xref: /openbmc/linux/block/blk-mq-tag.c (revision a17922de)
1 /*
2  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3  * fairer distribution of tags between multiple submitters when a shared tag map
4  * is used.
5  *
6  * Copyright (C) 2013-2014 Jens Axboe
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
15 
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
17 {
18 	if (!tags)
19 		return true;
20 
21 	return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
22 }
23 
24 /*
25  * If a previously inactive queue goes active, bump the active user count.
26  */
27 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
28 {
29 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
30 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
31 		atomic_inc(&hctx->tags->active_queues);
32 
33 	return true;
34 }
35 
36 /*
37  * Wakeup all potentially sleeping on tags
38  */
39 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
40 {
41 	sbitmap_queue_wake_all(&tags->bitmap_tags);
42 	if (include_reserve)
43 		sbitmap_queue_wake_all(&tags->breserved_tags);
44 }
45 
46 /*
47  * If a previously busy queue goes inactive, potential waiters could now
48  * be allowed to queue. Wake them up and check.
49  */
50 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
51 {
52 	struct blk_mq_tags *tags = hctx->tags;
53 
54 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
55 		return;
56 
57 	atomic_dec(&tags->active_queues);
58 
59 	blk_mq_tag_wakeup_all(tags, false);
60 }
61 
62 /*
63  * For shared tag users, we track the number of currently active users
64  * and attempt to provide a fair share of the tag depth for each of them.
65  */
66 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
67 				  struct sbitmap_queue *bt)
68 {
69 	unsigned int depth, users;
70 
71 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
72 		return true;
73 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
74 		return true;
75 
76 	/*
77 	 * Don't try dividing an ant
78 	 */
79 	if (bt->sb.depth == 1)
80 		return true;
81 
82 	users = atomic_read(&hctx->tags->active_queues);
83 	if (!users)
84 		return true;
85 
86 	/*
87 	 * Allow at least some tags
88 	 */
89 	depth = max((bt->sb.depth + users - 1) / users, 4U);
90 	return atomic_read(&hctx->nr_active) < depth;
91 }
92 
93 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
94 			    struct sbitmap_queue *bt)
95 {
96 	if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
97 	    !hctx_may_queue(data->hctx, bt))
98 		return -1;
99 	if (data->shallow_depth)
100 		return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
101 	else
102 		return __sbitmap_queue_get(bt);
103 }
104 
105 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
106 {
107 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
108 	struct sbitmap_queue *bt;
109 	struct sbq_wait_state *ws;
110 	DEFINE_WAIT(wait);
111 	unsigned int tag_offset;
112 	bool drop_ctx;
113 	int tag;
114 
115 	if (data->flags & BLK_MQ_REQ_RESERVED) {
116 		if (unlikely(!tags->nr_reserved_tags)) {
117 			WARN_ON_ONCE(1);
118 			return BLK_MQ_TAG_FAIL;
119 		}
120 		bt = &tags->breserved_tags;
121 		tag_offset = 0;
122 	} else {
123 		bt = &tags->bitmap_tags;
124 		tag_offset = tags->nr_reserved_tags;
125 	}
126 
127 	tag = __blk_mq_get_tag(data, bt);
128 	if (tag != -1)
129 		goto found_tag;
130 
131 	if (data->flags & BLK_MQ_REQ_NOWAIT)
132 		return BLK_MQ_TAG_FAIL;
133 
134 	ws = bt_wait_ptr(bt, data->hctx);
135 	drop_ctx = data->ctx == NULL;
136 	do {
137 		struct sbitmap_queue *bt_prev;
138 
139 		/*
140 		 * We're out of tags on this hardware queue, kick any
141 		 * pending IO submits before going to sleep waiting for
142 		 * some to complete.
143 		 */
144 		blk_mq_run_hw_queue(data->hctx, false);
145 
146 		/*
147 		 * Retry tag allocation after running the hardware queue,
148 		 * as running the queue may also have found completions.
149 		 */
150 		tag = __blk_mq_get_tag(data, bt);
151 		if (tag != -1)
152 			break;
153 
154 		prepare_to_wait_exclusive(&ws->wait, &wait,
155 						TASK_UNINTERRUPTIBLE);
156 
157 		tag = __blk_mq_get_tag(data, bt);
158 		if (tag != -1)
159 			break;
160 
161 		if (data->ctx)
162 			blk_mq_put_ctx(data->ctx);
163 
164 		bt_prev = bt;
165 		io_schedule();
166 
167 		data->ctx = blk_mq_get_ctx(data->q);
168 		data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
169 		tags = blk_mq_tags_from_data(data);
170 		if (data->flags & BLK_MQ_REQ_RESERVED)
171 			bt = &tags->breserved_tags;
172 		else
173 			bt = &tags->bitmap_tags;
174 
175 		finish_wait(&ws->wait, &wait);
176 
177 		/*
178 		 * If destination hw queue is changed, fake wake up on
179 		 * previous queue for compensating the wake up miss, so
180 		 * other allocations on previous queue won't be starved.
181 		 */
182 		if (bt != bt_prev)
183 			sbitmap_queue_wake_up(bt_prev);
184 
185 		ws = bt_wait_ptr(bt, data->hctx);
186 	} while (1);
187 
188 	if (drop_ctx && data->ctx)
189 		blk_mq_put_ctx(data->ctx);
190 
191 	finish_wait(&ws->wait, &wait);
192 
193 found_tag:
194 	return tag + tag_offset;
195 }
196 
197 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
198 		    struct blk_mq_ctx *ctx, unsigned int tag)
199 {
200 	if (!blk_mq_tag_is_reserved(tags, tag)) {
201 		const int real_tag = tag - tags->nr_reserved_tags;
202 
203 		BUG_ON(real_tag >= tags->nr_tags);
204 		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
205 	} else {
206 		BUG_ON(tag >= tags->nr_reserved_tags);
207 		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
208 	}
209 }
210 
211 struct bt_iter_data {
212 	struct blk_mq_hw_ctx *hctx;
213 	busy_iter_fn *fn;
214 	void *data;
215 	bool reserved;
216 };
217 
218 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
219 {
220 	struct bt_iter_data *iter_data = data;
221 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
222 	struct blk_mq_tags *tags = hctx->tags;
223 	bool reserved = iter_data->reserved;
224 	struct request *rq;
225 
226 	if (!reserved)
227 		bitnr += tags->nr_reserved_tags;
228 	rq = tags->rqs[bitnr];
229 
230 	/*
231 	 * We can hit rq == NULL here, because the tagging functions
232 	 * test and set the bit before assining ->rqs[].
233 	 */
234 	if (rq && rq->q == hctx->queue)
235 		iter_data->fn(hctx, rq, iter_data->data, reserved);
236 	return true;
237 }
238 
239 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
240 			busy_iter_fn *fn, void *data, bool reserved)
241 {
242 	struct bt_iter_data iter_data = {
243 		.hctx = hctx,
244 		.fn = fn,
245 		.data = data,
246 		.reserved = reserved,
247 	};
248 
249 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
250 }
251 
252 struct bt_tags_iter_data {
253 	struct blk_mq_tags *tags;
254 	busy_tag_iter_fn *fn;
255 	void *data;
256 	bool reserved;
257 };
258 
259 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
260 {
261 	struct bt_tags_iter_data *iter_data = data;
262 	struct blk_mq_tags *tags = iter_data->tags;
263 	bool reserved = iter_data->reserved;
264 	struct request *rq;
265 
266 	if (!reserved)
267 		bitnr += tags->nr_reserved_tags;
268 
269 	/*
270 	 * We can hit rq == NULL here, because the tagging functions
271 	 * test and set the bit before assining ->rqs[].
272 	 */
273 	rq = tags->rqs[bitnr];
274 	if (rq && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
275 		iter_data->fn(rq, iter_data->data, reserved);
276 
277 	return true;
278 }
279 
280 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
281 			     busy_tag_iter_fn *fn, void *data, bool reserved)
282 {
283 	struct bt_tags_iter_data iter_data = {
284 		.tags = tags,
285 		.fn = fn,
286 		.data = data,
287 		.reserved = reserved,
288 	};
289 
290 	if (tags->rqs)
291 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
292 }
293 
294 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
295 		busy_tag_iter_fn *fn, void *priv)
296 {
297 	if (tags->nr_reserved_tags)
298 		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
299 	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
300 }
301 
302 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
303 		busy_tag_iter_fn *fn, void *priv)
304 {
305 	int i;
306 
307 	for (i = 0; i < tagset->nr_hw_queues; i++) {
308 		if (tagset->tags && tagset->tags[i])
309 			blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
310 	}
311 }
312 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
313 
314 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
315 		void *priv)
316 {
317 	struct blk_mq_hw_ctx *hctx;
318 	int i;
319 
320 
321 	queue_for_each_hw_ctx(q, hctx, i) {
322 		struct blk_mq_tags *tags = hctx->tags;
323 
324 		/*
325 		 * If not software queues are currently mapped to this
326 		 * hardware queue, there's nothing to check
327 		 */
328 		if (!blk_mq_hw_queue_mapped(hctx))
329 			continue;
330 
331 		if (tags->nr_reserved_tags)
332 			bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
333 		bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
334 	}
335 
336 }
337 
338 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
339 		    bool round_robin, int node)
340 {
341 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
342 				       node);
343 }
344 
345 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
346 						   int node, int alloc_policy)
347 {
348 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
349 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
350 
351 	if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
352 		goto free_tags;
353 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
354 		     node))
355 		goto free_bitmap_tags;
356 
357 	return tags;
358 free_bitmap_tags:
359 	sbitmap_queue_free(&tags->bitmap_tags);
360 free_tags:
361 	kfree(tags);
362 	return NULL;
363 }
364 
365 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
366 				     unsigned int reserved_tags,
367 				     int node, int alloc_policy)
368 {
369 	struct blk_mq_tags *tags;
370 
371 	if (total_tags > BLK_MQ_TAG_MAX) {
372 		pr_err("blk-mq: tag depth too large\n");
373 		return NULL;
374 	}
375 
376 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
377 	if (!tags)
378 		return NULL;
379 
380 	tags->nr_tags = total_tags;
381 	tags->nr_reserved_tags = reserved_tags;
382 
383 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
384 }
385 
386 void blk_mq_free_tags(struct blk_mq_tags *tags)
387 {
388 	sbitmap_queue_free(&tags->bitmap_tags);
389 	sbitmap_queue_free(&tags->breserved_tags);
390 	kfree(tags);
391 }
392 
393 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
394 			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
395 			    bool can_grow)
396 {
397 	struct blk_mq_tags *tags = *tagsptr;
398 
399 	if (tdepth <= tags->nr_reserved_tags)
400 		return -EINVAL;
401 
402 	tdepth -= tags->nr_reserved_tags;
403 
404 	/*
405 	 * If we are allowed to grow beyond the original size, allocate
406 	 * a new set of tags before freeing the old one.
407 	 */
408 	if (tdepth > tags->nr_tags) {
409 		struct blk_mq_tag_set *set = hctx->queue->tag_set;
410 		struct blk_mq_tags *new;
411 		bool ret;
412 
413 		if (!can_grow)
414 			return -EINVAL;
415 
416 		/*
417 		 * We need some sort of upper limit, set it high enough that
418 		 * no valid use cases should require more.
419 		 */
420 		if (tdepth > 16 * BLKDEV_MAX_RQ)
421 			return -EINVAL;
422 
423 		new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 0);
424 		if (!new)
425 			return -ENOMEM;
426 		ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
427 		if (ret) {
428 			blk_mq_free_rq_map(new);
429 			return -ENOMEM;
430 		}
431 
432 		blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
433 		blk_mq_free_rq_map(*tagsptr);
434 		*tagsptr = new;
435 	} else {
436 		/*
437 		 * Don't need (or can't) update reserved tags here, they
438 		 * remain static and should never need resizing.
439 		 */
440 		sbitmap_queue_resize(&tags->bitmap_tags, tdepth);
441 	}
442 
443 	return 0;
444 }
445 
446 /**
447  * blk_mq_unique_tag() - return a tag that is unique queue-wide
448  * @rq: request for which to compute a unique tag
449  *
450  * The tag field in struct request is unique per hardware queue but not over
451  * all hardware queues. Hence this function that returns a tag with the
452  * hardware context index in the upper bits and the per hardware queue tag in
453  * the lower bits.
454  *
455  * Note: When called for a request that is queued on a non-multiqueue request
456  * queue, the hardware context index is set to zero.
457  */
458 u32 blk_mq_unique_tag(struct request *rq)
459 {
460 	struct request_queue *q = rq->q;
461 	struct blk_mq_hw_ctx *hctx;
462 	int hwq = 0;
463 
464 	if (q->mq_ops) {
465 		hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
466 		hwq = hctx->queue_num;
467 	}
468 
469 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
470 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
471 }
472 EXPORT_SYMBOL(blk_mq_unique_tag);
473