1 /* 2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread 3 * over multiple cachelines to avoid ping-pong between multiple submitters 4 * or submitter and completer. Uses rolling wakeups to avoid falling of 5 * the scaling cliff when we run out of tags and have to start putting 6 * submitters to sleep. 7 * 8 * Uses active queue tracking to support fairer distribution of tags 9 * between multiple submitters when a shared tag map is used. 10 * 11 * Copyright (C) 2013-2014 Jens Axboe 12 */ 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 17 #include <linux/blk-mq.h> 18 #include "blk.h" 19 #include "blk-mq.h" 20 #include "blk-mq-tag.h" 21 22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) 23 { 24 int i; 25 26 for (i = 0; i < bt->map_nr; i++) { 27 struct blk_align_bitmap *bm = &bt->map[i]; 28 int ret; 29 30 ret = find_first_zero_bit(&bm->word, bm->depth); 31 if (ret < bm->depth) 32 return true; 33 } 34 35 return false; 36 } 37 38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 39 { 40 if (!tags) 41 return true; 42 43 return bt_has_free_tags(&tags->bitmap_tags); 44 } 45 46 static inline int bt_index_inc(int index) 47 { 48 return (index + 1) & (BT_WAIT_QUEUES - 1); 49 } 50 51 static inline void bt_index_atomic_inc(atomic_t *index) 52 { 53 int old = atomic_read(index); 54 int new = bt_index_inc(old); 55 atomic_cmpxchg(index, old, new); 56 } 57 58 /* 59 * If a previously inactive queue goes active, bump the active user count. 60 */ 61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 62 { 63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 65 atomic_inc(&hctx->tags->active_queues); 66 67 return true; 68 } 69 70 /* 71 * Wakeup all potentially sleeping on tags 72 */ 73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 74 { 75 struct blk_mq_bitmap_tags *bt; 76 int i, wake_index; 77 78 bt = &tags->bitmap_tags; 79 wake_index = atomic_read(&bt->wake_index); 80 for (i = 0; i < BT_WAIT_QUEUES; i++) { 81 struct bt_wait_state *bs = &bt->bs[wake_index]; 82 83 if (waitqueue_active(&bs->wait)) 84 wake_up(&bs->wait); 85 86 wake_index = bt_index_inc(wake_index); 87 } 88 89 if (include_reserve) { 90 bt = &tags->breserved_tags; 91 if (waitqueue_active(&bt->bs[0].wait)) 92 wake_up(&bt->bs[0].wait); 93 } 94 } 95 96 /* 97 * If a previously busy queue goes inactive, potential waiters could now 98 * be allowed to queue. Wake them up and check. 99 */ 100 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 101 { 102 struct blk_mq_tags *tags = hctx->tags; 103 104 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 105 return; 106 107 atomic_dec(&tags->active_queues); 108 109 blk_mq_tag_wakeup_all(tags, false); 110 } 111 112 /* 113 * For shared tag users, we track the number of currently active users 114 * and attempt to provide a fair share of the tag depth for each of them. 115 */ 116 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 117 struct blk_mq_bitmap_tags *bt) 118 { 119 unsigned int depth, users; 120 121 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 122 return true; 123 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 124 return true; 125 126 /* 127 * Don't try dividing an ant 128 */ 129 if (bt->depth == 1) 130 return true; 131 132 users = atomic_read(&hctx->tags->active_queues); 133 if (!users) 134 return true; 135 136 /* 137 * Allow at least some tags 138 */ 139 depth = max((bt->depth + users - 1) / users, 4U); 140 return atomic_read(&hctx->nr_active) < depth; 141 } 142 143 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag) 144 { 145 int tag, org_last_tag, end; 146 bool wrap = last_tag != 0; 147 148 org_last_tag = last_tag; 149 end = bm->depth; 150 do { 151 restart: 152 tag = find_next_zero_bit(&bm->word, end, last_tag); 153 if (unlikely(tag >= end)) { 154 /* 155 * We started with an offset, start from 0 to 156 * exhaust the map. 157 */ 158 if (wrap) { 159 wrap = false; 160 end = org_last_tag; 161 last_tag = 0; 162 goto restart; 163 } 164 return -1; 165 } 166 last_tag = tag + 1; 167 } while (test_and_set_bit(tag, &bm->word)); 168 169 return tag; 170 } 171 172 /* 173 * Straight forward bitmap tag implementation, where each bit is a tag 174 * (cleared == free, and set == busy). The small twist is using per-cpu 175 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue 176 * contexts. This enables us to drastically limit the space searched, 177 * without dirtying an extra shared cacheline like we would if we stored 178 * the cache value inside the shared blk_mq_bitmap_tags structure. On top 179 * of that, each word of tags is in a separate cacheline. This means that 180 * multiple users will tend to stick to different cachelines, at least 181 * until the map is exhausted. 182 */ 183 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, 184 unsigned int *tag_cache) 185 { 186 unsigned int last_tag, org_last_tag; 187 int index, i, tag; 188 189 if (!hctx_may_queue(hctx, bt)) 190 return -1; 191 192 last_tag = org_last_tag = *tag_cache; 193 index = TAG_TO_INDEX(bt, last_tag); 194 195 for (i = 0; i < bt->map_nr; i++) { 196 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag)); 197 if (tag != -1) { 198 tag += (index << bt->bits_per_word); 199 goto done; 200 } 201 202 last_tag = 0; 203 if (++index >= bt->map_nr) 204 index = 0; 205 } 206 207 *tag_cache = 0; 208 return -1; 209 210 /* 211 * Only update the cache from the allocation path, if we ended 212 * up using the specific cached tag. 213 */ 214 done: 215 if (tag == org_last_tag) { 216 last_tag = tag + 1; 217 if (last_tag >= bt->depth - 1) 218 last_tag = 0; 219 220 *tag_cache = last_tag; 221 } 222 223 return tag; 224 } 225 226 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, 227 struct blk_mq_hw_ctx *hctx) 228 { 229 struct bt_wait_state *bs; 230 int wait_index; 231 232 if (!hctx) 233 return &bt->bs[0]; 234 235 wait_index = atomic_read(&hctx->wait_index); 236 bs = &bt->bs[wait_index]; 237 bt_index_atomic_inc(&hctx->wait_index); 238 return bs; 239 } 240 241 static int bt_get(struct blk_mq_alloc_data *data, 242 struct blk_mq_bitmap_tags *bt, 243 struct blk_mq_hw_ctx *hctx, 244 unsigned int *last_tag) 245 { 246 struct bt_wait_state *bs; 247 DEFINE_WAIT(wait); 248 int tag; 249 250 tag = __bt_get(hctx, bt, last_tag); 251 if (tag != -1) 252 return tag; 253 254 if (!(data->gfp & __GFP_WAIT)) 255 return -1; 256 257 bs = bt_wait_ptr(bt, hctx); 258 do { 259 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); 260 261 tag = __bt_get(hctx, bt, last_tag); 262 if (tag != -1) 263 break; 264 265 /* 266 * We're out of tags on this hardware queue, kick any 267 * pending IO submits before going to sleep waiting for 268 * some to complete. 269 */ 270 blk_mq_run_hw_queue(hctx, false); 271 272 /* 273 * Retry tag allocation after running the hardware queue, 274 * as running the queue may also have found completions. 275 */ 276 tag = __bt_get(hctx, bt, last_tag); 277 if (tag != -1) 278 break; 279 280 blk_mq_put_ctx(data->ctx); 281 282 io_schedule(); 283 284 data->ctx = blk_mq_get_ctx(data->q); 285 data->hctx = data->q->mq_ops->map_queue(data->q, 286 data->ctx->cpu); 287 if (data->reserved) { 288 bt = &data->hctx->tags->breserved_tags; 289 } else { 290 last_tag = &data->ctx->last_tag; 291 hctx = data->hctx; 292 bt = &hctx->tags->bitmap_tags; 293 } 294 finish_wait(&bs->wait, &wait); 295 bs = bt_wait_ptr(bt, hctx); 296 } while (1); 297 298 finish_wait(&bs->wait, &wait); 299 return tag; 300 } 301 302 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) 303 { 304 int tag; 305 306 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, 307 &data->ctx->last_tag); 308 if (tag >= 0) 309 return tag + data->hctx->tags->nr_reserved_tags; 310 311 return BLK_MQ_TAG_FAIL; 312 } 313 314 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) 315 { 316 int tag, zero = 0; 317 318 if (unlikely(!data->hctx->tags->nr_reserved_tags)) { 319 WARN_ON_ONCE(1); 320 return BLK_MQ_TAG_FAIL; 321 } 322 323 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero); 324 if (tag < 0) 325 return BLK_MQ_TAG_FAIL; 326 327 return tag; 328 } 329 330 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 331 { 332 if (!data->reserved) 333 return __blk_mq_get_tag(data); 334 335 return __blk_mq_get_reserved_tag(data); 336 } 337 338 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) 339 { 340 int i, wake_index; 341 342 wake_index = atomic_read(&bt->wake_index); 343 for (i = 0; i < BT_WAIT_QUEUES; i++) { 344 struct bt_wait_state *bs = &bt->bs[wake_index]; 345 346 if (waitqueue_active(&bs->wait)) { 347 int o = atomic_read(&bt->wake_index); 348 if (wake_index != o) 349 atomic_cmpxchg(&bt->wake_index, o, wake_index); 350 351 return bs; 352 } 353 354 wake_index = bt_index_inc(wake_index); 355 } 356 357 return NULL; 358 } 359 360 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) 361 { 362 const int index = TAG_TO_INDEX(bt, tag); 363 struct bt_wait_state *bs; 364 int wait_cnt; 365 366 clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word); 367 368 /* Ensure that the wait list checks occur after clear_bit(). */ 369 smp_mb(); 370 371 bs = bt_wake_ptr(bt); 372 if (!bs) 373 return; 374 375 wait_cnt = atomic_dec_return(&bs->wait_cnt); 376 if (unlikely(wait_cnt < 0)) 377 wait_cnt = atomic_inc_return(&bs->wait_cnt); 378 if (wait_cnt == 0) { 379 atomic_add(bt->wake_cnt, &bs->wait_cnt); 380 bt_index_atomic_inc(&bt->wake_index); 381 wake_up(&bs->wait); 382 } 383 } 384 385 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, 386 unsigned int *last_tag) 387 { 388 struct blk_mq_tags *tags = hctx->tags; 389 390 if (tag >= tags->nr_reserved_tags) { 391 const int real_tag = tag - tags->nr_reserved_tags; 392 393 BUG_ON(real_tag >= tags->nr_tags); 394 bt_clear_tag(&tags->bitmap_tags, real_tag); 395 *last_tag = real_tag; 396 } else { 397 BUG_ON(tag >= tags->nr_reserved_tags); 398 bt_clear_tag(&tags->breserved_tags, tag); 399 } 400 } 401 402 static void bt_for_each(struct blk_mq_hw_ctx *hctx, 403 struct blk_mq_bitmap_tags *bt, unsigned int off, 404 busy_iter_fn *fn, void *data, bool reserved) 405 { 406 struct request *rq; 407 int bit, i; 408 409 for (i = 0; i < bt->map_nr; i++) { 410 struct blk_align_bitmap *bm = &bt->map[i]; 411 412 for (bit = find_first_bit(&bm->word, bm->depth); 413 bit < bm->depth; 414 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { 415 rq = blk_mq_tag_to_rq(hctx->tags, off + bit); 416 if (rq->q == hctx->queue) 417 fn(hctx, rq, data, reserved); 418 } 419 420 off += (1 << bt->bits_per_word); 421 } 422 } 423 424 void blk_mq_tag_busy_iter(struct blk_mq_hw_ctx *hctx, busy_iter_fn *fn, 425 void *priv) 426 { 427 struct blk_mq_tags *tags = hctx->tags; 428 429 if (tags->nr_reserved_tags) 430 bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true); 431 bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, 432 false); 433 } 434 EXPORT_SYMBOL(blk_mq_tag_busy_iter); 435 436 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) 437 { 438 unsigned int i, used; 439 440 for (i = 0, used = 0; i < bt->map_nr; i++) { 441 struct blk_align_bitmap *bm = &bt->map[i]; 442 443 used += bitmap_weight(&bm->word, bm->depth); 444 } 445 446 return bt->depth - used; 447 } 448 449 static void bt_update_count(struct blk_mq_bitmap_tags *bt, 450 unsigned int depth) 451 { 452 unsigned int tags_per_word = 1U << bt->bits_per_word; 453 unsigned int map_depth = depth; 454 455 if (depth) { 456 int i; 457 458 for (i = 0; i < bt->map_nr; i++) { 459 bt->map[i].depth = min(map_depth, tags_per_word); 460 map_depth -= bt->map[i].depth; 461 } 462 } 463 464 bt->wake_cnt = BT_WAIT_BATCH; 465 if (bt->wake_cnt > depth / BT_WAIT_QUEUES) 466 bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES); 467 468 bt->depth = depth; 469 } 470 471 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, 472 int node, bool reserved) 473 { 474 int i; 475 476 bt->bits_per_word = ilog2(BITS_PER_LONG); 477 478 /* 479 * Depth can be zero for reserved tags, that's not a failure 480 * condition. 481 */ 482 if (depth) { 483 unsigned int nr, tags_per_word; 484 485 tags_per_word = (1 << bt->bits_per_word); 486 487 /* 488 * If the tag space is small, shrink the number of tags 489 * per word so we spread over a few cachelines, at least. 490 * If less than 4 tags, just forget about it, it's not 491 * going to work optimally anyway. 492 */ 493 if (depth >= 4) { 494 while (tags_per_word * 4 > depth) { 495 bt->bits_per_word--; 496 tags_per_word = (1 << bt->bits_per_word); 497 } 498 } 499 500 nr = ALIGN(depth, tags_per_word) / tags_per_word; 501 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), 502 GFP_KERNEL, node); 503 if (!bt->map) 504 return -ENOMEM; 505 506 bt->map_nr = nr; 507 } 508 509 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); 510 if (!bt->bs) { 511 kfree(bt->map); 512 return -ENOMEM; 513 } 514 515 bt_update_count(bt, depth); 516 517 for (i = 0; i < BT_WAIT_QUEUES; i++) { 518 init_waitqueue_head(&bt->bs[i].wait); 519 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); 520 } 521 522 return 0; 523 } 524 525 static void bt_free(struct blk_mq_bitmap_tags *bt) 526 { 527 kfree(bt->map); 528 kfree(bt->bs); 529 } 530 531 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 532 int node) 533 { 534 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 535 536 if (bt_alloc(&tags->bitmap_tags, depth, node, false)) 537 goto enomem; 538 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) 539 goto enomem; 540 541 return tags; 542 enomem: 543 bt_free(&tags->bitmap_tags); 544 kfree(tags); 545 return NULL; 546 } 547 548 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 549 unsigned int reserved_tags, int node) 550 { 551 struct blk_mq_tags *tags; 552 553 if (total_tags > BLK_MQ_TAG_MAX) { 554 pr_err("blk-mq: tag depth too large\n"); 555 return NULL; 556 } 557 558 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 559 if (!tags) 560 return NULL; 561 562 tags->nr_tags = total_tags; 563 tags->nr_reserved_tags = reserved_tags; 564 565 return blk_mq_init_bitmap_tags(tags, node); 566 } 567 568 void blk_mq_free_tags(struct blk_mq_tags *tags) 569 { 570 bt_free(&tags->bitmap_tags); 571 bt_free(&tags->breserved_tags); 572 kfree(tags); 573 } 574 575 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) 576 { 577 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 578 579 *tag = prandom_u32() % depth; 580 } 581 582 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) 583 { 584 tdepth -= tags->nr_reserved_tags; 585 if (tdepth > tags->nr_tags) 586 return -EINVAL; 587 588 /* 589 * Don't need (or can't) update reserved tags here, they remain 590 * static and should never need resizing. 591 */ 592 bt_update_count(&tags->bitmap_tags, tdepth); 593 blk_mq_tag_wakeup_all(tags, false); 594 return 0; 595 } 596 597 /** 598 * blk_mq_unique_tag() - return a tag that is unique queue-wide 599 * @rq: request for which to compute a unique tag 600 * 601 * The tag field in struct request is unique per hardware queue but not over 602 * all hardware queues. Hence this function that returns a tag with the 603 * hardware context index in the upper bits and the per hardware queue tag in 604 * the lower bits. 605 * 606 * Note: When called for a request that is queued on a non-multiqueue request 607 * queue, the hardware context index is set to zero. 608 */ 609 u32 blk_mq_unique_tag(struct request *rq) 610 { 611 struct request_queue *q = rq->q; 612 struct blk_mq_hw_ctx *hctx; 613 int hwq = 0; 614 615 if (q->mq_ops) { 616 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 617 hwq = hctx->queue_num; 618 } 619 620 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | 621 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 622 } 623 EXPORT_SYMBOL(blk_mq_unique_tag); 624 625 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) 626 { 627 char *orig_page = page; 628 unsigned int free, res; 629 630 if (!tags) 631 return 0; 632 633 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " 634 "bits_per_word=%u\n", 635 tags->nr_tags, tags->nr_reserved_tags, 636 tags->bitmap_tags.bits_per_word); 637 638 free = bt_unused_tags(&tags->bitmap_tags); 639 res = bt_unused_tags(&tags->breserved_tags); 640 641 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); 642 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); 643 644 return page - orig_page; 645 } 646