1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/blk-mq.h> 13 #include <linux/delay.h> 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-tag.h" 17 18 /* 19 * If a previously inactive queue goes active, bump the active user count. 20 * We need to do this before try to allocate driver tag, then even if fail 21 * to get tag when first time, the other shared-tag users could reserve 22 * budget for it. 23 */ 24 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 25 { 26 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 27 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 28 atomic_inc(&hctx->tags->active_queues); 29 30 return true; 31 } 32 33 /* 34 * Wakeup all potentially sleeping on tags 35 */ 36 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 37 { 38 sbitmap_queue_wake_all(&tags->bitmap_tags); 39 if (include_reserve) 40 sbitmap_queue_wake_all(&tags->breserved_tags); 41 } 42 43 /* 44 * If a previously busy queue goes inactive, potential waiters could now 45 * be allowed to queue. Wake them up and check. 46 */ 47 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 48 { 49 struct blk_mq_tags *tags = hctx->tags; 50 51 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 52 return; 53 54 atomic_dec(&tags->active_queues); 55 56 blk_mq_tag_wakeup_all(tags, false); 57 } 58 59 /* 60 * For shared tag users, we track the number of currently active users 61 * and attempt to provide a fair share of the tag depth for each of them. 62 */ 63 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 64 struct sbitmap_queue *bt) 65 { 66 unsigned int depth, users; 67 68 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 69 return true; 70 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 71 return true; 72 73 /* 74 * Don't try dividing an ant 75 */ 76 if (bt->sb.depth == 1) 77 return true; 78 79 users = atomic_read(&hctx->tags->active_queues); 80 if (!users) 81 return true; 82 83 /* 84 * Allow at least some tags 85 */ 86 depth = max((bt->sb.depth + users - 1) / users, 4U); 87 return atomic_read(&hctx->nr_active) < depth; 88 } 89 90 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 91 struct sbitmap_queue *bt) 92 { 93 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 94 !hctx_may_queue(data->hctx, bt)) 95 return BLK_MQ_NO_TAG; 96 if (data->shallow_depth) 97 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 98 else 99 return __sbitmap_queue_get(bt); 100 } 101 102 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 103 { 104 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 105 struct sbitmap_queue *bt; 106 struct sbq_wait_state *ws; 107 DEFINE_SBQ_WAIT(wait); 108 unsigned int tag_offset; 109 int tag; 110 111 if (data->flags & BLK_MQ_REQ_RESERVED) { 112 if (unlikely(!tags->nr_reserved_tags)) { 113 WARN_ON_ONCE(1); 114 return BLK_MQ_NO_TAG; 115 } 116 bt = &tags->breserved_tags; 117 tag_offset = 0; 118 } else { 119 bt = &tags->bitmap_tags; 120 tag_offset = tags->nr_reserved_tags; 121 } 122 123 tag = __blk_mq_get_tag(data, bt); 124 if (tag != BLK_MQ_NO_TAG) 125 goto found_tag; 126 127 if (data->flags & BLK_MQ_REQ_NOWAIT) 128 return BLK_MQ_NO_TAG; 129 130 ws = bt_wait_ptr(bt, data->hctx); 131 do { 132 struct sbitmap_queue *bt_prev; 133 134 /* 135 * We're out of tags on this hardware queue, kick any 136 * pending IO submits before going to sleep waiting for 137 * some to complete. 138 */ 139 blk_mq_run_hw_queue(data->hctx, false); 140 141 /* 142 * Retry tag allocation after running the hardware queue, 143 * as running the queue may also have found completions. 144 */ 145 tag = __blk_mq_get_tag(data, bt); 146 if (tag != BLK_MQ_NO_TAG) 147 break; 148 149 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 150 151 tag = __blk_mq_get_tag(data, bt); 152 if (tag != BLK_MQ_NO_TAG) 153 break; 154 155 bt_prev = bt; 156 io_schedule(); 157 158 sbitmap_finish_wait(bt, ws, &wait); 159 160 data->ctx = blk_mq_get_ctx(data->q); 161 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 162 data->ctx); 163 tags = blk_mq_tags_from_data(data); 164 if (data->flags & BLK_MQ_REQ_RESERVED) 165 bt = &tags->breserved_tags; 166 else 167 bt = &tags->bitmap_tags; 168 169 /* 170 * If destination hw queue is changed, fake wake up on 171 * previous queue for compensating the wake up miss, so 172 * other allocations on previous queue won't be starved. 173 */ 174 if (bt != bt_prev) 175 sbitmap_queue_wake_up(bt_prev); 176 177 ws = bt_wait_ptr(bt, data->hctx); 178 } while (1); 179 180 sbitmap_finish_wait(bt, ws, &wait); 181 182 found_tag: 183 /* 184 * Give up this allocation if the hctx is inactive. The caller will 185 * retry on an active hctx. 186 */ 187 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { 188 blk_mq_put_tag(tags, data->ctx, tag + tag_offset); 189 return BLK_MQ_NO_TAG; 190 } 191 return tag + tag_offset; 192 } 193 194 bool __blk_mq_get_driver_tag(struct request *rq) 195 { 196 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 197 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 198 bool shared = blk_mq_tag_busy(rq->mq_hctx); 199 int tag; 200 201 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 202 bt = &rq->mq_hctx->tags->breserved_tags; 203 tag_offset = 0; 204 } 205 206 if (!hctx_may_queue(rq->mq_hctx, bt)) 207 return false; 208 tag = __sbitmap_queue_get(bt); 209 if (tag == BLK_MQ_NO_TAG) 210 return false; 211 212 rq->tag = tag + tag_offset; 213 if (shared) { 214 rq->rq_flags |= RQF_MQ_INFLIGHT; 215 atomic_inc(&rq->mq_hctx->nr_active); 216 } 217 rq->mq_hctx->tags->rqs[rq->tag] = rq; 218 return true; 219 } 220 221 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, 222 unsigned int tag) 223 { 224 if (!blk_mq_tag_is_reserved(tags, tag)) { 225 const int real_tag = tag - tags->nr_reserved_tags; 226 227 BUG_ON(real_tag >= tags->nr_tags); 228 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 229 } else { 230 BUG_ON(tag >= tags->nr_reserved_tags); 231 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 232 } 233 } 234 235 struct bt_iter_data { 236 struct blk_mq_hw_ctx *hctx; 237 busy_iter_fn *fn; 238 void *data; 239 bool reserved; 240 }; 241 242 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 243 { 244 struct bt_iter_data *iter_data = data; 245 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 246 struct blk_mq_tags *tags = hctx->tags; 247 bool reserved = iter_data->reserved; 248 struct request *rq; 249 250 if (!reserved) 251 bitnr += tags->nr_reserved_tags; 252 rq = tags->rqs[bitnr]; 253 254 /* 255 * We can hit rq == NULL here, because the tagging functions 256 * test and set the bit before assigning ->rqs[]. 257 */ 258 if (rq && rq->q == hctx->queue) 259 return iter_data->fn(hctx, rq, iter_data->data, reserved); 260 return true; 261 } 262 263 /** 264 * bt_for_each - iterate over the requests associated with a hardware queue 265 * @hctx: Hardware queue to examine. 266 * @bt: sbitmap to examine. This is either the breserved_tags member 267 * or the bitmap_tags member of struct blk_mq_tags. 268 * @fn: Pointer to the function that will be called for each request 269 * associated with @hctx that has been assigned a driver tag. 270 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 271 * where rq is a pointer to a request. Return true to continue 272 * iterating tags, false to stop. 273 * @data: Will be passed as third argument to @fn. 274 * @reserved: Indicates whether @bt is the breserved_tags member or the 275 * bitmap_tags member of struct blk_mq_tags. 276 */ 277 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 278 busy_iter_fn *fn, void *data, bool reserved) 279 { 280 struct bt_iter_data iter_data = { 281 .hctx = hctx, 282 .fn = fn, 283 .data = data, 284 .reserved = reserved, 285 }; 286 287 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 288 } 289 290 struct bt_tags_iter_data { 291 struct blk_mq_tags *tags; 292 busy_tag_iter_fn *fn; 293 void *data; 294 unsigned int flags; 295 }; 296 297 #define BT_TAG_ITER_RESERVED (1 << 0) 298 #define BT_TAG_ITER_STARTED (1 << 1) 299 #define BT_TAG_ITER_STATIC_RQS (1 << 2) 300 301 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 302 { 303 struct bt_tags_iter_data *iter_data = data; 304 struct blk_mq_tags *tags = iter_data->tags; 305 bool reserved = iter_data->flags & BT_TAG_ITER_RESERVED; 306 struct request *rq; 307 308 if (!reserved) 309 bitnr += tags->nr_reserved_tags; 310 311 /* 312 * We can hit rq == NULL here, because the tagging functions 313 * test and set the bit before assigning ->rqs[]. 314 */ 315 if (iter_data->flags & BT_TAG_ITER_STATIC_RQS) 316 rq = tags->static_rqs[bitnr]; 317 else 318 rq = tags->rqs[bitnr]; 319 if (!rq) 320 return true; 321 if ((iter_data->flags & BT_TAG_ITER_STARTED) && 322 !blk_mq_request_started(rq)) 323 return true; 324 return iter_data->fn(rq, iter_data->data, reserved); 325 } 326 327 /** 328 * bt_tags_for_each - iterate over the requests in a tag map 329 * @tags: Tag map to iterate over. 330 * @bt: sbitmap to examine. This is either the breserved_tags member 331 * or the bitmap_tags member of struct blk_mq_tags. 332 * @fn: Pointer to the function that will be called for each started 333 * request. @fn will be called as follows: @fn(rq, @data, 334 * @reserved) where rq is a pointer to a request. Return true 335 * to continue iterating tags, false to stop. 336 * @data: Will be passed as second argument to @fn. 337 * @flags: BT_TAG_ITER_* 338 */ 339 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 340 busy_tag_iter_fn *fn, void *data, unsigned int flags) 341 { 342 struct bt_tags_iter_data iter_data = { 343 .tags = tags, 344 .fn = fn, 345 .data = data, 346 .flags = flags, 347 }; 348 349 if (tags->rqs) 350 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 351 } 352 353 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, 354 busy_tag_iter_fn *fn, void *priv, unsigned int flags) 355 { 356 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); 357 358 if (tags->nr_reserved_tags) 359 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, 360 flags | BT_TAG_ITER_RESERVED); 361 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); 362 } 363 364 /** 365 * blk_mq_all_tag_iter - iterate over all requests in a tag map 366 * @tags: Tag map to iterate over. 367 * @fn: Pointer to the function that will be called for each 368 * request. @fn will be called as follows: @fn(rq, @priv, 369 * reserved) where rq is a pointer to a request. 'reserved' 370 * indicates whether or not @rq is a reserved request. Return 371 * true to continue iterating tags, false to stop. 372 * @priv: Will be passed as second argument to @fn. 373 * 374 * Caller has to pass the tag map from which requests are allocated. 375 */ 376 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 377 void *priv) 378 { 379 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); 380 } 381 382 /** 383 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 384 * @tagset: Tag set to iterate over. 385 * @fn: Pointer to the function that will be called for each started 386 * request. @fn will be called as follows: @fn(rq, @priv, 387 * reserved) where rq is a pointer to a request. 'reserved' 388 * indicates whether or not @rq is a reserved request. Return 389 * true to continue iterating tags, false to stop. 390 * @priv: Will be passed as second argument to @fn. 391 */ 392 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 393 busy_tag_iter_fn *fn, void *priv) 394 { 395 int i; 396 397 for (i = 0; i < tagset->nr_hw_queues; i++) { 398 if (tagset->tags && tagset->tags[i]) 399 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, 400 BT_TAG_ITER_STARTED); 401 } 402 } 403 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 404 405 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, 406 void *data, bool reserved) 407 { 408 unsigned *count = data; 409 410 if (blk_mq_request_completed(rq)) 411 (*count)++; 412 return true; 413 } 414 415 /** 416 * blk_mq_tagset_wait_completed_request - wait until all completed req's 417 * complete funtion is run 418 * @tagset: Tag set to drain completed request 419 * 420 * Note: This function has to be run after all IO queues are shutdown 421 */ 422 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) 423 { 424 while (true) { 425 unsigned count = 0; 426 427 blk_mq_tagset_busy_iter(tagset, 428 blk_mq_tagset_count_completed_rqs, &count); 429 if (!count) 430 break; 431 msleep(5); 432 } 433 } 434 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); 435 436 /** 437 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 438 * @q: Request queue to examine. 439 * @fn: Pointer to the function that will be called for each request 440 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 441 * reserved) where rq is a pointer to a request and hctx points 442 * to the hardware queue associated with the request. 'reserved' 443 * indicates whether or not @rq is a reserved request. 444 * @priv: Will be passed as third argument to @fn. 445 * 446 * Note: if @q->tag_set is shared with other request queues then @fn will be 447 * called for all requests on all queues that share that tag set and not only 448 * for requests associated with @q. 449 */ 450 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 451 void *priv) 452 { 453 struct blk_mq_hw_ctx *hctx; 454 int i; 455 456 /* 457 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx 458 * while the queue is frozen. So we can use q_usage_counter to avoid 459 * racing with it. __blk_mq_update_nr_hw_queues() uses 460 * synchronize_rcu() to ensure this function left the critical section 461 * below. 462 */ 463 if (!percpu_ref_tryget(&q->q_usage_counter)) 464 return; 465 466 queue_for_each_hw_ctx(q, hctx, i) { 467 struct blk_mq_tags *tags = hctx->tags; 468 469 /* 470 * If no software queues are currently mapped to this 471 * hardware queue, there's nothing to check 472 */ 473 if (!blk_mq_hw_queue_mapped(hctx)) 474 continue; 475 476 if (tags->nr_reserved_tags) 477 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 478 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 479 } 480 blk_queue_exit(q); 481 } 482 483 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 484 bool round_robin, int node) 485 { 486 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 487 node); 488 } 489 490 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 491 int node, int alloc_policy) 492 { 493 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 494 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 495 496 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 497 goto free_tags; 498 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 499 node)) 500 goto free_bitmap_tags; 501 502 return tags; 503 free_bitmap_tags: 504 sbitmap_queue_free(&tags->bitmap_tags); 505 free_tags: 506 kfree(tags); 507 return NULL; 508 } 509 510 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 511 unsigned int reserved_tags, 512 int node, int alloc_policy) 513 { 514 struct blk_mq_tags *tags; 515 516 if (total_tags > BLK_MQ_TAG_MAX) { 517 pr_err("blk-mq: tag depth too large\n"); 518 return NULL; 519 } 520 521 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 522 if (!tags) 523 return NULL; 524 525 tags->nr_tags = total_tags; 526 tags->nr_reserved_tags = reserved_tags; 527 528 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 529 } 530 531 void blk_mq_free_tags(struct blk_mq_tags *tags) 532 { 533 sbitmap_queue_free(&tags->bitmap_tags); 534 sbitmap_queue_free(&tags->breserved_tags); 535 kfree(tags); 536 } 537 538 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 539 struct blk_mq_tags **tagsptr, unsigned int tdepth, 540 bool can_grow) 541 { 542 struct blk_mq_tags *tags = *tagsptr; 543 544 if (tdepth <= tags->nr_reserved_tags) 545 return -EINVAL; 546 547 /* 548 * If we are allowed to grow beyond the original size, allocate 549 * a new set of tags before freeing the old one. 550 */ 551 if (tdepth > tags->nr_tags) { 552 struct blk_mq_tag_set *set = hctx->queue->tag_set; 553 struct blk_mq_tags *new; 554 bool ret; 555 556 if (!can_grow) 557 return -EINVAL; 558 559 /* 560 * We need some sort of upper limit, set it high enough that 561 * no valid use cases should require more. 562 */ 563 if (tdepth > 16 * BLKDEV_MAX_RQ) 564 return -EINVAL; 565 566 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 567 tags->nr_reserved_tags); 568 if (!new) 569 return -ENOMEM; 570 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 571 if (ret) { 572 blk_mq_free_rq_map(new); 573 return -ENOMEM; 574 } 575 576 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 577 blk_mq_free_rq_map(*tagsptr); 578 *tagsptr = new; 579 } else { 580 /* 581 * Don't need (or can't) update reserved tags here, they 582 * remain static and should never need resizing. 583 */ 584 sbitmap_queue_resize(&tags->bitmap_tags, 585 tdepth - tags->nr_reserved_tags); 586 } 587 588 return 0; 589 } 590 591 /** 592 * blk_mq_unique_tag() - return a tag that is unique queue-wide 593 * @rq: request for which to compute a unique tag 594 * 595 * The tag field in struct request is unique per hardware queue but not over 596 * all hardware queues. Hence this function that returns a tag with the 597 * hardware context index in the upper bits and the per hardware queue tag in 598 * the lower bits. 599 * 600 * Note: When called for a request that is queued on a non-multiqueue request 601 * queue, the hardware context index is set to zero. 602 */ 603 u32 blk_mq_unique_tag(struct request *rq) 604 { 605 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 606 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 607 } 608 EXPORT_SYMBOL(blk_mq_unique_tag); 609