1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-sched.h" 15 #include "blk-mq-tag.h" 16 #include "blk-wbt.h" 17 18 void blk_mq_sched_free_hctx_data(struct request_queue *q, 19 void (*exit)(struct blk_mq_hw_ctx *)) 20 { 21 struct blk_mq_hw_ctx *hctx; 22 int i; 23 24 queue_for_each_hw_ctx(q, hctx, i) { 25 if (exit && hctx->sched_data) 26 exit(hctx); 27 kfree(hctx->sched_data); 28 hctx->sched_data = NULL; 29 } 30 } 31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 32 33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size, 34 int (*init)(struct blk_mq_hw_ctx *), 35 void (*exit)(struct blk_mq_hw_ctx *)) 36 { 37 struct blk_mq_hw_ctx *hctx; 38 int ret; 39 int i; 40 41 queue_for_each_hw_ctx(q, hctx, i) { 42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node); 43 if (!hctx->sched_data) { 44 ret = -ENOMEM; 45 goto error; 46 } 47 48 if (init) { 49 ret = init(hctx); 50 if (ret) { 51 /* 52 * We don't want to give exit() a partially 53 * initialized sched_data. init() must clean up 54 * if it fails. 55 */ 56 kfree(hctx->sched_data); 57 hctx->sched_data = NULL; 58 goto error; 59 } 60 } 61 } 62 63 return 0; 64 error: 65 blk_mq_sched_free_hctx_data(q, exit); 66 return ret; 67 } 68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data); 69 70 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 71 struct request *rq, 72 struct bio *bio, 73 struct io_context *ioc) 74 { 75 struct io_cq *icq; 76 77 spin_lock_irq(q->queue_lock); 78 icq = ioc_lookup_icq(ioc, q); 79 spin_unlock_irq(q->queue_lock); 80 81 if (!icq) { 82 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 83 if (!icq) 84 return; 85 } 86 87 rq->elv.icq = icq; 88 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 89 rq->rq_flags |= RQF_ELVPRIV; 90 get_io_context(icq->ioc); 91 return; 92 } 93 94 rq->elv.icq = NULL; 95 } 96 97 static void blk_mq_sched_assign_ioc(struct request_queue *q, 98 struct request *rq, struct bio *bio) 99 { 100 struct io_context *ioc; 101 102 ioc = rq_ioc(bio); 103 if (ioc) 104 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 105 } 106 107 struct request *blk_mq_sched_get_request(struct request_queue *q, 108 struct bio *bio, 109 unsigned int op, 110 struct blk_mq_alloc_data *data) 111 { 112 struct elevator_queue *e = q->elevator; 113 struct request *rq; 114 115 blk_queue_enter_live(q); 116 data->q = q; 117 if (likely(!data->ctx)) 118 data->ctx = blk_mq_get_ctx(q); 119 if (likely(!data->hctx)) 120 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 121 122 if (e) { 123 data->flags |= BLK_MQ_REQ_INTERNAL; 124 125 /* 126 * Flush requests are special and go directly to the 127 * dispatch list. 128 */ 129 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 130 rq = e->type->ops.mq.get_request(q, op, data); 131 if (rq) 132 rq->rq_flags |= RQF_QUEUED; 133 } else 134 rq = __blk_mq_alloc_request(data, op); 135 } else { 136 rq = __blk_mq_alloc_request(data, op); 137 } 138 139 if (rq) { 140 if (!op_is_flush(op)) { 141 rq->elv.icq = NULL; 142 if (e && e->type->icq_cache) 143 blk_mq_sched_assign_ioc(q, rq, bio); 144 } 145 data->hctx->queued++; 146 return rq; 147 } 148 149 blk_queue_exit(q); 150 return NULL; 151 } 152 153 void blk_mq_sched_put_request(struct request *rq) 154 { 155 struct request_queue *q = rq->q; 156 struct elevator_queue *e = q->elevator; 157 158 if (rq->rq_flags & RQF_ELVPRIV) { 159 blk_mq_sched_put_rq_priv(rq->q, rq); 160 if (rq->elv.icq) { 161 put_io_context(rq->elv.icq->ioc); 162 rq->elv.icq = NULL; 163 } 164 } 165 166 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 167 e->type->ops.mq.put_request(rq); 168 else 169 blk_mq_finish_request(rq); 170 } 171 172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 173 { 174 struct elevator_queue *e = hctx->queue->elevator; 175 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 176 bool did_work = false; 177 LIST_HEAD(rq_list); 178 179 if (unlikely(blk_mq_hctx_stopped(hctx))) 180 return; 181 182 hctx->run++; 183 184 /* 185 * If we have previous entries on our dispatch list, grab them first for 186 * more fair dispatch. 187 */ 188 if (!list_empty_careful(&hctx->dispatch)) { 189 spin_lock(&hctx->lock); 190 if (!list_empty(&hctx->dispatch)) 191 list_splice_init(&hctx->dispatch, &rq_list); 192 spin_unlock(&hctx->lock); 193 } 194 195 /* 196 * Only ask the scheduler for requests, if we didn't have residual 197 * requests from the dispatch list. This is to avoid the case where 198 * we only ever dispatch a fraction of the requests available because 199 * of low device queue depth. Once we pull requests out of the IO 200 * scheduler, we can no longer merge or sort them. So it's best to 201 * leave them there for as long as we can. Mark the hw queue as 202 * needing a restart in that case. 203 */ 204 if (!list_empty(&rq_list)) { 205 blk_mq_sched_mark_restart_hctx(hctx); 206 did_work = blk_mq_dispatch_rq_list(hctx, &rq_list); 207 } else if (!has_sched_dispatch) { 208 blk_mq_flush_busy_ctxs(hctx, &rq_list); 209 blk_mq_dispatch_rq_list(hctx, &rq_list); 210 } 211 212 /* 213 * We want to dispatch from the scheduler if we had no work left 214 * on the dispatch list, OR if we did have work but weren't able 215 * to make progress. 216 */ 217 if (!did_work && has_sched_dispatch) { 218 do { 219 struct request *rq; 220 221 rq = e->type->ops.mq.dispatch_request(hctx); 222 if (!rq) 223 break; 224 list_add(&rq->queuelist, &rq_list); 225 } while (blk_mq_dispatch_rq_list(hctx, &rq_list)); 226 } 227 } 228 229 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx, 230 struct list_head *rq_list, 231 struct request *(*get_rq)(struct blk_mq_hw_ctx *)) 232 { 233 do { 234 struct request *rq; 235 236 rq = get_rq(hctx); 237 if (!rq) 238 break; 239 240 list_add_tail(&rq->queuelist, rq_list); 241 } while (1); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch); 244 245 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 246 struct request **merged_request) 247 { 248 struct request *rq; 249 250 switch (elv_merge(q, &rq, bio)) { 251 case ELEVATOR_BACK_MERGE: 252 if (!blk_mq_sched_allow_merge(q, rq, bio)) 253 return false; 254 if (!bio_attempt_back_merge(q, rq, bio)) 255 return false; 256 *merged_request = attempt_back_merge(q, rq); 257 if (!*merged_request) 258 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 259 return true; 260 case ELEVATOR_FRONT_MERGE: 261 if (!blk_mq_sched_allow_merge(q, rq, bio)) 262 return false; 263 if (!bio_attempt_front_merge(q, rq, bio)) 264 return false; 265 *merged_request = attempt_front_merge(q, rq); 266 if (!*merged_request) 267 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 268 return true; 269 default: 270 return false; 271 } 272 } 273 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 274 275 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 276 { 277 struct elevator_queue *e = q->elevator; 278 279 if (e->type->ops.mq.bio_merge) { 280 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 281 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 282 283 blk_mq_put_ctx(ctx); 284 return e->type->ops.mq.bio_merge(hctx, bio); 285 } 286 287 return false; 288 } 289 290 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 291 { 292 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 293 } 294 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 295 296 void blk_mq_sched_request_inserted(struct request *rq) 297 { 298 trace_block_rq_insert(rq->q, rq); 299 } 300 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 301 302 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 303 struct request *rq) 304 { 305 if (rq->tag == -1) { 306 rq->rq_flags |= RQF_SORTED; 307 return false; 308 } 309 310 /* 311 * If we already have a real request tag, send directly to 312 * the dispatch list. 313 */ 314 spin_lock(&hctx->lock); 315 list_add(&rq->queuelist, &hctx->dispatch); 316 spin_unlock(&hctx->lock); 317 return true; 318 } 319 320 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 321 { 322 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { 323 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 324 if (blk_mq_hctx_has_pending(hctx)) 325 blk_mq_run_hw_queue(hctx, true); 326 } 327 } 328 329 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx) 330 { 331 struct request_queue *q = hctx->queue; 332 unsigned int i; 333 334 if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) { 335 if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) { 336 queue_for_each_hw_ctx(q, hctx, i) 337 blk_mq_sched_restart_hctx(hctx); 338 } 339 } else { 340 blk_mq_sched_restart_hctx(hctx); 341 } 342 } 343 344 /* 345 * Add flush/fua to the queue. If we fail getting a driver tag, then 346 * punt to the requeue list. Requeue will re-invoke us from a context 347 * that's safe to block from. 348 */ 349 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 350 struct request *rq, bool can_block) 351 { 352 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 353 blk_insert_flush(rq); 354 blk_mq_run_hw_queue(hctx, true); 355 } else 356 blk_mq_add_to_requeue_list(rq, false, true); 357 } 358 359 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 360 bool run_queue, bool async, bool can_block) 361 { 362 struct request_queue *q = rq->q; 363 struct elevator_queue *e = q->elevator; 364 struct blk_mq_ctx *ctx = rq->mq_ctx; 365 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 366 367 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 368 blk_mq_sched_insert_flush(hctx, rq, can_block); 369 return; 370 } 371 372 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 373 goto run; 374 375 if (e && e->type->ops.mq.insert_requests) { 376 LIST_HEAD(list); 377 378 list_add(&rq->queuelist, &list); 379 e->type->ops.mq.insert_requests(hctx, &list, at_head); 380 } else { 381 spin_lock(&ctx->lock); 382 __blk_mq_insert_request(hctx, rq, at_head); 383 spin_unlock(&ctx->lock); 384 } 385 386 run: 387 if (run_queue) 388 blk_mq_run_hw_queue(hctx, async); 389 } 390 391 void blk_mq_sched_insert_requests(struct request_queue *q, 392 struct blk_mq_ctx *ctx, 393 struct list_head *list, bool run_queue_async) 394 { 395 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 396 struct elevator_queue *e = hctx->queue->elevator; 397 398 if (e) { 399 struct request *rq, *next; 400 401 /* 402 * We bypass requests that already have a driver tag assigned, 403 * which should only be flushes. Flushes are only ever inserted 404 * as single requests, so we shouldn't ever hit the 405 * WARN_ON_ONCE() below (but let's handle it just in case). 406 */ 407 list_for_each_entry_safe(rq, next, list, queuelist) { 408 if (WARN_ON_ONCE(rq->tag != -1)) { 409 list_del_init(&rq->queuelist); 410 blk_mq_sched_bypass_insert(hctx, rq); 411 } 412 } 413 } 414 415 if (e && e->type->ops.mq.insert_requests) 416 e->type->ops.mq.insert_requests(hctx, list, false); 417 else 418 blk_mq_insert_requests(hctx, ctx, list); 419 420 blk_mq_run_hw_queue(hctx, run_queue_async); 421 } 422 423 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 424 struct blk_mq_hw_ctx *hctx, 425 unsigned int hctx_idx) 426 { 427 if (hctx->sched_tags) { 428 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 429 blk_mq_free_rq_map(hctx->sched_tags); 430 hctx->sched_tags = NULL; 431 } 432 } 433 434 int blk_mq_sched_setup(struct request_queue *q) 435 { 436 struct blk_mq_tag_set *set = q->tag_set; 437 struct blk_mq_hw_ctx *hctx; 438 int ret, i; 439 440 /* 441 * Default to 256, since we don't split into sync/async like the 442 * old code did. Additionally, this is a per-hw queue depth. 443 */ 444 q->nr_requests = 2 * BLKDEV_MAX_RQ; 445 446 /* 447 * We're switching to using an IO scheduler, so setup the hctx 448 * scheduler tags and switch the request map from the regular 449 * tags to scheduler tags. First allocate what we need, so we 450 * can safely fail and fallback, if needed. 451 */ 452 ret = 0; 453 queue_for_each_hw_ctx(q, hctx, i) { 454 hctx->sched_tags = blk_mq_alloc_rq_map(set, i, 455 q->nr_requests, set->reserved_tags); 456 if (!hctx->sched_tags) { 457 ret = -ENOMEM; 458 break; 459 } 460 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests); 461 if (ret) 462 break; 463 } 464 465 /* 466 * If we failed, free what we did allocate 467 */ 468 if (ret) { 469 queue_for_each_hw_ctx(q, hctx, i) { 470 if (!hctx->sched_tags) 471 continue; 472 blk_mq_sched_free_tags(set, hctx, i); 473 } 474 475 return ret; 476 } 477 478 return 0; 479 } 480 481 void blk_mq_sched_teardown(struct request_queue *q) 482 { 483 struct blk_mq_tag_set *set = q->tag_set; 484 struct blk_mq_hw_ctx *hctx; 485 int i; 486 487 queue_for_each_hw_ctx(q, hctx, i) 488 blk_mq_sched_free_tags(set, hctx, i); 489 } 490 491 int blk_mq_sched_init(struct request_queue *q) 492 { 493 int ret; 494 495 mutex_lock(&q->sysfs_lock); 496 ret = elevator_init(q, NULL); 497 mutex_unlock(&q->sysfs_lock); 498 499 return ret; 500 } 501