1 /* 2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 3 * fairer distribution of tags between multiple submitters when a shared tag map 4 * is used. 5 * 6 * Copyright (C) 2013-2014 Jens Axboe 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 11 #include <linux/blk-mq.h> 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-tag.h" 15 16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 17 { 18 if (!tags) 19 return true; 20 21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb); 22 } 23 24 /* 25 * If a previously inactive queue goes active, bump the active user count. 26 * We need to do this before try to allocate driver tag, then even if fail 27 * to get tag when first time, the other shared-tag users could reserve 28 * budget for it. 29 */ 30 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 31 { 32 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 33 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 34 atomic_inc(&hctx->tags->active_queues); 35 36 return true; 37 } 38 39 /* 40 * Wakeup all potentially sleeping on tags 41 */ 42 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 43 { 44 sbitmap_queue_wake_all(&tags->bitmap_tags); 45 if (include_reserve) 46 sbitmap_queue_wake_all(&tags->breserved_tags); 47 } 48 49 /* 50 * If a previously busy queue goes inactive, potential waiters could now 51 * be allowed to queue. Wake them up and check. 52 */ 53 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 54 { 55 struct blk_mq_tags *tags = hctx->tags; 56 57 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 58 return; 59 60 atomic_dec(&tags->active_queues); 61 62 blk_mq_tag_wakeup_all(tags, false); 63 } 64 65 /* 66 * For shared tag users, we track the number of currently active users 67 * and attempt to provide a fair share of the tag depth for each of them. 68 */ 69 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 70 struct sbitmap_queue *bt) 71 { 72 unsigned int depth, users; 73 74 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 75 return true; 76 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 77 return true; 78 79 /* 80 * Don't try dividing an ant 81 */ 82 if (bt->sb.depth == 1) 83 return true; 84 85 users = atomic_read(&hctx->tags->active_queues); 86 if (!users) 87 return true; 88 89 /* 90 * Allow at least some tags 91 */ 92 depth = max((bt->sb.depth + users - 1) / users, 4U); 93 return atomic_read(&hctx->nr_active) < depth; 94 } 95 96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 97 struct sbitmap_queue *bt) 98 { 99 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 100 !hctx_may_queue(data->hctx, bt)) 101 return -1; 102 if (data->shallow_depth) 103 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 104 else 105 return __sbitmap_queue_get(bt); 106 } 107 108 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 109 { 110 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 111 struct sbitmap_queue *bt; 112 struct sbq_wait_state *ws; 113 DEFINE_WAIT(wait); 114 unsigned int tag_offset; 115 bool drop_ctx; 116 int tag; 117 118 if (data->flags & BLK_MQ_REQ_RESERVED) { 119 if (unlikely(!tags->nr_reserved_tags)) { 120 WARN_ON_ONCE(1); 121 return BLK_MQ_TAG_FAIL; 122 } 123 bt = &tags->breserved_tags; 124 tag_offset = 0; 125 } else { 126 bt = &tags->bitmap_tags; 127 tag_offset = tags->nr_reserved_tags; 128 } 129 130 tag = __blk_mq_get_tag(data, bt); 131 if (tag != -1) 132 goto found_tag; 133 134 if (data->flags & BLK_MQ_REQ_NOWAIT) 135 return BLK_MQ_TAG_FAIL; 136 137 ws = bt_wait_ptr(bt, data->hctx); 138 drop_ctx = data->ctx == NULL; 139 do { 140 struct sbitmap_queue *bt_prev; 141 142 /* 143 * We're out of tags on this hardware queue, kick any 144 * pending IO submits before going to sleep waiting for 145 * some to complete. 146 */ 147 blk_mq_run_hw_queue(data->hctx, false); 148 149 /* 150 * Retry tag allocation after running the hardware queue, 151 * as running the queue may also have found completions. 152 */ 153 tag = __blk_mq_get_tag(data, bt); 154 if (tag != -1) 155 break; 156 157 prepare_to_wait_exclusive(&ws->wait, &wait, 158 TASK_UNINTERRUPTIBLE); 159 160 tag = __blk_mq_get_tag(data, bt); 161 if (tag != -1) 162 break; 163 164 if (data->ctx) 165 blk_mq_put_ctx(data->ctx); 166 167 bt_prev = bt; 168 io_schedule(); 169 170 data->ctx = blk_mq_get_ctx(data->q); 171 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu); 172 tags = blk_mq_tags_from_data(data); 173 if (data->flags & BLK_MQ_REQ_RESERVED) 174 bt = &tags->breserved_tags; 175 else 176 bt = &tags->bitmap_tags; 177 178 finish_wait(&ws->wait, &wait); 179 180 /* 181 * If destination hw queue is changed, fake wake up on 182 * previous queue for compensating the wake up miss, so 183 * other allocations on previous queue won't be starved. 184 */ 185 if (bt != bt_prev) 186 sbitmap_queue_wake_up(bt_prev); 187 188 ws = bt_wait_ptr(bt, data->hctx); 189 } while (1); 190 191 if (drop_ctx && data->ctx) 192 blk_mq_put_ctx(data->ctx); 193 194 finish_wait(&ws->wait, &wait); 195 196 found_tag: 197 return tag + tag_offset; 198 } 199 200 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags, 201 struct blk_mq_ctx *ctx, unsigned int tag) 202 { 203 if (!blk_mq_tag_is_reserved(tags, tag)) { 204 const int real_tag = tag - tags->nr_reserved_tags; 205 206 BUG_ON(real_tag >= tags->nr_tags); 207 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 208 } else { 209 BUG_ON(tag >= tags->nr_reserved_tags); 210 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 211 } 212 } 213 214 struct bt_iter_data { 215 struct blk_mq_hw_ctx *hctx; 216 busy_iter_fn *fn; 217 void *data; 218 bool reserved; 219 }; 220 221 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 222 { 223 struct bt_iter_data *iter_data = data; 224 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 225 struct blk_mq_tags *tags = hctx->tags; 226 bool reserved = iter_data->reserved; 227 struct request *rq; 228 229 if (!reserved) 230 bitnr += tags->nr_reserved_tags; 231 rq = tags->rqs[bitnr]; 232 233 /* 234 * We can hit rq == NULL here, because the tagging functions 235 * test and set the bit before assining ->rqs[]. 236 */ 237 if (rq && rq->q == hctx->queue) 238 iter_data->fn(hctx, rq, iter_data->data, reserved); 239 return true; 240 } 241 242 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 243 busy_iter_fn *fn, void *data, bool reserved) 244 { 245 struct bt_iter_data iter_data = { 246 .hctx = hctx, 247 .fn = fn, 248 .data = data, 249 .reserved = reserved, 250 }; 251 252 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 253 } 254 255 struct bt_tags_iter_data { 256 struct blk_mq_tags *tags; 257 busy_tag_iter_fn *fn; 258 void *data; 259 bool reserved; 260 }; 261 262 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 263 { 264 struct bt_tags_iter_data *iter_data = data; 265 struct blk_mq_tags *tags = iter_data->tags; 266 bool reserved = iter_data->reserved; 267 struct request *rq; 268 269 if (!reserved) 270 bitnr += tags->nr_reserved_tags; 271 272 /* 273 * We can hit rq == NULL here, because the tagging functions 274 * test and set the bit before assining ->rqs[]. 275 */ 276 rq = tags->rqs[bitnr]; 277 if (rq && blk_mq_request_started(rq)) 278 iter_data->fn(rq, iter_data->data, reserved); 279 280 return true; 281 } 282 283 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 284 busy_tag_iter_fn *fn, void *data, bool reserved) 285 { 286 struct bt_tags_iter_data iter_data = { 287 .tags = tags, 288 .fn = fn, 289 .data = data, 290 .reserved = reserved, 291 }; 292 293 if (tags->rqs) 294 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 295 } 296 297 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 298 busy_tag_iter_fn *fn, void *priv) 299 { 300 if (tags->nr_reserved_tags) 301 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true); 302 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false); 303 } 304 305 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 306 busy_tag_iter_fn *fn, void *priv) 307 { 308 int i; 309 310 for (i = 0; i < tagset->nr_hw_queues; i++) { 311 if (tagset->tags && tagset->tags[i]) 312 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 313 } 314 } 315 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 316 317 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 318 void *priv) 319 { 320 struct blk_mq_hw_ctx *hctx; 321 int i; 322 323 /* 324 * __blk_mq_update_nr_hw_queues will update the nr_hw_queues and 325 * queue_hw_ctx after freeze the queue. So we could use q_usage_counter 326 * to avoid race with it. __blk_mq_update_nr_hw_queues will users 327 * synchronize_rcu to ensure all of the users go out of the critical 328 * section below and see zeroed q_usage_counter. 329 */ 330 rcu_read_lock(); 331 if (percpu_ref_is_zero(&q->q_usage_counter)) { 332 rcu_read_unlock(); 333 return; 334 } 335 336 queue_for_each_hw_ctx(q, hctx, i) { 337 struct blk_mq_tags *tags = hctx->tags; 338 339 /* 340 * If not software queues are currently mapped to this 341 * hardware queue, there's nothing to check 342 */ 343 if (!blk_mq_hw_queue_mapped(hctx)) 344 continue; 345 346 if (tags->nr_reserved_tags) 347 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 348 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 349 } 350 rcu_read_unlock(); 351 } 352 353 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 354 bool round_robin, int node) 355 { 356 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 357 node); 358 } 359 360 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 361 int node, int alloc_policy) 362 { 363 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 364 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 365 366 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 367 goto free_tags; 368 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 369 node)) 370 goto free_bitmap_tags; 371 372 return tags; 373 free_bitmap_tags: 374 sbitmap_queue_free(&tags->bitmap_tags); 375 free_tags: 376 kfree(tags); 377 return NULL; 378 } 379 380 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 381 unsigned int reserved_tags, 382 int node, int alloc_policy) 383 { 384 struct blk_mq_tags *tags; 385 386 if (total_tags > BLK_MQ_TAG_MAX) { 387 pr_err("blk-mq: tag depth too large\n"); 388 return NULL; 389 } 390 391 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 392 if (!tags) 393 return NULL; 394 395 tags->nr_tags = total_tags; 396 tags->nr_reserved_tags = reserved_tags; 397 398 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 399 } 400 401 void blk_mq_free_tags(struct blk_mq_tags *tags) 402 { 403 sbitmap_queue_free(&tags->bitmap_tags); 404 sbitmap_queue_free(&tags->breserved_tags); 405 kfree(tags); 406 } 407 408 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 409 struct blk_mq_tags **tagsptr, unsigned int tdepth, 410 bool can_grow) 411 { 412 struct blk_mq_tags *tags = *tagsptr; 413 414 if (tdepth <= tags->nr_reserved_tags) 415 return -EINVAL; 416 417 /* 418 * If we are allowed to grow beyond the original size, allocate 419 * a new set of tags before freeing the old one. 420 */ 421 if (tdepth > tags->nr_tags) { 422 struct blk_mq_tag_set *set = hctx->queue->tag_set; 423 struct blk_mq_tags *new; 424 bool ret; 425 426 if (!can_grow) 427 return -EINVAL; 428 429 /* 430 * We need some sort of upper limit, set it high enough that 431 * no valid use cases should require more. 432 */ 433 if (tdepth > 16 * BLKDEV_MAX_RQ) 434 return -EINVAL; 435 436 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 437 tags->nr_reserved_tags); 438 if (!new) 439 return -ENOMEM; 440 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 441 if (ret) { 442 blk_mq_free_rq_map(new); 443 return -ENOMEM; 444 } 445 446 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 447 blk_mq_free_rq_map(*tagsptr); 448 *tagsptr = new; 449 } else { 450 /* 451 * Don't need (or can't) update reserved tags here, they 452 * remain static and should never need resizing. 453 */ 454 sbitmap_queue_resize(&tags->bitmap_tags, 455 tdepth - tags->nr_reserved_tags); 456 } 457 458 return 0; 459 } 460 461 /** 462 * blk_mq_unique_tag() - return a tag that is unique queue-wide 463 * @rq: request for which to compute a unique tag 464 * 465 * The tag field in struct request is unique per hardware queue but not over 466 * all hardware queues. Hence this function that returns a tag with the 467 * hardware context index in the upper bits and the per hardware queue tag in 468 * the lower bits. 469 * 470 * Note: When called for a request that is queued on a non-multiqueue request 471 * queue, the hardware context index is set to zero. 472 */ 473 u32 blk_mq_unique_tag(struct request *rq) 474 { 475 struct request_queue *q = rq->q; 476 struct blk_mq_hw_ctx *hctx; 477 int hwq = 0; 478 479 if (q->mq_ops) { 480 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 481 hwq = hctx->queue_num; 482 } 483 484 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | 485 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 486 } 487 EXPORT_SYMBOL(blk_mq_unique_tag); 488