xref: /openbmc/linux/block/blk-mq-sched.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_free_hctx_data(struct request_queue *q,
22 				 void (*exit)(struct blk_mq_hw_ctx *))
23 {
24 	struct blk_mq_hw_ctx *hctx;
25 	int i;
26 
27 	queue_for_each_hw_ctx(q, hctx, i) {
28 		if (exit && hctx->sched_data)
29 			exit(hctx);
30 		kfree(hctx->sched_data);
31 		hctx->sched_data = NULL;
32 	}
33 }
34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35 
36 void blk_mq_sched_assign_ioc(struct request *rq)
37 {
38 	struct request_queue *q = rq->q;
39 	struct io_context *ioc;
40 	struct io_cq *icq;
41 
42 	/*
43 	 * May not have an IO context if it's a passthrough request
44 	 */
45 	ioc = current->io_context;
46 	if (!ioc)
47 		return;
48 
49 	spin_lock_irq(&q->queue_lock);
50 	icq = ioc_lookup_icq(ioc, q);
51 	spin_unlock_irq(&q->queue_lock);
52 
53 	if (!icq) {
54 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
55 		if (!icq)
56 			return;
57 	}
58 	get_io_context(icq->ioc);
59 	rq->elv.icq = icq;
60 }
61 
62 /*
63  * Mark a hardware queue as needing a restart. For shared queues, maintain
64  * a count of how many hardware queues are marked for restart.
65  */
66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 {
68 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 		return;
70 
71 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74 
75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 {
77 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 		return;
79 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80 
81 	blk_mq_run_hw_queue(hctx, true);
82 }
83 
84 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
85 {
86 	struct request *rqa = container_of(a, struct request, queuelist);
87 	struct request *rqb = container_of(b, struct request, queuelist);
88 
89 	return rqa->mq_hctx > rqb->mq_hctx;
90 }
91 
92 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
93 {
94 	struct blk_mq_hw_ctx *hctx =
95 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
96 	struct request *rq;
97 	LIST_HEAD(hctx_list);
98 	unsigned int count = 0;
99 
100 	list_for_each_entry(rq, rq_list, queuelist) {
101 		if (rq->mq_hctx != hctx) {
102 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
103 			goto dispatch;
104 		}
105 		count++;
106 	}
107 	list_splice_tail_init(rq_list, &hctx_list);
108 
109 dispatch:
110 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
111 }
112 
113 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
114 
115 /*
116  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
117  * its queue by itself in its completion handler, so we don't need to
118  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
119  *
120  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
121  * be run again.  This is necessary to avoid starving flushes.
122  */
123 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
124 {
125 	struct request_queue *q = hctx->queue;
126 	struct elevator_queue *e = q->elevator;
127 	bool multi_hctxs = false, run_queue = false;
128 	bool dispatched = false, busy = false;
129 	unsigned int max_dispatch;
130 	LIST_HEAD(rq_list);
131 	int count = 0;
132 
133 	if (hctx->dispatch_busy)
134 		max_dispatch = 1;
135 	else
136 		max_dispatch = hctx->queue->nr_requests;
137 
138 	do {
139 		struct request *rq;
140 
141 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
142 			break;
143 
144 		if (!list_empty_careful(&hctx->dispatch)) {
145 			busy = true;
146 			break;
147 		}
148 
149 		if (!blk_mq_get_dispatch_budget(q))
150 			break;
151 
152 		rq = e->type->ops.dispatch_request(hctx);
153 		if (!rq) {
154 			blk_mq_put_dispatch_budget(q);
155 			/*
156 			 * We're releasing without dispatching. Holding the
157 			 * budget could have blocked any "hctx"s with the
158 			 * same queue and if we didn't dispatch then there's
159 			 * no guarantee anyone will kick the queue.  Kick it
160 			 * ourselves.
161 			 */
162 			run_queue = true;
163 			break;
164 		}
165 
166 		/*
167 		 * Now this rq owns the budget which has to be released
168 		 * if this rq won't be queued to driver via .queue_rq()
169 		 * in blk_mq_dispatch_rq_list().
170 		 */
171 		list_add_tail(&rq->queuelist, &rq_list);
172 		if (rq->mq_hctx != hctx)
173 			multi_hctxs = true;
174 	} while (++count < max_dispatch);
175 
176 	if (!count) {
177 		if (run_queue)
178 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
179 	} else if (multi_hctxs) {
180 		/*
181 		 * Requests from different hctx may be dequeued from some
182 		 * schedulers, such as bfq and deadline.
183 		 *
184 		 * Sort the requests in the list according to their hctx,
185 		 * dispatch batching requests from same hctx at a time.
186 		 */
187 		list_sort(NULL, &rq_list, sched_rq_cmp);
188 		do {
189 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
190 		} while (!list_empty(&rq_list));
191 	} else {
192 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
193 	}
194 
195 	if (busy)
196 		return -EAGAIN;
197 	return !!dispatched;
198 }
199 
200 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
201 {
202 	int ret;
203 
204 	do {
205 		ret = __blk_mq_do_dispatch_sched(hctx);
206 	} while (ret == 1);
207 
208 	return ret;
209 }
210 
211 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
212 					  struct blk_mq_ctx *ctx)
213 {
214 	unsigned short idx = ctx->index_hw[hctx->type];
215 
216 	if (++idx == hctx->nr_ctx)
217 		idx = 0;
218 
219 	return hctx->ctxs[idx];
220 }
221 
222 /*
223  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
224  * its queue by itself in its completion handler, so we don't need to
225  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
226  *
227  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
228  * be run again.  This is necessary to avoid starving flushes.
229  */
230 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
231 {
232 	struct request_queue *q = hctx->queue;
233 	LIST_HEAD(rq_list);
234 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
235 	int ret = 0;
236 	struct request *rq;
237 
238 	do {
239 		if (!list_empty_careful(&hctx->dispatch)) {
240 			ret = -EAGAIN;
241 			break;
242 		}
243 
244 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
245 			break;
246 
247 		if (!blk_mq_get_dispatch_budget(q))
248 			break;
249 
250 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
251 		if (!rq) {
252 			blk_mq_put_dispatch_budget(q);
253 			/*
254 			 * We're releasing without dispatching. Holding the
255 			 * budget could have blocked any "hctx"s with the
256 			 * same queue and if we didn't dispatch then there's
257 			 * no guarantee anyone will kick the queue.  Kick it
258 			 * ourselves.
259 			 */
260 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
261 			break;
262 		}
263 
264 		/*
265 		 * Now this rq owns the budget which has to be released
266 		 * if this rq won't be queued to driver via .queue_rq()
267 		 * in blk_mq_dispatch_rq_list().
268 		 */
269 		list_add(&rq->queuelist, &rq_list);
270 
271 		/* round robin for fair dispatch */
272 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
273 
274 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
275 
276 	WRITE_ONCE(hctx->dispatch_from, ctx);
277 	return ret;
278 }
279 
280 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
281 {
282 	struct request_queue *q = hctx->queue;
283 	struct elevator_queue *e = q->elevator;
284 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
285 	int ret = 0;
286 	LIST_HEAD(rq_list);
287 
288 	/*
289 	 * If we have previous entries on our dispatch list, grab them first for
290 	 * more fair dispatch.
291 	 */
292 	if (!list_empty_careful(&hctx->dispatch)) {
293 		spin_lock(&hctx->lock);
294 		if (!list_empty(&hctx->dispatch))
295 			list_splice_init(&hctx->dispatch, &rq_list);
296 		spin_unlock(&hctx->lock);
297 	}
298 
299 	/*
300 	 * Only ask the scheduler for requests, if we didn't have residual
301 	 * requests from the dispatch list. This is to avoid the case where
302 	 * we only ever dispatch a fraction of the requests available because
303 	 * of low device queue depth. Once we pull requests out of the IO
304 	 * scheduler, we can no longer merge or sort them. So it's best to
305 	 * leave them there for as long as we can. Mark the hw queue as
306 	 * needing a restart in that case.
307 	 *
308 	 * We want to dispatch from the scheduler if there was nothing
309 	 * on the dispatch list or we were able to dispatch from the
310 	 * dispatch list.
311 	 */
312 	if (!list_empty(&rq_list)) {
313 		blk_mq_sched_mark_restart_hctx(hctx);
314 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
315 			if (has_sched_dispatch)
316 				ret = blk_mq_do_dispatch_sched(hctx);
317 			else
318 				ret = blk_mq_do_dispatch_ctx(hctx);
319 		}
320 	} else if (has_sched_dispatch) {
321 		ret = blk_mq_do_dispatch_sched(hctx);
322 	} else if (hctx->dispatch_busy) {
323 		/* dequeue request one by one from sw queue if queue is busy */
324 		ret = blk_mq_do_dispatch_ctx(hctx);
325 	} else {
326 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
327 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
328 	}
329 
330 	return ret;
331 }
332 
333 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
334 {
335 	struct request_queue *q = hctx->queue;
336 
337 	/* RCU or SRCU read lock is needed before checking quiesced flag */
338 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
339 		return;
340 
341 	hctx->run++;
342 
343 	/*
344 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
345 	 * empty and we must run again in order to avoid starving flushes.
346 	 */
347 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
348 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
349 			blk_mq_run_hw_queue(hctx, true);
350 	}
351 }
352 
353 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
354 		unsigned int nr_segs, struct request **merged_request)
355 {
356 	struct request *rq;
357 
358 	switch (elv_merge(q, &rq, bio)) {
359 	case ELEVATOR_BACK_MERGE:
360 		if (!blk_mq_sched_allow_merge(q, rq, bio))
361 			return false;
362 		if (!bio_attempt_back_merge(rq, bio, nr_segs))
363 			return false;
364 		*merged_request = attempt_back_merge(q, rq);
365 		if (!*merged_request)
366 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
367 		return true;
368 	case ELEVATOR_FRONT_MERGE:
369 		if (!blk_mq_sched_allow_merge(q, rq, bio))
370 			return false;
371 		if (!bio_attempt_front_merge(rq, bio, nr_segs))
372 			return false;
373 		*merged_request = attempt_front_merge(q, rq);
374 		if (!*merged_request)
375 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
376 		return true;
377 	case ELEVATOR_DISCARD_MERGE:
378 		return bio_attempt_discard_merge(q, rq, bio);
379 	default:
380 		return false;
381 	}
382 }
383 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
384 
385 /*
386  * Iterate list of requests and see if we can merge this bio with any
387  * of them.
388  */
389 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
390 			   struct bio *bio, unsigned int nr_segs)
391 {
392 	struct request *rq;
393 	int checked = 8;
394 
395 	list_for_each_entry_reverse(rq, list, queuelist) {
396 		bool merged = false;
397 
398 		if (!checked--)
399 			break;
400 
401 		if (!blk_rq_merge_ok(rq, bio))
402 			continue;
403 
404 		switch (blk_try_merge(rq, bio)) {
405 		case ELEVATOR_BACK_MERGE:
406 			if (blk_mq_sched_allow_merge(q, rq, bio))
407 				merged = bio_attempt_back_merge(rq, bio,
408 						nr_segs);
409 			break;
410 		case ELEVATOR_FRONT_MERGE:
411 			if (blk_mq_sched_allow_merge(q, rq, bio))
412 				merged = bio_attempt_front_merge(rq, bio,
413 						nr_segs);
414 			break;
415 		case ELEVATOR_DISCARD_MERGE:
416 			merged = bio_attempt_discard_merge(q, rq, bio);
417 			break;
418 		default:
419 			continue;
420 		}
421 
422 		return merged;
423 	}
424 
425 	return false;
426 }
427 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
428 
429 /*
430  * Reverse check our software queue for entries that we could potentially
431  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
432  * too much time checking for merges.
433  */
434 static bool blk_mq_attempt_merge(struct request_queue *q,
435 				 struct blk_mq_hw_ctx *hctx,
436 				 struct blk_mq_ctx *ctx, struct bio *bio,
437 				 unsigned int nr_segs)
438 {
439 	enum hctx_type type = hctx->type;
440 
441 	lockdep_assert_held(&ctx->lock);
442 
443 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
444 		ctx->rq_merged++;
445 		return true;
446 	}
447 
448 	return false;
449 }
450 
451 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
452 		unsigned int nr_segs)
453 {
454 	struct elevator_queue *e = q->elevator;
455 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
456 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
457 	bool ret = false;
458 	enum hctx_type type;
459 
460 	if (e && e->type->ops.bio_merge)
461 		return e->type->ops.bio_merge(hctx, bio, nr_segs);
462 
463 	type = hctx->type;
464 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
465 			!list_empty_careful(&ctx->rq_lists[type])) {
466 		/* default per sw-queue merge */
467 		spin_lock(&ctx->lock);
468 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
469 		spin_unlock(&ctx->lock);
470 	}
471 
472 	return ret;
473 }
474 
475 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
476 {
477 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
480 
481 void blk_mq_sched_request_inserted(struct request *rq)
482 {
483 	trace_block_rq_insert(rq->q, rq);
484 }
485 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
486 
487 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
488 				       bool has_sched,
489 				       struct request *rq)
490 {
491 	/*
492 	 * dispatch flush and passthrough rq directly
493 	 *
494 	 * passthrough request has to be added to hctx->dispatch directly.
495 	 * For some reason, device may be in one situation which can't
496 	 * handle FS request, so STS_RESOURCE is always returned and the
497 	 * FS request will be added to hctx->dispatch. However passthrough
498 	 * request may be required at that time for fixing the problem. If
499 	 * passthrough request is added to scheduler queue, there isn't any
500 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
501 	 */
502 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
503 		return true;
504 
505 	if (has_sched)
506 		rq->rq_flags |= RQF_SORTED;
507 
508 	return false;
509 }
510 
511 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
512 				 bool run_queue, bool async)
513 {
514 	struct request_queue *q = rq->q;
515 	struct elevator_queue *e = q->elevator;
516 	struct blk_mq_ctx *ctx = rq->mq_ctx;
517 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
518 
519 	/* flush rq in flush machinery need to be dispatched directly */
520 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
521 		blk_insert_flush(rq);
522 		goto run;
523 	}
524 
525 	WARN_ON(e && (rq->tag != -1));
526 
527 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
528 		/*
529 		 * Firstly normal IO request is inserted to scheduler queue or
530 		 * sw queue, meantime we add flush request to dispatch queue(
531 		 * hctx->dispatch) directly and there is at most one in-flight
532 		 * flush request for each hw queue, so it doesn't matter to add
533 		 * flush request to tail or front of the dispatch queue.
534 		 *
535 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
536 		 * command, and queueing it will fail when there is any
537 		 * in-flight normal IO request(NCQ command). When adding flush
538 		 * rq to the front of hctx->dispatch, it is easier to introduce
539 		 * extra time to flush rq's latency because of S_SCHED_RESTART
540 		 * compared with adding to the tail of dispatch queue, then
541 		 * chance of flush merge is increased, and less flush requests
542 		 * will be issued to controller. It is observed that ~10% time
543 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
544 		 * drive when adding flush rq to the front of hctx->dispatch.
545 		 *
546 		 * Simply queue flush rq to the front of hctx->dispatch so that
547 		 * intensive flush workloads can benefit in case of NCQ HW.
548 		 */
549 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
550 		blk_mq_request_bypass_insert(rq, at_head, false);
551 		goto run;
552 	}
553 
554 	if (e && e->type->ops.insert_requests) {
555 		LIST_HEAD(list);
556 
557 		list_add(&rq->queuelist, &list);
558 		e->type->ops.insert_requests(hctx, &list, at_head);
559 	} else {
560 		spin_lock(&ctx->lock);
561 		__blk_mq_insert_request(hctx, rq, at_head);
562 		spin_unlock(&ctx->lock);
563 	}
564 
565 run:
566 	if (run_queue)
567 		blk_mq_run_hw_queue(hctx, async);
568 }
569 
570 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
571 				  struct blk_mq_ctx *ctx,
572 				  struct list_head *list, bool run_queue_async)
573 {
574 	struct elevator_queue *e;
575 	struct request_queue *q = hctx->queue;
576 
577 	/*
578 	 * blk_mq_sched_insert_requests() is called from flush plug
579 	 * context only, and hold one usage counter to prevent queue
580 	 * from being released.
581 	 */
582 	percpu_ref_get(&q->q_usage_counter);
583 
584 	e = hctx->queue->elevator;
585 	if (e && e->type->ops.insert_requests)
586 		e->type->ops.insert_requests(hctx, list, false);
587 	else {
588 		/*
589 		 * try to issue requests directly if the hw queue isn't
590 		 * busy in case of 'none' scheduler, and this way may save
591 		 * us one extra enqueue & dequeue to sw queue.
592 		 */
593 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
594 			blk_mq_try_issue_list_directly(hctx, list);
595 			if (list_empty(list))
596 				goto out;
597 		}
598 		blk_mq_insert_requests(hctx, ctx, list);
599 	}
600 
601 	blk_mq_run_hw_queue(hctx, run_queue_async);
602  out:
603 	percpu_ref_put(&q->q_usage_counter);
604 }
605 
606 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
607 				   struct blk_mq_hw_ctx *hctx,
608 				   unsigned int hctx_idx)
609 {
610 	if (hctx->sched_tags) {
611 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
612 		blk_mq_free_rq_map(hctx->sched_tags);
613 		hctx->sched_tags = NULL;
614 	}
615 }
616 
617 static int blk_mq_sched_alloc_tags(struct request_queue *q,
618 				   struct blk_mq_hw_ctx *hctx,
619 				   unsigned int hctx_idx)
620 {
621 	struct blk_mq_tag_set *set = q->tag_set;
622 	int ret;
623 
624 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
625 					       set->reserved_tags);
626 	if (!hctx->sched_tags)
627 		return -ENOMEM;
628 
629 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
630 	if (ret)
631 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
632 
633 	return ret;
634 }
635 
636 /* called in queue's release handler, tagset has gone away */
637 static void blk_mq_sched_tags_teardown(struct request_queue *q)
638 {
639 	struct blk_mq_hw_ctx *hctx;
640 	int i;
641 
642 	queue_for_each_hw_ctx(q, hctx, i) {
643 		if (hctx->sched_tags) {
644 			blk_mq_free_rq_map(hctx->sched_tags);
645 			hctx->sched_tags = NULL;
646 		}
647 	}
648 }
649 
650 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
651 {
652 	struct blk_mq_hw_ctx *hctx;
653 	struct elevator_queue *eq;
654 	unsigned int i;
655 	int ret;
656 
657 	if (!e) {
658 		q->elevator = NULL;
659 		q->nr_requests = q->tag_set->queue_depth;
660 		return 0;
661 	}
662 
663 	/*
664 	 * Default to double of smaller one between hw queue_depth and 128,
665 	 * since we don't split into sync/async like the old code did.
666 	 * Additionally, this is a per-hw queue depth.
667 	 */
668 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
669 				   BLKDEV_MAX_RQ);
670 
671 	queue_for_each_hw_ctx(q, hctx, i) {
672 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
673 		if (ret)
674 			goto err;
675 	}
676 
677 	ret = e->ops.init_sched(q, e);
678 	if (ret)
679 		goto err;
680 
681 	blk_mq_debugfs_register_sched(q);
682 
683 	queue_for_each_hw_ctx(q, hctx, i) {
684 		if (e->ops.init_hctx) {
685 			ret = e->ops.init_hctx(hctx, i);
686 			if (ret) {
687 				eq = q->elevator;
688 				blk_mq_sched_free_requests(q);
689 				blk_mq_exit_sched(q, eq);
690 				kobject_put(&eq->kobj);
691 				return ret;
692 			}
693 		}
694 		blk_mq_debugfs_register_sched_hctx(q, hctx);
695 	}
696 
697 	return 0;
698 
699 err:
700 	blk_mq_sched_free_requests(q);
701 	blk_mq_sched_tags_teardown(q);
702 	q->elevator = NULL;
703 	return ret;
704 }
705 
706 /*
707  * called in either blk_queue_cleanup or elevator_switch, tagset
708  * is required for freeing requests
709  */
710 void blk_mq_sched_free_requests(struct request_queue *q)
711 {
712 	struct blk_mq_hw_ctx *hctx;
713 	int i;
714 
715 	queue_for_each_hw_ctx(q, hctx, i) {
716 		if (hctx->sched_tags)
717 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
718 	}
719 }
720 
721 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
722 {
723 	struct blk_mq_hw_ctx *hctx;
724 	unsigned int i;
725 
726 	queue_for_each_hw_ctx(q, hctx, i) {
727 		blk_mq_debugfs_unregister_sched_hctx(hctx);
728 		if (e->type->ops.exit_hctx && hctx->sched_data) {
729 			e->type->ops.exit_hctx(hctx, i);
730 			hctx->sched_data = NULL;
731 		}
732 	}
733 	blk_mq_debugfs_unregister_sched(q);
734 	if (e->type->ops.exit_sched)
735 		e->type->ops.exit_sched(e);
736 	blk_mq_sched_tags_teardown(q);
737 	q->elevator = NULL;
738 }
739