1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/blk-mq.h> 13 #include <linux/delay.h> 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-sched.h" 17 #include "blk-mq-tag.h" 18 19 /* 20 * Recalculate wakeup batch when tag is shared by hctx. 21 */ 22 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags, 23 unsigned int users) 24 { 25 if (!users) 26 return; 27 28 sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags, 29 users); 30 sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags, 31 users); 32 } 33 34 /* 35 * If a previously inactive queue goes active, bump the active user count. 36 * We need to do this before try to allocate driver tag, then even if fail 37 * to get tag when first time, the other shared-tag users could reserve 38 * budget for it. 39 */ 40 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int users; 43 44 if (blk_mq_is_shared_tags(hctx->flags)) { 45 struct request_queue *q = hctx->queue; 46 47 if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) 48 return; 49 set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags); 50 } else { 51 if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 52 return; 53 set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state); 54 } 55 56 users = atomic_inc_return(&hctx->tags->active_queues); 57 58 blk_mq_update_wake_batch(hctx->tags, users); 59 } 60 61 /* 62 * Wakeup all potentially sleeping on tags 63 */ 64 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 65 { 66 sbitmap_queue_wake_all(&tags->bitmap_tags); 67 if (include_reserve) 68 sbitmap_queue_wake_all(&tags->breserved_tags); 69 } 70 71 /* 72 * If a previously busy queue goes inactive, potential waiters could now 73 * be allowed to queue. Wake them up and check. 74 */ 75 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 76 { 77 struct blk_mq_tags *tags = hctx->tags; 78 unsigned int users; 79 80 if (blk_mq_is_shared_tags(hctx->flags)) { 81 struct request_queue *q = hctx->queue; 82 83 if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE, 84 &q->queue_flags)) 85 return; 86 } else { 87 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 88 return; 89 } 90 91 users = atomic_dec_return(&tags->active_queues); 92 93 blk_mq_update_wake_batch(tags, users); 94 95 blk_mq_tag_wakeup_all(tags, false); 96 } 97 98 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 99 struct sbitmap_queue *bt) 100 { 101 if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) && 102 !hctx_may_queue(data->hctx, bt)) 103 return BLK_MQ_NO_TAG; 104 105 if (data->shallow_depth) 106 return sbitmap_queue_get_shallow(bt, data->shallow_depth); 107 else 108 return __sbitmap_queue_get(bt); 109 } 110 111 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, 112 unsigned int *offset) 113 { 114 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 115 struct sbitmap_queue *bt = &tags->bitmap_tags; 116 unsigned long ret; 117 118 if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED || 119 data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 120 return 0; 121 ret = __sbitmap_queue_get_batch(bt, nr_tags, offset); 122 *offset += tags->nr_reserved_tags; 123 return ret; 124 } 125 126 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 127 { 128 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 129 struct sbitmap_queue *bt; 130 struct sbq_wait_state *ws; 131 DEFINE_SBQ_WAIT(wait); 132 unsigned int tag_offset; 133 int tag; 134 135 if (data->flags & BLK_MQ_REQ_RESERVED) { 136 if (unlikely(!tags->nr_reserved_tags)) { 137 WARN_ON_ONCE(1); 138 return BLK_MQ_NO_TAG; 139 } 140 bt = &tags->breserved_tags; 141 tag_offset = 0; 142 } else { 143 bt = &tags->bitmap_tags; 144 tag_offset = tags->nr_reserved_tags; 145 } 146 147 tag = __blk_mq_get_tag(data, bt); 148 if (tag != BLK_MQ_NO_TAG) 149 goto found_tag; 150 151 if (data->flags & BLK_MQ_REQ_NOWAIT) 152 return BLK_MQ_NO_TAG; 153 154 ws = bt_wait_ptr(bt, data->hctx); 155 do { 156 struct sbitmap_queue *bt_prev; 157 158 /* 159 * We're out of tags on this hardware queue, kick any 160 * pending IO submits before going to sleep waiting for 161 * some to complete. 162 */ 163 blk_mq_run_hw_queue(data->hctx, false); 164 165 /* 166 * Retry tag allocation after running the hardware queue, 167 * as running the queue may also have found completions. 168 */ 169 tag = __blk_mq_get_tag(data, bt); 170 if (tag != BLK_MQ_NO_TAG) 171 break; 172 173 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 174 175 tag = __blk_mq_get_tag(data, bt); 176 if (tag != BLK_MQ_NO_TAG) 177 break; 178 179 bt_prev = bt; 180 io_schedule(); 181 182 sbitmap_finish_wait(bt, ws, &wait); 183 184 data->ctx = blk_mq_get_ctx(data->q); 185 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 186 data->ctx); 187 tags = blk_mq_tags_from_data(data); 188 if (data->flags & BLK_MQ_REQ_RESERVED) 189 bt = &tags->breserved_tags; 190 else 191 bt = &tags->bitmap_tags; 192 193 /* 194 * If destination hw queue is changed, fake wake up on 195 * previous queue for compensating the wake up miss, so 196 * other allocations on previous queue won't be starved. 197 */ 198 if (bt != bt_prev) 199 sbitmap_queue_wake_up(bt_prev); 200 201 ws = bt_wait_ptr(bt, data->hctx); 202 } while (1); 203 204 sbitmap_finish_wait(bt, ws, &wait); 205 206 found_tag: 207 /* 208 * Give up this allocation if the hctx is inactive. The caller will 209 * retry on an active hctx. 210 */ 211 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { 212 blk_mq_put_tag(tags, data->ctx, tag + tag_offset); 213 return BLK_MQ_NO_TAG; 214 } 215 return tag + tag_offset; 216 } 217 218 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, 219 unsigned int tag) 220 { 221 if (!blk_mq_tag_is_reserved(tags, tag)) { 222 const int real_tag = tag - tags->nr_reserved_tags; 223 224 BUG_ON(real_tag >= tags->nr_tags); 225 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 226 } else { 227 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 228 } 229 } 230 231 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags) 232 { 233 sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags, 234 tag_array, nr_tags); 235 } 236 237 struct bt_iter_data { 238 struct blk_mq_hw_ctx *hctx; 239 struct request_queue *q; 240 busy_tag_iter_fn *fn; 241 void *data; 242 bool reserved; 243 }; 244 245 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags, 246 unsigned int bitnr) 247 { 248 struct request *rq; 249 unsigned long flags; 250 251 spin_lock_irqsave(&tags->lock, flags); 252 rq = tags->rqs[bitnr]; 253 if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq)) 254 rq = NULL; 255 spin_unlock_irqrestore(&tags->lock, flags); 256 return rq; 257 } 258 259 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 260 { 261 struct bt_iter_data *iter_data = data; 262 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 263 struct request_queue *q = iter_data->q; 264 struct blk_mq_tag_set *set = q->tag_set; 265 struct blk_mq_tags *tags; 266 struct request *rq; 267 bool ret = true; 268 269 if (blk_mq_is_shared_tags(set->flags)) 270 tags = set->shared_tags; 271 else 272 tags = hctx->tags; 273 274 if (!iter_data->reserved) 275 bitnr += tags->nr_reserved_tags; 276 /* 277 * We can hit rq == NULL here, because the tagging functions 278 * test and set the bit before assigning ->rqs[]. 279 */ 280 rq = blk_mq_find_and_get_req(tags, bitnr); 281 if (!rq) 282 return true; 283 284 if (rq->q == q && (!hctx || rq->mq_hctx == hctx)) 285 ret = iter_data->fn(rq, iter_data->data); 286 blk_mq_put_rq_ref(rq); 287 return ret; 288 } 289 290 /** 291 * bt_for_each - iterate over the requests associated with a hardware queue 292 * @hctx: Hardware queue to examine. 293 * @q: Request queue to examine. 294 * @bt: sbitmap to examine. This is either the breserved_tags member 295 * or the bitmap_tags member of struct blk_mq_tags. 296 * @fn: Pointer to the function that will be called for each request 297 * associated with @hctx that has been assigned a driver tag. 298 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 299 * where rq is a pointer to a request. Return true to continue 300 * iterating tags, false to stop. 301 * @data: Will be passed as third argument to @fn. 302 * @reserved: Indicates whether @bt is the breserved_tags member or the 303 * bitmap_tags member of struct blk_mq_tags. 304 */ 305 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q, 306 struct sbitmap_queue *bt, busy_tag_iter_fn *fn, 307 void *data, bool reserved) 308 { 309 struct bt_iter_data iter_data = { 310 .hctx = hctx, 311 .fn = fn, 312 .data = data, 313 .reserved = reserved, 314 .q = q, 315 }; 316 317 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 318 } 319 320 struct bt_tags_iter_data { 321 struct blk_mq_tags *tags; 322 busy_tag_iter_fn *fn; 323 void *data; 324 unsigned int flags; 325 }; 326 327 #define BT_TAG_ITER_RESERVED (1 << 0) 328 #define BT_TAG_ITER_STARTED (1 << 1) 329 #define BT_TAG_ITER_STATIC_RQS (1 << 2) 330 331 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 332 { 333 struct bt_tags_iter_data *iter_data = data; 334 struct blk_mq_tags *tags = iter_data->tags; 335 struct request *rq; 336 bool ret = true; 337 bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS); 338 339 if (!(iter_data->flags & BT_TAG_ITER_RESERVED)) 340 bitnr += tags->nr_reserved_tags; 341 342 /* 343 * We can hit rq == NULL here, because the tagging functions 344 * test and set the bit before assigning ->rqs[]. 345 */ 346 if (iter_static_rqs) 347 rq = tags->static_rqs[bitnr]; 348 else 349 rq = blk_mq_find_and_get_req(tags, bitnr); 350 if (!rq) 351 return true; 352 353 if (!(iter_data->flags & BT_TAG_ITER_STARTED) || 354 blk_mq_request_started(rq)) 355 ret = iter_data->fn(rq, iter_data->data); 356 if (!iter_static_rqs) 357 blk_mq_put_rq_ref(rq); 358 return ret; 359 } 360 361 /** 362 * bt_tags_for_each - iterate over the requests in a tag map 363 * @tags: Tag map to iterate over. 364 * @bt: sbitmap to examine. This is either the breserved_tags member 365 * or the bitmap_tags member of struct blk_mq_tags. 366 * @fn: Pointer to the function that will be called for each started 367 * request. @fn will be called as follows: @fn(rq, @data, 368 * @reserved) where rq is a pointer to a request. Return true 369 * to continue iterating tags, false to stop. 370 * @data: Will be passed as second argument to @fn. 371 * @flags: BT_TAG_ITER_* 372 */ 373 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 374 busy_tag_iter_fn *fn, void *data, unsigned int flags) 375 { 376 struct bt_tags_iter_data iter_data = { 377 .tags = tags, 378 .fn = fn, 379 .data = data, 380 .flags = flags, 381 }; 382 383 if (tags->rqs) 384 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 385 } 386 387 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, 388 busy_tag_iter_fn *fn, void *priv, unsigned int flags) 389 { 390 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); 391 392 if (tags->nr_reserved_tags) 393 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, 394 flags | BT_TAG_ITER_RESERVED); 395 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); 396 } 397 398 /** 399 * blk_mq_all_tag_iter - iterate over all requests in a tag map 400 * @tags: Tag map to iterate over. 401 * @fn: Pointer to the function that will be called for each 402 * request. @fn will be called as follows: @fn(rq, @priv, 403 * reserved) where rq is a pointer to a request. 'reserved' 404 * indicates whether or not @rq is a reserved request. Return 405 * true to continue iterating tags, false to stop. 406 * @priv: Will be passed as second argument to @fn. 407 * 408 * Caller has to pass the tag map from which requests are allocated. 409 */ 410 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 411 void *priv) 412 { 413 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); 414 } 415 416 /** 417 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 418 * @tagset: Tag set to iterate over. 419 * @fn: Pointer to the function that will be called for each started 420 * request. @fn will be called as follows: @fn(rq, @priv, 421 * reserved) where rq is a pointer to a request. 'reserved' 422 * indicates whether or not @rq is a reserved request. Return 423 * true to continue iterating tags, false to stop. 424 * @priv: Will be passed as second argument to @fn. 425 * 426 * We grab one request reference before calling @fn and release it after 427 * @fn returns. 428 */ 429 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 430 busy_tag_iter_fn *fn, void *priv) 431 { 432 unsigned int flags = tagset->flags; 433 int i, nr_tags; 434 435 nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues; 436 437 for (i = 0; i < nr_tags; i++) { 438 if (tagset->tags && tagset->tags[i]) 439 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, 440 BT_TAG_ITER_STARTED); 441 } 442 } 443 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 444 445 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data) 446 { 447 unsigned *count = data; 448 449 if (blk_mq_request_completed(rq)) 450 (*count)++; 451 return true; 452 } 453 454 /** 455 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request 456 * completions have finished. 457 * @tagset: Tag set to drain completed request 458 * 459 * Note: This function has to be run after all IO queues are shutdown 460 */ 461 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) 462 { 463 while (true) { 464 unsigned count = 0; 465 466 blk_mq_tagset_busy_iter(tagset, 467 blk_mq_tagset_count_completed_rqs, &count); 468 if (!count) 469 break; 470 msleep(5); 471 } 472 } 473 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); 474 475 /** 476 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 477 * @q: Request queue to examine. 478 * @fn: Pointer to the function that will be called for each request 479 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 480 * reserved) where rq is a pointer to a request and hctx points 481 * to the hardware queue associated with the request. 'reserved' 482 * indicates whether or not @rq is a reserved request. 483 * @priv: Will be passed as third argument to @fn. 484 * 485 * Note: if @q->tag_set is shared with other request queues then @fn will be 486 * called for all requests on all queues that share that tag set and not only 487 * for requests associated with @q. 488 */ 489 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, 490 void *priv) 491 { 492 /* 493 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table 494 * while the queue is frozen. So we can use q_usage_counter to avoid 495 * racing with it. 496 */ 497 if (!percpu_ref_tryget(&q->q_usage_counter)) 498 return; 499 500 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 501 struct blk_mq_tags *tags = q->tag_set->shared_tags; 502 struct sbitmap_queue *bresv = &tags->breserved_tags; 503 struct sbitmap_queue *btags = &tags->bitmap_tags; 504 505 if (tags->nr_reserved_tags) 506 bt_for_each(NULL, q, bresv, fn, priv, true); 507 bt_for_each(NULL, q, btags, fn, priv, false); 508 } else { 509 struct blk_mq_hw_ctx *hctx; 510 unsigned long i; 511 512 queue_for_each_hw_ctx(q, hctx, i) { 513 struct blk_mq_tags *tags = hctx->tags; 514 struct sbitmap_queue *bresv = &tags->breserved_tags; 515 struct sbitmap_queue *btags = &tags->bitmap_tags; 516 517 /* 518 * If no software queues are currently mapped to this 519 * hardware queue, there's nothing to check 520 */ 521 if (!blk_mq_hw_queue_mapped(hctx)) 522 continue; 523 524 if (tags->nr_reserved_tags) 525 bt_for_each(hctx, q, bresv, fn, priv, true); 526 bt_for_each(hctx, q, btags, fn, priv, false); 527 } 528 } 529 blk_queue_exit(q); 530 } 531 532 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 533 bool round_robin, int node) 534 { 535 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 536 node); 537 } 538 539 int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags, 540 struct sbitmap_queue *breserved_tags, 541 unsigned int queue_depth, unsigned int reserved, 542 int node, int alloc_policy) 543 { 544 unsigned int depth = queue_depth - reserved; 545 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 546 547 if (bt_alloc(bitmap_tags, depth, round_robin, node)) 548 return -ENOMEM; 549 if (bt_alloc(breserved_tags, reserved, round_robin, node)) 550 goto free_bitmap_tags; 551 552 return 0; 553 554 free_bitmap_tags: 555 sbitmap_queue_free(bitmap_tags); 556 return -ENOMEM; 557 } 558 559 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 560 unsigned int reserved_tags, 561 int node, int alloc_policy) 562 { 563 struct blk_mq_tags *tags; 564 565 if (total_tags > BLK_MQ_TAG_MAX) { 566 pr_err("blk-mq: tag depth too large\n"); 567 return NULL; 568 } 569 570 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 571 if (!tags) 572 return NULL; 573 574 tags->nr_tags = total_tags; 575 tags->nr_reserved_tags = reserved_tags; 576 spin_lock_init(&tags->lock); 577 578 if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags, 579 total_tags, reserved_tags, node, 580 alloc_policy) < 0) { 581 kfree(tags); 582 return NULL; 583 } 584 return tags; 585 } 586 587 void blk_mq_free_tags(struct blk_mq_tags *tags) 588 { 589 sbitmap_queue_free(&tags->bitmap_tags); 590 sbitmap_queue_free(&tags->breserved_tags); 591 kfree(tags); 592 } 593 594 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 595 struct blk_mq_tags **tagsptr, unsigned int tdepth, 596 bool can_grow) 597 { 598 struct blk_mq_tags *tags = *tagsptr; 599 600 if (tdepth <= tags->nr_reserved_tags) 601 return -EINVAL; 602 603 /* 604 * If we are allowed to grow beyond the original size, allocate 605 * a new set of tags before freeing the old one. 606 */ 607 if (tdepth > tags->nr_tags) { 608 struct blk_mq_tag_set *set = hctx->queue->tag_set; 609 struct blk_mq_tags *new; 610 611 if (!can_grow) 612 return -EINVAL; 613 614 /* 615 * We need some sort of upper limit, set it high enough that 616 * no valid use cases should require more. 617 */ 618 if (tdepth > MAX_SCHED_RQ) 619 return -EINVAL; 620 621 /* 622 * Only the sbitmap needs resizing since we allocated the max 623 * initially. 624 */ 625 if (blk_mq_is_shared_tags(set->flags)) 626 return 0; 627 628 new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth); 629 if (!new) 630 return -ENOMEM; 631 632 blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num); 633 *tagsptr = new; 634 } else { 635 /* 636 * Don't need (or can't) update reserved tags here, they 637 * remain static and should never need resizing. 638 */ 639 sbitmap_queue_resize(&tags->bitmap_tags, 640 tdepth - tags->nr_reserved_tags); 641 } 642 643 return 0; 644 } 645 646 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size) 647 { 648 struct blk_mq_tags *tags = set->shared_tags; 649 650 sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags); 651 } 652 653 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q) 654 { 655 sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags, 656 q->nr_requests - q->tag_set->reserved_tags); 657 } 658 659 /** 660 * blk_mq_unique_tag() - return a tag that is unique queue-wide 661 * @rq: request for which to compute a unique tag 662 * 663 * The tag field in struct request is unique per hardware queue but not over 664 * all hardware queues. Hence this function that returns a tag with the 665 * hardware context index in the upper bits and the per hardware queue tag in 666 * the lower bits. 667 * 668 * Note: When called for a request that is queued on a non-multiqueue request 669 * queue, the hardware context index is set to zero. 670 */ 671 u32 blk_mq_unique_tag(struct request *rq) 672 { 673 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 674 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 675 } 676 EXPORT_SYMBOL(blk_mq_unique_tag); 677