1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/blk-mq.h> 13 #include <linux/delay.h> 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-sched.h" 17 #include "blk-mq-tag.h" 18 19 /* 20 * Recalculate wakeup batch when tag is shared by hctx. 21 */ 22 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags, 23 unsigned int users) 24 { 25 if (!users) 26 return; 27 28 sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags, 29 users); 30 sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags, 31 users); 32 } 33 34 /* 35 * If a previously inactive queue goes active, bump the active user count. 36 * We need to do this before try to allocate driver tag, then even if fail 37 * to get tag when first time, the other shared-tag users could reserve 38 * budget for it. 39 */ 40 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int users; 43 44 if (blk_mq_is_shared_tags(hctx->flags)) { 45 struct request_queue *q = hctx->queue; 46 47 if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) 48 return; 49 set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags); 50 } else { 51 if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 52 return; 53 set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state); 54 } 55 56 users = atomic_inc_return(&hctx->tags->active_queues); 57 58 blk_mq_update_wake_batch(hctx->tags, users); 59 } 60 61 /* 62 * Wakeup all potentially sleeping on tags 63 */ 64 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 65 { 66 sbitmap_queue_wake_all(&tags->bitmap_tags); 67 if (include_reserve) 68 sbitmap_queue_wake_all(&tags->breserved_tags); 69 } 70 71 /* 72 * If a previously busy queue goes inactive, potential waiters could now 73 * be allowed to queue. Wake them up and check. 74 */ 75 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 76 { 77 struct blk_mq_tags *tags = hctx->tags; 78 unsigned int users; 79 80 if (blk_mq_is_shared_tags(hctx->flags)) { 81 struct request_queue *q = hctx->queue; 82 83 if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE, 84 &q->queue_flags)) 85 return; 86 } else { 87 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 88 return; 89 } 90 91 users = atomic_dec_return(&tags->active_queues); 92 93 blk_mq_update_wake_batch(tags, users); 94 95 blk_mq_tag_wakeup_all(tags, false); 96 } 97 98 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 99 struct sbitmap_queue *bt) 100 { 101 if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) && 102 !hctx_may_queue(data->hctx, bt)) 103 return BLK_MQ_NO_TAG; 104 105 if (data->shallow_depth) 106 return sbitmap_queue_get_shallow(bt, data->shallow_depth); 107 else 108 return __sbitmap_queue_get(bt); 109 } 110 111 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, 112 unsigned int *offset) 113 { 114 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 115 struct sbitmap_queue *bt = &tags->bitmap_tags; 116 unsigned long ret; 117 118 if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED || 119 data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 120 return 0; 121 ret = __sbitmap_queue_get_batch(bt, nr_tags, offset); 122 *offset += tags->nr_reserved_tags; 123 return ret; 124 } 125 126 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 127 { 128 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 129 struct sbitmap_queue *bt; 130 struct sbq_wait_state *ws; 131 DEFINE_SBQ_WAIT(wait); 132 unsigned int tag_offset; 133 int tag; 134 135 if (data->flags & BLK_MQ_REQ_RESERVED) { 136 if (unlikely(!tags->nr_reserved_tags)) { 137 WARN_ON_ONCE(1); 138 return BLK_MQ_NO_TAG; 139 } 140 bt = &tags->breserved_tags; 141 tag_offset = 0; 142 } else { 143 bt = &tags->bitmap_tags; 144 tag_offset = tags->nr_reserved_tags; 145 } 146 147 tag = __blk_mq_get_tag(data, bt); 148 if (tag != BLK_MQ_NO_TAG) 149 goto found_tag; 150 151 if (data->flags & BLK_MQ_REQ_NOWAIT) 152 return BLK_MQ_NO_TAG; 153 154 ws = bt_wait_ptr(bt, data->hctx); 155 do { 156 struct sbitmap_queue *bt_prev; 157 158 /* 159 * We're out of tags on this hardware queue, kick any 160 * pending IO submits before going to sleep waiting for 161 * some to complete. 162 */ 163 blk_mq_run_hw_queue(data->hctx, false); 164 165 /* 166 * Retry tag allocation after running the hardware queue, 167 * as running the queue may also have found completions. 168 */ 169 tag = __blk_mq_get_tag(data, bt); 170 if (tag != BLK_MQ_NO_TAG) 171 break; 172 173 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 174 175 tag = __blk_mq_get_tag(data, bt); 176 if (tag != BLK_MQ_NO_TAG) 177 break; 178 179 bt_prev = bt; 180 io_schedule(); 181 182 sbitmap_finish_wait(bt, ws, &wait); 183 184 data->ctx = blk_mq_get_ctx(data->q); 185 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 186 data->ctx); 187 tags = blk_mq_tags_from_data(data); 188 if (data->flags & BLK_MQ_REQ_RESERVED) 189 bt = &tags->breserved_tags; 190 else 191 bt = &tags->bitmap_tags; 192 193 /* 194 * If destination hw queue is changed, fake wake up on 195 * previous queue for compensating the wake up miss, so 196 * other allocations on previous queue won't be starved. 197 */ 198 if (bt != bt_prev) 199 sbitmap_queue_wake_up(bt_prev); 200 201 ws = bt_wait_ptr(bt, data->hctx); 202 } while (1); 203 204 sbitmap_finish_wait(bt, ws, &wait); 205 206 found_tag: 207 /* 208 * Give up this allocation if the hctx is inactive. The caller will 209 * retry on an active hctx. 210 */ 211 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { 212 blk_mq_put_tag(tags, data->ctx, tag + tag_offset); 213 return BLK_MQ_NO_TAG; 214 } 215 return tag + tag_offset; 216 } 217 218 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, 219 unsigned int tag) 220 { 221 if (!blk_mq_tag_is_reserved(tags, tag)) { 222 const int real_tag = tag - tags->nr_reserved_tags; 223 224 BUG_ON(real_tag >= tags->nr_tags); 225 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 226 } else { 227 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 228 } 229 } 230 231 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags) 232 { 233 sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags, 234 tag_array, nr_tags); 235 } 236 237 struct bt_iter_data { 238 struct blk_mq_hw_ctx *hctx; 239 struct request_queue *q; 240 busy_tag_iter_fn *fn; 241 void *data; 242 bool reserved; 243 }; 244 245 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags, 246 unsigned int bitnr) 247 { 248 struct request *rq; 249 unsigned long flags; 250 251 spin_lock_irqsave(&tags->lock, flags); 252 rq = tags->rqs[bitnr]; 253 if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq)) 254 rq = NULL; 255 spin_unlock_irqrestore(&tags->lock, flags); 256 return rq; 257 } 258 259 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 260 { 261 struct bt_iter_data *iter_data = data; 262 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 263 struct request_queue *q = iter_data->q; 264 struct blk_mq_tag_set *set = q->tag_set; 265 bool reserved = iter_data->reserved; 266 struct blk_mq_tags *tags; 267 struct request *rq; 268 bool ret = true; 269 270 if (blk_mq_is_shared_tags(set->flags)) 271 tags = set->shared_tags; 272 else 273 tags = hctx->tags; 274 275 if (!reserved) 276 bitnr += tags->nr_reserved_tags; 277 /* 278 * We can hit rq == NULL here, because the tagging functions 279 * test and set the bit before assigning ->rqs[]. 280 */ 281 rq = blk_mq_find_and_get_req(tags, bitnr); 282 if (!rq) 283 return true; 284 285 if (rq->q == q && (!hctx || rq->mq_hctx == hctx)) 286 ret = iter_data->fn(rq, iter_data->data); 287 blk_mq_put_rq_ref(rq); 288 return ret; 289 } 290 291 /** 292 * bt_for_each - iterate over the requests associated with a hardware queue 293 * @hctx: Hardware queue to examine. 294 * @q: Request queue to examine. 295 * @bt: sbitmap to examine. This is either the breserved_tags member 296 * or the bitmap_tags member of struct blk_mq_tags. 297 * @fn: Pointer to the function that will be called for each request 298 * associated with @hctx that has been assigned a driver tag. 299 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 300 * where rq is a pointer to a request. Return true to continue 301 * iterating tags, false to stop. 302 * @data: Will be passed as third argument to @fn. 303 * @reserved: Indicates whether @bt is the breserved_tags member or the 304 * bitmap_tags member of struct blk_mq_tags. 305 */ 306 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q, 307 struct sbitmap_queue *bt, busy_tag_iter_fn *fn, 308 void *data, bool reserved) 309 { 310 struct bt_iter_data iter_data = { 311 .hctx = hctx, 312 .fn = fn, 313 .data = data, 314 .reserved = reserved, 315 .q = q, 316 }; 317 318 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 319 } 320 321 struct bt_tags_iter_data { 322 struct blk_mq_tags *tags; 323 busy_tag_iter_fn *fn; 324 void *data; 325 unsigned int flags; 326 }; 327 328 #define BT_TAG_ITER_RESERVED (1 << 0) 329 #define BT_TAG_ITER_STARTED (1 << 1) 330 #define BT_TAG_ITER_STATIC_RQS (1 << 2) 331 332 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 333 { 334 struct bt_tags_iter_data *iter_data = data; 335 struct blk_mq_tags *tags = iter_data->tags; 336 bool reserved = iter_data->flags & BT_TAG_ITER_RESERVED; 337 struct request *rq; 338 bool ret = true; 339 bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS); 340 341 if (!reserved) 342 bitnr += tags->nr_reserved_tags; 343 344 /* 345 * We can hit rq == NULL here, because the tagging functions 346 * test and set the bit before assigning ->rqs[]. 347 */ 348 if (iter_static_rqs) 349 rq = tags->static_rqs[bitnr]; 350 else 351 rq = blk_mq_find_and_get_req(tags, bitnr); 352 if (!rq) 353 return true; 354 355 if (!(iter_data->flags & BT_TAG_ITER_STARTED) || 356 blk_mq_request_started(rq)) 357 ret = iter_data->fn(rq, iter_data->data); 358 if (!iter_static_rqs) 359 blk_mq_put_rq_ref(rq); 360 return ret; 361 } 362 363 /** 364 * bt_tags_for_each - iterate over the requests in a tag map 365 * @tags: Tag map to iterate over. 366 * @bt: sbitmap to examine. This is either the breserved_tags member 367 * or the bitmap_tags member of struct blk_mq_tags. 368 * @fn: Pointer to the function that will be called for each started 369 * request. @fn will be called as follows: @fn(rq, @data, 370 * @reserved) where rq is a pointer to a request. Return true 371 * to continue iterating tags, false to stop. 372 * @data: Will be passed as second argument to @fn. 373 * @flags: BT_TAG_ITER_* 374 */ 375 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 376 busy_tag_iter_fn *fn, void *data, unsigned int flags) 377 { 378 struct bt_tags_iter_data iter_data = { 379 .tags = tags, 380 .fn = fn, 381 .data = data, 382 .flags = flags, 383 }; 384 385 if (tags->rqs) 386 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 387 } 388 389 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, 390 busy_tag_iter_fn *fn, void *priv, unsigned int flags) 391 { 392 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); 393 394 if (tags->nr_reserved_tags) 395 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, 396 flags | BT_TAG_ITER_RESERVED); 397 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); 398 } 399 400 /** 401 * blk_mq_all_tag_iter - iterate over all requests in a tag map 402 * @tags: Tag map to iterate over. 403 * @fn: Pointer to the function that will be called for each 404 * request. @fn will be called as follows: @fn(rq, @priv, 405 * reserved) where rq is a pointer to a request. 'reserved' 406 * indicates whether or not @rq is a reserved request. Return 407 * true to continue iterating tags, false to stop. 408 * @priv: Will be passed as second argument to @fn. 409 * 410 * Caller has to pass the tag map from which requests are allocated. 411 */ 412 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 413 void *priv) 414 { 415 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); 416 } 417 418 /** 419 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 420 * @tagset: Tag set to iterate over. 421 * @fn: Pointer to the function that will be called for each started 422 * request. @fn will be called as follows: @fn(rq, @priv, 423 * reserved) where rq is a pointer to a request. 'reserved' 424 * indicates whether or not @rq is a reserved request. Return 425 * true to continue iterating tags, false to stop. 426 * @priv: Will be passed as second argument to @fn. 427 * 428 * We grab one request reference before calling @fn and release it after 429 * @fn returns. 430 */ 431 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 432 busy_tag_iter_fn *fn, void *priv) 433 { 434 unsigned int flags = tagset->flags; 435 int i, nr_tags; 436 437 nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues; 438 439 for (i = 0; i < nr_tags; i++) { 440 if (tagset->tags && tagset->tags[i]) 441 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, 442 BT_TAG_ITER_STARTED); 443 } 444 } 445 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 446 447 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data) 448 { 449 unsigned *count = data; 450 451 if (blk_mq_request_completed(rq)) 452 (*count)++; 453 return true; 454 } 455 456 /** 457 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request 458 * completions have finished. 459 * @tagset: Tag set to drain completed request 460 * 461 * Note: This function has to be run after all IO queues are shutdown 462 */ 463 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) 464 { 465 while (true) { 466 unsigned count = 0; 467 468 blk_mq_tagset_busy_iter(tagset, 469 blk_mq_tagset_count_completed_rqs, &count); 470 if (!count) 471 break; 472 msleep(5); 473 } 474 } 475 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); 476 477 /** 478 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 479 * @q: Request queue to examine. 480 * @fn: Pointer to the function that will be called for each request 481 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 482 * reserved) where rq is a pointer to a request and hctx points 483 * to the hardware queue associated with the request. 'reserved' 484 * indicates whether or not @rq is a reserved request. 485 * @priv: Will be passed as third argument to @fn. 486 * 487 * Note: if @q->tag_set is shared with other request queues then @fn will be 488 * called for all requests on all queues that share that tag set and not only 489 * for requests associated with @q. 490 */ 491 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, 492 void *priv) 493 { 494 /* 495 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table 496 * while the queue is frozen. So we can use q_usage_counter to avoid 497 * racing with it. 498 */ 499 if (!percpu_ref_tryget(&q->q_usage_counter)) 500 return; 501 502 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 503 struct blk_mq_tags *tags = q->tag_set->shared_tags; 504 struct sbitmap_queue *bresv = &tags->breserved_tags; 505 struct sbitmap_queue *btags = &tags->bitmap_tags; 506 507 if (tags->nr_reserved_tags) 508 bt_for_each(NULL, q, bresv, fn, priv, true); 509 bt_for_each(NULL, q, btags, fn, priv, false); 510 } else { 511 struct blk_mq_hw_ctx *hctx; 512 unsigned long i; 513 514 queue_for_each_hw_ctx(q, hctx, i) { 515 struct blk_mq_tags *tags = hctx->tags; 516 struct sbitmap_queue *bresv = &tags->breserved_tags; 517 struct sbitmap_queue *btags = &tags->bitmap_tags; 518 519 /* 520 * If no software queues are currently mapped to this 521 * hardware queue, there's nothing to check 522 */ 523 if (!blk_mq_hw_queue_mapped(hctx)) 524 continue; 525 526 if (tags->nr_reserved_tags) 527 bt_for_each(hctx, q, bresv, fn, priv, true); 528 bt_for_each(hctx, q, btags, fn, priv, false); 529 } 530 } 531 blk_queue_exit(q); 532 } 533 534 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 535 bool round_robin, int node) 536 { 537 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 538 node); 539 } 540 541 int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags, 542 struct sbitmap_queue *breserved_tags, 543 unsigned int queue_depth, unsigned int reserved, 544 int node, int alloc_policy) 545 { 546 unsigned int depth = queue_depth - reserved; 547 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 548 549 if (bt_alloc(bitmap_tags, depth, round_robin, node)) 550 return -ENOMEM; 551 if (bt_alloc(breserved_tags, reserved, round_robin, node)) 552 goto free_bitmap_tags; 553 554 return 0; 555 556 free_bitmap_tags: 557 sbitmap_queue_free(bitmap_tags); 558 return -ENOMEM; 559 } 560 561 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 562 unsigned int reserved_tags, 563 int node, int alloc_policy) 564 { 565 struct blk_mq_tags *tags; 566 567 if (total_tags > BLK_MQ_TAG_MAX) { 568 pr_err("blk-mq: tag depth too large\n"); 569 return NULL; 570 } 571 572 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 573 if (!tags) 574 return NULL; 575 576 tags->nr_tags = total_tags; 577 tags->nr_reserved_tags = reserved_tags; 578 spin_lock_init(&tags->lock); 579 580 if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags, 581 total_tags, reserved_tags, node, 582 alloc_policy) < 0) { 583 kfree(tags); 584 return NULL; 585 } 586 return tags; 587 } 588 589 void blk_mq_free_tags(struct blk_mq_tags *tags) 590 { 591 sbitmap_queue_free(&tags->bitmap_tags); 592 sbitmap_queue_free(&tags->breserved_tags); 593 kfree(tags); 594 } 595 596 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 597 struct blk_mq_tags **tagsptr, unsigned int tdepth, 598 bool can_grow) 599 { 600 struct blk_mq_tags *tags = *tagsptr; 601 602 if (tdepth <= tags->nr_reserved_tags) 603 return -EINVAL; 604 605 /* 606 * If we are allowed to grow beyond the original size, allocate 607 * a new set of tags before freeing the old one. 608 */ 609 if (tdepth > tags->nr_tags) { 610 struct blk_mq_tag_set *set = hctx->queue->tag_set; 611 struct blk_mq_tags *new; 612 613 if (!can_grow) 614 return -EINVAL; 615 616 /* 617 * We need some sort of upper limit, set it high enough that 618 * no valid use cases should require more. 619 */ 620 if (tdepth > MAX_SCHED_RQ) 621 return -EINVAL; 622 623 /* 624 * Only the sbitmap needs resizing since we allocated the max 625 * initially. 626 */ 627 if (blk_mq_is_shared_tags(set->flags)) 628 return 0; 629 630 new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth); 631 if (!new) 632 return -ENOMEM; 633 634 blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num); 635 *tagsptr = new; 636 } else { 637 /* 638 * Don't need (or can't) update reserved tags here, they 639 * remain static and should never need resizing. 640 */ 641 sbitmap_queue_resize(&tags->bitmap_tags, 642 tdepth - tags->nr_reserved_tags); 643 } 644 645 return 0; 646 } 647 648 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size) 649 { 650 struct blk_mq_tags *tags = set->shared_tags; 651 652 sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags); 653 } 654 655 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q) 656 { 657 sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags, 658 q->nr_requests - q->tag_set->reserved_tags); 659 } 660 661 /** 662 * blk_mq_unique_tag() - return a tag that is unique queue-wide 663 * @rq: request for which to compute a unique tag 664 * 665 * The tag field in struct request is unique per hardware queue but not over 666 * all hardware queues. Hence this function that returns a tag with the 667 * hardware context index in the upper bits and the per hardware queue tag in 668 * the lower bits. 669 * 670 * Note: When called for a request that is queued on a non-multiqueue request 671 * queue, the hardware context index is set to zero. 672 */ 673 u32 blk_mq_unique_tag(struct request *rq) 674 { 675 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 676 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 677 } 678 EXPORT_SYMBOL(blk_mq_unique_tag); 679