1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 void blk_mq_sched_free_hctx_data(struct request_queue *q, 22 void (*exit)(struct blk_mq_hw_ctx *)) 23 { 24 struct blk_mq_hw_ctx *hctx; 25 int i; 26 27 queue_for_each_hw_ctx(q, hctx, i) { 28 if (exit && hctx->sched_data) 29 exit(hctx); 30 kfree(hctx->sched_data); 31 hctx->sched_data = NULL; 32 } 33 } 34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 35 36 void blk_mq_sched_assign_ioc(struct request *rq) 37 { 38 struct request_queue *q = rq->q; 39 struct io_context *ioc; 40 struct io_cq *icq; 41 42 /* 43 * May not have an IO context if it's a passthrough request 44 */ 45 ioc = current->io_context; 46 if (!ioc) 47 return; 48 49 spin_lock_irq(&q->queue_lock); 50 icq = ioc_lookup_icq(ioc, q); 51 spin_unlock_irq(&q->queue_lock); 52 53 if (!icq) { 54 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 55 if (!icq) 56 return; 57 } 58 get_io_context(icq->ioc); 59 rq->elv.icq = icq; 60 } 61 62 /* 63 * Mark a hardware queue as needing a restart. For shared queues, maintain 64 * a count of how many hardware queues are marked for restart. 65 */ 66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 67 { 68 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 69 return; 70 71 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 72 } 73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 74 75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 76 { 77 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 78 return; 79 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 80 81 /* 82 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 83 * in blk_mq_run_hw_queue(). Its pair is the barrier in 84 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 85 * meantime new request added to hctx->dispatch is missed to check in 86 * blk_mq_run_hw_queue(). 87 */ 88 smp_mb(); 89 90 blk_mq_run_hw_queue(hctx, true); 91 } 92 93 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 94 { 95 struct request *rqa = container_of(a, struct request, queuelist); 96 struct request *rqb = container_of(b, struct request, queuelist); 97 98 return rqa->mq_hctx > rqb->mq_hctx; 99 } 100 101 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 102 { 103 struct blk_mq_hw_ctx *hctx = 104 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 105 struct request *rq; 106 LIST_HEAD(hctx_list); 107 unsigned int count = 0; 108 109 list_for_each_entry(rq, rq_list, queuelist) { 110 if (rq->mq_hctx != hctx) { 111 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 112 goto dispatch; 113 } 114 count++; 115 } 116 list_splice_tail_init(rq_list, &hctx_list); 117 118 dispatch: 119 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 120 } 121 122 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 123 124 /* 125 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 126 * its queue by itself in its completion handler, so we don't need to 127 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 128 * 129 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 130 * be run again. This is necessary to avoid starving flushes. 131 */ 132 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 133 { 134 struct request_queue *q = hctx->queue; 135 struct elevator_queue *e = q->elevator; 136 bool multi_hctxs = false, run_queue = false; 137 bool dispatched = false, busy = false; 138 unsigned int max_dispatch; 139 LIST_HEAD(rq_list); 140 int count = 0; 141 142 if (hctx->dispatch_busy) 143 max_dispatch = 1; 144 else 145 max_dispatch = hctx->queue->nr_requests; 146 147 do { 148 struct request *rq; 149 150 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 151 break; 152 153 if (!list_empty_careful(&hctx->dispatch)) { 154 busy = true; 155 break; 156 } 157 158 if (!blk_mq_get_dispatch_budget(q)) 159 break; 160 161 rq = e->type->ops.dispatch_request(hctx); 162 if (!rq) { 163 blk_mq_put_dispatch_budget(q); 164 /* 165 * We're releasing without dispatching. Holding the 166 * budget could have blocked any "hctx"s with the 167 * same queue and if we didn't dispatch then there's 168 * no guarantee anyone will kick the queue. Kick it 169 * ourselves. 170 */ 171 run_queue = true; 172 break; 173 } 174 175 /* 176 * Now this rq owns the budget which has to be released 177 * if this rq won't be queued to driver via .queue_rq() 178 * in blk_mq_dispatch_rq_list(). 179 */ 180 list_add_tail(&rq->queuelist, &rq_list); 181 if (rq->mq_hctx != hctx) 182 multi_hctxs = true; 183 } while (++count < max_dispatch); 184 185 if (!count) { 186 if (run_queue) 187 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 188 } else if (multi_hctxs) { 189 /* 190 * Requests from different hctx may be dequeued from some 191 * schedulers, such as bfq and deadline. 192 * 193 * Sort the requests in the list according to their hctx, 194 * dispatch batching requests from same hctx at a time. 195 */ 196 list_sort(NULL, &rq_list, sched_rq_cmp); 197 do { 198 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 199 } while (!list_empty(&rq_list)); 200 } else { 201 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 202 } 203 204 if (busy) 205 return -EAGAIN; 206 return !!dispatched; 207 } 208 209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 210 { 211 int ret; 212 213 do { 214 ret = __blk_mq_do_dispatch_sched(hctx); 215 } while (ret == 1); 216 217 return ret; 218 } 219 220 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 221 struct blk_mq_ctx *ctx) 222 { 223 unsigned short idx = ctx->index_hw[hctx->type]; 224 225 if (++idx == hctx->nr_ctx) 226 idx = 0; 227 228 return hctx->ctxs[idx]; 229 } 230 231 /* 232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 233 * its queue by itself in its completion handler, so we don't need to 234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 235 * 236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 237 * be run again. This is necessary to avoid starving flushes. 238 */ 239 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 240 { 241 struct request_queue *q = hctx->queue; 242 LIST_HEAD(rq_list); 243 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 244 int ret = 0; 245 struct request *rq; 246 247 do { 248 if (!list_empty_careful(&hctx->dispatch)) { 249 ret = -EAGAIN; 250 break; 251 } 252 253 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 254 break; 255 256 if (!blk_mq_get_dispatch_budget(q)) 257 break; 258 259 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 260 if (!rq) { 261 blk_mq_put_dispatch_budget(q); 262 /* 263 * We're releasing without dispatching. Holding the 264 * budget could have blocked any "hctx"s with the 265 * same queue and if we didn't dispatch then there's 266 * no guarantee anyone will kick the queue. Kick it 267 * ourselves. 268 */ 269 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 270 break; 271 } 272 273 /* 274 * Now this rq owns the budget which has to be released 275 * if this rq won't be queued to driver via .queue_rq() 276 * in blk_mq_dispatch_rq_list(). 277 */ 278 list_add(&rq->queuelist, &rq_list); 279 280 /* round robin for fair dispatch */ 281 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 282 283 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 284 285 WRITE_ONCE(hctx->dispatch_from, ctx); 286 return ret; 287 } 288 289 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 290 { 291 struct request_queue *q = hctx->queue; 292 struct elevator_queue *e = q->elevator; 293 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 294 int ret = 0; 295 LIST_HEAD(rq_list); 296 297 /* 298 * If we have previous entries on our dispatch list, grab them first for 299 * more fair dispatch. 300 */ 301 if (!list_empty_careful(&hctx->dispatch)) { 302 spin_lock(&hctx->lock); 303 if (!list_empty(&hctx->dispatch)) 304 list_splice_init(&hctx->dispatch, &rq_list); 305 spin_unlock(&hctx->lock); 306 } 307 308 /* 309 * Only ask the scheduler for requests, if we didn't have residual 310 * requests from the dispatch list. This is to avoid the case where 311 * we only ever dispatch a fraction of the requests available because 312 * of low device queue depth. Once we pull requests out of the IO 313 * scheduler, we can no longer merge or sort them. So it's best to 314 * leave them there for as long as we can. Mark the hw queue as 315 * needing a restart in that case. 316 * 317 * We want to dispatch from the scheduler if there was nothing 318 * on the dispatch list or we were able to dispatch from the 319 * dispatch list. 320 */ 321 if (!list_empty(&rq_list)) { 322 blk_mq_sched_mark_restart_hctx(hctx); 323 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 324 if (has_sched_dispatch) 325 ret = blk_mq_do_dispatch_sched(hctx); 326 else 327 ret = blk_mq_do_dispatch_ctx(hctx); 328 } 329 } else if (has_sched_dispatch) { 330 ret = blk_mq_do_dispatch_sched(hctx); 331 } else if (hctx->dispatch_busy) { 332 /* dequeue request one by one from sw queue if queue is busy */ 333 ret = blk_mq_do_dispatch_ctx(hctx); 334 } else { 335 blk_mq_flush_busy_ctxs(hctx, &rq_list); 336 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 337 } 338 339 return ret; 340 } 341 342 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 343 { 344 struct request_queue *q = hctx->queue; 345 346 /* RCU or SRCU read lock is needed before checking quiesced flag */ 347 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 348 return; 349 350 hctx->run++; 351 352 /* 353 * A return of -EAGAIN is an indication that hctx->dispatch is not 354 * empty and we must run again in order to avoid starving flushes. 355 */ 356 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 357 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 358 blk_mq_run_hw_queue(hctx, true); 359 } 360 } 361 362 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 363 unsigned int nr_segs, struct request **merged_request) 364 { 365 struct request *rq; 366 367 switch (elv_merge(q, &rq, bio)) { 368 case ELEVATOR_BACK_MERGE: 369 if (!blk_mq_sched_allow_merge(q, rq, bio)) 370 return false; 371 if (!bio_attempt_back_merge(rq, bio, nr_segs)) 372 return false; 373 *merged_request = attempt_back_merge(q, rq); 374 if (!*merged_request) 375 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 376 return true; 377 case ELEVATOR_FRONT_MERGE: 378 if (!blk_mq_sched_allow_merge(q, rq, bio)) 379 return false; 380 if (!bio_attempt_front_merge(rq, bio, nr_segs)) 381 return false; 382 *merged_request = attempt_front_merge(q, rq); 383 if (!*merged_request) 384 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 385 return true; 386 case ELEVATOR_DISCARD_MERGE: 387 return bio_attempt_discard_merge(q, rq, bio); 388 default: 389 return false; 390 } 391 } 392 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 393 394 /* 395 * Iterate list of requests and see if we can merge this bio with any 396 * of them. 397 */ 398 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 399 struct bio *bio, unsigned int nr_segs) 400 { 401 struct request *rq; 402 int checked = 8; 403 404 list_for_each_entry_reverse(rq, list, queuelist) { 405 bool merged = false; 406 407 if (!checked--) 408 break; 409 410 if (!blk_rq_merge_ok(rq, bio)) 411 continue; 412 413 switch (blk_try_merge(rq, bio)) { 414 case ELEVATOR_BACK_MERGE: 415 if (blk_mq_sched_allow_merge(q, rq, bio)) 416 merged = bio_attempt_back_merge(rq, bio, 417 nr_segs); 418 break; 419 case ELEVATOR_FRONT_MERGE: 420 if (blk_mq_sched_allow_merge(q, rq, bio)) 421 merged = bio_attempt_front_merge(rq, bio, 422 nr_segs); 423 break; 424 case ELEVATOR_DISCARD_MERGE: 425 merged = bio_attempt_discard_merge(q, rq, bio); 426 break; 427 default: 428 continue; 429 } 430 431 return merged; 432 } 433 434 return false; 435 } 436 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 437 438 /* 439 * Reverse check our software queue for entries that we could potentially 440 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 441 * too much time checking for merges. 442 */ 443 static bool blk_mq_attempt_merge(struct request_queue *q, 444 struct blk_mq_hw_ctx *hctx, 445 struct blk_mq_ctx *ctx, struct bio *bio, 446 unsigned int nr_segs) 447 { 448 enum hctx_type type = hctx->type; 449 450 lockdep_assert_held(&ctx->lock); 451 452 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 453 ctx->rq_merged++; 454 return true; 455 } 456 457 return false; 458 } 459 460 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 461 unsigned int nr_segs) 462 { 463 struct elevator_queue *e = q->elevator; 464 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 465 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 466 bool ret = false; 467 enum hctx_type type; 468 469 if (e && e->type->ops.bio_merge) 470 return e->type->ops.bio_merge(hctx, bio, nr_segs); 471 472 type = hctx->type; 473 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 474 !list_empty_careful(&ctx->rq_lists[type])) { 475 /* default per sw-queue merge */ 476 spin_lock(&ctx->lock); 477 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs); 478 spin_unlock(&ctx->lock); 479 } 480 481 return ret; 482 } 483 484 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 485 { 486 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 487 } 488 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 489 490 void blk_mq_sched_request_inserted(struct request *rq) 491 { 492 trace_block_rq_insert(rq->q, rq); 493 } 494 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 495 496 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 497 bool has_sched, 498 struct request *rq) 499 { 500 /* 501 * dispatch flush and passthrough rq directly 502 * 503 * passthrough request has to be added to hctx->dispatch directly. 504 * For some reason, device may be in one situation which can't 505 * handle FS request, so STS_RESOURCE is always returned and the 506 * FS request will be added to hctx->dispatch. However passthrough 507 * request may be required at that time for fixing the problem. If 508 * passthrough request is added to scheduler queue, there isn't any 509 * chance to dispatch it given we prioritize requests in hctx->dispatch. 510 */ 511 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 512 return true; 513 514 if (has_sched) 515 rq->rq_flags |= RQF_SORTED; 516 517 return false; 518 } 519 520 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 521 bool run_queue, bool async) 522 { 523 struct request_queue *q = rq->q; 524 struct elevator_queue *e = q->elevator; 525 struct blk_mq_ctx *ctx = rq->mq_ctx; 526 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 527 528 /* flush rq in flush machinery need to be dispatched directly */ 529 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 530 blk_insert_flush(rq); 531 goto run; 532 } 533 534 WARN_ON(e && (rq->tag != -1)); 535 536 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 537 /* 538 * Firstly normal IO request is inserted to scheduler queue or 539 * sw queue, meantime we add flush request to dispatch queue( 540 * hctx->dispatch) directly and there is at most one in-flight 541 * flush request for each hw queue, so it doesn't matter to add 542 * flush request to tail or front of the dispatch queue. 543 * 544 * Secondly in case of NCQ, flush request belongs to non-NCQ 545 * command, and queueing it will fail when there is any 546 * in-flight normal IO request(NCQ command). When adding flush 547 * rq to the front of hctx->dispatch, it is easier to introduce 548 * extra time to flush rq's latency because of S_SCHED_RESTART 549 * compared with adding to the tail of dispatch queue, then 550 * chance of flush merge is increased, and less flush requests 551 * will be issued to controller. It is observed that ~10% time 552 * is saved in blktests block/004 on disk attached to AHCI/NCQ 553 * drive when adding flush rq to the front of hctx->dispatch. 554 * 555 * Simply queue flush rq to the front of hctx->dispatch so that 556 * intensive flush workloads can benefit in case of NCQ HW. 557 */ 558 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 559 blk_mq_request_bypass_insert(rq, at_head, false); 560 goto run; 561 } 562 563 if (e && e->type->ops.insert_requests) { 564 LIST_HEAD(list); 565 566 list_add(&rq->queuelist, &list); 567 e->type->ops.insert_requests(hctx, &list, at_head); 568 } else { 569 spin_lock(&ctx->lock); 570 __blk_mq_insert_request(hctx, rq, at_head); 571 spin_unlock(&ctx->lock); 572 } 573 574 run: 575 if (run_queue) 576 blk_mq_run_hw_queue(hctx, async); 577 } 578 579 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 580 struct blk_mq_ctx *ctx, 581 struct list_head *list, bool run_queue_async) 582 { 583 struct elevator_queue *e; 584 struct request_queue *q = hctx->queue; 585 586 /* 587 * blk_mq_sched_insert_requests() is called from flush plug 588 * context only, and hold one usage counter to prevent queue 589 * from being released. 590 */ 591 percpu_ref_get(&q->q_usage_counter); 592 593 e = hctx->queue->elevator; 594 if (e && e->type->ops.insert_requests) 595 e->type->ops.insert_requests(hctx, list, false); 596 else { 597 /* 598 * try to issue requests directly if the hw queue isn't 599 * busy in case of 'none' scheduler, and this way may save 600 * us one extra enqueue & dequeue to sw queue. 601 */ 602 if (!hctx->dispatch_busy && !e && !run_queue_async) { 603 blk_mq_try_issue_list_directly(hctx, list); 604 if (list_empty(list)) 605 goto out; 606 } 607 blk_mq_insert_requests(hctx, ctx, list); 608 } 609 610 blk_mq_run_hw_queue(hctx, run_queue_async); 611 out: 612 percpu_ref_put(&q->q_usage_counter); 613 } 614 615 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 616 struct blk_mq_hw_ctx *hctx, 617 unsigned int hctx_idx) 618 { 619 if (hctx->sched_tags) { 620 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 621 blk_mq_free_rq_map(hctx->sched_tags); 622 hctx->sched_tags = NULL; 623 } 624 } 625 626 static int blk_mq_sched_alloc_tags(struct request_queue *q, 627 struct blk_mq_hw_ctx *hctx, 628 unsigned int hctx_idx) 629 { 630 struct blk_mq_tag_set *set = q->tag_set; 631 int ret; 632 633 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 634 set->reserved_tags); 635 if (!hctx->sched_tags) 636 return -ENOMEM; 637 638 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 639 if (ret) 640 blk_mq_sched_free_tags(set, hctx, hctx_idx); 641 642 return ret; 643 } 644 645 /* called in queue's release handler, tagset has gone away */ 646 static void blk_mq_sched_tags_teardown(struct request_queue *q) 647 { 648 struct blk_mq_hw_ctx *hctx; 649 int i; 650 651 queue_for_each_hw_ctx(q, hctx, i) { 652 if (hctx->sched_tags) { 653 blk_mq_free_rq_map(hctx->sched_tags); 654 hctx->sched_tags = NULL; 655 } 656 } 657 } 658 659 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 660 { 661 struct blk_mq_hw_ctx *hctx; 662 struct elevator_queue *eq; 663 unsigned int i; 664 int ret; 665 666 if (!e) { 667 q->elevator = NULL; 668 q->nr_requests = q->tag_set->queue_depth; 669 return 0; 670 } 671 672 /* 673 * Default to double of smaller one between hw queue_depth and 128, 674 * since we don't split into sync/async like the old code did. 675 * Additionally, this is a per-hw queue depth. 676 */ 677 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 678 BLKDEV_MAX_RQ); 679 680 queue_for_each_hw_ctx(q, hctx, i) { 681 ret = blk_mq_sched_alloc_tags(q, hctx, i); 682 if (ret) 683 goto err; 684 } 685 686 ret = e->ops.init_sched(q, e); 687 if (ret) 688 goto err; 689 690 blk_mq_debugfs_register_sched(q); 691 692 queue_for_each_hw_ctx(q, hctx, i) { 693 if (e->ops.init_hctx) { 694 ret = e->ops.init_hctx(hctx, i); 695 if (ret) { 696 eq = q->elevator; 697 blk_mq_sched_free_requests(q); 698 blk_mq_exit_sched(q, eq); 699 kobject_put(&eq->kobj); 700 return ret; 701 } 702 } 703 blk_mq_debugfs_register_sched_hctx(q, hctx); 704 } 705 706 return 0; 707 708 err: 709 blk_mq_sched_free_requests(q); 710 blk_mq_sched_tags_teardown(q); 711 q->elevator = NULL; 712 return ret; 713 } 714 715 /* 716 * called in either blk_queue_cleanup or elevator_switch, tagset 717 * is required for freeing requests 718 */ 719 void blk_mq_sched_free_requests(struct request_queue *q) 720 { 721 struct blk_mq_hw_ctx *hctx; 722 int i; 723 724 queue_for_each_hw_ctx(q, hctx, i) { 725 if (hctx->sched_tags) 726 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 727 } 728 } 729 730 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 731 { 732 struct blk_mq_hw_ctx *hctx; 733 unsigned int i; 734 735 queue_for_each_hw_ctx(q, hctx, i) { 736 blk_mq_debugfs_unregister_sched_hctx(hctx); 737 if (e->type->ops.exit_hctx && hctx->sched_data) { 738 e->type->ops.exit_hctx(hctx, i); 739 hctx->sched_data = NULL; 740 } 741 } 742 blk_mq_debugfs_unregister_sched(q); 743 if (e->type->ops.exit_sched) 744 e->type->ops.exit_sched(e); 745 blk_mq_sched_tags_teardown(q); 746 q->elevator = NULL; 747 } 748