reserved_tag(data);
354 	return __blk_mq_get_tag(data);
355 }
356 
357 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
358 {
359 	int i, wake_index;
360 
361 	wake_index = atomic_read(&bt->wake_index);
362 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
363 		struct bt_wait_state *bs = &bt->bs[wake_index];
364 
365 		if (waitqueue_active(&bs->wait)) {
366 			int o = atomic_read(&bt->wake_index);
367 			if (wake_index != o)
368 				atomic_cmpxchg(&bt->wake_index, o, wake_index);
369 
370 			return bs;
371 		}
372 
373 		wake_index = bt_index_inc(wake_index);
374 	}
375 
376 	return NULL;
377 }
378 
379 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
380 {
381 	const int index = TAG_TO_INDEX(bt, tag);
382 	struct bt_wait_state *bs;
383 	int wait_cnt;
384 
385 	clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
386 
387 	/* Ensure that the wait list checks occur after clear_bit(). */
388 	smp_mb();
389 
390 	bs = bt_wake_ptr(bt);
391 	if (!bs)
392 		return;
393 
394 	wait_cnt = atomic_dec_return(&bs->wait_cnt);
395 	if (unlikely(wait_cnt < 0))
396 		wait_cnt = atomic_inc_return(&bs->wait_cnt);
397 	if (wait_cnt == 0) {
398 		atomic_add(bt->wake_cnt, &bs->wait_cnt);
399 		bt_index_atomic_inc(&bt->wake_index);
400 		wake_up(&bs->wait);
401 	}
402 }
403 
404 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
405 		    unsigned int *last_tag)
406 {
407 	struct blk_mq_tags *tags = hctx->tags;
408 
409 	if (tag >= tags->nr_reserved_tags) {
410 		const int real_tag = tag - tags->nr_reserved_tags;
411 
412 		BUG_ON(real_tag >= tags->nr_tags);
413 		bt_clear_tag(&tags->bitmap_tags, real_tag);
414 		if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
415 			*last_tag = real_tag;
416 	} else {
417 		BUG_ON(tag >= tags->nr_reserved_tags);
418 		bt_clear_tag(&tags->breserved_tags, tag);
419 	}
420 }
421 
422 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
423 		struct blk_mq_bitmap_tags *bt, unsigned int off,
424 		busy_iter_fn *fn, void *data, bool reserved)
425 {
426 	struct request *rq;
427 	int bit, i;
428 
429 	for (i = 0; i < bt->map_nr; i++) {
430 		struct blk_align_bitmap *bm = &bt->map[i];
431 
432 		for (bit = find_first_bit(&bm->word, bm->depth);
433 		     bit < bm->depth;
434 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
435 			rq = hctx->tags->rqs[off + bit];
436 			if (rq->q == hctx->queue)
437 				fn(hctx, rq, data, reserved);
438 		}
439 
440 		off += (1 << bt->bits_per_word);
441 	}
442 }
443 
444 static void bt_tags_for_each(struct blk_mq_tags *tags,
445 		struct blk_mq_bitmap_tags *bt, unsigned int off,
446 		busy_tag_iter_fn *fn, void *data, bool reserved)
447 {
448 	struct request *rq;
449 	int bit, i;
450 
451 	if (!tags->rqs)
452 		return;
453 	for (i = 0; i < bt->map_nr; i++) {
454 		struct blk_align_bitmap *bm = &bt->map[i];
455 
456 		for (bit = find_first_bit(&bm->word, bm->depth);
457 		     bit < bm->depth;
458 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
459 			rq = tags->rqs[off + bit];
460 			fn(rq, data, reserved);
461 		}
462 
463 		off += (1 << bt->bits_per_word);
464 	}
465 }
466 
467 void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
468 		void *priv)
469 {
470 	if (tags->nr_reserved_tags)
471 		bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
472 	bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
473 			false);
474 }
475 EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
476 
477 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
478 		void *priv)
479 {
480 	struct blk_mq_hw_ctx *hctx;
481 	int i;
482 
483 
484 	queue_for_each_hw_ctx(q, hctx, i) {
485 		struct blk_mq_tags *tags = hctx->tags;
486 
487 		/*
488 		 * If not software queues are currently mapped to this
489 		 * hardware queue, there's nothing to check
490 		 */
491 		if (!blk_mq_hw_queue_mapped(hctx))
492 			continue;
493 
494 		if (tags->nr_reserved_tags)
495 			bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
496 		bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
497 		      false);
498 	}
499 
500 }
501 
502 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
503 {
504 	unsigned int i, used;
505 
506 	for (i = 0, used = 0; i < bt->map_nr; i++) {
507 		struct blk_align_bitmap *bm = &bt->map[i];
508 
509 		used += bitmap_weight(&bm->word, bm->depth);
510 	}
511 
512 	return bt->depth - used;
513 }
514 
515 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
516 			    unsigned int depth)
517 {
518 	unsigned int tags_per_word = 1U << bt->bits_per_word;
519 	unsigned int map_depth = depth;
520 
521 	if (depth) {
522 		int i;
523 
524 		for (i = 0; i < bt->map_nr; i++) {
525 			bt->map[i].depth = min(map_depth, tags_per_word);
526 			map_depth -= bt->map[i].depth;
527 		}
528 	}
529 
530 	bt->wake_cnt = BT_WAIT_BATCH;
531 	if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
532 		bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
533 
534 	bt->depth = depth;
535 }
536 
537 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
538 			int node, bool reserved)
539 {
540 	int i;
541 
542 	bt->bits_per_word = ilog2(BITS_PER_LONG);
543 
544 	/*
545 	 * Depth can be zero for reserved tags, that's not a failure
546 	 * condition.
547 	 */
548 	if (depth) {
549 		unsigned int nr, tags_per_word;
550 
551 		tags_per_word = (1 << bt->bits_per_word);
552 
553 		/*
554 		 * If the tag space is small, shrink the number of tags
555 		 * per word so we spread over a few cachelines, at least.
556 		 * If less than 4 tags, just forget about it, it's not
557 		 * going to work optimally anyway.
558 		 */
559 		if (depth >= 4) {
560 			while (tags_per_word * 4 > depth) {
561 				bt->bits_per_word--;
562 				tags_per_word = (1 << bt->bits_per_word);
563 			}
564 		}
565 
566 		nr = ALIGN(depth, tags_per_word) / tags_per_word;
567 		bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
568 						GFP_KERNEL, node);
569 		if (!bt->map)
570 			return -ENOMEM;
571 
572 		bt->map_nr = nr;
573 	}
574 
575 	bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
576 	if (!bt->bs) {
577 		kfree(bt->map);
578 		bt->map = NULL;
579 		return -ENOMEM;
580 	}
581 
582 	bt_update_count(bt, depth);
583 
584 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
585 		init_waitqueue_head(&bt->bs[i].wait);
586 		atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
587 	}
588 
589 	return 0;
590 }
591 
592 static void bt_free(struct blk_mq_bitmap_tags *bt)
593 {
594 	kfree(bt->map);
595 	kfree(bt->bs);
596 }
597 
598 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
599 						   int node, int alloc_policy)
600 {
601 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
602 
603 	tags->alloc_policy = alloc_policy;
604 
605 	if (bt_alloc(&tags->bitmap_tags, depth, node, false))
606 		goto enomem;
607 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
608 		goto enomem;
609 
610 	return tags;
611 enomem:
612 	bt_free(&tags->bitmap_tags);
613 	kfree(tags);
614 	return NULL;
615 }
616 
617 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
618 				     unsigned int reserved_tags,
619 				     int node, int alloc_policy)
620 {
621 	struct blk_mq_tags *tags;
622 
623 	if (total_tags > BLK_MQ_TAG_MAX) {
624 		pr_err("blk-mq: tag depth too large\n");
625 		return NULL;
626 	}
627 
628 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
629 	if (!tags)
630 		return NULL;
631 
632 	if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
633 		kfree(tags);
634 		return NULL;
635 	}
636 
637 	tags->nr_tags = total_tags;
638 	tags->nr_reserved_tags = reserved_tags;
639 
640 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
641 }
642 
643 void blk_mq_free_tags(struct blk_mq_tags *tags)
644 {
645 	bt_free(&tags->bitmap_tags);
646 	bt_free(&tags->breserved_tags);
647 	free_cpumask_var(tags->cpumask);
648 	kfree(tags);
649 }
650 
651 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
652 {
653 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
654 
655 	*tag = prandom_u32() % depth;
656 }
657 
658 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
659 {
660 	tdepth -= tags->nr_reserved_tags;
661 	if (tdepth > tags->nr_tags)
662 		return -EINVAL;
663 
664 	/*
665 	 * Don't need (or can't) update reserved tags here, they remain
666 	 * static and should never need resizing.
667 	 */
668 	bt_update_count(&tags->bitmap_tags, tdepth);
669 	blk_mq_tag_wakeup_all(tags, false);
670 	return 0;
671 }
672 
673 /**
674  * blk_mq_unique_tag() - return a tag that is unique queue-wide
675  * @rq: request for which to compute a unique tag
676  *
677  * The tag field in struct request is unique per hardware queue but not over
678  * all hardware queues. Hence this function that returns a tag with the
679  * hardware context index in the upper bits and the per hardware queue tag in
680  * the lower bits.
681  *
682  * Note: When called for a request that is queued on a non-multiqueue request
683  * queue, the hardware context index is set to zero.
684  */
685 u32 blk_mq_unique_tag(struct request *rq)
686 {
687 	struct request_queue *q = rq->q;
688 	struct blk_mq_hw_ctx *hctx;
689 	int hwq = 0;
690 
691 	if (q->mq_ops) {
692 		hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
693 		hwq = hctx->queue_num;
694 	}
695 
696 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
697 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
698 }
699 EXPORT_SYMBOL(blk_mq_unique_tag);
700 
701 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
702 {
703 	char *orig_page = page;
704 	unsigned int free, res;
705 
706 	if (!tags)
707 		return 0;
708 
709 	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
710 			"bits_per_word=%u\n",
711 			tags->nr_tags, tags->nr_reserved_tags,
712 			tags->bitmap_tags.bits_per_word);
713 
714 	free = bt_unused_tags(&tags->bitmap_tags);
715 	res = bt_unused_tags(&tags->breserved_tags);
716 
717 	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
718 	page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
719 
720 	return page - orig_page;
721 }
722