1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 /* 22 * Mark a hardware queue as needing a restart. For shared queues, maintain 23 * a count of how many hardware queues are marked for restart. 24 */ 25 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 26 { 27 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 28 return; 29 30 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 31 } 32 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 33 34 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 35 { 36 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 37 38 /* 39 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 40 * in blk_mq_run_hw_queue(). Its pair is the barrier in 41 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 42 * meantime new request added to hctx->dispatch is missed to check in 43 * blk_mq_run_hw_queue(). 44 */ 45 smp_mb(); 46 47 blk_mq_run_hw_queue(hctx, true); 48 } 49 50 static int sched_rq_cmp(void *priv, const struct list_head *a, 51 const struct list_head *b) 52 { 53 struct request *rqa = container_of(a, struct request, queuelist); 54 struct request *rqb = container_of(b, struct request, queuelist); 55 56 return rqa->mq_hctx > rqb->mq_hctx; 57 } 58 59 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 60 { 61 struct blk_mq_hw_ctx *hctx = 62 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 63 struct request *rq; 64 LIST_HEAD(hctx_list); 65 unsigned int count = 0; 66 67 list_for_each_entry(rq, rq_list, queuelist) { 68 if (rq->mq_hctx != hctx) { 69 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 70 goto dispatch; 71 } 72 count++; 73 } 74 list_splice_tail_init(rq_list, &hctx_list); 75 76 dispatch: 77 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 78 } 79 80 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 81 82 /* 83 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 84 * its queue by itself in its completion handler, so we don't need to 85 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 86 * 87 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 88 * be run again. This is necessary to avoid starving flushes. 89 */ 90 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 91 { 92 struct request_queue *q = hctx->queue; 93 struct elevator_queue *e = q->elevator; 94 bool multi_hctxs = false, run_queue = false; 95 bool dispatched = false, busy = false; 96 unsigned int max_dispatch; 97 LIST_HEAD(rq_list); 98 int count = 0; 99 100 if (hctx->dispatch_busy) 101 max_dispatch = 1; 102 else 103 max_dispatch = hctx->queue->nr_requests; 104 105 do { 106 struct request *rq; 107 int budget_token; 108 109 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 110 break; 111 112 if (!list_empty_careful(&hctx->dispatch)) { 113 busy = true; 114 break; 115 } 116 117 budget_token = blk_mq_get_dispatch_budget(q); 118 if (budget_token < 0) 119 break; 120 121 rq = e->type->ops.dispatch_request(hctx); 122 if (!rq) { 123 blk_mq_put_dispatch_budget(q, budget_token); 124 /* 125 * We're releasing without dispatching. Holding the 126 * budget could have blocked any "hctx"s with the 127 * same queue and if we didn't dispatch then there's 128 * no guarantee anyone will kick the queue. Kick it 129 * ourselves. 130 */ 131 run_queue = true; 132 break; 133 } 134 135 blk_mq_set_rq_budget_token(rq, budget_token); 136 137 /* 138 * Now this rq owns the budget which has to be released 139 * if this rq won't be queued to driver via .queue_rq() 140 * in blk_mq_dispatch_rq_list(). 141 */ 142 list_add_tail(&rq->queuelist, &rq_list); 143 count++; 144 if (rq->mq_hctx != hctx) 145 multi_hctxs = true; 146 147 /* 148 * If we cannot get tag for the request, stop dequeueing 149 * requests from the IO scheduler. We are unlikely to be able 150 * to submit them anyway and it creates false impression for 151 * scheduling heuristics that the device can take more IO. 152 */ 153 if (!blk_mq_get_driver_tag(rq)) 154 break; 155 } while (count < max_dispatch); 156 157 if (!count) { 158 if (run_queue) 159 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 160 } else if (multi_hctxs) { 161 /* 162 * Requests from different hctx may be dequeued from some 163 * schedulers, such as bfq and deadline. 164 * 165 * Sort the requests in the list according to their hctx, 166 * dispatch batching requests from same hctx at a time. 167 */ 168 list_sort(NULL, &rq_list, sched_rq_cmp); 169 do { 170 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 171 } while (!list_empty(&rq_list)); 172 } else { 173 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 174 } 175 176 if (busy) 177 return -EAGAIN; 178 return !!dispatched; 179 } 180 181 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 182 { 183 unsigned long end = jiffies + HZ; 184 int ret; 185 186 do { 187 ret = __blk_mq_do_dispatch_sched(hctx); 188 if (ret != 1) 189 break; 190 if (need_resched() || time_is_before_jiffies(end)) { 191 blk_mq_delay_run_hw_queue(hctx, 0); 192 break; 193 } 194 } while (1); 195 196 return ret; 197 } 198 199 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 200 struct blk_mq_ctx *ctx) 201 { 202 unsigned short idx = ctx->index_hw[hctx->type]; 203 204 if (++idx == hctx->nr_ctx) 205 idx = 0; 206 207 return hctx->ctxs[idx]; 208 } 209 210 /* 211 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 212 * its queue by itself in its completion handler, so we don't need to 213 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 214 * 215 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 216 * be run again. This is necessary to avoid starving flushes. 217 */ 218 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 219 { 220 struct request_queue *q = hctx->queue; 221 LIST_HEAD(rq_list); 222 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 223 int ret = 0; 224 struct request *rq; 225 226 do { 227 int budget_token; 228 229 if (!list_empty_careful(&hctx->dispatch)) { 230 ret = -EAGAIN; 231 break; 232 } 233 234 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 235 break; 236 237 budget_token = blk_mq_get_dispatch_budget(q); 238 if (budget_token < 0) 239 break; 240 241 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 242 if (!rq) { 243 blk_mq_put_dispatch_budget(q, budget_token); 244 /* 245 * We're releasing without dispatching. Holding the 246 * budget could have blocked any "hctx"s with the 247 * same queue and if we didn't dispatch then there's 248 * no guarantee anyone will kick the queue. Kick it 249 * ourselves. 250 */ 251 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 252 break; 253 } 254 255 blk_mq_set_rq_budget_token(rq, budget_token); 256 257 /* 258 * Now this rq owns the budget which has to be released 259 * if this rq won't be queued to driver via .queue_rq() 260 * in blk_mq_dispatch_rq_list(). 261 */ 262 list_add(&rq->queuelist, &rq_list); 263 264 /* round robin for fair dispatch */ 265 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 266 267 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 268 269 WRITE_ONCE(hctx->dispatch_from, ctx); 270 return ret; 271 } 272 273 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 274 { 275 struct request_queue *q = hctx->queue; 276 const bool has_sched = q->elevator; 277 int ret = 0; 278 LIST_HEAD(rq_list); 279 280 /* 281 * If we have previous entries on our dispatch list, grab them first for 282 * more fair dispatch. 283 */ 284 if (!list_empty_careful(&hctx->dispatch)) { 285 spin_lock(&hctx->lock); 286 if (!list_empty(&hctx->dispatch)) 287 list_splice_init(&hctx->dispatch, &rq_list); 288 spin_unlock(&hctx->lock); 289 } 290 291 /* 292 * Only ask the scheduler for requests, if we didn't have residual 293 * requests from the dispatch list. This is to avoid the case where 294 * we only ever dispatch a fraction of the requests available because 295 * of low device queue depth. Once we pull requests out of the IO 296 * scheduler, we can no longer merge or sort them. So it's best to 297 * leave them there for as long as we can. Mark the hw queue as 298 * needing a restart in that case. 299 * 300 * We want to dispatch from the scheduler if there was nothing 301 * on the dispatch list or we were able to dispatch from the 302 * dispatch list. 303 */ 304 if (!list_empty(&rq_list)) { 305 blk_mq_sched_mark_restart_hctx(hctx); 306 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 307 if (has_sched) 308 ret = blk_mq_do_dispatch_sched(hctx); 309 else 310 ret = blk_mq_do_dispatch_ctx(hctx); 311 } 312 } else if (has_sched) { 313 ret = blk_mq_do_dispatch_sched(hctx); 314 } else if (hctx->dispatch_busy) { 315 /* dequeue request one by one from sw queue if queue is busy */ 316 ret = blk_mq_do_dispatch_ctx(hctx); 317 } else { 318 blk_mq_flush_busy_ctxs(hctx, &rq_list); 319 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 320 } 321 322 return ret; 323 } 324 325 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 326 { 327 struct request_queue *q = hctx->queue; 328 329 /* RCU or SRCU read lock is needed before checking quiesced flag */ 330 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 331 return; 332 333 hctx->run++; 334 335 /* 336 * A return of -EAGAIN is an indication that hctx->dispatch is not 337 * empty and we must run again in order to avoid starving flushes. 338 */ 339 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 340 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 341 blk_mq_run_hw_queue(hctx, true); 342 } 343 } 344 345 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 346 unsigned int nr_segs) 347 { 348 struct elevator_queue *e = q->elevator; 349 struct blk_mq_ctx *ctx; 350 struct blk_mq_hw_ctx *hctx; 351 bool ret = false; 352 enum hctx_type type; 353 354 if (e && e->type->ops.bio_merge) { 355 ret = e->type->ops.bio_merge(q, bio, nr_segs); 356 goto out_put; 357 } 358 359 ctx = blk_mq_get_ctx(q); 360 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 361 type = hctx->type; 362 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 363 list_empty_careful(&ctx->rq_lists[type])) 364 goto out_put; 365 366 /* default per sw-queue merge */ 367 spin_lock(&ctx->lock); 368 /* 369 * Reverse check our software queue for entries that we could 370 * potentially merge with. Currently includes a hand-wavy stop 371 * count of 8, to not spend too much time checking for merges. 372 */ 373 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 374 ret = true; 375 376 spin_unlock(&ctx->lock); 377 out_put: 378 return ret; 379 } 380 381 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 382 struct list_head *free) 383 { 384 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 385 } 386 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 387 388 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 389 struct request *rq) 390 { 391 /* 392 * dispatch flush and passthrough rq directly 393 * 394 * passthrough request has to be added to hctx->dispatch directly. 395 * For some reason, device may be in one situation which can't 396 * handle FS request, so STS_RESOURCE is always returned and the 397 * FS request will be added to hctx->dispatch. However passthrough 398 * request may be required at that time for fixing the problem. If 399 * passthrough request is added to scheduler queue, there isn't any 400 * chance to dispatch it given we prioritize requests in hctx->dispatch. 401 */ 402 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 403 return true; 404 405 return false; 406 } 407 408 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 409 bool run_queue, bool async) 410 { 411 struct request_queue *q = rq->q; 412 struct elevator_queue *e = q->elevator; 413 struct blk_mq_ctx *ctx = rq->mq_ctx; 414 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 415 416 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 417 418 if (blk_mq_sched_bypass_insert(hctx, rq)) { 419 /* 420 * Firstly normal IO request is inserted to scheduler queue or 421 * sw queue, meantime we add flush request to dispatch queue( 422 * hctx->dispatch) directly and there is at most one in-flight 423 * flush request for each hw queue, so it doesn't matter to add 424 * flush request to tail or front of the dispatch queue. 425 * 426 * Secondly in case of NCQ, flush request belongs to non-NCQ 427 * command, and queueing it will fail when there is any 428 * in-flight normal IO request(NCQ command). When adding flush 429 * rq to the front of hctx->dispatch, it is easier to introduce 430 * extra time to flush rq's latency because of S_SCHED_RESTART 431 * compared with adding to the tail of dispatch queue, then 432 * chance of flush merge is increased, and less flush requests 433 * will be issued to controller. It is observed that ~10% time 434 * is saved in blktests block/004 on disk attached to AHCI/NCQ 435 * drive when adding flush rq to the front of hctx->dispatch. 436 * 437 * Simply queue flush rq to the front of hctx->dispatch so that 438 * intensive flush workloads can benefit in case of NCQ HW. 439 */ 440 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 441 blk_mq_request_bypass_insert(rq, at_head, false); 442 goto run; 443 } 444 445 if (e) { 446 LIST_HEAD(list); 447 448 list_add(&rq->queuelist, &list); 449 e->type->ops.insert_requests(hctx, &list, at_head); 450 } else { 451 spin_lock(&ctx->lock); 452 __blk_mq_insert_request(hctx, rq, at_head); 453 spin_unlock(&ctx->lock); 454 } 455 456 run: 457 if (run_queue) 458 blk_mq_run_hw_queue(hctx, async); 459 } 460 461 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 462 struct blk_mq_ctx *ctx, 463 struct list_head *list, bool run_queue_async) 464 { 465 struct elevator_queue *e; 466 struct request_queue *q = hctx->queue; 467 468 /* 469 * blk_mq_sched_insert_requests() is called from flush plug 470 * context only, and hold one usage counter to prevent queue 471 * from being released. 472 */ 473 percpu_ref_get(&q->q_usage_counter); 474 475 e = hctx->queue->elevator; 476 if (e) { 477 e->type->ops.insert_requests(hctx, list, false); 478 } else { 479 /* 480 * try to issue requests directly if the hw queue isn't 481 * busy in case of 'none' scheduler, and this way may save 482 * us one extra enqueue & dequeue to sw queue. 483 */ 484 if (!hctx->dispatch_busy && !run_queue_async) { 485 blk_mq_run_dispatch_ops(hctx->queue, 486 blk_mq_try_issue_list_directly(hctx, list)); 487 if (list_empty(list)) 488 goto out; 489 } 490 blk_mq_insert_requests(hctx, ctx, list); 491 } 492 493 blk_mq_run_hw_queue(hctx, run_queue_async); 494 out: 495 percpu_ref_put(&q->q_usage_counter); 496 } 497 498 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 499 struct blk_mq_hw_ctx *hctx, 500 unsigned int hctx_idx) 501 { 502 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 503 hctx->sched_tags = q->sched_shared_tags; 504 return 0; 505 } 506 507 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 508 q->nr_requests); 509 510 if (!hctx->sched_tags) 511 return -ENOMEM; 512 return 0; 513 } 514 515 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 516 { 517 blk_mq_free_rq_map(queue->sched_shared_tags); 518 queue->sched_shared_tags = NULL; 519 } 520 521 /* called in queue's release handler, tagset has gone away */ 522 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 523 { 524 struct blk_mq_hw_ctx *hctx; 525 unsigned long i; 526 527 queue_for_each_hw_ctx(q, hctx, i) { 528 if (hctx->sched_tags) { 529 if (!blk_mq_is_shared_tags(flags)) 530 blk_mq_free_rq_map(hctx->sched_tags); 531 hctx->sched_tags = NULL; 532 } 533 } 534 535 if (blk_mq_is_shared_tags(flags)) 536 blk_mq_exit_sched_shared_tags(q); 537 } 538 539 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 540 { 541 struct blk_mq_tag_set *set = queue->tag_set; 542 543 /* 544 * Set initial depth at max so that we don't need to reallocate for 545 * updating nr_requests. 546 */ 547 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 548 BLK_MQ_NO_HCTX_IDX, 549 MAX_SCHED_RQ); 550 if (!queue->sched_shared_tags) 551 return -ENOMEM; 552 553 blk_mq_tag_update_sched_shared_tags(queue); 554 555 return 0; 556 } 557 558 /* caller must have a reference to @e, will grab another one if successful */ 559 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 560 { 561 unsigned int flags = q->tag_set->flags; 562 struct blk_mq_hw_ctx *hctx; 563 struct elevator_queue *eq; 564 unsigned long i; 565 int ret; 566 567 /* 568 * Default to double of smaller one between hw queue_depth and 128, 569 * since we don't split into sync/async like the old code did. 570 * Additionally, this is a per-hw queue depth. 571 */ 572 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 573 BLKDEV_DEFAULT_RQ); 574 575 if (blk_mq_is_shared_tags(flags)) { 576 ret = blk_mq_init_sched_shared_tags(q); 577 if (ret) 578 return ret; 579 } 580 581 queue_for_each_hw_ctx(q, hctx, i) { 582 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 583 if (ret) 584 goto err_free_map_and_rqs; 585 } 586 587 ret = e->ops.init_sched(q, e); 588 if (ret) 589 goto err_free_map_and_rqs; 590 591 mutex_lock(&q->debugfs_mutex); 592 blk_mq_debugfs_register_sched(q); 593 mutex_unlock(&q->debugfs_mutex); 594 595 queue_for_each_hw_ctx(q, hctx, i) { 596 if (e->ops.init_hctx) { 597 ret = e->ops.init_hctx(hctx, i); 598 if (ret) { 599 eq = q->elevator; 600 blk_mq_sched_free_rqs(q); 601 blk_mq_exit_sched(q, eq); 602 kobject_put(&eq->kobj); 603 return ret; 604 } 605 } 606 mutex_lock(&q->debugfs_mutex); 607 blk_mq_debugfs_register_sched_hctx(q, hctx); 608 mutex_unlock(&q->debugfs_mutex); 609 } 610 611 return 0; 612 613 err_free_map_and_rqs: 614 blk_mq_sched_free_rqs(q); 615 blk_mq_sched_tags_teardown(q, flags); 616 617 q->elevator = NULL; 618 return ret; 619 } 620 621 /* 622 * called in either blk_queue_cleanup or elevator_switch, tagset 623 * is required for freeing requests 624 */ 625 void blk_mq_sched_free_rqs(struct request_queue *q) 626 { 627 struct blk_mq_hw_ctx *hctx; 628 unsigned long i; 629 630 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 631 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 632 BLK_MQ_NO_HCTX_IDX); 633 } else { 634 queue_for_each_hw_ctx(q, hctx, i) { 635 if (hctx->sched_tags) 636 blk_mq_free_rqs(q->tag_set, 637 hctx->sched_tags, i); 638 } 639 } 640 } 641 642 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 643 { 644 struct blk_mq_hw_ctx *hctx; 645 unsigned long i; 646 unsigned int flags = 0; 647 648 queue_for_each_hw_ctx(q, hctx, i) { 649 mutex_lock(&q->debugfs_mutex); 650 blk_mq_debugfs_unregister_sched_hctx(hctx); 651 mutex_unlock(&q->debugfs_mutex); 652 653 if (e->type->ops.exit_hctx && hctx->sched_data) { 654 e->type->ops.exit_hctx(hctx, i); 655 hctx->sched_data = NULL; 656 } 657 flags = hctx->flags; 658 } 659 660 mutex_lock(&q->debugfs_mutex); 661 blk_mq_debugfs_unregister_sched(q); 662 mutex_unlock(&q->debugfs_mutex); 663 664 if (e->type->ops.exit_sched) 665 e->type->ops.exit_sched(e); 666 blk_mq_sched_tags_teardown(q, flags); 667 q->elevator = NULL; 668 } 669