xref: /openbmc/linux/block/blk-mq-sched.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart. For shared queues, maintain
49  * a count of how many hardware queues are marked for restart.
50  */
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 		return;
55 
56 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59 
60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 		return;
64 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65 
66 	/*
67 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 	 * meantime new request added to hctx->dispatch is missed to check in
71 	 * blk_mq_run_hw_queue().
72 	 */
73 	smp_mb();
74 
75 	blk_mq_run_hw_queue(hctx, true);
76 }
77 
78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 			const struct list_head *b)
80 {
81 	struct request *rqa = container_of(a, struct request, queuelist);
82 	struct request *rqb = container_of(b, struct request, queuelist);
83 
84 	return rqa->mq_hctx > rqb->mq_hctx;
85 }
86 
87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 	struct blk_mq_hw_ctx *hctx =
90 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 	struct request *rq;
92 	LIST_HEAD(hctx_list);
93 	unsigned int count = 0;
94 
95 	list_for_each_entry(rq, rq_list, queuelist) {
96 		if (rq->mq_hctx != hctx) {
97 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 			goto dispatch;
99 		}
100 		count++;
101 	}
102 	list_splice_tail_init(rq_list, &hctx_list);
103 
104 dispatch:
105 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107 
108 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109 
110 /*
111  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112  * its queue by itself in its completion handler, so we don't need to
113  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114  *
115  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116  * be run again.  This is necessary to avoid starving flushes.
117  */
118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 	struct request_queue *q = hctx->queue;
121 	struct elevator_queue *e = q->elevator;
122 	bool multi_hctxs = false, run_queue = false;
123 	bool dispatched = false, busy = false;
124 	unsigned int max_dispatch;
125 	LIST_HEAD(rq_list);
126 	int count = 0;
127 
128 	if (hctx->dispatch_busy)
129 		max_dispatch = 1;
130 	else
131 		max_dispatch = hctx->queue->nr_requests;
132 
133 	do {
134 		struct request *rq;
135 		int budget_token;
136 
137 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
138 			break;
139 
140 		if (!list_empty_careful(&hctx->dispatch)) {
141 			busy = true;
142 			break;
143 		}
144 
145 		budget_token = blk_mq_get_dispatch_budget(q);
146 		if (budget_token < 0)
147 			break;
148 
149 		rq = e->type->ops.dispatch_request(hctx);
150 		if (!rq) {
151 			blk_mq_put_dispatch_budget(q, budget_token);
152 			/*
153 			 * We're releasing without dispatching. Holding the
154 			 * budget could have blocked any "hctx"s with the
155 			 * same queue and if we didn't dispatch then there's
156 			 * no guarantee anyone will kick the queue.  Kick it
157 			 * ourselves.
158 			 */
159 			run_queue = true;
160 			break;
161 		}
162 
163 		blk_mq_set_rq_budget_token(rq, budget_token);
164 
165 		/*
166 		 * Now this rq owns the budget which has to be released
167 		 * if this rq won't be queued to driver via .queue_rq()
168 		 * in blk_mq_dispatch_rq_list().
169 		 */
170 		list_add_tail(&rq->queuelist, &rq_list);
171 		count++;
172 		if (rq->mq_hctx != hctx)
173 			multi_hctxs = true;
174 
175 		/*
176 		 * If we cannot get tag for the request, stop dequeueing
177 		 * requests from the IO scheduler. We are unlikely to be able
178 		 * to submit them anyway and it creates false impression for
179 		 * scheduling heuristics that the device can take more IO.
180 		 */
181 		if (!blk_mq_get_driver_tag(rq))
182 			break;
183 	} while (count < max_dispatch);
184 
185 	if (!count) {
186 		if (run_queue)
187 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188 	} else if (multi_hctxs) {
189 		/*
190 		 * Requests from different hctx may be dequeued from some
191 		 * schedulers, such as bfq and deadline.
192 		 *
193 		 * Sort the requests in the list according to their hctx,
194 		 * dispatch batching requests from same hctx at a time.
195 		 */
196 		list_sort(NULL, &rq_list, sched_rq_cmp);
197 		do {
198 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199 		} while (!list_empty(&rq_list));
200 	} else {
201 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202 	}
203 
204 	if (busy)
205 		return -EAGAIN;
206 	return !!dispatched;
207 }
208 
209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210 {
211 	int ret;
212 
213 	do {
214 		ret = __blk_mq_do_dispatch_sched(hctx);
215 	} while (ret == 1);
216 
217 	return ret;
218 }
219 
220 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
221 					  struct blk_mq_ctx *ctx)
222 {
223 	unsigned short idx = ctx->index_hw[hctx->type];
224 
225 	if (++idx == hctx->nr_ctx)
226 		idx = 0;
227 
228 	return hctx->ctxs[idx];
229 }
230 
231 /*
232  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
233  * its queue by itself in its completion handler, so we don't need to
234  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235  *
236  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237  * be run again.  This is necessary to avoid starving flushes.
238  */
239 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240 {
241 	struct request_queue *q = hctx->queue;
242 	LIST_HEAD(rq_list);
243 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244 	int ret = 0;
245 	struct request *rq;
246 
247 	do {
248 		int budget_token;
249 
250 		if (!list_empty_careful(&hctx->dispatch)) {
251 			ret = -EAGAIN;
252 			break;
253 		}
254 
255 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
256 			break;
257 
258 		budget_token = blk_mq_get_dispatch_budget(q);
259 		if (budget_token < 0)
260 			break;
261 
262 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
263 		if (!rq) {
264 			blk_mq_put_dispatch_budget(q, budget_token);
265 			/*
266 			 * We're releasing without dispatching. Holding the
267 			 * budget could have blocked any "hctx"s with the
268 			 * same queue and if we didn't dispatch then there's
269 			 * no guarantee anyone will kick the queue.  Kick it
270 			 * ourselves.
271 			 */
272 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
273 			break;
274 		}
275 
276 		blk_mq_set_rq_budget_token(rq, budget_token);
277 
278 		/*
279 		 * Now this rq owns the budget which has to be released
280 		 * if this rq won't be queued to driver via .queue_rq()
281 		 * in blk_mq_dispatch_rq_list().
282 		 */
283 		list_add(&rq->queuelist, &rq_list);
284 
285 		/* round robin for fair dispatch */
286 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
287 
288 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
289 
290 	WRITE_ONCE(hctx->dispatch_from, ctx);
291 	return ret;
292 }
293 
294 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
295 {
296 	struct request_queue *q = hctx->queue;
297 	const bool has_sched = q->elevator;
298 	int ret = 0;
299 	LIST_HEAD(rq_list);
300 
301 	/*
302 	 * If we have previous entries on our dispatch list, grab them first for
303 	 * more fair dispatch.
304 	 */
305 	if (!list_empty_careful(&hctx->dispatch)) {
306 		spin_lock(&hctx->lock);
307 		if (!list_empty(&hctx->dispatch))
308 			list_splice_init(&hctx->dispatch, &rq_list);
309 		spin_unlock(&hctx->lock);
310 	}
311 
312 	/*
313 	 * Only ask the scheduler for requests, if we didn't have residual
314 	 * requests from the dispatch list. This is to avoid the case where
315 	 * we only ever dispatch a fraction of the requests available because
316 	 * of low device queue depth. Once we pull requests out of the IO
317 	 * scheduler, we can no longer merge or sort them. So it's best to
318 	 * leave them there for as long as we can. Mark the hw queue as
319 	 * needing a restart in that case.
320 	 *
321 	 * We want to dispatch from the scheduler if there was nothing
322 	 * on the dispatch list or we were able to dispatch from the
323 	 * dispatch list.
324 	 */
325 	if (!list_empty(&rq_list)) {
326 		blk_mq_sched_mark_restart_hctx(hctx);
327 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
328 			if (has_sched)
329 				ret = blk_mq_do_dispatch_sched(hctx);
330 			else
331 				ret = blk_mq_do_dispatch_ctx(hctx);
332 		}
333 	} else if (has_sched) {
334 		ret = blk_mq_do_dispatch_sched(hctx);
335 	} else if (hctx->dispatch_busy) {
336 		/* dequeue request one by one from sw queue if queue is busy */
337 		ret = blk_mq_do_dispatch_ctx(hctx);
338 	} else {
339 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
340 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
341 	}
342 
343 	return ret;
344 }
345 
346 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
347 {
348 	struct request_queue *q = hctx->queue;
349 
350 	/* RCU or SRCU read lock is needed before checking quiesced flag */
351 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
352 		return;
353 
354 	hctx->run++;
355 
356 	/*
357 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
358 	 * empty and we must run again in order to avoid starving flushes.
359 	 */
360 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
361 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
362 			blk_mq_run_hw_queue(hctx, true);
363 	}
364 }
365 
366 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
367 		unsigned int nr_segs)
368 {
369 	struct elevator_queue *e = q->elevator;
370 	struct blk_mq_ctx *ctx;
371 	struct blk_mq_hw_ctx *hctx;
372 	bool ret = false;
373 	enum hctx_type type;
374 
375 	if (e && e->type->ops.bio_merge)
376 		return e->type->ops.bio_merge(q, bio, nr_segs);
377 
378 	ctx = blk_mq_get_ctx(q);
379 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
380 	type = hctx->type;
381 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
382 	    list_empty_careful(&ctx->rq_lists[type]))
383 		return false;
384 
385 	/* default per sw-queue merge */
386 	spin_lock(&ctx->lock);
387 	/*
388 	 * Reverse check our software queue for entries that we could
389 	 * potentially merge with. Currently includes a hand-wavy stop
390 	 * count of 8, to not spend too much time checking for merges.
391 	 */
392 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
393 		ctx->rq_merged++;
394 		ret = true;
395 	}
396 
397 	spin_unlock(&ctx->lock);
398 
399 	return ret;
400 }
401 
402 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
403 				   struct list_head *free)
404 {
405 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
406 }
407 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
408 
409 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
410 				       struct request *rq)
411 {
412 	/*
413 	 * dispatch flush and passthrough rq directly
414 	 *
415 	 * passthrough request has to be added to hctx->dispatch directly.
416 	 * For some reason, device may be in one situation which can't
417 	 * handle FS request, so STS_RESOURCE is always returned and the
418 	 * FS request will be added to hctx->dispatch. However passthrough
419 	 * request may be required at that time for fixing the problem. If
420 	 * passthrough request is added to scheduler queue, there isn't any
421 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
422 	 */
423 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
424 		return true;
425 
426 	return false;
427 }
428 
429 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
430 				 bool run_queue, bool async)
431 {
432 	struct request_queue *q = rq->q;
433 	struct elevator_queue *e = q->elevator;
434 	struct blk_mq_ctx *ctx = rq->mq_ctx;
435 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
436 
437 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
438 
439 	if (blk_mq_sched_bypass_insert(hctx, rq)) {
440 		/*
441 		 * Firstly normal IO request is inserted to scheduler queue or
442 		 * sw queue, meantime we add flush request to dispatch queue(
443 		 * hctx->dispatch) directly and there is at most one in-flight
444 		 * flush request for each hw queue, so it doesn't matter to add
445 		 * flush request to tail or front of the dispatch queue.
446 		 *
447 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
448 		 * command, and queueing it will fail when there is any
449 		 * in-flight normal IO request(NCQ command). When adding flush
450 		 * rq to the front of hctx->dispatch, it is easier to introduce
451 		 * extra time to flush rq's latency because of S_SCHED_RESTART
452 		 * compared with adding to the tail of dispatch queue, then
453 		 * chance of flush merge is increased, and less flush requests
454 		 * will be issued to controller. It is observed that ~10% time
455 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
456 		 * drive when adding flush rq to the front of hctx->dispatch.
457 		 *
458 		 * Simply queue flush rq to the front of hctx->dispatch so that
459 		 * intensive flush workloads can benefit in case of NCQ HW.
460 		 */
461 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
462 		blk_mq_request_bypass_insert(rq, at_head, false);
463 		goto run;
464 	}
465 
466 	if (e) {
467 		LIST_HEAD(list);
468 
469 		list_add(&rq->queuelist, &list);
470 		e->type->ops.insert_requests(hctx, &list, at_head);
471 	} else {
472 		spin_lock(&ctx->lock);
473 		__blk_mq_insert_request(hctx, rq, at_head);
474 		spin_unlock(&ctx->lock);
475 	}
476 
477 run:
478 	if (run_queue)
479 		blk_mq_run_hw_queue(hctx, async);
480 }
481 
482 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
483 				  struct blk_mq_ctx *ctx,
484 				  struct list_head *list, bool run_queue_async)
485 {
486 	struct elevator_queue *e;
487 	struct request_queue *q = hctx->queue;
488 
489 	/*
490 	 * blk_mq_sched_insert_requests() is called from flush plug
491 	 * context only, and hold one usage counter to prevent queue
492 	 * from being released.
493 	 */
494 	percpu_ref_get(&q->q_usage_counter);
495 
496 	e = hctx->queue->elevator;
497 	if (e) {
498 		e->type->ops.insert_requests(hctx, list, false);
499 	} else {
500 		/*
501 		 * try to issue requests directly if the hw queue isn't
502 		 * busy in case of 'none' scheduler, and this way may save
503 		 * us one extra enqueue & dequeue to sw queue.
504 		 */
505 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
506 			blk_mq_try_issue_list_directly(hctx, list);
507 			if (list_empty(list))
508 				goto out;
509 		}
510 		blk_mq_insert_requests(hctx, ctx, list);
511 	}
512 
513 	blk_mq_run_hw_queue(hctx, run_queue_async);
514  out:
515 	percpu_ref_put(&q->q_usage_counter);
516 }
517 
518 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
519 				   struct blk_mq_hw_ctx *hctx,
520 				   unsigned int hctx_idx)
521 {
522 	if (hctx->sched_tags) {
523 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
524 		blk_mq_free_rq_map(hctx->sched_tags, set->flags);
525 		hctx->sched_tags = NULL;
526 	}
527 }
528 
529 static int blk_mq_sched_alloc_tags(struct request_queue *q,
530 				   struct blk_mq_hw_ctx *hctx,
531 				   unsigned int hctx_idx)
532 {
533 	struct blk_mq_tag_set *set = q->tag_set;
534 	int ret;
535 
536 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
537 					       set->reserved_tags, set->flags);
538 	if (!hctx->sched_tags)
539 		return -ENOMEM;
540 
541 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
542 	if (ret)
543 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
544 
545 	return ret;
546 }
547 
548 /* called in queue's release handler, tagset has gone away */
549 static void blk_mq_sched_tags_teardown(struct request_queue *q)
550 {
551 	struct blk_mq_hw_ctx *hctx;
552 	int i;
553 
554 	queue_for_each_hw_ctx(q, hctx, i) {
555 		if (hctx->sched_tags) {
556 			blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
557 			hctx->sched_tags = NULL;
558 		}
559 	}
560 }
561 
562 static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
563 {
564 	struct blk_mq_tag_set *set = queue->tag_set;
565 	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
566 	struct blk_mq_hw_ctx *hctx;
567 	int ret, i;
568 
569 	/*
570 	 * Set initial depth at max so that we don't need to reallocate for
571 	 * updating nr_requests.
572 	 */
573 	ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
574 				  &queue->sched_breserved_tags,
575 				  MAX_SCHED_RQ, set->reserved_tags,
576 				  set->numa_node, alloc_policy);
577 	if (ret)
578 		return ret;
579 
580 	queue_for_each_hw_ctx(queue, hctx, i) {
581 		hctx->sched_tags->bitmap_tags =
582 					&queue->sched_bitmap_tags;
583 		hctx->sched_tags->breserved_tags =
584 					&queue->sched_breserved_tags;
585 	}
586 
587 	sbitmap_queue_resize(&queue->sched_bitmap_tags,
588 			     queue->nr_requests - set->reserved_tags);
589 
590 	return 0;
591 }
592 
593 static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
594 {
595 	sbitmap_queue_free(&queue->sched_bitmap_tags);
596 	sbitmap_queue_free(&queue->sched_breserved_tags);
597 }
598 
599 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
600 {
601 	struct blk_mq_hw_ctx *hctx;
602 	struct elevator_queue *eq;
603 	unsigned int i;
604 	int ret;
605 
606 	if (!e) {
607 		q->elevator = NULL;
608 		q->nr_requests = q->tag_set->queue_depth;
609 		return 0;
610 	}
611 
612 	/*
613 	 * Default to double of smaller one between hw queue_depth and 128,
614 	 * since we don't split into sync/async like the old code did.
615 	 * Additionally, this is a per-hw queue depth.
616 	 */
617 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
618 				   BLKDEV_MAX_RQ);
619 
620 	queue_for_each_hw_ctx(q, hctx, i) {
621 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
622 		if (ret)
623 			goto err_free_tags;
624 	}
625 
626 	if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
627 		ret = blk_mq_init_sched_shared_sbitmap(q);
628 		if (ret)
629 			goto err_free_tags;
630 	}
631 
632 	ret = e->ops.init_sched(q, e);
633 	if (ret)
634 		goto err_free_sbitmap;
635 
636 	blk_mq_debugfs_register_sched(q);
637 
638 	queue_for_each_hw_ctx(q, hctx, i) {
639 		if (e->ops.init_hctx) {
640 			ret = e->ops.init_hctx(hctx, i);
641 			if (ret) {
642 				eq = q->elevator;
643 				blk_mq_sched_free_requests(q);
644 				blk_mq_exit_sched(q, eq);
645 				kobject_put(&eq->kobj);
646 				return ret;
647 			}
648 		}
649 		blk_mq_debugfs_register_sched_hctx(q, hctx);
650 	}
651 
652 	return 0;
653 
654 err_free_sbitmap:
655 	if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
656 		blk_mq_exit_sched_shared_sbitmap(q);
657 err_free_tags:
658 	blk_mq_sched_free_requests(q);
659 	blk_mq_sched_tags_teardown(q);
660 	q->elevator = NULL;
661 	return ret;
662 }
663 
664 /*
665  * called in either blk_queue_cleanup or elevator_switch, tagset
666  * is required for freeing requests
667  */
668 void blk_mq_sched_free_requests(struct request_queue *q)
669 {
670 	struct blk_mq_hw_ctx *hctx;
671 	int i;
672 
673 	queue_for_each_hw_ctx(q, hctx, i) {
674 		if (hctx->sched_tags)
675 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
676 	}
677 }
678 
679 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
680 {
681 	struct blk_mq_hw_ctx *hctx;
682 	unsigned int i;
683 	unsigned int flags = 0;
684 
685 	queue_for_each_hw_ctx(q, hctx, i) {
686 		blk_mq_debugfs_unregister_sched_hctx(hctx);
687 		if (e->type->ops.exit_hctx && hctx->sched_data) {
688 			e->type->ops.exit_hctx(hctx, i);
689 			hctx->sched_data = NULL;
690 		}
691 		flags = hctx->flags;
692 	}
693 	blk_mq_debugfs_unregister_sched(q);
694 	if (e->type->ops.exit_sched)
695 		e->type->ops.exit_sched(e);
696 	blk_mq_sched_tags_teardown(q);
697 	if (blk_mq_is_sbitmap_shared(flags))
698 		blk_mq_exit_sched_shared_sbitmap(q);
699 	q->elevator = NULL;
700 }
701