1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-debugfs.h" 15 #include "blk-mq-sched.h" 16 #include "blk-mq-tag.h" 17 #include "blk-wbt.h" 18 19 void blk_mq_sched_free_hctx_data(struct request_queue *q, 20 void (*exit)(struct blk_mq_hw_ctx *)) 21 { 22 struct blk_mq_hw_ctx *hctx; 23 int i; 24 25 queue_for_each_hw_ctx(q, hctx, i) { 26 if (exit && hctx->sched_data) 27 exit(hctx); 28 kfree(hctx->sched_data); 29 hctx->sched_data = NULL; 30 } 31 } 32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 33 34 void blk_mq_sched_assign_ioc(struct request *rq) 35 { 36 struct request_queue *q = rq->q; 37 struct io_context *ioc; 38 struct io_cq *icq; 39 40 /* 41 * May not have an IO context if it's a passthrough request 42 */ 43 ioc = current->io_context; 44 if (!ioc) 45 return; 46 47 spin_lock_irq(&q->queue_lock); 48 icq = ioc_lookup_icq(ioc, q); 49 spin_unlock_irq(&q->queue_lock); 50 51 if (!icq) { 52 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 53 if (!icq) 54 return; 55 } 56 get_io_context(icq->ioc); 57 rq->elv.icq = icq; 58 } 59 60 /* 61 * Mark a hardware queue as needing a restart. For shared queues, maintain 62 * a count of how many hardware queues are marked for restart. 63 */ 64 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 65 { 66 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 67 return; 68 69 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 70 } 71 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 72 73 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 74 { 75 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 76 return; 77 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 78 79 blk_mq_run_hw_queue(hctx, true); 80 } 81 82 /* 83 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 84 * its queue by itself in its completion handler, so we don't need to 85 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 86 */ 87 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 88 { 89 struct request_queue *q = hctx->queue; 90 struct elevator_queue *e = q->elevator; 91 LIST_HEAD(rq_list); 92 93 do { 94 struct request *rq; 95 96 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 97 break; 98 99 if (!blk_mq_get_dispatch_budget(hctx)) 100 break; 101 102 rq = e->type->ops.dispatch_request(hctx); 103 if (!rq) { 104 blk_mq_put_dispatch_budget(hctx); 105 break; 106 } 107 108 /* 109 * Now this rq owns the budget which has to be released 110 * if this rq won't be queued to driver via .queue_rq() 111 * in blk_mq_dispatch_rq_list(). 112 */ 113 list_add(&rq->queuelist, &rq_list); 114 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 115 } 116 117 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 118 struct blk_mq_ctx *ctx) 119 { 120 unsigned short idx = ctx->index_hw[hctx->type]; 121 122 if (++idx == hctx->nr_ctx) 123 idx = 0; 124 125 return hctx->ctxs[idx]; 126 } 127 128 /* 129 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 130 * its queue by itself in its completion handler, so we don't need to 131 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 132 */ 133 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 134 { 135 struct request_queue *q = hctx->queue; 136 LIST_HEAD(rq_list); 137 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 138 139 do { 140 struct request *rq; 141 142 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 143 break; 144 145 if (!blk_mq_get_dispatch_budget(hctx)) 146 break; 147 148 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 149 if (!rq) { 150 blk_mq_put_dispatch_budget(hctx); 151 break; 152 } 153 154 /* 155 * Now this rq owns the budget which has to be released 156 * if this rq won't be queued to driver via .queue_rq() 157 * in blk_mq_dispatch_rq_list(). 158 */ 159 list_add(&rq->queuelist, &rq_list); 160 161 /* round robin for fair dispatch */ 162 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 163 164 } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); 165 166 WRITE_ONCE(hctx->dispatch_from, ctx); 167 } 168 169 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 170 { 171 struct request_queue *q = hctx->queue; 172 struct elevator_queue *e = q->elevator; 173 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 174 LIST_HEAD(rq_list); 175 176 /* RCU or SRCU read lock is needed before checking quiesced flag */ 177 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 178 return; 179 180 hctx->run++; 181 182 /* 183 * If we have previous entries on our dispatch list, grab them first for 184 * more fair dispatch. 185 */ 186 if (!list_empty_careful(&hctx->dispatch)) { 187 spin_lock(&hctx->lock); 188 if (!list_empty(&hctx->dispatch)) 189 list_splice_init(&hctx->dispatch, &rq_list); 190 spin_unlock(&hctx->lock); 191 } 192 193 /* 194 * Only ask the scheduler for requests, if we didn't have residual 195 * requests from the dispatch list. This is to avoid the case where 196 * we only ever dispatch a fraction of the requests available because 197 * of low device queue depth. Once we pull requests out of the IO 198 * scheduler, we can no longer merge or sort them. So it's best to 199 * leave them there for as long as we can. Mark the hw queue as 200 * needing a restart in that case. 201 * 202 * We want to dispatch from the scheduler if there was nothing 203 * on the dispatch list or we were able to dispatch from the 204 * dispatch list. 205 */ 206 if (!list_empty(&rq_list)) { 207 blk_mq_sched_mark_restart_hctx(hctx); 208 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) { 209 if (has_sched_dispatch) 210 blk_mq_do_dispatch_sched(hctx); 211 else 212 blk_mq_do_dispatch_ctx(hctx); 213 } 214 } else if (has_sched_dispatch) { 215 blk_mq_do_dispatch_sched(hctx); 216 } else if (hctx->dispatch_busy) { 217 /* dequeue request one by one from sw queue if queue is busy */ 218 blk_mq_do_dispatch_ctx(hctx); 219 } else { 220 blk_mq_flush_busy_ctxs(hctx, &rq_list); 221 blk_mq_dispatch_rq_list(q, &rq_list, false); 222 } 223 } 224 225 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 226 struct request **merged_request) 227 { 228 struct request *rq; 229 230 switch (elv_merge(q, &rq, bio)) { 231 case ELEVATOR_BACK_MERGE: 232 if (!blk_mq_sched_allow_merge(q, rq, bio)) 233 return false; 234 if (!bio_attempt_back_merge(q, rq, bio)) 235 return false; 236 *merged_request = attempt_back_merge(q, rq); 237 if (!*merged_request) 238 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 239 return true; 240 case ELEVATOR_FRONT_MERGE: 241 if (!blk_mq_sched_allow_merge(q, rq, bio)) 242 return false; 243 if (!bio_attempt_front_merge(q, rq, bio)) 244 return false; 245 *merged_request = attempt_front_merge(q, rq); 246 if (!*merged_request) 247 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 248 return true; 249 case ELEVATOR_DISCARD_MERGE: 250 return bio_attempt_discard_merge(q, rq, bio); 251 default: 252 return false; 253 } 254 } 255 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 256 257 /* 258 * Iterate list of requests and see if we can merge this bio with any 259 * of them. 260 */ 261 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 262 struct bio *bio) 263 { 264 struct request *rq; 265 int checked = 8; 266 267 list_for_each_entry_reverse(rq, list, queuelist) { 268 bool merged = false; 269 270 if (!checked--) 271 break; 272 273 if (!blk_rq_merge_ok(rq, bio)) 274 continue; 275 276 switch (blk_try_merge(rq, bio)) { 277 case ELEVATOR_BACK_MERGE: 278 if (blk_mq_sched_allow_merge(q, rq, bio)) 279 merged = bio_attempt_back_merge(q, rq, bio); 280 break; 281 case ELEVATOR_FRONT_MERGE: 282 if (blk_mq_sched_allow_merge(q, rq, bio)) 283 merged = bio_attempt_front_merge(q, rq, bio); 284 break; 285 case ELEVATOR_DISCARD_MERGE: 286 merged = bio_attempt_discard_merge(q, rq, bio); 287 break; 288 default: 289 continue; 290 } 291 292 return merged; 293 } 294 295 return false; 296 } 297 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 298 299 /* 300 * Reverse check our software queue for entries that we could potentially 301 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 302 * too much time checking for merges. 303 */ 304 static bool blk_mq_attempt_merge(struct request_queue *q, 305 struct blk_mq_hw_ctx *hctx, 306 struct blk_mq_ctx *ctx, struct bio *bio) 307 { 308 enum hctx_type type = hctx->type; 309 310 lockdep_assert_held(&ctx->lock); 311 312 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio)) { 313 ctx->rq_merged++; 314 return true; 315 } 316 317 return false; 318 } 319 320 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 321 { 322 struct elevator_queue *e = q->elevator; 323 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 324 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 325 bool ret = false; 326 enum hctx_type type; 327 328 if (e && e->type->ops.bio_merge) { 329 blk_mq_put_ctx(ctx); 330 return e->type->ops.bio_merge(hctx, bio); 331 } 332 333 type = hctx->type; 334 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 335 !list_empty_careful(&ctx->rq_lists[type])) { 336 /* default per sw-queue merge */ 337 spin_lock(&ctx->lock); 338 ret = blk_mq_attempt_merge(q, hctx, ctx, bio); 339 spin_unlock(&ctx->lock); 340 } 341 342 blk_mq_put_ctx(ctx); 343 return ret; 344 } 345 346 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 347 { 348 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 349 } 350 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 351 352 void blk_mq_sched_request_inserted(struct request *rq) 353 { 354 trace_block_rq_insert(rq->q, rq); 355 } 356 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 357 358 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 359 bool has_sched, 360 struct request *rq) 361 { 362 /* dispatch flush rq directly */ 363 if (rq->rq_flags & RQF_FLUSH_SEQ) { 364 spin_lock(&hctx->lock); 365 list_add(&rq->queuelist, &hctx->dispatch); 366 spin_unlock(&hctx->lock); 367 return true; 368 } 369 370 if (has_sched) 371 rq->rq_flags |= RQF_SORTED; 372 373 return false; 374 } 375 376 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 377 bool run_queue, bool async) 378 { 379 struct request_queue *q = rq->q; 380 struct elevator_queue *e = q->elevator; 381 struct blk_mq_ctx *ctx = rq->mq_ctx; 382 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 383 384 /* flush rq in flush machinery need to be dispatched directly */ 385 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 386 blk_insert_flush(rq); 387 goto run; 388 } 389 390 WARN_ON(e && (rq->tag != -1)); 391 392 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) 393 goto run; 394 395 if (e && e->type->ops.insert_requests) { 396 LIST_HEAD(list); 397 398 list_add(&rq->queuelist, &list); 399 e->type->ops.insert_requests(hctx, &list, at_head); 400 } else { 401 spin_lock(&ctx->lock); 402 __blk_mq_insert_request(hctx, rq, at_head); 403 spin_unlock(&ctx->lock); 404 } 405 406 run: 407 if (run_queue) 408 blk_mq_run_hw_queue(hctx, async); 409 } 410 411 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 412 struct blk_mq_ctx *ctx, 413 struct list_head *list, bool run_queue_async) 414 { 415 struct elevator_queue *e; 416 417 e = hctx->queue->elevator; 418 if (e && e->type->ops.insert_requests) 419 e->type->ops.insert_requests(hctx, list, false); 420 else { 421 /* 422 * try to issue requests directly if the hw queue isn't 423 * busy in case of 'none' scheduler, and this way may save 424 * us one extra enqueue & dequeue to sw queue. 425 */ 426 if (!hctx->dispatch_busy && !e && !run_queue_async) { 427 blk_mq_try_issue_list_directly(hctx, list); 428 if (list_empty(list)) 429 return; 430 } 431 blk_mq_insert_requests(hctx, ctx, list); 432 } 433 434 blk_mq_run_hw_queue(hctx, run_queue_async); 435 } 436 437 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 438 struct blk_mq_hw_ctx *hctx, 439 unsigned int hctx_idx) 440 { 441 if (hctx->sched_tags) { 442 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 443 blk_mq_free_rq_map(hctx->sched_tags); 444 hctx->sched_tags = NULL; 445 } 446 } 447 448 static int blk_mq_sched_alloc_tags(struct request_queue *q, 449 struct blk_mq_hw_ctx *hctx, 450 unsigned int hctx_idx) 451 { 452 struct blk_mq_tag_set *set = q->tag_set; 453 int ret; 454 455 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 456 set->reserved_tags); 457 if (!hctx->sched_tags) 458 return -ENOMEM; 459 460 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 461 if (ret) 462 blk_mq_sched_free_tags(set, hctx, hctx_idx); 463 464 return ret; 465 } 466 467 static void blk_mq_sched_tags_teardown(struct request_queue *q) 468 { 469 struct blk_mq_tag_set *set = q->tag_set; 470 struct blk_mq_hw_ctx *hctx; 471 int i; 472 473 queue_for_each_hw_ctx(q, hctx, i) 474 blk_mq_sched_free_tags(set, hctx, i); 475 } 476 477 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 478 { 479 struct blk_mq_hw_ctx *hctx; 480 struct elevator_queue *eq; 481 unsigned int i; 482 int ret; 483 484 if (!e) { 485 q->elevator = NULL; 486 q->nr_requests = q->tag_set->queue_depth; 487 return 0; 488 } 489 490 /* 491 * Default to double of smaller one between hw queue_depth and 128, 492 * since we don't split into sync/async like the old code did. 493 * Additionally, this is a per-hw queue depth. 494 */ 495 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 496 BLKDEV_MAX_RQ); 497 498 queue_for_each_hw_ctx(q, hctx, i) { 499 ret = blk_mq_sched_alloc_tags(q, hctx, i); 500 if (ret) 501 goto err; 502 } 503 504 ret = e->ops.init_sched(q, e); 505 if (ret) 506 goto err; 507 508 blk_mq_debugfs_register_sched(q); 509 510 queue_for_each_hw_ctx(q, hctx, i) { 511 if (e->ops.init_hctx) { 512 ret = e->ops.init_hctx(hctx, i); 513 if (ret) { 514 eq = q->elevator; 515 blk_mq_exit_sched(q, eq); 516 kobject_put(&eq->kobj); 517 return ret; 518 } 519 } 520 blk_mq_debugfs_register_sched_hctx(q, hctx); 521 } 522 523 return 0; 524 525 err: 526 blk_mq_sched_tags_teardown(q); 527 q->elevator = NULL; 528 return ret; 529 } 530 531 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 532 { 533 struct blk_mq_hw_ctx *hctx; 534 unsigned int i; 535 536 queue_for_each_hw_ctx(q, hctx, i) { 537 blk_mq_debugfs_unregister_sched_hctx(hctx); 538 if (e->type->ops.exit_hctx && hctx->sched_data) { 539 e->type->ops.exit_hctx(hctx, i); 540 hctx->sched_data = NULL; 541 } 542 } 543 blk_mq_debugfs_unregister_sched(q); 544 if (e->type->ops.exit_sched) 545 e->type->ops.exit_sched(e); 546 blk_mq_sched_tags_teardown(q); 547 q->elevator = NULL; 548 } 549