1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 void blk_mq_sched_assign_ioc(struct request *rq) 22 { 23 struct request_queue *q = rq->q; 24 struct io_context *ioc; 25 struct io_cq *icq; 26 27 /* 28 * May not have an IO context if it's a passthrough request 29 */ 30 ioc = current->io_context; 31 if (!ioc) 32 return; 33 34 spin_lock_irq(&q->queue_lock); 35 icq = ioc_lookup_icq(ioc, q); 36 spin_unlock_irq(&q->queue_lock); 37 38 if (!icq) { 39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 40 if (!icq) 41 return; 42 } 43 get_io_context(icq->ioc); 44 rq->elv.icq = icq; 45 } 46 47 /* 48 * Mark a hardware queue as needing a restart. For shared queues, maintain 49 * a count of how many hardware queues are marked for restart. 50 */ 51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 52 { 53 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 54 return; 55 56 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 57 } 58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 59 60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 61 { 62 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 63 return; 64 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 65 66 /* 67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 68 * in blk_mq_run_hw_queue(). Its pair is the barrier in 69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 70 * meantime new request added to hctx->dispatch is missed to check in 71 * blk_mq_run_hw_queue(). 72 */ 73 smp_mb(); 74 75 blk_mq_run_hw_queue(hctx, true); 76 } 77 78 static int sched_rq_cmp(void *priv, const struct list_head *a, 79 const struct list_head *b) 80 { 81 struct request *rqa = container_of(a, struct request, queuelist); 82 struct request *rqb = container_of(b, struct request, queuelist); 83 84 return rqa->mq_hctx > rqb->mq_hctx; 85 } 86 87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 88 { 89 struct blk_mq_hw_ctx *hctx = 90 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 91 struct request *rq; 92 LIST_HEAD(hctx_list); 93 unsigned int count = 0; 94 95 list_for_each_entry(rq, rq_list, queuelist) { 96 if (rq->mq_hctx != hctx) { 97 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 98 goto dispatch; 99 } 100 count++; 101 } 102 list_splice_tail_init(rq_list, &hctx_list); 103 104 dispatch: 105 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 106 } 107 108 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 109 110 /* 111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 112 * its queue by itself in its completion handler, so we don't need to 113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 114 * 115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 116 * be run again. This is necessary to avoid starving flushes. 117 */ 118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 119 { 120 struct request_queue *q = hctx->queue; 121 struct elevator_queue *e = q->elevator; 122 bool multi_hctxs = false, run_queue = false; 123 bool dispatched = false, busy = false; 124 unsigned int max_dispatch; 125 LIST_HEAD(rq_list); 126 int count = 0; 127 128 if (hctx->dispatch_busy) 129 max_dispatch = 1; 130 else 131 max_dispatch = hctx->queue->nr_requests; 132 133 do { 134 struct request *rq; 135 int budget_token; 136 137 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 138 break; 139 140 if (!list_empty_careful(&hctx->dispatch)) { 141 busy = true; 142 break; 143 } 144 145 budget_token = blk_mq_get_dispatch_budget(q); 146 if (budget_token < 0) 147 break; 148 149 rq = e->type->ops.dispatch_request(hctx); 150 if (!rq) { 151 blk_mq_put_dispatch_budget(q, budget_token); 152 /* 153 * We're releasing without dispatching. Holding the 154 * budget could have blocked any "hctx"s with the 155 * same queue and if we didn't dispatch then there's 156 * no guarantee anyone will kick the queue. Kick it 157 * ourselves. 158 */ 159 run_queue = true; 160 break; 161 } 162 163 blk_mq_set_rq_budget_token(rq, budget_token); 164 165 /* 166 * Now this rq owns the budget which has to be released 167 * if this rq won't be queued to driver via .queue_rq() 168 * in blk_mq_dispatch_rq_list(). 169 */ 170 list_add_tail(&rq->queuelist, &rq_list); 171 if (rq->mq_hctx != hctx) 172 multi_hctxs = true; 173 } while (++count < max_dispatch); 174 175 if (!count) { 176 if (run_queue) 177 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 178 } else if (multi_hctxs) { 179 /* 180 * Requests from different hctx may be dequeued from some 181 * schedulers, such as bfq and deadline. 182 * 183 * Sort the requests in the list according to their hctx, 184 * dispatch batching requests from same hctx at a time. 185 */ 186 list_sort(NULL, &rq_list, sched_rq_cmp); 187 do { 188 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 189 } while (!list_empty(&rq_list)); 190 } else { 191 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 192 } 193 194 if (busy) 195 return -EAGAIN; 196 return !!dispatched; 197 } 198 199 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 200 { 201 int ret; 202 203 do { 204 ret = __blk_mq_do_dispatch_sched(hctx); 205 } while (ret == 1); 206 207 return ret; 208 } 209 210 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 211 struct blk_mq_ctx *ctx) 212 { 213 unsigned short idx = ctx->index_hw[hctx->type]; 214 215 if (++idx == hctx->nr_ctx) 216 idx = 0; 217 218 return hctx->ctxs[idx]; 219 } 220 221 /* 222 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 223 * its queue by itself in its completion handler, so we don't need to 224 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 225 * 226 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 227 * be run again. This is necessary to avoid starving flushes. 228 */ 229 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 230 { 231 struct request_queue *q = hctx->queue; 232 LIST_HEAD(rq_list); 233 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 234 int ret = 0; 235 struct request *rq; 236 237 do { 238 int budget_token; 239 240 if (!list_empty_careful(&hctx->dispatch)) { 241 ret = -EAGAIN; 242 break; 243 } 244 245 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 246 break; 247 248 budget_token = blk_mq_get_dispatch_budget(q); 249 if (budget_token < 0) 250 break; 251 252 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 253 if (!rq) { 254 blk_mq_put_dispatch_budget(q, budget_token); 255 /* 256 * We're releasing without dispatching. Holding the 257 * budget could have blocked any "hctx"s with the 258 * same queue and if we didn't dispatch then there's 259 * no guarantee anyone will kick the queue. Kick it 260 * ourselves. 261 */ 262 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 263 break; 264 } 265 266 blk_mq_set_rq_budget_token(rq, budget_token); 267 268 /* 269 * Now this rq owns the budget which has to be released 270 * if this rq won't be queued to driver via .queue_rq() 271 * in blk_mq_dispatch_rq_list(). 272 */ 273 list_add(&rq->queuelist, &rq_list); 274 275 /* round robin for fair dispatch */ 276 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 277 278 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 279 280 WRITE_ONCE(hctx->dispatch_from, ctx); 281 return ret; 282 } 283 284 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 285 { 286 struct request_queue *q = hctx->queue; 287 struct elevator_queue *e = q->elevator; 288 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 289 int ret = 0; 290 LIST_HEAD(rq_list); 291 292 /* 293 * If we have previous entries on our dispatch list, grab them first for 294 * more fair dispatch. 295 */ 296 if (!list_empty_careful(&hctx->dispatch)) { 297 spin_lock(&hctx->lock); 298 if (!list_empty(&hctx->dispatch)) 299 list_splice_init(&hctx->dispatch, &rq_list); 300 spin_unlock(&hctx->lock); 301 } 302 303 /* 304 * Only ask the scheduler for requests, if we didn't have residual 305 * requests from the dispatch list. This is to avoid the case where 306 * we only ever dispatch a fraction of the requests available because 307 * of low device queue depth. Once we pull requests out of the IO 308 * scheduler, we can no longer merge or sort them. So it's best to 309 * leave them there for as long as we can. Mark the hw queue as 310 * needing a restart in that case. 311 * 312 * We want to dispatch from the scheduler if there was nothing 313 * on the dispatch list or we were able to dispatch from the 314 * dispatch list. 315 */ 316 if (!list_empty(&rq_list)) { 317 blk_mq_sched_mark_restart_hctx(hctx); 318 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 319 if (has_sched_dispatch) 320 ret = blk_mq_do_dispatch_sched(hctx); 321 else 322 ret = blk_mq_do_dispatch_ctx(hctx); 323 } 324 } else if (has_sched_dispatch) { 325 ret = blk_mq_do_dispatch_sched(hctx); 326 } else if (hctx->dispatch_busy) { 327 /* dequeue request one by one from sw queue if queue is busy */ 328 ret = blk_mq_do_dispatch_ctx(hctx); 329 } else { 330 blk_mq_flush_busy_ctxs(hctx, &rq_list); 331 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 332 } 333 334 return ret; 335 } 336 337 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 338 { 339 struct request_queue *q = hctx->queue; 340 341 /* RCU or SRCU read lock is needed before checking quiesced flag */ 342 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 343 return; 344 345 hctx->run++; 346 347 /* 348 * A return of -EAGAIN is an indication that hctx->dispatch is not 349 * empty and we must run again in order to avoid starving flushes. 350 */ 351 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 352 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 353 blk_mq_run_hw_queue(hctx, true); 354 } 355 } 356 357 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 358 unsigned int nr_segs) 359 { 360 struct elevator_queue *e = q->elevator; 361 struct blk_mq_ctx *ctx; 362 struct blk_mq_hw_ctx *hctx; 363 bool ret = false; 364 enum hctx_type type; 365 366 if (e && e->type->ops.bio_merge) 367 return e->type->ops.bio_merge(q, bio, nr_segs); 368 369 ctx = blk_mq_get_ctx(q); 370 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 371 type = hctx->type; 372 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 373 list_empty_careful(&ctx->rq_lists[type])) 374 return false; 375 376 /* default per sw-queue merge */ 377 spin_lock(&ctx->lock); 378 /* 379 * Reverse check our software queue for entries that we could 380 * potentially merge with. Currently includes a hand-wavy stop 381 * count of 8, to not spend too much time checking for merges. 382 */ 383 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 384 ctx->rq_merged++; 385 ret = true; 386 } 387 388 spin_unlock(&ctx->lock); 389 390 return ret; 391 } 392 393 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 394 { 395 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 396 } 397 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 398 399 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 400 struct request *rq) 401 { 402 /* 403 * dispatch flush and passthrough rq directly 404 * 405 * passthrough request has to be added to hctx->dispatch directly. 406 * For some reason, device may be in one situation which can't 407 * handle FS request, so STS_RESOURCE is always returned and the 408 * FS request will be added to hctx->dispatch. However passthrough 409 * request may be required at that time for fixing the problem. If 410 * passthrough request is added to scheduler queue, there isn't any 411 * chance to dispatch it given we prioritize requests in hctx->dispatch. 412 */ 413 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 414 return true; 415 416 return false; 417 } 418 419 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 420 bool run_queue, bool async) 421 { 422 struct request_queue *q = rq->q; 423 struct elevator_queue *e = q->elevator; 424 struct blk_mq_ctx *ctx = rq->mq_ctx; 425 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 426 427 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 428 429 if (blk_mq_sched_bypass_insert(hctx, rq)) { 430 /* 431 * Firstly normal IO request is inserted to scheduler queue or 432 * sw queue, meantime we add flush request to dispatch queue( 433 * hctx->dispatch) directly and there is at most one in-flight 434 * flush request for each hw queue, so it doesn't matter to add 435 * flush request to tail or front of the dispatch queue. 436 * 437 * Secondly in case of NCQ, flush request belongs to non-NCQ 438 * command, and queueing it will fail when there is any 439 * in-flight normal IO request(NCQ command). When adding flush 440 * rq to the front of hctx->dispatch, it is easier to introduce 441 * extra time to flush rq's latency because of S_SCHED_RESTART 442 * compared with adding to the tail of dispatch queue, then 443 * chance of flush merge is increased, and less flush requests 444 * will be issued to controller. It is observed that ~10% time 445 * is saved in blktests block/004 on disk attached to AHCI/NCQ 446 * drive when adding flush rq to the front of hctx->dispatch. 447 * 448 * Simply queue flush rq to the front of hctx->dispatch so that 449 * intensive flush workloads can benefit in case of NCQ HW. 450 */ 451 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 452 blk_mq_request_bypass_insert(rq, at_head, false); 453 goto run; 454 } 455 456 if (e && e->type->ops.insert_requests) { 457 LIST_HEAD(list); 458 459 list_add(&rq->queuelist, &list); 460 e->type->ops.insert_requests(hctx, &list, at_head); 461 } else { 462 spin_lock(&ctx->lock); 463 __blk_mq_insert_request(hctx, rq, at_head); 464 spin_unlock(&ctx->lock); 465 } 466 467 run: 468 if (run_queue) 469 blk_mq_run_hw_queue(hctx, async); 470 } 471 472 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 473 struct blk_mq_ctx *ctx, 474 struct list_head *list, bool run_queue_async) 475 { 476 struct elevator_queue *e; 477 struct request_queue *q = hctx->queue; 478 479 /* 480 * blk_mq_sched_insert_requests() is called from flush plug 481 * context only, and hold one usage counter to prevent queue 482 * from being released. 483 */ 484 percpu_ref_get(&q->q_usage_counter); 485 486 e = hctx->queue->elevator; 487 if (e && e->type->ops.insert_requests) 488 e->type->ops.insert_requests(hctx, list, false); 489 else { 490 /* 491 * try to issue requests directly if the hw queue isn't 492 * busy in case of 'none' scheduler, and this way may save 493 * us one extra enqueue & dequeue to sw queue. 494 */ 495 if (!hctx->dispatch_busy && !e && !run_queue_async) { 496 blk_mq_try_issue_list_directly(hctx, list); 497 if (list_empty(list)) 498 goto out; 499 } 500 blk_mq_insert_requests(hctx, ctx, list); 501 } 502 503 blk_mq_run_hw_queue(hctx, run_queue_async); 504 out: 505 percpu_ref_put(&q->q_usage_counter); 506 } 507 508 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 509 struct blk_mq_hw_ctx *hctx, 510 unsigned int hctx_idx) 511 { 512 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED; 513 514 if (hctx->sched_tags) { 515 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 516 blk_mq_free_rq_map(hctx->sched_tags, flags); 517 hctx->sched_tags = NULL; 518 } 519 } 520 521 static int blk_mq_sched_alloc_tags(struct request_queue *q, 522 struct blk_mq_hw_ctx *hctx, 523 unsigned int hctx_idx) 524 { 525 struct blk_mq_tag_set *set = q->tag_set; 526 /* Clear HCTX_SHARED so tags are init'ed */ 527 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED; 528 int ret; 529 530 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 531 set->reserved_tags, flags); 532 if (!hctx->sched_tags) 533 return -ENOMEM; 534 535 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 536 if (ret) 537 blk_mq_sched_free_tags(set, hctx, hctx_idx); 538 539 return ret; 540 } 541 542 /* called in queue's release handler, tagset has gone away */ 543 static void blk_mq_sched_tags_teardown(struct request_queue *q) 544 { 545 struct blk_mq_hw_ctx *hctx; 546 int i; 547 548 queue_for_each_hw_ctx(q, hctx, i) { 549 /* Clear HCTX_SHARED so tags are freed */ 550 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED; 551 552 if (hctx->sched_tags) { 553 blk_mq_free_rq_map(hctx->sched_tags, flags); 554 hctx->sched_tags = NULL; 555 } 556 } 557 } 558 559 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 560 { 561 struct blk_mq_hw_ctx *hctx; 562 struct elevator_queue *eq; 563 unsigned int i; 564 int ret; 565 566 if (!e) { 567 q->elevator = NULL; 568 q->nr_requests = q->tag_set->queue_depth; 569 return 0; 570 } 571 572 /* 573 * Default to double of smaller one between hw queue_depth and 128, 574 * since we don't split into sync/async like the old code did. 575 * Additionally, this is a per-hw queue depth. 576 */ 577 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 578 BLKDEV_MAX_RQ); 579 580 queue_for_each_hw_ctx(q, hctx, i) { 581 ret = blk_mq_sched_alloc_tags(q, hctx, i); 582 if (ret) 583 goto err; 584 } 585 586 ret = e->ops.init_sched(q, e); 587 if (ret) 588 goto err; 589 590 blk_mq_debugfs_register_sched(q); 591 592 queue_for_each_hw_ctx(q, hctx, i) { 593 if (e->ops.init_hctx) { 594 ret = e->ops.init_hctx(hctx, i); 595 if (ret) { 596 eq = q->elevator; 597 blk_mq_sched_free_requests(q); 598 blk_mq_exit_sched(q, eq); 599 kobject_put(&eq->kobj); 600 return ret; 601 } 602 } 603 blk_mq_debugfs_register_sched_hctx(q, hctx); 604 } 605 606 return 0; 607 608 err: 609 blk_mq_sched_free_requests(q); 610 blk_mq_sched_tags_teardown(q); 611 q->elevator = NULL; 612 return ret; 613 } 614 615 /* 616 * called in either blk_queue_cleanup or elevator_switch, tagset 617 * is required for freeing requests 618 */ 619 void blk_mq_sched_free_requests(struct request_queue *q) 620 { 621 struct blk_mq_hw_ctx *hctx; 622 int i; 623 624 queue_for_each_hw_ctx(q, hctx, i) { 625 if (hctx->sched_tags) 626 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 627 } 628 } 629 630 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 631 { 632 struct blk_mq_hw_ctx *hctx; 633 unsigned int i; 634 635 queue_for_each_hw_ctx(q, hctx, i) { 636 blk_mq_debugfs_unregister_sched_hctx(hctx); 637 if (e->type->ops.exit_hctx && hctx->sched_data) { 638 e->type->ops.exit_hctx(hctx, i); 639 hctx->sched_data = NULL; 640 } 641 } 642 blk_mq_debugfs_unregister_sched(q); 643 if (e->type->ops.exit_sched) 644 e->type->ops.exit_sched(e); 645 blk_mq_sched_tags_teardown(q); 646 q->elevator = NULL; 647 } 648