xref: /openbmc/linux/block/blk-mq-sched.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 	struct request_queue *q = rq->q;
37 	struct io_context *ioc = rq_ioc(bio);
38 	struct io_cq *icq;
39 
40 	spin_lock_irq(q->queue_lock);
41 	icq = ioc_lookup_icq(ioc, q);
42 	spin_unlock_irq(q->queue_lock);
43 
44 	if (!icq) {
45 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 		if (!icq)
47 			return;
48 	}
49 	get_io_context(icq->ioc);
50 	rq->elv.icq = icq;
51 }
52 
53 /*
54  * Mark a hardware queue as needing a restart. For shared queues, maintain
55  * a count of how many hardware queues are marked for restart.
56  */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 		return;
61 
62 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 		struct request_queue *q = hctx->queue;
64 
65 		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 			atomic_inc(&q->shared_hctx_restart);
67 	} else
68 		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
69 }
70 
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
72 {
73 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 		return false;
75 
76 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
77 		struct request_queue *q = hctx->queue;
78 
79 		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
80 			atomic_dec(&q->shared_hctx_restart);
81 	} else
82 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
83 
84 	return blk_mq_run_hw_queue(hctx, true);
85 }
86 
87 /*
88  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
89  * its queue by itself in its completion handler, so we don't need to
90  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
91  */
92 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
93 {
94 	struct request_queue *q = hctx->queue;
95 	struct elevator_queue *e = q->elevator;
96 	LIST_HEAD(rq_list);
97 
98 	do {
99 		struct request *rq;
100 
101 		if (e->type->ops.mq.has_work &&
102 				!e->type->ops.mq.has_work(hctx))
103 			break;
104 
105 		if (!blk_mq_get_dispatch_budget(hctx))
106 			break;
107 
108 		rq = e->type->ops.mq.dispatch_request(hctx);
109 		if (!rq) {
110 			blk_mq_put_dispatch_budget(hctx);
111 			break;
112 		}
113 
114 		/*
115 		 * Now this rq owns the budget which has to be released
116 		 * if this rq won't be queued to driver via .queue_rq()
117 		 * in blk_mq_dispatch_rq_list().
118 		 */
119 		list_add(&rq->queuelist, &rq_list);
120 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
121 }
122 
123 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124 					  struct blk_mq_ctx *ctx)
125 {
126 	unsigned idx = ctx->index_hw;
127 
128 	if (++idx == hctx->nr_ctx)
129 		idx = 0;
130 
131 	return hctx->ctxs[idx];
132 }
133 
134 /*
135  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
136  * its queue by itself in its completion handler, so we don't need to
137  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
138  */
139 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
140 {
141 	struct request_queue *q = hctx->queue;
142 	LIST_HEAD(rq_list);
143 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
144 
145 	do {
146 		struct request *rq;
147 
148 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
149 			break;
150 
151 		if (!blk_mq_get_dispatch_budget(hctx))
152 			break;
153 
154 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
155 		if (!rq) {
156 			blk_mq_put_dispatch_budget(hctx);
157 			break;
158 		}
159 
160 		/*
161 		 * Now this rq owns the budget which has to be released
162 		 * if this rq won't be queued to driver via .queue_rq()
163 		 * in blk_mq_dispatch_rq_list().
164 		 */
165 		list_add(&rq->queuelist, &rq_list);
166 
167 		/* round robin for fair dispatch */
168 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
169 
170 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
171 
172 	WRITE_ONCE(hctx->dispatch_from, ctx);
173 }
174 
175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176 {
177 	struct request_queue *q = hctx->queue;
178 	struct elevator_queue *e = q->elevator;
179 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180 	LIST_HEAD(rq_list);
181 
182 	/* RCU or SRCU read lock is needed before checking quiesced flag */
183 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
184 		return;
185 
186 	hctx->run++;
187 
188 	/*
189 	 * If we have previous entries on our dispatch list, grab them first for
190 	 * more fair dispatch.
191 	 */
192 	if (!list_empty_careful(&hctx->dispatch)) {
193 		spin_lock(&hctx->lock);
194 		if (!list_empty(&hctx->dispatch))
195 			list_splice_init(&hctx->dispatch, &rq_list);
196 		spin_unlock(&hctx->lock);
197 	}
198 
199 	/*
200 	 * Only ask the scheduler for requests, if we didn't have residual
201 	 * requests from the dispatch list. This is to avoid the case where
202 	 * we only ever dispatch a fraction of the requests available because
203 	 * of low device queue depth. Once we pull requests out of the IO
204 	 * scheduler, we can no longer merge or sort them. So it's best to
205 	 * leave them there for as long as we can. Mark the hw queue as
206 	 * needing a restart in that case.
207 	 *
208 	 * We want to dispatch from the scheduler if there was nothing
209 	 * on the dispatch list or we were able to dispatch from the
210 	 * dispatch list.
211 	 */
212 	if (!list_empty(&rq_list)) {
213 		blk_mq_sched_mark_restart_hctx(hctx);
214 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
215 			if (has_sched_dispatch)
216 				blk_mq_do_dispatch_sched(hctx);
217 			else
218 				blk_mq_do_dispatch_ctx(hctx);
219 		}
220 	} else if (has_sched_dispatch) {
221 		blk_mq_do_dispatch_sched(hctx);
222 	} else if (q->mq_ops->get_budget) {
223 		/*
224 		 * If we need to get budget before queuing request, we
225 		 * dequeue request one by one from sw queue for avoiding
226 		 * to mess up I/O merge when dispatch runs out of resource.
227 		 *
228 		 * TODO: get more budgets, and dequeue more requests in
229 		 * one time.
230 		 */
231 		blk_mq_do_dispatch_ctx(hctx);
232 	} else {
233 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
234 		blk_mq_dispatch_rq_list(q, &rq_list, false);
235 	}
236 }
237 
238 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
239 			    struct request **merged_request)
240 {
241 	struct request *rq;
242 
243 	switch (elv_merge(q, &rq, bio)) {
244 	case ELEVATOR_BACK_MERGE:
245 		if (!blk_mq_sched_allow_merge(q, rq, bio))
246 			return false;
247 		if (!bio_attempt_back_merge(q, rq, bio))
248 			return false;
249 		*merged_request = attempt_back_merge(q, rq);
250 		if (!*merged_request)
251 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
252 		return true;
253 	case ELEVATOR_FRONT_MERGE:
254 		if (!blk_mq_sched_allow_merge(q, rq, bio))
255 			return false;
256 		if (!bio_attempt_front_merge(q, rq, bio))
257 			return false;
258 		*merged_request = attempt_front_merge(q, rq);
259 		if (!*merged_request)
260 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
261 		return true;
262 	case ELEVATOR_DISCARD_MERGE:
263 		return bio_attempt_discard_merge(q, rq, bio);
264 	default:
265 		return false;
266 	}
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
269 
270 /*
271  * Iterate list of requests and see if we can merge this bio with any
272  * of them.
273  */
274 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
275 			   struct bio *bio)
276 {
277 	struct request *rq;
278 	int checked = 8;
279 
280 	list_for_each_entry_reverse(rq, list, queuelist) {
281 		bool merged = false;
282 
283 		if (!checked--)
284 			break;
285 
286 		if (!blk_rq_merge_ok(rq, bio))
287 			continue;
288 
289 		switch (blk_try_merge(rq, bio)) {
290 		case ELEVATOR_BACK_MERGE:
291 			if (blk_mq_sched_allow_merge(q, rq, bio))
292 				merged = bio_attempt_back_merge(q, rq, bio);
293 			break;
294 		case ELEVATOR_FRONT_MERGE:
295 			if (blk_mq_sched_allow_merge(q, rq, bio))
296 				merged = bio_attempt_front_merge(q, rq, bio);
297 			break;
298 		case ELEVATOR_DISCARD_MERGE:
299 			merged = bio_attempt_discard_merge(q, rq, bio);
300 			break;
301 		default:
302 			continue;
303 		}
304 
305 		return merged;
306 	}
307 
308 	return false;
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
311 
312 /*
313  * Reverse check our software queue for entries that we could potentially
314  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
315  * too much time checking for merges.
316  */
317 static bool blk_mq_attempt_merge(struct request_queue *q,
318 				 struct blk_mq_ctx *ctx, struct bio *bio)
319 {
320 	lockdep_assert_held(&ctx->lock);
321 
322 	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
323 		ctx->rq_merged++;
324 		return true;
325 	}
326 
327 	return false;
328 }
329 
330 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
331 {
332 	struct elevator_queue *e = q->elevator;
333 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
334 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
335 	bool ret = false;
336 
337 	if (e && e->type->ops.mq.bio_merge) {
338 		blk_mq_put_ctx(ctx);
339 		return e->type->ops.mq.bio_merge(hctx, bio);
340 	}
341 
342 	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
343 		/* default per sw-queue merge */
344 		spin_lock(&ctx->lock);
345 		ret = blk_mq_attempt_merge(q, ctx, bio);
346 		spin_unlock(&ctx->lock);
347 	}
348 
349 	blk_mq_put_ctx(ctx);
350 	return ret;
351 }
352 
353 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
354 {
355 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
356 }
357 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
358 
359 void blk_mq_sched_request_inserted(struct request *rq)
360 {
361 	trace_block_rq_insert(rq->q, rq);
362 }
363 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
364 
365 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
366 				       bool has_sched,
367 				       struct request *rq)
368 {
369 	/* dispatch flush rq directly */
370 	if (rq->rq_flags & RQF_FLUSH_SEQ) {
371 		spin_lock(&hctx->lock);
372 		list_add(&rq->queuelist, &hctx->dispatch);
373 		spin_unlock(&hctx->lock);
374 		return true;
375 	}
376 
377 	if (has_sched)
378 		rq->rq_flags |= RQF_SORTED;
379 
380 	return false;
381 }
382 
383 /**
384  * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
385  * @pos:    loop cursor.
386  * @skip:   the list element that will not be examined. Iteration starts at
387  *          @skip->next.
388  * @head:   head of the list to examine. This list must have at least one
389  *          element, namely @skip.
390  * @member: name of the list_head structure within typeof(*pos).
391  */
392 #define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
393 	for ((pos) = (skip);						\
394 	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
395 			(pos)->member.next, typeof(*pos), member) :	\
396 	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
397 	     (pos) != (skip); )
398 
399 /*
400  * Called after a driver tag has been freed to check whether a hctx needs to
401  * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
402  * queues in a round-robin fashion if the tag set of @hctx is shared with other
403  * hardware queues.
404  */
405 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
406 {
407 	struct blk_mq_tags *const tags = hctx->tags;
408 	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
409 	struct request_queue *const queue = hctx->queue, *q;
410 	struct blk_mq_hw_ctx *hctx2;
411 	unsigned int i, j;
412 
413 	if (set->flags & BLK_MQ_F_TAG_SHARED) {
414 		/*
415 		 * If this is 0, then we know that no hardware queues
416 		 * have RESTART marked. We're done.
417 		 */
418 		if (!atomic_read(&queue->shared_hctx_restart))
419 			return;
420 
421 		rcu_read_lock();
422 		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
423 					   tag_set_list) {
424 			queue_for_each_hw_ctx(q, hctx2, i)
425 				if (hctx2->tags == tags &&
426 				    blk_mq_sched_restart_hctx(hctx2))
427 					goto done;
428 		}
429 		j = hctx->queue_num + 1;
430 		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
431 			if (j == queue->nr_hw_queues)
432 				j = 0;
433 			hctx2 = queue->queue_hw_ctx[j];
434 			if (hctx2->tags == tags &&
435 			    blk_mq_sched_restart_hctx(hctx2))
436 				break;
437 		}
438 done:
439 		rcu_read_unlock();
440 	} else {
441 		blk_mq_sched_restart_hctx(hctx);
442 	}
443 }
444 
445 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
446 				 bool run_queue, bool async)
447 {
448 	struct request_queue *q = rq->q;
449 	struct elevator_queue *e = q->elevator;
450 	struct blk_mq_ctx *ctx = rq->mq_ctx;
451 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
452 
453 	/* flush rq in flush machinery need to be dispatched directly */
454 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
455 		blk_insert_flush(rq);
456 		goto run;
457 	}
458 
459 	WARN_ON(e && (rq->tag != -1));
460 
461 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
462 		goto run;
463 
464 	if (e && e->type->ops.mq.insert_requests) {
465 		LIST_HEAD(list);
466 
467 		list_add(&rq->queuelist, &list);
468 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
469 	} else {
470 		spin_lock(&ctx->lock);
471 		__blk_mq_insert_request(hctx, rq, at_head);
472 		spin_unlock(&ctx->lock);
473 	}
474 
475 run:
476 	if (run_queue)
477 		blk_mq_run_hw_queue(hctx, async);
478 }
479 
480 void blk_mq_sched_insert_requests(struct request_queue *q,
481 				  struct blk_mq_ctx *ctx,
482 				  struct list_head *list, bool run_queue_async)
483 {
484 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
485 	struct elevator_queue *e = hctx->queue->elevator;
486 
487 	if (e && e->type->ops.mq.insert_requests)
488 		e->type->ops.mq.insert_requests(hctx, list, false);
489 	else
490 		blk_mq_insert_requests(hctx, ctx, list);
491 
492 	blk_mq_run_hw_queue(hctx, run_queue_async);
493 }
494 
495 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
496 				   struct blk_mq_hw_ctx *hctx,
497 				   unsigned int hctx_idx)
498 {
499 	if (hctx->sched_tags) {
500 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
501 		blk_mq_free_rq_map(hctx->sched_tags);
502 		hctx->sched_tags = NULL;
503 	}
504 }
505 
506 static int blk_mq_sched_alloc_tags(struct request_queue *q,
507 				   struct blk_mq_hw_ctx *hctx,
508 				   unsigned int hctx_idx)
509 {
510 	struct blk_mq_tag_set *set = q->tag_set;
511 	int ret;
512 
513 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
514 					       set->reserved_tags);
515 	if (!hctx->sched_tags)
516 		return -ENOMEM;
517 
518 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
519 	if (ret)
520 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
521 
522 	return ret;
523 }
524 
525 static void blk_mq_sched_tags_teardown(struct request_queue *q)
526 {
527 	struct blk_mq_tag_set *set = q->tag_set;
528 	struct blk_mq_hw_ctx *hctx;
529 	int i;
530 
531 	queue_for_each_hw_ctx(q, hctx, i)
532 		blk_mq_sched_free_tags(set, hctx, i);
533 }
534 
535 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
536 			   unsigned int hctx_idx)
537 {
538 	struct elevator_queue *e = q->elevator;
539 	int ret;
540 
541 	if (!e)
542 		return 0;
543 
544 	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
545 	if (ret)
546 		return ret;
547 
548 	if (e->type->ops.mq.init_hctx) {
549 		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
550 		if (ret) {
551 			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
552 			return ret;
553 		}
554 	}
555 
556 	blk_mq_debugfs_register_sched_hctx(q, hctx);
557 
558 	return 0;
559 }
560 
561 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
562 			    unsigned int hctx_idx)
563 {
564 	struct elevator_queue *e = q->elevator;
565 
566 	if (!e)
567 		return;
568 
569 	blk_mq_debugfs_unregister_sched_hctx(hctx);
570 
571 	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
572 		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
573 		hctx->sched_data = NULL;
574 	}
575 
576 	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
577 }
578 
579 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
580 {
581 	struct blk_mq_hw_ctx *hctx;
582 	struct elevator_queue *eq;
583 	unsigned int i;
584 	int ret;
585 
586 	if (!e) {
587 		q->elevator = NULL;
588 		q->nr_requests = q->tag_set->queue_depth;
589 		return 0;
590 	}
591 
592 	/*
593 	 * Default to double of smaller one between hw queue_depth and 128,
594 	 * since we don't split into sync/async like the old code did.
595 	 * Additionally, this is a per-hw queue depth.
596 	 */
597 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
598 				   BLKDEV_MAX_RQ);
599 
600 	queue_for_each_hw_ctx(q, hctx, i) {
601 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
602 		if (ret)
603 			goto err;
604 	}
605 
606 	ret = e->ops.mq.init_sched(q, e);
607 	if (ret)
608 		goto err;
609 
610 	blk_mq_debugfs_register_sched(q);
611 
612 	queue_for_each_hw_ctx(q, hctx, i) {
613 		if (e->ops.mq.init_hctx) {
614 			ret = e->ops.mq.init_hctx(hctx, i);
615 			if (ret) {
616 				eq = q->elevator;
617 				blk_mq_exit_sched(q, eq);
618 				kobject_put(&eq->kobj);
619 				return ret;
620 			}
621 		}
622 		blk_mq_debugfs_register_sched_hctx(q, hctx);
623 	}
624 
625 	return 0;
626 
627 err:
628 	blk_mq_sched_tags_teardown(q);
629 	q->elevator = NULL;
630 	return ret;
631 }
632 
633 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
634 {
635 	struct blk_mq_hw_ctx *hctx;
636 	unsigned int i;
637 
638 	queue_for_each_hw_ctx(q, hctx, i) {
639 		blk_mq_debugfs_unregister_sched_hctx(hctx);
640 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
641 			e->type->ops.mq.exit_hctx(hctx, i);
642 			hctx->sched_data = NULL;
643 		}
644 	}
645 	blk_mq_debugfs_unregister_sched(q);
646 	if (e->type->ops.mq.exit_sched)
647 		e->type->ops.mq.exit_sched(e);
648 	blk_mq_sched_tags_teardown(q);
649 	q->elevator = NULL;
650 }
651