xref: /openbmc/linux/block/blk-mq-sched.c (revision 8fdf9062)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
34 void blk_mq_sched_assign_ioc(struct request *rq)
35 {
36 	struct request_queue *q = rq->q;
37 	struct io_context *ioc;
38 	struct io_cq *icq;
39 
40 	/*
41 	 * May not have an IO context if it's a passthrough request
42 	 */
43 	ioc = current->io_context;
44 	if (!ioc)
45 		return;
46 
47 	spin_lock_irq(&q->queue_lock);
48 	icq = ioc_lookup_icq(ioc, q);
49 	spin_unlock_irq(&q->queue_lock);
50 
51 	if (!icq) {
52 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
53 		if (!icq)
54 			return;
55 	}
56 	get_io_context(icq->ioc);
57 	rq->elv.icq = icq;
58 }
59 
60 /*
61  * Mark a hardware queue as needing a restart. For shared queues, maintain
62  * a count of how many hardware queues are marked for restart.
63  */
64 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
65 {
66 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
67 		return;
68 
69 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
72 
73 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
74 {
75 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
76 		return;
77 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
78 
79 	blk_mq_run_hw_queue(hctx, true);
80 }
81 
82 /*
83  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
84  * its queue by itself in its completion handler, so we don't need to
85  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
86  */
87 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
88 {
89 	struct request_queue *q = hctx->queue;
90 	struct elevator_queue *e = q->elevator;
91 	LIST_HEAD(rq_list);
92 
93 	do {
94 		struct request *rq;
95 
96 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
97 			break;
98 
99 		if (!blk_mq_get_dispatch_budget(hctx))
100 			break;
101 
102 		rq = e->type->ops.dispatch_request(hctx);
103 		if (!rq) {
104 			blk_mq_put_dispatch_budget(hctx);
105 			break;
106 		}
107 
108 		/*
109 		 * Now this rq owns the budget which has to be released
110 		 * if this rq won't be queued to driver via .queue_rq()
111 		 * in blk_mq_dispatch_rq_list().
112 		 */
113 		list_add(&rq->queuelist, &rq_list);
114 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
115 }
116 
117 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
118 					  struct blk_mq_ctx *ctx)
119 {
120 	unsigned short idx = ctx->index_hw[hctx->type];
121 
122 	if (++idx == hctx->nr_ctx)
123 		idx = 0;
124 
125 	return hctx->ctxs[idx];
126 }
127 
128 /*
129  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
130  * its queue by itself in its completion handler, so we don't need to
131  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
132  */
133 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
134 {
135 	struct request_queue *q = hctx->queue;
136 	LIST_HEAD(rq_list);
137 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
138 
139 	do {
140 		struct request *rq;
141 
142 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
143 			break;
144 
145 		if (!blk_mq_get_dispatch_budget(hctx))
146 			break;
147 
148 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
149 		if (!rq) {
150 			blk_mq_put_dispatch_budget(hctx);
151 			break;
152 		}
153 
154 		/*
155 		 * Now this rq owns the budget which has to be released
156 		 * if this rq won't be queued to driver via .queue_rq()
157 		 * in blk_mq_dispatch_rq_list().
158 		 */
159 		list_add(&rq->queuelist, &rq_list);
160 
161 		/* round robin for fair dispatch */
162 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
163 
164 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
165 
166 	WRITE_ONCE(hctx->dispatch_from, ctx);
167 }
168 
169 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
170 {
171 	struct request_queue *q = hctx->queue;
172 	struct elevator_queue *e = q->elevator;
173 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
174 	LIST_HEAD(rq_list);
175 
176 	/* RCU or SRCU read lock is needed before checking quiesced flag */
177 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
178 		return;
179 
180 	hctx->run++;
181 
182 	/*
183 	 * If we have previous entries on our dispatch list, grab them first for
184 	 * more fair dispatch.
185 	 */
186 	if (!list_empty_careful(&hctx->dispatch)) {
187 		spin_lock(&hctx->lock);
188 		if (!list_empty(&hctx->dispatch))
189 			list_splice_init(&hctx->dispatch, &rq_list);
190 		spin_unlock(&hctx->lock);
191 	}
192 
193 	/*
194 	 * Only ask the scheduler for requests, if we didn't have residual
195 	 * requests from the dispatch list. This is to avoid the case where
196 	 * we only ever dispatch a fraction of the requests available because
197 	 * of low device queue depth. Once we pull requests out of the IO
198 	 * scheduler, we can no longer merge or sort them. So it's best to
199 	 * leave them there for as long as we can. Mark the hw queue as
200 	 * needing a restart in that case.
201 	 *
202 	 * We want to dispatch from the scheduler if there was nothing
203 	 * on the dispatch list or we were able to dispatch from the
204 	 * dispatch list.
205 	 */
206 	if (!list_empty(&rq_list)) {
207 		blk_mq_sched_mark_restart_hctx(hctx);
208 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
209 			if (has_sched_dispatch)
210 				blk_mq_do_dispatch_sched(hctx);
211 			else
212 				blk_mq_do_dispatch_ctx(hctx);
213 		}
214 	} else if (has_sched_dispatch) {
215 		blk_mq_do_dispatch_sched(hctx);
216 	} else if (hctx->dispatch_busy) {
217 		/* dequeue request one by one from sw queue if queue is busy */
218 		blk_mq_do_dispatch_ctx(hctx);
219 	} else {
220 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
221 		blk_mq_dispatch_rq_list(q, &rq_list, false);
222 	}
223 }
224 
225 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
226 			    struct request **merged_request)
227 {
228 	struct request *rq;
229 
230 	switch (elv_merge(q, &rq, bio)) {
231 	case ELEVATOR_BACK_MERGE:
232 		if (!blk_mq_sched_allow_merge(q, rq, bio))
233 			return false;
234 		if (!bio_attempt_back_merge(q, rq, bio))
235 			return false;
236 		*merged_request = attempt_back_merge(q, rq);
237 		if (!*merged_request)
238 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
239 		return true;
240 	case ELEVATOR_FRONT_MERGE:
241 		if (!blk_mq_sched_allow_merge(q, rq, bio))
242 			return false;
243 		if (!bio_attempt_front_merge(q, rq, bio))
244 			return false;
245 		*merged_request = attempt_front_merge(q, rq);
246 		if (!*merged_request)
247 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
248 		return true;
249 	case ELEVATOR_DISCARD_MERGE:
250 		return bio_attempt_discard_merge(q, rq, bio);
251 	default:
252 		return false;
253 	}
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
256 
257 /*
258  * Iterate list of requests and see if we can merge this bio with any
259  * of them.
260  */
261 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
262 			   struct bio *bio)
263 {
264 	struct request *rq;
265 	int checked = 8;
266 
267 	list_for_each_entry_reverse(rq, list, queuelist) {
268 		bool merged = false;
269 
270 		if (!checked--)
271 			break;
272 
273 		if (!blk_rq_merge_ok(rq, bio))
274 			continue;
275 
276 		switch (blk_try_merge(rq, bio)) {
277 		case ELEVATOR_BACK_MERGE:
278 			if (blk_mq_sched_allow_merge(q, rq, bio))
279 				merged = bio_attempt_back_merge(q, rq, bio);
280 			break;
281 		case ELEVATOR_FRONT_MERGE:
282 			if (blk_mq_sched_allow_merge(q, rq, bio))
283 				merged = bio_attempt_front_merge(q, rq, bio);
284 			break;
285 		case ELEVATOR_DISCARD_MERGE:
286 			merged = bio_attempt_discard_merge(q, rq, bio);
287 			break;
288 		default:
289 			continue;
290 		}
291 
292 		return merged;
293 	}
294 
295 	return false;
296 }
297 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
298 
299 /*
300  * Reverse check our software queue for entries that we could potentially
301  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
302  * too much time checking for merges.
303  */
304 static bool blk_mq_attempt_merge(struct request_queue *q,
305 				 struct blk_mq_hw_ctx *hctx,
306 				 struct blk_mq_ctx *ctx, struct bio *bio)
307 {
308 	enum hctx_type type = hctx->type;
309 
310 	lockdep_assert_held(&ctx->lock);
311 
312 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio)) {
313 		ctx->rq_merged++;
314 		return true;
315 	}
316 
317 	return false;
318 }
319 
320 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
321 {
322 	struct elevator_queue *e = q->elevator;
323 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
324 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx->cpu);
325 	bool ret = false;
326 	enum hctx_type type;
327 
328 	if (e && e->type->ops.bio_merge) {
329 		blk_mq_put_ctx(ctx);
330 		return e->type->ops.bio_merge(hctx, bio);
331 	}
332 
333 	type = hctx->type;
334 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
335 			!list_empty_careful(&ctx->rq_lists[type])) {
336 		/* default per sw-queue merge */
337 		spin_lock(&ctx->lock);
338 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio);
339 		spin_unlock(&ctx->lock);
340 	}
341 
342 	blk_mq_put_ctx(ctx);
343 	return ret;
344 }
345 
346 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
347 {
348 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
349 }
350 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
351 
352 void blk_mq_sched_request_inserted(struct request *rq)
353 {
354 	trace_block_rq_insert(rq->q, rq);
355 }
356 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
357 
358 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
359 				       bool has_sched,
360 				       struct request *rq)
361 {
362 	/* dispatch flush rq directly */
363 	if (rq->rq_flags & RQF_FLUSH_SEQ) {
364 		spin_lock(&hctx->lock);
365 		list_add(&rq->queuelist, &hctx->dispatch);
366 		spin_unlock(&hctx->lock);
367 		return true;
368 	}
369 
370 	if (has_sched)
371 		rq->rq_flags |= RQF_SORTED;
372 
373 	return false;
374 }
375 
376 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
377 				 bool run_queue, bool async)
378 {
379 	struct request_queue *q = rq->q;
380 	struct elevator_queue *e = q->elevator;
381 	struct blk_mq_ctx *ctx = rq->mq_ctx;
382 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
383 
384 	/* flush rq in flush machinery need to be dispatched directly */
385 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
386 		blk_insert_flush(rq);
387 		goto run;
388 	}
389 
390 	WARN_ON(e && (rq->tag != -1));
391 
392 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
393 		goto run;
394 
395 	if (e && e->type->ops.insert_requests) {
396 		LIST_HEAD(list);
397 
398 		list_add(&rq->queuelist, &list);
399 		e->type->ops.insert_requests(hctx, &list, at_head);
400 	} else {
401 		spin_lock(&ctx->lock);
402 		__blk_mq_insert_request(hctx, rq, at_head);
403 		spin_unlock(&ctx->lock);
404 	}
405 
406 run:
407 	if (run_queue)
408 		blk_mq_run_hw_queue(hctx, async);
409 }
410 
411 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
412 				  struct blk_mq_ctx *ctx,
413 				  struct list_head *list, bool run_queue_async)
414 {
415 	struct elevator_queue *e;
416 
417 	e = hctx->queue->elevator;
418 	if (e && e->type->ops.insert_requests)
419 		e->type->ops.insert_requests(hctx, list, false);
420 	else {
421 		/*
422 		 * try to issue requests directly if the hw queue isn't
423 		 * busy in case of 'none' scheduler, and this way may save
424 		 * us one extra enqueue & dequeue to sw queue.
425 		 */
426 		if (!hctx->dispatch_busy && !e && !run_queue_async)
427 			blk_mq_try_issue_list_directly(hctx, list);
428 		else
429 			blk_mq_insert_requests(hctx, ctx, list);
430 	}
431 
432 	blk_mq_run_hw_queue(hctx, run_queue_async);
433 }
434 
435 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
436 				   struct blk_mq_hw_ctx *hctx,
437 				   unsigned int hctx_idx)
438 {
439 	if (hctx->sched_tags) {
440 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
441 		blk_mq_free_rq_map(hctx->sched_tags);
442 		hctx->sched_tags = NULL;
443 	}
444 }
445 
446 static int blk_mq_sched_alloc_tags(struct request_queue *q,
447 				   struct blk_mq_hw_ctx *hctx,
448 				   unsigned int hctx_idx)
449 {
450 	struct blk_mq_tag_set *set = q->tag_set;
451 	int ret;
452 
453 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
454 					       set->reserved_tags);
455 	if (!hctx->sched_tags)
456 		return -ENOMEM;
457 
458 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
459 	if (ret)
460 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
461 
462 	return ret;
463 }
464 
465 static void blk_mq_sched_tags_teardown(struct request_queue *q)
466 {
467 	struct blk_mq_tag_set *set = q->tag_set;
468 	struct blk_mq_hw_ctx *hctx;
469 	int i;
470 
471 	queue_for_each_hw_ctx(q, hctx, i)
472 		blk_mq_sched_free_tags(set, hctx, i);
473 }
474 
475 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
476 {
477 	struct blk_mq_hw_ctx *hctx;
478 	struct elevator_queue *eq;
479 	unsigned int i;
480 	int ret;
481 
482 	if (!e) {
483 		q->elevator = NULL;
484 		q->nr_requests = q->tag_set->queue_depth;
485 		return 0;
486 	}
487 
488 	/*
489 	 * Default to double of smaller one between hw queue_depth and 128,
490 	 * since we don't split into sync/async like the old code did.
491 	 * Additionally, this is a per-hw queue depth.
492 	 */
493 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
494 				   BLKDEV_MAX_RQ);
495 
496 	queue_for_each_hw_ctx(q, hctx, i) {
497 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
498 		if (ret)
499 			goto err;
500 	}
501 
502 	ret = e->ops.init_sched(q, e);
503 	if (ret)
504 		goto err;
505 
506 	blk_mq_debugfs_register_sched(q);
507 
508 	queue_for_each_hw_ctx(q, hctx, i) {
509 		if (e->ops.init_hctx) {
510 			ret = e->ops.init_hctx(hctx, i);
511 			if (ret) {
512 				eq = q->elevator;
513 				blk_mq_exit_sched(q, eq);
514 				kobject_put(&eq->kobj);
515 				return ret;
516 			}
517 		}
518 		blk_mq_debugfs_register_sched_hctx(q, hctx);
519 	}
520 
521 	return 0;
522 
523 err:
524 	blk_mq_sched_tags_teardown(q);
525 	q->elevator = NULL;
526 	return ret;
527 }
528 
529 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
530 {
531 	struct blk_mq_hw_ctx *hctx;
532 	unsigned int i;
533 
534 	queue_for_each_hw_ctx(q, hctx, i) {
535 		blk_mq_debugfs_unregister_sched_hctx(hctx);
536 		if (e->type->ops.exit_hctx && hctx->sched_data) {
537 			e->type->ops.exit_hctx(hctx, i);
538 			hctx->sched_data = NULL;
539 		}
540 	}
541 	blk_mq_debugfs_unregister_sched(q);
542 	if (e->type->ops.exit_sched)
543 		e->type->ops.exit_sched(e);
544 	blk_mq_sched_tags_teardown(q);
545 	q->elevator = NULL;
546 }
547