xref: /openbmc/linux/block/blk-mq-sched.c (revision 2f8be0e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_free_hctx_data(struct request_queue *q,
22 				 void (*exit)(struct blk_mq_hw_ctx *))
23 {
24 	struct blk_mq_hw_ctx *hctx;
25 	int i;
26 
27 	queue_for_each_hw_ctx(q, hctx, i) {
28 		if (exit && hctx->sched_data)
29 			exit(hctx);
30 		kfree(hctx->sched_data);
31 		hctx->sched_data = NULL;
32 	}
33 }
34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35 
36 void blk_mq_sched_assign_ioc(struct request *rq)
37 {
38 	struct request_queue *q = rq->q;
39 	struct io_context *ioc;
40 	struct io_cq *icq;
41 
42 	/*
43 	 * May not have an IO context if it's a passthrough request
44 	 */
45 	ioc = current->io_context;
46 	if (!ioc)
47 		return;
48 
49 	spin_lock_irq(&q->queue_lock);
50 	icq = ioc_lookup_icq(ioc, q);
51 	spin_unlock_irq(&q->queue_lock);
52 
53 	if (!icq) {
54 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
55 		if (!icq)
56 			return;
57 	}
58 	get_io_context(icq->ioc);
59 	rq->elv.icq = icq;
60 }
61 
62 /*
63  * Mark a hardware queue as needing a restart. For shared queues, maintain
64  * a count of how many hardware queues are marked for restart.
65  */
66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 {
68 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 		return;
70 
71 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74 
75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 {
77 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 		return;
79 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80 
81 	/*
82 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
83 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
84 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
85 	 * meantime new request added to hctx->dispatch is missed to check in
86 	 * blk_mq_run_hw_queue().
87 	 */
88 	smp_mb();
89 
90 	blk_mq_run_hw_queue(hctx, true);
91 }
92 
93 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
94 {
95 	struct request *rqa = container_of(a, struct request, queuelist);
96 	struct request *rqb = container_of(b, struct request, queuelist);
97 
98 	return rqa->mq_hctx > rqb->mq_hctx;
99 }
100 
101 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
102 {
103 	struct blk_mq_hw_ctx *hctx =
104 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
105 	struct request *rq;
106 	LIST_HEAD(hctx_list);
107 	unsigned int count = 0;
108 
109 	list_for_each_entry(rq, rq_list, queuelist) {
110 		if (rq->mq_hctx != hctx) {
111 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
112 			goto dispatch;
113 		}
114 		count++;
115 	}
116 	list_splice_tail_init(rq_list, &hctx_list);
117 
118 dispatch:
119 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
120 }
121 
122 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
123 
124 /*
125  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
126  * its queue by itself in its completion handler, so we don't need to
127  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
128  *
129  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
130  * be run again.  This is necessary to avoid starving flushes.
131  */
132 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
133 {
134 	struct request_queue *q = hctx->queue;
135 	struct elevator_queue *e = q->elevator;
136 	bool multi_hctxs = false, run_queue = false;
137 	bool dispatched = false, busy = false;
138 	unsigned int max_dispatch;
139 	LIST_HEAD(rq_list);
140 	int count = 0;
141 
142 	if (hctx->dispatch_busy)
143 		max_dispatch = 1;
144 	else
145 		max_dispatch = hctx->queue->nr_requests;
146 
147 	do {
148 		struct request *rq;
149 
150 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
151 			break;
152 
153 		if (!list_empty_careful(&hctx->dispatch)) {
154 			busy = true;
155 			break;
156 		}
157 
158 		if (!blk_mq_get_dispatch_budget(q))
159 			break;
160 
161 		rq = e->type->ops.dispatch_request(hctx);
162 		if (!rq) {
163 			blk_mq_put_dispatch_budget(q);
164 			/*
165 			 * We're releasing without dispatching. Holding the
166 			 * budget could have blocked any "hctx"s with the
167 			 * same queue and if we didn't dispatch then there's
168 			 * no guarantee anyone will kick the queue.  Kick it
169 			 * ourselves.
170 			 */
171 			run_queue = true;
172 			break;
173 		}
174 
175 		/*
176 		 * Now this rq owns the budget which has to be released
177 		 * if this rq won't be queued to driver via .queue_rq()
178 		 * in blk_mq_dispatch_rq_list().
179 		 */
180 		list_add_tail(&rq->queuelist, &rq_list);
181 		if (rq->mq_hctx != hctx)
182 			multi_hctxs = true;
183 	} while (++count < max_dispatch);
184 
185 	if (!count) {
186 		if (run_queue)
187 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188 	} else if (multi_hctxs) {
189 		/*
190 		 * Requests from different hctx may be dequeued from some
191 		 * schedulers, such as bfq and deadline.
192 		 *
193 		 * Sort the requests in the list according to their hctx,
194 		 * dispatch batching requests from same hctx at a time.
195 		 */
196 		list_sort(NULL, &rq_list, sched_rq_cmp);
197 		do {
198 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199 		} while (!list_empty(&rq_list));
200 	} else {
201 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202 	}
203 
204 	if (busy)
205 		return -EAGAIN;
206 	return !!dispatched;
207 }
208 
209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210 {
211 	int ret;
212 
213 	do {
214 		ret = __blk_mq_do_dispatch_sched(hctx);
215 	} while (ret == 1);
216 
217 	return ret;
218 }
219 
220 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
221 					  struct blk_mq_ctx *ctx)
222 {
223 	unsigned short idx = ctx->index_hw[hctx->type];
224 
225 	if (++idx == hctx->nr_ctx)
226 		idx = 0;
227 
228 	return hctx->ctxs[idx];
229 }
230 
231 /*
232  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
233  * its queue by itself in its completion handler, so we don't need to
234  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235  *
236  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237  * be run again.  This is necessary to avoid starving flushes.
238  */
239 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240 {
241 	struct request_queue *q = hctx->queue;
242 	LIST_HEAD(rq_list);
243 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244 	int ret = 0;
245 	struct request *rq;
246 
247 	do {
248 		if (!list_empty_careful(&hctx->dispatch)) {
249 			ret = -EAGAIN;
250 			break;
251 		}
252 
253 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
254 			break;
255 
256 		if (!blk_mq_get_dispatch_budget(q))
257 			break;
258 
259 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
260 		if (!rq) {
261 			blk_mq_put_dispatch_budget(q);
262 			/*
263 			 * We're releasing without dispatching. Holding the
264 			 * budget could have blocked any "hctx"s with the
265 			 * same queue and if we didn't dispatch then there's
266 			 * no guarantee anyone will kick the queue.  Kick it
267 			 * ourselves.
268 			 */
269 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
270 			break;
271 		}
272 
273 		/*
274 		 * Now this rq owns the budget which has to be released
275 		 * if this rq won't be queued to driver via .queue_rq()
276 		 * in blk_mq_dispatch_rq_list().
277 		 */
278 		list_add(&rq->queuelist, &rq_list);
279 
280 		/* round robin for fair dispatch */
281 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
282 
283 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
284 
285 	WRITE_ONCE(hctx->dispatch_from, ctx);
286 	return ret;
287 }
288 
289 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
290 {
291 	struct request_queue *q = hctx->queue;
292 	struct elevator_queue *e = q->elevator;
293 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
294 	int ret = 0;
295 	LIST_HEAD(rq_list);
296 
297 	/*
298 	 * If we have previous entries on our dispatch list, grab them first for
299 	 * more fair dispatch.
300 	 */
301 	if (!list_empty_careful(&hctx->dispatch)) {
302 		spin_lock(&hctx->lock);
303 		if (!list_empty(&hctx->dispatch))
304 			list_splice_init(&hctx->dispatch, &rq_list);
305 		spin_unlock(&hctx->lock);
306 	}
307 
308 	/*
309 	 * Only ask the scheduler for requests, if we didn't have residual
310 	 * requests from the dispatch list. This is to avoid the case where
311 	 * we only ever dispatch a fraction of the requests available because
312 	 * of low device queue depth. Once we pull requests out of the IO
313 	 * scheduler, we can no longer merge or sort them. So it's best to
314 	 * leave them there for as long as we can. Mark the hw queue as
315 	 * needing a restart in that case.
316 	 *
317 	 * We want to dispatch from the scheduler if there was nothing
318 	 * on the dispatch list or we were able to dispatch from the
319 	 * dispatch list.
320 	 */
321 	if (!list_empty(&rq_list)) {
322 		blk_mq_sched_mark_restart_hctx(hctx);
323 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
324 			if (has_sched_dispatch)
325 				ret = blk_mq_do_dispatch_sched(hctx);
326 			else
327 				ret = blk_mq_do_dispatch_ctx(hctx);
328 		}
329 	} else if (has_sched_dispatch) {
330 		ret = blk_mq_do_dispatch_sched(hctx);
331 	} else if (hctx->dispatch_busy) {
332 		/* dequeue request one by one from sw queue if queue is busy */
333 		ret = blk_mq_do_dispatch_ctx(hctx);
334 	} else {
335 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
336 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
337 	}
338 
339 	return ret;
340 }
341 
342 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
343 {
344 	struct request_queue *q = hctx->queue;
345 
346 	/* RCU or SRCU read lock is needed before checking quiesced flag */
347 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
348 		return;
349 
350 	hctx->run++;
351 
352 	/*
353 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
354 	 * empty and we must run again in order to avoid starving flushes.
355 	 */
356 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
357 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
358 			blk_mq_run_hw_queue(hctx, true);
359 	}
360 }
361 
362 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
363 		unsigned int nr_segs, struct request **merged_request)
364 {
365 	struct request *rq;
366 
367 	switch (elv_merge(q, &rq, bio)) {
368 	case ELEVATOR_BACK_MERGE:
369 		if (!blk_mq_sched_allow_merge(q, rq, bio))
370 			return false;
371 		if (!bio_attempt_back_merge(rq, bio, nr_segs))
372 			return false;
373 		*merged_request = attempt_back_merge(q, rq);
374 		if (!*merged_request)
375 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
376 		return true;
377 	case ELEVATOR_FRONT_MERGE:
378 		if (!blk_mq_sched_allow_merge(q, rq, bio))
379 			return false;
380 		if (!bio_attempt_front_merge(rq, bio, nr_segs))
381 			return false;
382 		*merged_request = attempt_front_merge(q, rq);
383 		if (!*merged_request)
384 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
385 		return true;
386 	case ELEVATOR_DISCARD_MERGE:
387 		return bio_attempt_discard_merge(q, rq, bio);
388 	default:
389 		return false;
390 	}
391 }
392 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
393 
394 /*
395  * Iterate list of requests and see if we can merge this bio with any
396  * of them.
397  */
398 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
399 			   struct bio *bio, unsigned int nr_segs)
400 {
401 	struct request *rq;
402 	int checked = 8;
403 
404 	list_for_each_entry_reverse(rq, list, queuelist) {
405 		bool merged = false;
406 
407 		if (!checked--)
408 			break;
409 
410 		if (!blk_rq_merge_ok(rq, bio))
411 			continue;
412 
413 		switch (blk_try_merge(rq, bio)) {
414 		case ELEVATOR_BACK_MERGE:
415 			if (blk_mq_sched_allow_merge(q, rq, bio))
416 				merged = bio_attempt_back_merge(rq, bio,
417 						nr_segs);
418 			break;
419 		case ELEVATOR_FRONT_MERGE:
420 			if (blk_mq_sched_allow_merge(q, rq, bio))
421 				merged = bio_attempt_front_merge(rq, bio,
422 						nr_segs);
423 			break;
424 		case ELEVATOR_DISCARD_MERGE:
425 			merged = bio_attempt_discard_merge(q, rq, bio);
426 			break;
427 		default:
428 			continue;
429 		}
430 
431 		return merged;
432 	}
433 
434 	return false;
435 }
436 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
437 
438 /*
439  * Reverse check our software queue for entries that we could potentially
440  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
441  * too much time checking for merges.
442  */
443 static bool blk_mq_attempt_merge(struct request_queue *q,
444 				 struct blk_mq_hw_ctx *hctx,
445 				 struct blk_mq_ctx *ctx, struct bio *bio,
446 				 unsigned int nr_segs)
447 {
448 	enum hctx_type type = hctx->type;
449 
450 	lockdep_assert_held(&ctx->lock);
451 
452 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
453 		ctx->rq_merged++;
454 		return true;
455 	}
456 
457 	return false;
458 }
459 
460 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
461 		unsigned int nr_segs)
462 {
463 	struct elevator_queue *e = q->elevator;
464 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
465 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
466 	bool ret = false;
467 	enum hctx_type type;
468 
469 	if (e && e->type->ops.bio_merge)
470 		return e->type->ops.bio_merge(hctx, bio, nr_segs);
471 
472 	type = hctx->type;
473 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
474 			!list_empty_careful(&ctx->rq_lists[type])) {
475 		/* default per sw-queue merge */
476 		spin_lock(&ctx->lock);
477 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
478 		spin_unlock(&ctx->lock);
479 	}
480 
481 	return ret;
482 }
483 
484 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
485 {
486 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
489 
490 void blk_mq_sched_request_inserted(struct request *rq)
491 {
492 	trace_block_rq_insert(rq->q, rq);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
495 
496 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
497 				       bool has_sched,
498 				       struct request *rq)
499 {
500 	/*
501 	 * dispatch flush and passthrough rq directly
502 	 *
503 	 * passthrough request has to be added to hctx->dispatch directly.
504 	 * For some reason, device may be in one situation which can't
505 	 * handle FS request, so STS_RESOURCE is always returned and the
506 	 * FS request will be added to hctx->dispatch. However passthrough
507 	 * request may be required at that time for fixing the problem. If
508 	 * passthrough request is added to scheduler queue, there isn't any
509 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
510 	 */
511 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
512 		return true;
513 
514 	if (has_sched)
515 		rq->rq_flags |= RQF_SORTED;
516 
517 	return false;
518 }
519 
520 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
521 				 bool run_queue, bool async)
522 {
523 	struct request_queue *q = rq->q;
524 	struct elevator_queue *e = q->elevator;
525 	struct blk_mq_ctx *ctx = rq->mq_ctx;
526 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527 
528 	/* flush rq in flush machinery need to be dispatched directly */
529 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
530 		blk_insert_flush(rq);
531 		goto run;
532 	}
533 
534 	WARN_ON(e && (rq->tag != -1));
535 
536 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
537 		/*
538 		 * Firstly normal IO request is inserted to scheduler queue or
539 		 * sw queue, meantime we add flush request to dispatch queue(
540 		 * hctx->dispatch) directly and there is at most one in-flight
541 		 * flush request for each hw queue, so it doesn't matter to add
542 		 * flush request to tail or front of the dispatch queue.
543 		 *
544 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
545 		 * command, and queueing it will fail when there is any
546 		 * in-flight normal IO request(NCQ command). When adding flush
547 		 * rq to the front of hctx->dispatch, it is easier to introduce
548 		 * extra time to flush rq's latency because of S_SCHED_RESTART
549 		 * compared with adding to the tail of dispatch queue, then
550 		 * chance of flush merge is increased, and less flush requests
551 		 * will be issued to controller. It is observed that ~10% time
552 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
553 		 * drive when adding flush rq to the front of hctx->dispatch.
554 		 *
555 		 * Simply queue flush rq to the front of hctx->dispatch so that
556 		 * intensive flush workloads can benefit in case of NCQ HW.
557 		 */
558 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
559 		blk_mq_request_bypass_insert(rq, at_head, false);
560 		goto run;
561 	}
562 
563 	if (e && e->type->ops.insert_requests) {
564 		LIST_HEAD(list);
565 
566 		list_add(&rq->queuelist, &list);
567 		e->type->ops.insert_requests(hctx, &list, at_head);
568 	} else {
569 		spin_lock(&ctx->lock);
570 		__blk_mq_insert_request(hctx, rq, at_head);
571 		spin_unlock(&ctx->lock);
572 	}
573 
574 run:
575 	if (run_queue)
576 		blk_mq_run_hw_queue(hctx, async);
577 }
578 
579 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
580 				  struct blk_mq_ctx *ctx,
581 				  struct list_head *list, bool run_queue_async)
582 {
583 	struct elevator_queue *e;
584 	struct request_queue *q = hctx->queue;
585 
586 	/*
587 	 * blk_mq_sched_insert_requests() is called from flush plug
588 	 * context only, and hold one usage counter to prevent queue
589 	 * from being released.
590 	 */
591 	percpu_ref_get(&q->q_usage_counter);
592 
593 	e = hctx->queue->elevator;
594 	if (e && e->type->ops.insert_requests)
595 		e->type->ops.insert_requests(hctx, list, false);
596 	else {
597 		/*
598 		 * try to issue requests directly if the hw queue isn't
599 		 * busy in case of 'none' scheduler, and this way may save
600 		 * us one extra enqueue & dequeue to sw queue.
601 		 */
602 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
603 			blk_mq_try_issue_list_directly(hctx, list);
604 			if (list_empty(list))
605 				goto out;
606 		}
607 		blk_mq_insert_requests(hctx, ctx, list);
608 	}
609 
610 	blk_mq_run_hw_queue(hctx, run_queue_async);
611  out:
612 	percpu_ref_put(&q->q_usage_counter);
613 }
614 
615 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
616 				   struct blk_mq_hw_ctx *hctx,
617 				   unsigned int hctx_idx)
618 {
619 	if (hctx->sched_tags) {
620 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
621 		blk_mq_free_rq_map(hctx->sched_tags);
622 		hctx->sched_tags = NULL;
623 	}
624 }
625 
626 static int blk_mq_sched_alloc_tags(struct request_queue *q,
627 				   struct blk_mq_hw_ctx *hctx,
628 				   unsigned int hctx_idx)
629 {
630 	struct blk_mq_tag_set *set = q->tag_set;
631 	int ret;
632 
633 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
634 					       set->reserved_tags);
635 	if (!hctx->sched_tags)
636 		return -ENOMEM;
637 
638 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
639 	if (ret)
640 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
641 
642 	return ret;
643 }
644 
645 /* called in queue's release handler, tagset has gone away */
646 static void blk_mq_sched_tags_teardown(struct request_queue *q)
647 {
648 	struct blk_mq_hw_ctx *hctx;
649 	int i;
650 
651 	queue_for_each_hw_ctx(q, hctx, i) {
652 		if (hctx->sched_tags) {
653 			blk_mq_free_rq_map(hctx->sched_tags);
654 			hctx->sched_tags = NULL;
655 		}
656 	}
657 }
658 
659 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
660 {
661 	struct blk_mq_hw_ctx *hctx;
662 	struct elevator_queue *eq;
663 	unsigned int i;
664 	int ret;
665 
666 	if (!e) {
667 		q->elevator = NULL;
668 		q->nr_requests = q->tag_set->queue_depth;
669 		return 0;
670 	}
671 
672 	/*
673 	 * Default to double of smaller one between hw queue_depth and 128,
674 	 * since we don't split into sync/async like the old code did.
675 	 * Additionally, this is a per-hw queue depth.
676 	 */
677 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
678 				   BLKDEV_MAX_RQ);
679 
680 	queue_for_each_hw_ctx(q, hctx, i) {
681 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
682 		if (ret)
683 			goto err;
684 	}
685 
686 	ret = e->ops.init_sched(q, e);
687 	if (ret)
688 		goto err;
689 
690 	blk_mq_debugfs_register_sched(q);
691 
692 	queue_for_each_hw_ctx(q, hctx, i) {
693 		if (e->ops.init_hctx) {
694 			ret = e->ops.init_hctx(hctx, i);
695 			if (ret) {
696 				eq = q->elevator;
697 				blk_mq_sched_free_requests(q);
698 				blk_mq_exit_sched(q, eq);
699 				kobject_put(&eq->kobj);
700 				return ret;
701 			}
702 		}
703 		blk_mq_debugfs_register_sched_hctx(q, hctx);
704 	}
705 
706 	return 0;
707 
708 err:
709 	blk_mq_sched_free_requests(q);
710 	blk_mq_sched_tags_teardown(q);
711 	q->elevator = NULL;
712 	return ret;
713 }
714 
715 /*
716  * called in either blk_queue_cleanup or elevator_switch, tagset
717  * is required for freeing requests
718  */
719 void blk_mq_sched_free_requests(struct request_queue *q)
720 {
721 	struct blk_mq_hw_ctx *hctx;
722 	int i;
723 
724 	queue_for_each_hw_ctx(q, hctx, i) {
725 		if (hctx->sched_tags)
726 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
727 	}
728 }
729 
730 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
731 {
732 	struct blk_mq_hw_ctx *hctx;
733 	unsigned int i;
734 
735 	queue_for_each_hw_ctx(q, hctx, i) {
736 		blk_mq_debugfs_unregister_sched_hctx(hctx);
737 		if (e->type->ops.exit_hctx && hctx->sched_data) {
738 			e->type->ops.exit_hctx(hctx, i);
739 			hctx->sched_data = NULL;
740 		}
741 	}
742 	blk_mq_debugfs_unregister_sched(q);
743 	if (e->type->ops.exit_sched)
744 		e->type->ops.exit_sched(e);
745 	blk_mq_sched_tags_teardown(q);
746 	q->elevator = NULL;
747 }
748