xref: /openbmc/linux/block/blk-mq-tag.c (revision 242cdad8)
1 /*
2  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3  * fairer distribution of tags between multiple submitters when a shared tag map
4  * is used.
5  *
6  * Copyright (C) 2013-2014 Jens Axboe
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
15 
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
17 {
18 	if (!tags)
19 		return true;
20 
21 	return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
22 }
23 
24 /*
25  * If a previously inactive queue goes active, bump the active user count.
26  * We need to do this before try to allocate driver tag, then even if fail
27  * to get tag when first time, the other shared-tag users could reserve
28  * budget for it.
29  */
30 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
31 {
32 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
33 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
34 		atomic_inc(&hctx->tags->active_queues);
35 
36 	return true;
37 }
38 
39 /*
40  * Wakeup all potentially sleeping on tags
41  */
42 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
43 {
44 	sbitmap_queue_wake_all(&tags->bitmap_tags);
45 	if (include_reserve)
46 		sbitmap_queue_wake_all(&tags->breserved_tags);
47 }
48 
49 /*
50  * If a previously busy queue goes inactive, potential waiters could now
51  * be allowed to queue. Wake them up and check.
52  */
53 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
54 {
55 	struct blk_mq_tags *tags = hctx->tags;
56 
57 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
58 		return;
59 
60 	atomic_dec(&tags->active_queues);
61 
62 	blk_mq_tag_wakeup_all(tags, false);
63 }
64 
65 /*
66  * For shared tag users, we track the number of currently active users
67  * and attempt to provide a fair share of the tag depth for each of them.
68  */
69 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
70 				  struct sbitmap_queue *bt)
71 {
72 	unsigned int depth, users;
73 
74 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
75 		return true;
76 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
77 		return true;
78 
79 	/*
80 	 * Don't try dividing an ant
81 	 */
82 	if (bt->sb.depth == 1)
83 		return true;
84 
85 	users = atomic_read(&hctx->tags->active_queues);
86 	if (!users)
87 		return true;
88 
89 	/*
90 	 * Allow at least some tags
91 	 */
92 	depth = max((bt->sb.depth + users - 1) / users, 4U);
93 	return atomic_read(&hctx->nr_active) < depth;
94 }
95 
96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
97 			    struct sbitmap_queue *bt)
98 {
99 	if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
100 	    !hctx_may_queue(data->hctx, bt))
101 		return -1;
102 	if (data->shallow_depth)
103 		return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
104 	else
105 		return __sbitmap_queue_get(bt);
106 }
107 
108 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
109 {
110 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
111 	struct sbitmap_queue *bt;
112 	struct sbq_wait_state *ws;
113 	DEFINE_WAIT(wait);
114 	unsigned int tag_offset;
115 	bool drop_ctx;
116 	int tag;
117 
118 	if (data->flags & BLK_MQ_REQ_RESERVED) {
119 		if (unlikely(!tags->nr_reserved_tags)) {
120 			WARN_ON_ONCE(1);
121 			return BLK_MQ_TAG_FAIL;
122 		}
123 		bt = &tags->breserved_tags;
124 		tag_offset = 0;
125 	} else {
126 		bt = &tags->bitmap_tags;
127 		tag_offset = tags->nr_reserved_tags;
128 	}
129 
130 	tag = __blk_mq_get_tag(data, bt);
131 	if (tag != -1)
132 		goto found_tag;
133 
134 	if (data->flags & BLK_MQ_REQ_NOWAIT)
135 		return BLK_MQ_TAG_FAIL;
136 
137 	ws = bt_wait_ptr(bt, data->hctx);
138 	drop_ctx = data->ctx == NULL;
139 	do {
140 		struct sbitmap_queue *bt_prev;
141 
142 		/*
143 		 * We're out of tags on this hardware queue, kick any
144 		 * pending IO submits before going to sleep waiting for
145 		 * some to complete.
146 		 */
147 		blk_mq_run_hw_queue(data->hctx, false);
148 
149 		/*
150 		 * Retry tag allocation after running the hardware queue,
151 		 * as running the queue may also have found completions.
152 		 */
153 		tag = __blk_mq_get_tag(data, bt);
154 		if (tag != -1)
155 			break;
156 
157 		prepare_to_wait_exclusive(&ws->wait, &wait,
158 						TASK_UNINTERRUPTIBLE);
159 
160 		tag = __blk_mq_get_tag(data, bt);
161 		if (tag != -1)
162 			break;
163 
164 		if (data->ctx)
165 			blk_mq_put_ctx(data->ctx);
166 
167 		bt_prev = bt;
168 		io_schedule();
169 
170 		data->ctx = blk_mq_get_ctx(data->q);
171 		data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
172 		tags = blk_mq_tags_from_data(data);
173 		if (data->flags & BLK_MQ_REQ_RESERVED)
174 			bt = &tags->breserved_tags;
175 		else
176 			bt = &tags->bitmap_tags;
177 
178 		finish_wait(&ws->wait, &wait);
179 
180 		/*
181 		 * If destination hw queue is changed, fake wake up on
182 		 * previous queue for compensating the wake up miss, so
183 		 * other allocations on previous queue won't be starved.
184 		 */
185 		if (bt != bt_prev)
186 			sbitmap_queue_wake_up(bt_prev);
187 
188 		ws = bt_wait_ptr(bt, data->hctx);
189 	} while (1);
190 
191 	if (drop_ctx && data->ctx)
192 		blk_mq_put_ctx(data->ctx);
193 
194 	finish_wait(&ws->wait, &wait);
195 
196 found_tag:
197 	return tag + tag_offset;
198 }
199 
200 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
201 		    struct blk_mq_ctx *ctx, unsigned int tag)
202 {
203 	if (!blk_mq_tag_is_reserved(tags, tag)) {
204 		const int real_tag = tag - tags->nr_reserved_tags;
205 
206 		BUG_ON(real_tag >= tags->nr_tags);
207 		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
208 	} else {
209 		BUG_ON(tag >= tags->nr_reserved_tags);
210 		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
211 	}
212 }
213 
214 struct bt_iter_data {
215 	struct blk_mq_hw_ctx *hctx;
216 	busy_iter_fn *fn;
217 	void *data;
218 	bool reserved;
219 };
220 
221 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
222 {
223 	struct bt_iter_data *iter_data = data;
224 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
225 	struct blk_mq_tags *tags = hctx->tags;
226 	bool reserved = iter_data->reserved;
227 	struct request *rq;
228 
229 	if (!reserved)
230 		bitnr += tags->nr_reserved_tags;
231 	rq = tags->rqs[bitnr];
232 
233 	/*
234 	 * We can hit rq == NULL here, because the tagging functions
235 	 * test and set the bit before assining ->rqs[].
236 	 */
237 	if (rq && rq->q == hctx->queue)
238 		iter_data->fn(hctx, rq, iter_data->data, reserved);
239 	return true;
240 }
241 
242 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
243 			busy_iter_fn *fn, void *data, bool reserved)
244 {
245 	struct bt_iter_data iter_data = {
246 		.hctx = hctx,
247 		.fn = fn,
248 		.data = data,
249 		.reserved = reserved,
250 	};
251 
252 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
253 }
254 
255 struct bt_tags_iter_data {
256 	struct blk_mq_tags *tags;
257 	busy_tag_iter_fn *fn;
258 	void *data;
259 	bool reserved;
260 };
261 
262 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
263 {
264 	struct bt_tags_iter_data *iter_data = data;
265 	struct blk_mq_tags *tags = iter_data->tags;
266 	bool reserved = iter_data->reserved;
267 	struct request *rq;
268 
269 	if (!reserved)
270 		bitnr += tags->nr_reserved_tags;
271 
272 	/*
273 	 * We can hit rq == NULL here, because the tagging functions
274 	 * test and set the bit before assining ->rqs[].
275 	 */
276 	rq = tags->rqs[bitnr];
277 	if (rq && blk_mq_request_started(rq))
278 		iter_data->fn(rq, iter_data->data, reserved);
279 
280 	return true;
281 }
282 
283 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
284 			     busy_tag_iter_fn *fn, void *data, bool reserved)
285 {
286 	struct bt_tags_iter_data iter_data = {
287 		.tags = tags,
288 		.fn = fn,
289 		.data = data,
290 		.reserved = reserved,
291 	};
292 
293 	if (tags->rqs)
294 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
295 }
296 
297 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
298 		busy_tag_iter_fn *fn, void *priv)
299 {
300 	if (tags->nr_reserved_tags)
301 		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
302 	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
303 }
304 
305 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
306 		busy_tag_iter_fn *fn, void *priv)
307 {
308 	int i;
309 
310 	for (i = 0; i < tagset->nr_hw_queues; i++) {
311 		if (tagset->tags && tagset->tags[i])
312 			blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
313 	}
314 }
315 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
316 
317 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
318 		void *priv)
319 {
320 	struct blk_mq_hw_ctx *hctx;
321 	int i;
322 
323 	/*
324 	 * __blk_mq_update_nr_hw_queues will update the nr_hw_queues and
325 	 * queue_hw_ctx after freeze the queue. So we could use q_usage_counter
326 	 * to avoid race with it. __blk_mq_update_nr_hw_queues will users
327 	 * synchronize_rcu to ensure all of the users go out of the critical
328 	 * section below and see zeroed q_usage_counter.
329 	 */
330 	rcu_read_lock();
331 	if (percpu_ref_is_zero(&q->q_usage_counter)) {
332 		rcu_read_unlock();
333 		return;
334 	}
335 
336 	queue_for_each_hw_ctx(q, hctx, i) {
337 		struct blk_mq_tags *tags = hctx->tags;
338 
339 		/*
340 		 * If not software queues are currently mapped to this
341 		 * hardware queue, there's nothing to check
342 		 */
343 		if (!blk_mq_hw_queue_mapped(hctx))
344 			continue;
345 
346 		if (tags->nr_reserved_tags)
347 			bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
348 		bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
349 	}
350 	rcu_read_unlock();
351 }
352 
353 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
354 		    bool round_robin, int node)
355 {
356 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
357 				       node);
358 }
359 
360 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
361 						   int node, int alloc_policy)
362 {
363 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
364 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
365 
366 	if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
367 		goto free_tags;
368 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
369 		     node))
370 		goto free_bitmap_tags;
371 
372 	return tags;
373 free_bitmap_tags:
374 	sbitmap_queue_free(&tags->bitmap_tags);
375 free_tags:
376 	kfree(tags);
377 	return NULL;
378 }
379 
380 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
381 				     unsigned int reserved_tags,
382 				     int node, int alloc_policy)
383 {
384 	struct blk_mq_tags *tags;
385 
386 	if (total_tags > BLK_MQ_TAG_MAX) {
387 		pr_err("blk-mq: tag depth too large\n");
388 		return NULL;
389 	}
390 
391 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
392 	if (!tags)
393 		return NULL;
394 
395 	tags->nr_tags = total_tags;
396 	tags->nr_reserved_tags = reserved_tags;
397 
398 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
399 }
400 
401 void blk_mq_free_tags(struct blk_mq_tags *tags)
402 {
403 	sbitmap_queue_free(&tags->bitmap_tags);
404 	sbitmap_queue_free(&tags->breserved_tags);
405 	kfree(tags);
406 }
407 
408 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
409 			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
410 			    bool can_grow)
411 {
412 	struct blk_mq_tags *tags = *tagsptr;
413 
414 	if (tdepth <= tags->nr_reserved_tags)
415 		return -EINVAL;
416 
417 	/*
418 	 * If we are allowed to grow beyond the original size, allocate
419 	 * a new set of tags before freeing the old one.
420 	 */
421 	if (tdepth > tags->nr_tags) {
422 		struct blk_mq_tag_set *set = hctx->queue->tag_set;
423 		struct blk_mq_tags *new;
424 		bool ret;
425 
426 		if (!can_grow)
427 			return -EINVAL;
428 
429 		/*
430 		 * We need some sort of upper limit, set it high enough that
431 		 * no valid use cases should require more.
432 		 */
433 		if (tdepth > 16 * BLKDEV_MAX_RQ)
434 			return -EINVAL;
435 
436 		new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth,
437 				tags->nr_reserved_tags);
438 		if (!new)
439 			return -ENOMEM;
440 		ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
441 		if (ret) {
442 			blk_mq_free_rq_map(new);
443 			return -ENOMEM;
444 		}
445 
446 		blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
447 		blk_mq_free_rq_map(*tagsptr);
448 		*tagsptr = new;
449 	} else {
450 		/*
451 		 * Don't need (or can't) update reserved tags here, they
452 		 * remain static and should never need resizing.
453 		 */
454 		sbitmap_queue_resize(&tags->bitmap_tags,
455 				tdepth - tags->nr_reserved_tags);
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * blk_mq_unique_tag() - return a tag that is unique queue-wide
463  * @rq: request for which to compute a unique tag
464  *
465  * The tag field in struct request is unique per hardware queue but not over
466  * all hardware queues. Hence this function that returns a tag with the
467  * hardware context index in the upper bits and the per hardware queue tag in
468  * the lower bits.
469  *
470  * Note: When called for a request that is queued on a non-multiqueue request
471  * queue, the hardware context index is set to zero.
472  */
473 u32 blk_mq_unique_tag(struct request *rq)
474 {
475 	struct request_queue *q = rq->q;
476 	struct blk_mq_hw_ctx *hctx;
477 	int hwq = 0;
478 
479 	if (q->mq_ops) {
480 		hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
481 		hwq = hctx->queue_num;
482 	}
483 
484 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
485 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
486 }
487 EXPORT_SYMBOL(blk_mq_unique_tag);
488