1 /* 2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 3 * fairer distribution of tags between multiple submitters when a shared tag map 4 * is used. 5 * 6 * Copyright (C) 2013-2014 Jens Axboe 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 11 #include <linux/blk-mq.h> 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-tag.h" 15 16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 17 { 18 if (!tags) 19 return true; 20 21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb); 22 } 23 24 /* 25 * If a previously inactive queue goes active, bump the active user count. 26 */ 27 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 28 { 29 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 30 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 31 atomic_inc(&hctx->tags->active_queues); 32 33 return true; 34 } 35 36 /* 37 * Wakeup all potentially sleeping on tags 38 */ 39 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 40 { 41 sbitmap_queue_wake_all(&tags->bitmap_tags); 42 if (include_reserve) 43 sbitmap_queue_wake_all(&tags->breserved_tags); 44 } 45 46 /* 47 * If a previously busy queue goes inactive, potential waiters could now 48 * be allowed to queue. Wake them up and check. 49 */ 50 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 51 { 52 struct blk_mq_tags *tags = hctx->tags; 53 54 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 55 return; 56 57 atomic_dec(&tags->active_queues); 58 59 blk_mq_tag_wakeup_all(tags, false); 60 } 61 62 /* 63 * For shared tag users, we track the number of currently active users 64 * and attempt to provide a fair share of the tag depth for each of them. 65 */ 66 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 67 struct sbitmap_queue *bt) 68 { 69 unsigned int depth, users; 70 71 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 72 return true; 73 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 74 return true; 75 76 /* 77 * Don't try dividing an ant 78 */ 79 if (bt->sb.depth == 1) 80 return true; 81 82 users = atomic_read(&hctx->tags->active_queues); 83 if (!users) 84 return true; 85 86 /* 87 * Allow at least some tags 88 */ 89 depth = max((bt->sb.depth + users - 1) / users, 4U); 90 return atomic_read(&hctx->nr_active) < depth; 91 } 92 93 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 94 struct sbitmap_queue *bt) 95 { 96 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 97 !hctx_may_queue(data->hctx, bt)) 98 return -1; 99 if (data->shallow_depth) 100 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 101 else 102 return __sbitmap_queue_get(bt); 103 } 104 105 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 106 { 107 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 108 struct sbitmap_queue *bt; 109 struct sbq_wait_state *ws; 110 DEFINE_WAIT(wait); 111 unsigned int tag_offset; 112 bool drop_ctx; 113 int tag; 114 115 if (data->flags & BLK_MQ_REQ_RESERVED) { 116 if (unlikely(!tags->nr_reserved_tags)) { 117 WARN_ON_ONCE(1); 118 return BLK_MQ_TAG_FAIL; 119 } 120 bt = &tags->breserved_tags; 121 tag_offset = 0; 122 } else { 123 bt = &tags->bitmap_tags; 124 tag_offset = tags->nr_reserved_tags; 125 } 126 127 tag = __blk_mq_get_tag(data, bt); 128 if (tag != -1) 129 goto found_tag; 130 131 if (data->flags & BLK_MQ_REQ_NOWAIT) 132 return BLK_MQ_TAG_FAIL; 133 134 ws = bt_wait_ptr(bt, data->hctx); 135 drop_ctx = data->ctx == NULL; 136 do { 137 struct sbitmap_queue *bt_prev; 138 139 /* 140 * We're out of tags on this hardware queue, kick any 141 * pending IO submits before going to sleep waiting for 142 * some to complete. 143 */ 144 blk_mq_run_hw_queue(data->hctx, false); 145 146 /* 147 * Retry tag allocation after running the hardware queue, 148 * as running the queue may also have found completions. 149 */ 150 tag = __blk_mq_get_tag(data, bt); 151 if (tag != -1) 152 break; 153 154 prepare_to_wait_exclusive(&ws->wait, &wait, 155 TASK_UNINTERRUPTIBLE); 156 157 tag = __blk_mq_get_tag(data, bt); 158 if (tag != -1) 159 break; 160 161 if (data->ctx) 162 blk_mq_put_ctx(data->ctx); 163 164 bt_prev = bt; 165 io_schedule(); 166 167 data->ctx = blk_mq_get_ctx(data->q); 168 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu); 169 tags = blk_mq_tags_from_data(data); 170 if (data->flags & BLK_MQ_REQ_RESERVED) 171 bt = &tags->breserved_tags; 172 else 173 bt = &tags->bitmap_tags; 174 175 finish_wait(&ws->wait, &wait); 176 177 /* 178 * If destination hw queue is changed, fake wake up on 179 * previous queue for compensating the wake up miss, so 180 * other allocations on previous queue won't be starved. 181 */ 182 if (bt != bt_prev) 183 sbitmap_queue_wake_up(bt_prev); 184 185 ws = bt_wait_ptr(bt, data->hctx); 186 } while (1); 187 188 if (drop_ctx && data->ctx) 189 blk_mq_put_ctx(data->ctx); 190 191 finish_wait(&ws->wait, &wait); 192 193 found_tag: 194 return tag + tag_offset; 195 } 196 197 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags, 198 struct blk_mq_ctx *ctx, unsigned int tag) 199 { 200 if (!blk_mq_tag_is_reserved(tags, tag)) { 201 const int real_tag = tag - tags->nr_reserved_tags; 202 203 BUG_ON(real_tag >= tags->nr_tags); 204 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 205 } else { 206 BUG_ON(tag >= tags->nr_reserved_tags); 207 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 208 } 209 } 210 211 struct bt_iter_data { 212 struct blk_mq_hw_ctx *hctx; 213 busy_iter_fn *fn; 214 void *data; 215 bool reserved; 216 }; 217 218 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 219 { 220 struct bt_iter_data *iter_data = data; 221 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 222 struct blk_mq_tags *tags = hctx->tags; 223 bool reserved = iter_data->reserved; 224 struct request *rq; 225 226 if (!reserved) 227 bitnr += tags->nr_reserved_tags; 228 rq = tags->rqs[bitnr]; 229 230 /* 231 * We can hit rq == NULL here, because the tagging functions 232 * test and set the bit before assining ->rqs[]. 233 */ 234 if (rq && rq->q == hctx->queue) 235 iter_data->fn(hctx, rq, iter_data->data, reserved); 236 return true; 237 } 238 239 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 240 busy_iter_fn *fn, void *data, bool reserved) 241 { 242 struct bt_iter_data iter_data = { 243 .hctx = hctx, 244 .fn = fn, 245 .data = data, 246 .reserved = reserved, 247 }; 248 249 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 250 } 251 252 struct bt_tags_iter_data { 253 struct blk_mq_tags *tags; 254 busy_tag_iter_fn *fn; 255 void *data; 256 bool reserved; 257 }; 258 259 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 260 { 261 struct bt_tags_iter_data *iter_data = data; 262 struct blk_mq_tags *tags = iter_data->tags; 263 bool reserved = iter_data->reserved; 264 struct request *rq; 265 266 if (!reserved) 267 bitnr += tags->nr_reserved_tags; 268 269 /* 270 * We can hit rq == NULL here, because the tagging functions 271 * test and set the bit before assining ->rqs[]. 272 */ 273 rq = tags->rqs[bitnr]; 274 if (rq && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 275 iter_data->fn(rq, iter_data->data, reserved); 276 277 return true; 278 } 279 280 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 281 busy_tag_iter_fn *fn, void *data, bool reserved) 282 { 283 struct bt_tags_iter_data iter_data = { 284 .tags = tags, 285 .fn = fn, 286 .data = data, 287 .reserved = reserved, 288 }; 289 290 if (tags->rqs) 291 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 292 } 293 294 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 295 busy_tag_iter_fn *fn, void *priv) 296 { 297 if (tags->nr_reserved_tags) 298 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true); 299 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false); 300 } 301 302 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 303 busy_tag_iter_fn *fn, void *priv) 304 { 305 int i; 306 307 for (i = 0; i < tagset->nr_hw_queues; i++) { 308 if (tagset->tags && tagset->tags[i]) 309 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 310 } 311 } 312 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 313 314 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 315 void *priv) 316 { 317 struct blk_mq_hw_ctx *hctx; 318 int i; 319 320 321 queue_for_each_hw_ctx(q, hctx, i) { 322 struct blk_mq_tags *tags = hctx->tags; 323 324 /* 325 * If not software queues are currently mapped to this 326 * hardware queue, there's nothing to check 327 */ 328 if (!blk_mq_hw_queue_mapped(hctx)) 329 continue; 330 331 if (tags->nr_reserved_tags) 332 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 333 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 334 } 335 336 } 337 338 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 339 bool round_robin, int node) 340 { 341 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 342 node); 343 } 344 345 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 346 int node, int alloc_policy) 347 { 348 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 349 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 350 351 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 352 goto free_tags; 353 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 354 node)) 355 goto free_bitmap_tags; 356 357 return tags; 358 free_bitmap_tags: 359 sbitmap_queue_free(&tags->bitmap_tags); 360 free_tags: 361 kfree(tags); 362 return NULL; 363 } 364 365 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 366 unsigned int reserved_tags, 367 int node, int alloc_policy) 368 { 369 struct blk_mq_tags *tags; 370 371 if (total_tags > BLK_MQ_TAG_MAX) { 372 pr_err("blk-mq: tag depth too large\n"); 373 return NULL; 374 } 375 376 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 377 if (!tags) 378 return NULL; 379 380 tags->nr_tags = total_tags; 381 tags->nr_reserved_tags = reserved_tags; 382 383 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 384 } 385 386 void blk_mq_free_tags(struct blk_mq_tags *tags) 387 { 388 sbitmap_queue_free(&tags->bitmap_tags); 389 sbitmap_queue_free(&tags->breserved_tags); 390 kfree(tags); 391 } 392 393 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 394 struct blk_mq_tags **tagsptr, unsigned int tdepth, 395 bool can_grow) 396 { 397 struct blk_mq_tags *tags = *tagsptr; 398 399 if (tdepth <= tags->nr_reserved_tags) 400 return -EINVAL; 401 402 tdepth -= tags->nr_reserved_tags; 403 404 /* 405 * If we are allowed to grow beyond the original size, allocate 406 * a new set of tags before freeing the old one. 407 */ 408 if (tdepth > tags->nr_tags) { 409 struct blk_mq_tag_set *set = hctx->queue->tag_set; 410 struct blk_mq_tags *new; 411 bool ret; 412 413 if (!can_grow) 414 return -EINVAL; 415 416 /* 417 * We need some sort of upper limit, set it high enough that 418 * no valid use cases should require more. 419 */ 420 if (tdepth > 16 * BLKDEV_MAX_RQ) 421 return -EINVAL; 422 423 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 0); 424 if (!new) 425 return -ENOMEM; 426 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 427 if (ret) { 428 blk_mq_free_rq_map(new); 429 return -ENOMEM; 430 } 431 432 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 433 blk_mq_free_rq_map(*tagsptr); 434 *tagsptr = new; 435 } else { 436 /* 437 * Don't need (or can't) update reserved tags here, they 438 * remain static and should never need resizing. 439 */ 440 sbitmap_queue_resize(&tags->bitmap_tags, tdepth); 441 } 442 443 return 0; 444 } 445 446 /** 447 * blk_mq_unique_tag() - return a tag that is unique queue-wide 448 * @rq: request for which to compute a unique tag 449 * 450 * The tag field in struct request is unique per hardware queue but not over 451 * all hardware queues. Hence this function that returns a tag with the 452 * hardware context index in the upper bits and the per hardware queue tag in 453 * the lower bits. 454 * 455 * Note: When called for a request that is queued on a non-multiqueue request 456 * queue, the hardware context index is set to zero. 457 */ 458 u32 blk_mq_unique_tag(struct request *rq) 459 { 460 struct request_queue *q = rq->q; 461 struct blk_mq_hw_ctx *hctx; 462 int hwq = 0; 463 464 if (q->mq_ops) { 465 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 466 hwq = hctx->queue_num; 467 } 468 469 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | 470 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 471 } 472 EXPORT_SYMBOL(blk_mq_unique_tag); 473