xref: /openbmc/linux/block/blk-mq-sched.c (revision f7c35abe)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
17 
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 				 void (*exit)(struct blk_mq_hw_ctx *))
20 {
21 	struct blk_mq_hw_ctx *hctx;
22 	int i;
23 
24 	queue_for_each_hw_ctx(q, hctx, i) {
25 		if (exit && hctx->sched_data)
26 			exit(hctx);
27 		kfree(hctx->sched_data);
28 		hctx->sched_data = NULL;
29 	}
30 }
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32 
33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 				int (*init)(struct blk_mq_hw_ctx *),
35 				void (*exit)(struct blk_mq_hw_ctx *))
36 {
37 	struct blk_mq_hw_ctx *hctx;
38 	int ret;
39 	int i;
40 
41 	queue_for_each_hw_ctx(q, hctx, i) {
42 		hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 		if (!hctx->sched_data) {
44 			ret = -ENOMEM;
45 			goto error;
46 		}
47 
48 		if (init) {
49 			ret = init(hctx);
50 			if (ret) {
51 				/*
52 				 * We don't want to give exit() a partially
53 				 * initialized sched_data. init() must clean up
54 				 * if it fails.
55 				 */
56 				kfree(hctx->sched_data);
57 				hctx->sched_data = NULL;
58 				goto error;
59 			}
60 		}
61 	}
62 
63 	return 0;
64 error:
65 	blk_mq_sched_free_hctx_data(q, exit);
66 	return ret;
67 }
68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69 
70 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 				      struct request *rq,
72 				      struct bio *bio,
73 				      struct io_context *ioc)
74 {
75 	struct io_cq *icq;
76 
77 	spin_lock_irq(q->queue_lock);
78 	icq = ioc_lookup_icq(ioc, q);
79 	spin_unlock_irq(q->queue_lock);
80 
81 	if (!icq) {
82 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
83 		if (!icq)
84 			return;
85 	}
86 
87 	rq->elv.icq = icq;
88 	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
89 		rq->rq_flags |= RQF_ELVPRIV;
90 		get_io_context(icq->ioc);
91 		return;
92 	}
93 
94 	rq->elv.icq = NULL;
95 }
96 
97 static void blk_mq_sched_assign_ioc(struct request_queue *q,
98 				    struct request *rq, struct bio *bio)
99 {
100 	struct io_context *ioc;
101 
102 	ioc = rq_ioc(bio);
103 	if (ioc)
104 		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
105 }
106 
107 struct request *blk_mq_sched_get_request(struct request_queue *q,
108 					 struct bio *bio,
109 					 unsigned int op,
110 					 struct blk_mq_alloc_data *data)
111 {
112 	struct elevator_queue *e = q->elevator;
113 	struct request *rq;
114 
115 	blk_queue_enter_live(q);
116 	data->q = q;
117 	if (likely(!data->ctx))
118 		data->ctx = blk_mq_get_ctx(q);
119 	if (likely(!data->hctx))
120 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
121 
122 	if (e) {
123 		data->flags |= BLK_MQ_REQ_INTERNAL;
124 
125 		/*
126 		 * Flush requests are special and go directly to the
127 		 * dispatch list.
128 		 */
129 		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
130 			rq = e->type->ops.mq.get_request(q, op, data);
131 			if (rq)
132 				rq->rq_flags |= RQF_QUEUED;
133 		} else
134 			rq = __blk_mq_alloc_request(data, op);
135 	} else {
136 		rq = __blk_mq_alloc_request(data, op);
137 	}
138 
139 	if (rq) {
140 		if (!op_is_flush(op)) {
141 			rq->elv.icq = NULL;
142 			if (e && e->type->icq_cache)
143 				blk_mq_sched_assign_ioc(q, rq, bio);
144 		}
145 		data->hctx->queued++;
146 		return rq;
147 	}
148 
149 	blk_queue_exit(q);
150 	return NULL;
151 }
152 
153 void blk_mq_sched_put_request(struct request *rq)
154 {
155 	struct request_queue *q = rq->q;
156 	struct elevator_queue *e = q->elevator;
157 
158 	if (rq->rq_flags & RQF_ELVPRIV) {
159 		blk_mq_sched_put_rq_priv(rq->q, rq);
160 		if (rq->elv.icq) {
161 			put_io_context(rq->elv.icq->ioc);
162 			rq->elv.icq = NULL;
163 		}
164 	}
165 
166 	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
167 		e->type->ops.mq.put_request(rq);
168 	else
169 		blk_mq_finish_request(rq);
170 }
171 
172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
173 {
174 	struct elevator_queue *e = hctx->queue->elevator;
175 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
176 	bool did_work = false;
177 	LIST_HEAD(rq_list);
178 
179 	if (unlikely(blk_mq_hctx_stopped(hctx)))
180 		return;
181 
182 	hctx->run++;
183 
184 	/*
185 	 * If we have previous entries on our dispatch list, grab them first for
186 	 * more fair dispatch.
187 	 */
188 	if (!list_empty_careful(&hctx->dispatch)) {
189 		spin_lock(&hctx->lock);
190 		if (!list_empty(&hctx->dispatch))
191 			list_splice_init(&hctx->dispatch, &rq_list);
192 		spin_unlock(&hctx->lock);
193 	}
194 
195 	/*
196 	 * Only ask the scheduler for requests, if we didn't have residual
197 	 * requests from the dispatch list. This is to avoid the case where
198 	 * we only ever dispatch a fraction of the requests available because
199 	 * of low device queue depth. Once we pull requests out of the IO
200 	 * scheduler, we can no longer merge or sort them. So it's best to
201 	 * leave them there for as long as we can. Mark the hw queue as
202 	 * needing a restart in that case.
203 	 */
204 	if (!list_empty(&rq_list)) {
205 		blk_mq_sched_mark_restart_hctx(hctx);
206 		did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
207 	} else if (!has_sched_dispatch) {
208 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
209 		blk_mq_dispatch_rq_list(hctx, &rq_list);
210 	}
211 
212 	/*
213 	 * We want to dispatch from the scheduler if we had no work left
214 	 * on the dispatch list, OR if we did have work but weren't able
215 	 * to make progress.
216 	 */
217 	if (!did_work && has_sched_dispatch) {
218 		do {
219 			struct request *rq;
220 
221 			rq = e->type->ops.mq.dispatch_request(hctx);
222 			if (!rq)
223 				break;
224 			list_add(&rq->queuelist, &rq_list);
225 		} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
226 	}
227 }
228 
229 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
230 				   struct list_head *rq_list,
231 				   struct request *(*get_rq)(struct blk_mq_hw_ctx *))
232 {
233 	do {
234 		struct request *rq;
235 
236 		rq = get_rq(hctx);
237 		if (!rq)
238 			break;
239 
240 		list_add_tail(&rq->queuelist, rq_list);
241 	} while (1);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
244 
245 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
246 			    struct request **merged_request)
247 {
248 	struct request *rq;
249 
250 	switch (elv_merge(q, &rq, bio)) {
251 	case ELEVATOR_BACK_MERGE:
252 		if (!blk_mq_sched_allow_merge(q, rq, bio))
253 			return false;
254 		if (!bio_attempt_back_merge(q, rq, bio))
255 			return false;
256 		*merged_request = attempt_back_merge(q, rq);
257 		if (!*merged_request)
258 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
259 		return true;
260 	case ELEVATOR_FRONT_MERGE:
261 		if (!blk_mq_sched_allow_merge(q, rq, bio))
262 			return false;
263 		if (!bio_attempt_front_merge(q, rq, bio))
264 			return false;
265 		*merged_request = attempt_front_merge(q, rq);
266 		if (!*merged_request)
267 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
268 		return true;
269 	default:
270 		return false;
271 	}
272 }
273 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
274 
275 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
276 {
277 	struct elevator_queue *e = q->elevator;
278 
279 	if (e->type->ops.mq.bio_merge) {
280 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
281 		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
282 
283 		blk_mq_put_ctx(ctx);
284 		return e->type->ops.mq.bio_merge(hctx, bio);
285 	}
286 
287 	return false;
288 }
289 
290 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
291 {
292 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
295 
296 void blk_mq_sched_request_inserted(struct request *rq)
297 {
298 	trace_block_rq_insert(rq->q, rq);
299 }
300 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
301 
302 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
303 				       struct request *rq)
304 {
305 	if (rq->tag == -1) {
306 		rq->rq_flags |= RQF_SORTED;
307 		return false;
308 	}
309 
310 	/*
311 	 * If we already have a real request tag, send directly to
312 	 * the dispatch list.
313 	 */
314 	spin_lock(&hctx->lock);
315 	list_add(&rq->queuelist, &hctx->dispatch);
316 	spin_unlock(&hctx->lock);
317 	return true;
318 }
319 
320 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
321 {
322 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
323 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
324 		if (blk_mq_hctx_has_pending(hctx))
325 			blk_mq_run_hw_queue(hctx, true);
326 	}
327 }
328 
329 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
330 {
331 	struct request_queue *q = hctx->queue;
332 	unsigned int i;
333 
334 	if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
335 		if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
336 			queue_for_each_hw_ctx(q, hctx, i)
337 				blk_mq_sched_restart_hctx(hctx);
338 		}
339 	} else {
340 		blk_mq_sched_restart_hctx(hctx);
341 	}
342 }
343 
344 /*
345  * Add flush/fua to the queue. If we fail getting a driver tag, then
346  * punt to the requeue list. Requeue will re-invoke us from a context
347  * that's safe to block from.
348  */
349 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
350 				      struct request *rq, bool can_block)
351 {
352 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
353 		blk_insert_flush(rq);
354 		blk_mq_run_hw_queue(hctx, true);
355 	} else
356 		blk_mq_add_to_requeue_list(rq, false, true);
357 }
358 
359 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
360 				 bool run_queue, bool async, bool can_block)
361 {
362 	struct request_queue *q = rq->q;
363 	struct elevator_queue *e = q->elevator;
364 	struct blk_mq_ctx *ctx = rq->mq_ctx;
365 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
366 
367 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
368 		blk_mq_sched_insert_flush(hctx, rq, can_block);
369 		return;
370 	}
371 
372 	if (e && blk_mq_sched_bypass_insert(hctx, rq))
373 		goto run;
374 
375 	if (e && e->type->ops.mq.insert_requests) {
376 		LIST_HEAD(list);
377 
378 		list_add(&rq->queuelist, &list);
379 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
380 	} else {
381 		spin_lock(&ctx->lock);
382 		__blk_mq_insert_request(hctx, rq, at_head);
383 		spin_unlock(&ctx->lock);
384 	}
385 
386 run:
387 	if (run_queue)
388 		blk_mq_run_hw_queue(hctx, async);
389 }
390 
391 void blk_mq_sched_insert_requests(struct request_queue *q,
392 				  struct blk_mq_ctx *ctx,
393 				  struct list_head *list, bool run_queue_async)
394 {
395 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
396 	struct elevator_queue *e = hctx->queue->elevator;
397 
398 	if (e) {
399 		struct request *rq, *next;
400 
401 		/*
402 		 * We bypass requests that already have a driver tag assigned,
403 		 * which should only be flushes. Flushes are only ever inserted
404 		 * as single requests, so we shouldn't ever hit the
405 		 * WARN_ON_ONCE() below (but let's handle it just in case).
406 		 */
407 		list_for_each_entry_safe(rq, next, list, queuelist) {
408 			if (WARN_ON_ONCE(rq->tag != -1)) {
409 				list_del_init(&rq->queuelist);
410 				blk_mq_sched_bypass_insert(hctx, rq);
411 			}
412 		}
413 	}
414 
415 	if (e && e->type->ops.mq.insert_requests)
416 		e->type->ops.mq.insert_requests(hctx, list, false);
417 	else
418 		blk_mq_insert_requests(hctx, ctx, list);
419 
420 	blk_mq_run_hw_queue(hctx, run_queue_async);
421 }
422 
423 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
424 				   struct blk_mq_hw_ctx *hctx,
425 				   unsigned int hctx_idx)
426 {
427 	if (hctx->sched_tags) {
428 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
429 		blk_mq_free_rq_map(hctx->sched_tags);
430 		hctx->sched_tags = NULL;
431 	}
432 }
433 
434 int blk_mq_sched_setup(struct request_queue *q)
435 {
436 	struct blk_mq_tag_set *set = q->tag_set;
437 	struct blk_mq_hw_ctx *hctx;
438 	int ret, i;
439 
440 	/*
441 	 * Default to 256, since we don't split into sync/async like the
442 	 * old code did. Additionally, this is a per-hw queue depth.
443 	 */
444 	q->nr_requests = 2 * BLKDEV_MAX_RQ;
445 
446 	/*
447 	 * We're switching to using an IO scheduler, so setup the hctx
448 	 * scheduler tags and switch the request map from the regular
449 	 * tags to scheduler tags. First allocate what we need, so we
450 	 * can safely fail and fallback, if needed.
451 	 */
452 	ret = 0;
453 	queue_for_each_hw_ctx(q, hctx, i) {
454 		hctx->sched_tags = blk_mq_alloc_rq_map(set, i,
455 				q->nr_requests, set->reserved_tags);
456 		if (!hctx->sched_tags) {
457 			ret = -ENOMEM;
458 			break;
459 		}
460 		ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
461 		if (ret)
462 			break;
463 	}
464 
465 	/*
466 	 * If we failed, free what we did allocate
467 	 */
468 	if (ret) {
469 		queue_for_each_hw_ctx(q, hctx, i) {
470 			if (!hctx->sched_tags)
471 				continue;
472 			blk_mq_sched_free_tags(set, hctx, i);
473 		}
474 
475 		return ret;
476 	}
477 
478 	return 0;
479 }
480 
481 void blk_mq_sched_teardown(struct request_queue *q)
482 {
483 	struct blk_mq_tag_set *set = q->tag_set;
484 	struct blk_mq_hw_ctx *hctx;
485 	int i;
486 
487 	queue_for_each_hw_ctx(q, hctx, i)
488 		blk_mq_sched_free_tags(set, hctx, i);
489 }
490 
491 int blk_mq_sched_init(struct request_queue *q)
492 {
493 	int ret;
494 
495 	mutex_lock(&q->sysfs_lock);
496 	ret = elevator_init(q, NULL);
497 	mutex_unlock(&q->sysfs_lock);
498 
499 	return ret;
500 }
501