1 /* 2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 3 * fairer distribution of tags between multiple submitters when a shared tag map 4 * is used. 5 * 6 * Copyright (C) 2013-2014 Jens Axboe 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 11 #include <linux/blk-mq.h> 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-tag.h" 15 16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 17 { 18 if (!tags) 19 return true; 20 21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb); 22 } 23 24 /* 25 * If a previously inactive queue goes active, bump the active user count. 26 * We need to do this before try to allocate driver tag, then even if fail 27 * to get tag when first time, the other shared-tag users could reserve 28 * budget for it. 29 */ 30 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 31 { 32 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 33 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 34 atomic_inc(&hctx->tags->active_queues); 35 36 return true; 37 } 38 39 /* 40 * Wakeup all potentially sleeping on tags 41 */ 42 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 43 { 44 sbitmap_queue_wake_all(&tags->bitmap_tags); 45 if (include_reserve) 46 sbitmap_queue_wake_all(&tags->breserved_tags); 47 } 48 49 /* 50 * If a previously busy queue goes inactive, potential waiters could now 51 * be allowed to queue. Wake them up and check. 52 */ 53 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 54 { 55 struct blk_mq_tags *tags = hctx->tags; 56 57 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 58 return; 59 60 atomic_dec(&tags->active_queues); 61 62 blk_mq_tag_wakeup_all(tags, false); 63 } 64 65 /* 66 * For shared tag users, we track the number of currently active users 67 * and attempt to provide a fair share of the tag depth for each of them. 68 */ 69 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 70 struct sbitmap_queue *bt) 71 { 72 unsigned int depth, users; 73 74 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 75 return true; 76 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 77 return true; 78 79 /* 80 * Don't try dividing an ant 81 */ 82 if (bt->sb.depth == 1) 83 return true; 84 85 users = atomic_read(&hctx->tags->active_queues); 86 if (!users) 87 return true; 88 89 /* 90 * Allow at least some tags 91 */ 92 depth = max((bt->sb.depth + users - 1) / users, 4U); 93 return atomic_read(&hctx->nr_active) < depth; 94 } 95 96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 97 struct sbitmap_queue *bt) 98 { 99 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 100 !hctx_may_queue(data->hctx, bt)) 101 return -1; 102 if (data->shallow_depth) 103 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 104 else 105 return __sbitmap_queue_get(bt); 106 } 107 108 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 109 { 110 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 111 struct sbitmap_queue *bt; 112 struct sbq_wait_state *ws; 113 DEFINE_SBQ_WAIT(wait); 114 unsigned int tag_offset; 115 bool drop_ctx; 116 int tag; 117 118 if (data->flags & BLK_MQ_REQ_RESERVED) { 119 if (unlikely(!tags->nr_reserved_tags)) { 120 WARN_ON_ONCE(1); 121 return BLK_MQ_TAG_FAIL; 122 } 123 bt = &tags->breserved_tags; 124 tag_offset = 0; 125 } else { 126 bt = &tags->bitmap_tags; 127 tag_offset = tags->nr_reserved_tags; 128 } 129 130 tag = __blk_mq_get_tag(data, bt); 131 if (tag != -1) 132 goto found_tag; 133 134 if (data->flags & BLK_MQ_REQ_NOWAIT) 135 return BLK_MQ_TAG_FAIL; 136 137 ws = bt_wait_ptr(bt, data->hctx); 138 drop_ctx = data->ctx == NULL; 139 do { 140 struct sbitmap_queue *bt_prev; 141 142 /* 143 * We're out of tags on this hardware queue, kick any 144 * pending IO submits before going to sleep waiting for 145 * some to complete. 146 */ 147 blk_mq_run_hw_queue(data->hctx, false); 148 149 /* 150 * Retry tag allocation after running the hardware queue, 151 * as running the queue may also have found completions. 152 */ 153 tag = __blk_mq_get_tag(data, bt); 154 if (tag != -1) 155 break; 156 157 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 158 159 tag = __blk_mq_get_tag(data, bt); 160 if (tag != -1) 161 break; 162 163 if (data->ctx) 164 blk_mq_put_ctx(data->ctx); 165 166 bt_prev = bt; 167 io_schedule(); 168 169 sbitmap_finish_wait(bt, ws, &wait); 170 171 data->ctx = blk_mq_get_ctx(data->q); 172 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 173 data->ctx->cpu); 174 tags = blk_mq_tags_from_data(data); 175 if (data->flags & BLK_MQ_REQ_RESERVED) 176 bt = &tags->breserved_tags; 177 else 178 bt = &tags->bitmap_tags; 179 180 /* 181 * If destination hw queue is changed, fake wake up on 182 * previous queue for compensating the wake up miss, so 183 * other allocations on previous queue won't be starved. 184 */ 185 if (bt != bt_prev) 186 sbitmap_queue_wake_up(bt_prev); 187 188 ws = bt_wait_ptr(bt, data->hctx); 189 } while (1); 190 191 if (drop_ctx && data->ctx) 192 blk_mq_put_ctx(data->ctx); 193 194 sbitmap_finish_wait(bt, ws, &wait); 195 196 found_tag: 197 return tag + tag_offset; 198 } 199 200 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags, 201 struct blk_mq_ctx *ctx, unsigned int tag) 202 { 203 if (!blk_mq_tag_is_reserved(tags, tag)) { 204 const int real_tag = tag - tags->nr_reserved_tags; 205 206 BUG_ON(real_tag >= tags->nr_tags); 207 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 208 } else { 209 BUG_ON(tag >= tags->nr_reserved_tags); 210 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 211 } 212 } 213 214 struct bt_iter_data { 215 struct blk_mq_hw_ctx *hctx; 216 busy_iter_fn *fn; 217 void *data; 218 bool reserved; 219 }; 220 221 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 222 { 223 struct bt_iter_data *iter_data = data; 224 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 225 struct blk_mq_tags *tags = hctx->tags; 226 bool reserved = iter_data->reserved; 227 struct request *rq; 228 229 if (!reserved) 230 bitnr += tags->nr_reserved_tags; 231 rq = tags->rqs[bitnr]; 232 233 /* 234 * We can hit rq == NULL here, because the tagging functions 235 * test and set the bit before assigning ->rqs[]. 236 */ 237 if (rq && rq->q == hctx->queue) 238 return iter_data->fn(hctx, rq, iter_data->data, reserved); 239 return true; 240 } 241 242 /** 243 * bt_for_each - iterate over the requests associated with a hardware queue 244 * @hctx: Hardware queue to examine. 245 * @bt: sbitmap to examine. This is either the breserved_tags member 246 * or the bitmap_tags member of struct blk_mq_tags. 247 * @fn: Pointer to the function that will be called for each request 248 * associated with @hctx that has been assigned a driver tag. 249 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 250 * where rq is a pointer to a request. Return true to continue 251 * iterating tags, false to stop. 252 * @data: Will be passed as third argument to @fn. 253 * @reserved: Indicates whether @bt is the breserved_tags member or the 254 * bitmap_tags member of struct blk_mq_tags. 255 */ 256 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 257 busy_iter_fn *fn, void *data, bool reserved) 258 { 259 struct bt_iter_data iter_data = { 260 .hctx = hctx, 261 .fn = fn, 262 .data = data, 263 .reserved = reserved, 264 }; 265 266 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 267 } 268 269 struct bt_tags_iter_data { 270 struct blk_mq_tags *tags; 271 busy_tag_iter_fn *fn; 272 void *data; 273 bool reserved; 274 }; 275 276 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 277 { 278 struct bt_tags_iter_data *iter_data = data; 279 struct blk_mq_tags *tags = iter_data->tags; 280 bool reserved = iter_data->reserved; 281 struct request *rq; 282 283 if (!reserved) 284 bitnr += tags->nr_reserved_tags; 285 286 /* 287 * We can hit rq == NULL here, because the tagging functions 288 * test and set the bit before assining ->rqs[]. 289 */ 290 rq = tags->rqs[bitnr]; 291 if (rq && blk_mq_request_started(rq)) 292 return iter_data->fn(rq, iter_data->data, reserved); 293 294 return true; 295 } 296 297 /** 298 * bt_tags_for_each - iterate over the requests in a tag map 299 * @tags: Tag map to iterate over. 300 * @bt: sbitmap to examine. This is either the breserved_tags member 301 * or the bitmap_tags member of struct blk_mq_tags. 302 * @fn: Pointer to the function that will be called for each started 303 * request. @fn will be called as follows: @fn(rq, @data, 304 * @reserved) where rq is a pointer to a request. Return true 305 * to continue iterating tags, false to stop. 306 * @data: Will be passed as second argument to @fn. 307 * @reserved: Indicates whether @bt is the breserved_tags member or the 308 * bitmap_tags member of struct blk_mq_tags. 309 */ 310 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 311 busy_tag_iter_fn *fn, void *data, bool reserved) 312 { 313 struct bt_tags_iter_data iter_data = { 314 .tags = tags, 315 .fn = fn, 316 .data = data, 317 .reserved = reserved, 318 }; 319 320 if (tags->rqs) 321 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 322 } 323 324 /** 325 * blk_mq_all_tag_busy_iter - iterate over all started requests in a tag map 326 * @tags: Tag map to iterate over. 327 * @fn: Pointer to the function that will be called for each started 328 * request. @fn will be called as follows: @fn(rq, @priv, 329 * reserved) where rq is a pointer to a request. 'reserved' 330 * indicates whether or not @rq is a reserved request. Return 331 * true to continue iterating tags, false to stop. 332 * @priv: Will be passed as second argument to @fn. 333 */ 334 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 335 busy_tag_iter_fn *fn, void *priv) 336 { 337 if (tags->nr_reserved_tags) 338 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true); 339 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false); 340 } 341 342 /** 343 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 344 * @tagset: Tag set to iterate over. 345 * @fn: Pointer to the function that will be called for each started 346 * request. @fn will be called as follows: @fn(rq, @priv, 347 * reserved) where rq is a pointer to a request. 'reserved' 348 * indicates whether or not @rq is a reserved request. Return 349 * true to continue iterating tags, false to stop. 350 * @priv: Will be passed as second argument to @fn. 351 */ 352 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 353 busy_tag_iter_fn *fn, void *priv) 354 { 355 int i; 356 357 for (i = 0; i < tagset->nr_hw_queues; i++) { 358 if (tagset->tags && tagset->tags[i]) 359 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 360 } 361 } 362 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 363 364 /** 365 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 366 * @q: Request queue to examine. 367 * @fn: Pointer to the function that will be called for each request 368 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 369 * reserved) where rq is a pointer to a request and hctx points 370 * to the hardware queue associated with the request. 'reserved' 371 * indicates whether or not @rq is a reserved request. 372 * @priv: Will be passed as third argument to @fn. 373 * 374 * Note: if @q->tag_set is shared with other request queues then @fn will be 375 * called for all requests on all queues that share that tag set and not only 376 * for requests associated with @q. 377 */ 378 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 379 void *priv) 380 { 381 struct blk_mq_hw_ctx *hctx; 382 int i; 383 384 /* 385 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx 386 * while the queue is frozen. So we can use q_usage_counter to avoid 387 * racing with it. __blk_mq_update_nr_hw_queues() uses 388 * synchronize_rcu() to ensure this function left the critical section 389 * below. 390 */ 391 if (!percpu_ref_tryget(&q->q_usage_counter)) 392 return; 393 394 queue_for_each_hw_ctx(q, hctx, i) { 395 struct blk_mq_tags *tags = hctx->tags; 396 397 /* 398 * If no software queues are currently mapped to this 399 * hardware queue, there's nothing to check 400 */ 401 if (!blk_mq_hw_queue_mapped(hctx)) 402 continue; 403 404 if (tags->nr_reserved_tags) 405 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 406 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 407 } 408 blk_queue_exit(q); 409 } 410 411 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 412 bool round_robin, int node) 413 { 414 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 415 node); 416 } 417 418 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 419 int node, int alloc_policy) 420 { 421 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 422 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 423 424 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 425 goto free_tags; 426 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 427 node)) 428 goto free_bitmap_tags; 429 430 return tags; 431 free_bitmap_tags: 432 sbitmap_queue_free(&tags->bitmap_tags); 433 free_tags: 434 kfree(tags); 435 return NULL; 436 } 437 438 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 439 unsigned int reserved_tags, 440 int node, int alloc_policy) 441 { 442 struct blk_mq_tags *tags; 443 444 if (total_tags > BLK_MQ_TAG_MAX) { 445 pr_err("blk-mq: tag depth too large\n"); 446 return NULL; 447 } 448 449 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 450 if (!tags) 451 return NULL; 452 453 tags->nr_tags = total_tags; 454 tags->nr_reserved_tags = reserved_tags; 455 456 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 457 } 458 459 void blk_mq_free_tags(struct blk_mq_tags *tags) 460 { 461 sbitmap_queue_free(&tags->bitmap_tags); 462 sbitmap_queue_free(&tags->breserved_tags); 463 kfree(tags); 464 } 465 466 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 467 struct blk_mq_tags **tagsptr, unsigned int tdepth, 468 bool can_grow) 469 { 470 struct blk_mq_tags *tags = *tagsptr; 471 472 if (tdepth <= tags->nr_reserved_tags) 473 return -EINVAL; 474 475 /* 476 * If we are allowed to grow beyond the original size, allocate 477 * a new set of tags before freeing the old one. 478 */ 479 if (tdepth > tags->nr_tags) { 480 struct blk_mq_tag_set *set = hctx->queue->tag_set; 481 struct blk_mq_tags *new; 482 bool ret; 483 484 if (!can_grow) 485 return -EINVAL; 486 487 /* 488 * We need some sort of upper limit, set it high enough that 489 * no valid use cases should require more. 490 */ 491 if (tdepth > 16 * BLKDEV_MAX_RQ) 492 return -EINVAL; 493 494 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 495 tags->nr_reserved_tags); 496 if (!new) 497 return -ENOMEM; 498 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 499 if (ret) { 500 blk_mq_free_rq_map(new); 501 return -ENOMEM; 502 } 503 504 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 505 blk_mq_free_rq_map(*tagsptr); 506 *tagsptr = new; 507 } else { 508 /* 509 * Don't need (or can't) update reserved tags here, they 510 * remain static and should never need resizing. 511 */ 512 sbitmap_queue_resize(&tags->bitmap_tags, 513 tdepth - tags->nr_reserved_tags); 514 } 515 516 return 0; 517 } 518 519 /** 520 * blk_mq_unique_tag() - return a tag that is unique queue-wide 521 * @rq: request for which to compute a unique tag 522 * 523 * The tag field in struct request is unique per hardware queue but not over 524 * all hardware queues. Hence this function that returns a tag with the 525 * hardware context index in the upper bits and the per hardware queue tag in 526 * the lower bits. 527 * 528 * Note: When called for a request that is queued on a non-multiqueue request 529 * queue, the hardware context index is set to zero. 530 */ 531 u32 blk_mq_unique_tag(struct request *rq) 532 { 533 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 534 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 535 } 536 EXPORT_SYMBOL(blk_mq_unique_tag); 537