1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 void blk_mq_sched_free_hctx_data(struct request_queue *q, 22 void (*exit)(struct blk_mq_hw_ctx *)) 23 { 24 struct blk_mq_hw_ctx *hctx; 25 int i; 26 27 queue_for_each_hw_ctx(q, hctx, i) { 28 if (exit && hctx->sched_data) 29 exit(hctx); 30 kfree(hctx->sched_data); 31 hctx->sched_data = NULL; 32 } 33 } 34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 35 36 void blk_mq_sched_assign_ioc(struct request *rq) 37 { 38 struct request_queue *q = rq->q; 39 struct io_context *ioc; 40 struct io_cq *icq; 41 42 /* 43 * May not have an IO context if it's a passthrough request 44 */ 45 ioc = current->io_context; 46 if (!ioc) 47 return; 48 49 spin_lock_irq(&q->queue_lock); 50 icq = ioc_lookup_icq(ioc, q); 51 spin_unlock_irq(&q->queue_lock); 52 53 if (!icq) { 54 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 55 if (!icq) 56 return; 57 } 58 get_io_context(icq->ioc); 59 rq->elv.icq = icq; 60 } 61 62 /* 63 * Mark a hardware queue as needing a restart. For shared queues, maintain 64 * a count of how many hardware queues are marked for restart. 65 */ 66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 67 { 68 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 69 return; 70 71 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 72 } 73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 74 75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 76 { 77 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 78 return; 79 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 80 81 blk_mq_run_hw_queue(hctx, true); 82 } 83 84 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 85 { 86 struct request *rqa = container_of(a, struct request, queuelist); 87 struct request *rqb = container_of(b, struct request, queuelist); 88 89 return rqa->mq_hctx > rqb->mq_hctx; 90 } 91 92 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 93 { 94 struct blk_mq_hw_ctx *hctx = 95 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 96 struct request *rq; 97 LIST_HEAD(hctx_list); 98 unsigned int count = 0; 99 100 list_for_each_entry(rq, rq_list, queuelist) { 101 if (rq->mq_hctx != hctx) { 102 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 103 goto dispatch; 104 } 105 count++; 106 } 107 list_splice_tail_init(rq_list, &hctx_list); 108 109 dispatch: 110 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 111 } 112 113 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 114 115 /* 116 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 117 * its queue by itself in its completion handler, so we don't need to 118 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 119 * 120 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 121 * be run again. This is necessary to avoid starving flushes. 122 */ 123 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 124 { 125 struct request_queue *q = hctx->queue; 126 struct elevator_queue *e = q->elevator; 127 bool multi_hctxs = false, run_queue = false; 128 bool dispatched = false, busy = false; 129 unsigned int max_dispatch; 130 LIST_HEAD(rq_list); 131 int count = 0; 132 133 if (hctx->dispatch_busy) 134 max_dispatch = 1; 135 else 136 max_dispatch = hctx->queue->nr_requests; 137 138 do { 139 struct request *rq; 140 141 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 142 break; 143 144 if (!list_empty_careful(&hctx->dispatch)) { 145 busy = true; 146 break; 147 } 148 149 if (!blk_mq_get_dispatch_budget(q)) 150 break; 151 152 rq = e->type->ops.dispatch_request(hctx); 153 if (!rq) { 154 blk_mq_put_dispatch_budget(q); 155 /* 156 * We're releasing without dispatching. Holding the 157 * budget could have blocked any "hctx"s with the 158 * same queue and if we didn't dispatch then there's 159 * no guarantee anyone will kick the queue. Kick it 160 * ourselves. 161 */ 162 run_queue = true; 163 break; 164 } 165 166 /* 167 * Now this rq owns the budget which has to be released 168 * if this rq won't be queued to driver via .queue_rq() 169 * in blk_mq_dispatch_rq_list(). 170 */ 171 list_add_tail(&rq->queuelist, &rq_list); 172 if (rq->mq_hctx != hctx) 173 multi_hctxs = true; 174 } while (++count < max_dispatch); 175 176 if (!count) { 177 if (run_queue) 178 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 179 } else if (multi_hctxs) { 180 /* 181 * Requests from different hctx may be dequeued from some 182 * schedulers, such as bfq and deadline. 183 * 184 * Sort the requests in the list according to their hctx, 185 * dispatch batching requests from same hctx at a time. 186 */ 187 list_sort(NULL, &rq_list, sched_rq_cmp); 188 do { 189 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 190 } while (!list_empty(&rq_list)); 191 } else { 192 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 193 } 194 195 if (busy) 196 return -EAGAIN; 197 return !!dispatched; 198 } 199 200 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 201 { 202 int ret; 203 204 do { 205 ret = __blk_mq_do_dispatch_sched(hctx); 206 } while (ret == 1); 207 208 return ret; 209 } 210 211 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 212 struct blk_mq_ctx *ctx) 213 { 214 unsigned short idx = ctx->index_hw[hctx->type]; 215 216 if (++idx == hctx->nr_ctx) 217 idx = 0; 218 219 return hctx->ctxs[idx]; 220 } 221 222 /* 223 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 224 * its queue by itself in its completion handler, so we don't need to 225 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 226 * 227 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 228 * be run again. This is necessary to avoid starving flushes. 229 */ 230 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 231 { 232 struct request_queue *q = hctx->queue; 233 LIST_HEAD(rq_list); 234 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 235 int ret = 0; 236 struct request *rq; 237 238 do { 239 if (!list_empty_careful(&hctx->dispatch)) { 240 ret = -EAGAIN; 241 break; 242 } 243 244 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 245 break; 246 247 if (!blk_mq_get_dispatch_budget(q)) 248 break; 249 250 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 251 if (!rq) { 252 blk_mq_put_dispatch_budget(q); 253 /* 254 * We're releasing without dispatching. Holding the 255 * budget could have blocked any "hctx"s with the 256 * same queue and if we didn't dispatch then there's 257 * no guarantee anyone will kick the queue. Kick it 258 * ourselves. 259 */ 260 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 261 break; 262 } 263 264 /* 265 * Now this rq owns the budget which has to be released 266 * if this rq won't be queued to driver via .queue_rq() 267 * in blk_mq_dispatch_rq_list(). 268 */ 269 list_add(&rq->queuelist, &rq_list); 270 271 /* round robin for fair dispatch */ 272 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 273 274 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 275 276 WRITE_ONCE(hctx->dispatch_from, ctx); 277 return ret; 278 } 279 280 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 281 { 282 struct request_queue *q = hctx->queue; 283 struct elevator_queue *e = q->elevator; 284 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 285 int ret = 0; 286 LIST_HEAD(rq_list); 287 288 /* 289 * If we have previous entries on our dispatch list, grab them first for 290 * more fair dispatch. 291 */ 292 if (!list_empty_careful(&hctx->dispatch)) { 293 spin_lock(&hctx->lock); 294 if (!list_empty(&hctx->dispatch)) 295 list_splice_init(&hctx->dispatch, &rq_list); 296 spin_unlock(&hctx->lock); 297 } 298 299 /* 300 * Only ask the scheduler for requests, if we didn't have residual 301 * requests from the dispatch list. This is to avoid the case where 302 * we only ever dispatch a fraction of the requests available because 303 * of low device queue depth. Once we pull requests out of the IO 304 * scheduler, we can no longer merge or sort them. So it's best to 305 * leave them there for as long as we can. Mark the hw queue as 306 * needing a restart in that case. 307 * 308 * We want to dispatch from the scheduler if there was nothing 309 * on the dispatch list or we were able to dispatch from the 310 * dispatch list. 311 */ 312 if (!list_empty(&rq_list)) { 313 blk_mq_sched_mark_restart_hctx(hctx); 314 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 315 if (has_sched_dispatch) 316 ret = blk_mq_do_dispatch_sched(hctx); 317 else 318 ret = blk_mq_do_dispatch_ctx(hctx); 319 } 320 } else if (has_sched_dispatch) { 321 ret = blk_mq_do_dispatch_sched(hctx); 322 } else if (hctx->dispatch_busy) { 323 /* dequeue request one by one from sw queue if queue is busy */ 324 ret = blk_mq_do_dispatch_ctx(hctx); 325 } else { 326 blk_mq_flush_busy_ctxs(hctx, &rq_list); 327 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 328 } 329 330 return ret; 331 } 332 333 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 334 { 335 struct request_queue *q = hctx->queue; 336 337 /* RCU or SRCU read lock is needed before checking quiesced flag */ 338 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 339 return; 340 341 hctx->run++; 342 343 /* 344 * A return of -EAGAIN is an indication that hctx->dispatch is not 345 * empty and we must run again in order to avoid starving flushes. 346 */ 347 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 348 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 349 blk_mq_run_hw_queue(hctx, true); 350 } 351 } 352 353 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 354 unsigned int nr_segs, struct request **merged_request) 355 { 356 struct request *rq; 357 358 switch (elv_merge(q, &rq, bio)) { 359 case ELEVATOR_BACK_MERGE: 360 if (!blk_mq_sched_allow_merge(q, rq, bio)) 361 return false; 362 if (!bio_attempt_back_merge(rq, bio, nr_segs)) 363 return false; 364 *merged_request = attempt_back_merge(q, rq); 365 if (!*merged_request) 366 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 367 return true; 368 case ELEVATOR_FRONT_MERGE: 369 if (!blk_mq_sched_allow_merge(q, rq, bio)) 370 return false; 371 if (!bio_attempt_front_merge(rq, bio, nr_segs)) 372 return false; 373 *merged_request = attempt_front_merge(q, rq); 374 if (!*merged_request) 375 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 376 return true; 377 case ELEVATOR_DISCARD_MERGE: 378 return bio_attempt_discard_merge(q, rq, bio); 379 default: 380 return false; 381 } 382 } 383 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 384 385 /* 386 * Iterate list of requests and see if we can merge this bio with any 387 * of them. 388 */ 389 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 390 struct bio *bio, unsigned int nr_segs) 391 { 392 struct request *rq; 393 int checked = 8; 394 395 list_for_each_entry_reverse(rq, list, queuelist) { 396 bool merged = false; 397 398 if (!checked--) 399 break; 400 401 if (!blk_rq_merge_ok(rq, bio)) 402 continue; 403 404 switch (blk_try_merge(rq, bio)) { 405 case ELEVATOR_BACK_MERGE: 406 if (blk_mq_sched_allow_merge(q, rq, bio)) 407 merged = bio_attempt_back_merge(rq, bio, 408 nr_segs); 409 break; 410 case ELEVATOR_FRONT_MERGE: 411 if (blk_mq_sched_allow_merge(q, rq, bio)) 412 merged = bio_attempt_front_merge(rq, bio, 413 nr_segs); 414 break; 415 case ELEVATOR_DISCARD_MERGE: 416 merged = bio_attempt_discard_merge(q, rq, bio); 417 break; 418 default: 419 continue; 420 } 421 422 return merged; 423 } 424 425 return false; 426 } 427 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 428 429 /* 430 * Reverse check our software queue for entries that we could potentially 431 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 432 * too much time checking for merges. 433 */ 434 static bool blk_mq_attempt_merge(struct request_queue *q, 435 struct blk_mq_hw_ctx *hctx, 436 struct blk_mq_ctx *ctx, struct bio *bio, 437 unsigned int nr_segs) 438 { 439 enum hctx_type type = hctx->type; 440 441 lockdep_assert_held(&ctx->lock); 442 443 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 444 ctx->rq_merged++; 445 return true; 446 } 447 448 return false; 449 } 450 451 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 452 unsigned int nr_segs) 453 { 454 struct elevator_queue *e = q->elevator; 455 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 456 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 457 bool ret = false; 458 enum hctx_type type; 459 460 if (e && e->type->ops.bio_merge) 461 return e->type->ops.bio_merge(hctx, bio, nr_segs); 462 463 type = hctx->type; 464 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 465 !list_empty_careful(&ctx->rq_lists[type])) { 466 /* default per sw-queue merge */ 467 spin_lock(&ctx->lock); 468 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs); 469 spin_unlock(&ctx->lock); 470 } 471 472 return ret; 473 } 474 475 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 476 { 477 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 478 } 479 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 480 481 void blk_mq_sched_request_inserted(struct request *rq) 482 { 483 trace_block_rq_insert(rq->q, rq); 484 } 485 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 486 487 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 488 bool has_sched, 489 struct request *rq) 490 { 491 /* 492 * dispatch flush and passthrough rq directly 493 * 494 * passthrough request has to be added to hctx->dispatch directly. 495 * For some reason, device may be in one situation which can't 496 * handle FS request, so STS_RESOURCE is always returned and the 497 * FS request will be added to hctx->dispatch. However passthrough 498 * request may be required at that time for fixing the problem. If 499 * passthrough request is added to scheduler queue, there isn't any 500 * chance to dispatch it given we prioritize requests in hctx->dispatch. 501 */ 502 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 503 return true; 504 505 if (has_sched) 506 rq->rq_flags |= RQF_SORTED; 507 508 return false; 509 } 510 511 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 512 bool run_queue, bool async) 513 { 514 struct request_queue *q = rq->q; 515 struct elevator_queue *e = q->elevator; 516 struct blk_mq_ctx *ctx = rq->mq_ctx; 517 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 518 519 /* flush rq in flush machinery need to be dispatched directly */ 520 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 521 blk_insert_flush(rq); 522 goto run; 523 } 524 525 WARN_ON(e && (rq->tag != -1)); 526 527 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 528 /* 529 * Firstly normal IO request is inserted to scheduler queue or 530 * sw queue, meantime we add flush request to dispatch queue( 531 * hctx->dispatch) directly and there is at most one in-flight 532 * flush request for each hw queue, so it doesn't matter to add 533 * flush request to tail or front of the dispatch queue. 534 * 535 * Secondly in case of NCQ, flush request belongs to non-NCQ 536 * command, and queueing it will fail when there is any 537 * in-flight normal IO request(NCQ command). When adding flush 538 * rq to the front of hctx->dispatch, it is easier to introduce 539 * extra time to flush rq's latency because of S_SCHED_RESTART 540 * compared with adding to the tail of dispatch queue, then 541 * chance of flush merge is increased, and less flush requests 542 * will be issued to controller. It is observed that ~10% time 543 * is saved in blktests block/004 on disk attached to AHCI/NCQ 544 * drive when adding flush rq to the front of hctx->dispatch. 545 * 546 * Simply queue flush rq to the front of hctx->dispatch so that 547 * intensive flush workloads can benefit in case of NCQ HW. 548 */ 549 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 550 blk_mq_request_bypass_insert(rq, at_head, false); 551 goto run; 552 } 553 554 if (e && e->type->ops.insert_requests) { 555 LIST_HEAD(list); 556 557 list_add(&rq->queuelist, &list); 558 e->type->ops.insert_requests(hctx, &list, at_head); 559 } else { 560 spin_lock(&ctx->lock); 561 __blk_mq_insert_request(hctx, rq, at_head); 562 spin_unlock(&ctx->lock); 563 } 564 565 run: 566 if (run_queue) 567 blk_mq_run_hw_queue(hctx, async); 568 } 569 570 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 571 struct blk_mq_ctx *ctx, 572 struct list_head *list, bool run_queue_async) 573 { 574 struct elevator_queue *e; 575 struct request_queue *q = hctx->queue; 576 577 /* 578 * blk_mq_sched_insert_requests() is called from flush plug 579 * context only, and hold one usage counter to prevent queue 580 * from being released. 581 */ 582 percpu_ref_get(&q->q_usage_counter); 583 584 e = hctx->queue->elevator; 585 if (e && e->type->ops.insert_requests) 586 e->type->ops.insert_requests(hctx, list, false); 587 else { 588 /* 589 * try to issue requests directly if the hw queue isn't 590 * busy in case of 'none' scheduler, and this way may save 591 * us one extra enqueue & dequeue to sw queue. 592 */ 593 if (!hctx->dispatch_busy && !e && !run_queue_async) { 594 blk_mq_try_issue_list_directly(hctx, list); 595 if (list_empty(list)) 596 goto out; 597 } 598 blk_mq_insert_requests(hctx, ctx, list); 599 } 600 601 blk_mq_run_hw_queue(hctx, run_queue_async); 602 out: 603 percpu_ref_put(&q->q_usage_counter); 604 } 605 606 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 607 struct blk_mq_hw_ctx *hctx, 608 unsigned int hctx_idx) 609 { 610 if (hctx->sched_tags) { 611 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 612 blk_mq_free_rq_map(hctx->sched_tags); 613 hctx->sched_tags = NULL; 614 } 615 } 616 617 static int blk_mq_sched_alloc_tags(struct request_queue *q, 618 struct blk_mq_hw_ctx *hctx, 619 unsigned int hctx_idx) 620 { 621 struct blk_mq_tag_set *set = q->tag_set; 622 int ret; 623 624 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 625 set->reserved_tags); 626 if (!hctx->sched_tags) 627 return -ENOMEM; 628 629 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 630 if (ret) 631 blk_mq_sched_free_tags(set, hctx, hctx_idx); 632 633 return ret; 634 } 635 636 /* called in queue's release handler, tagset has gone away */ 637 static void blk_mq_sched_tags_teardown(struct request_queue *q) 638 { 639 struct blk_mq_hw_ctx *hctx; 640 int i; 641 642 queue_for_each_hw_ctx(q, hctx, i) { 643 if (hctx->sched_tags) { 644 blk_mq_free_rq_map(hctx->sched_tags); 645 hctx->sched_tags = NULL; 646 } 647 } 648 } 649 650 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 651 { 652 struct blk_mq_hw_ctx *hctx; 653 struct elevator_queue *eq; 654 unsigned int i; 655 int ret; 656 657 if (!e) { 658 q->elevator = NULL; 659 q->nr_requests = q->tag_set->queue_depth; 660 return 0; 661 } 662 663 /* 664 * Default to double of smaller one between hw queue_depth and 128, 665 * since we don't split into sync/async like the old code did. 666 * Additionally, this is a per-hw queue depth. 667 */ 668 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 669 BLKDEV_MAX_RQ); 670 671 queue_for_each_hw_ctx(q, hctx, i) { 672 ret = blk_mq_sched_alloc_tags(q, hctx, i); 673 if (ret) 674 goto err; 675 } 676 677 ret = e->ops.init_sched(q, e); 678 if (ret) 679 goto err; 680 681 blk_mq_debugfs_register_sched(q); 682 683 queue_for_each_hw_ctx(q, hctx, i) { 684 if (e->ops.init_hctx) { 685 ret = e->ops.init_hctx(hctx, i); 686 if (ret) { 687 eq = q->elevator; 688 blk_mq_sched_free_requests(q); 689 blk_mq_exit_sched(q, eq); 690 kobject_put(&eq->kobj); 691 return ret; 692 } 693 } 694 blk_mq_debugfs_register_sched_hctx(q, hctx); 695 } 696 697 return 0; 698 699 err: 700 blk_mq_sched_free_requests(q); 701 blk_mq_sched_tags_teardown(q); 702 q->elevator = NULL; 703 return ret; 704 } 705 706 /* 707 * called in either blk_queue_cleanup or elevator_switch, tagset 708 * is required for freeing requests 709 */ 710 void blk_mq_sched_free_requests(struct request_queue *q) 711 { 712 struct blk_mq_hw_ctx *hctx; 713 int i; 714 715 queue_for_each_hw_ctx(q, hctx, i) { 716 if (hctx->sched_tags) 717 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 718 } 719 } 720 721 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 722 { 723 struct blk_mq_hw_ctx *hctx; 724 unsigned int i; 725 726 queue_for_each_hw_ctx(q, hctx, i) { 727 blk_mq_debugfs_unregister_sched_hctx(hctx); 728 if (e->type->ops.exit_hctx && hctx->sched_data) { 729 e->type->ops.exit_hctx(hctx, i); 730 hctx->sched_data = NULL; 731 } 732 } 733 blk_mq_debugfs_unregister_sched(q); 734 if (e->type->ops.exit_sched) 735 e->type->ops.exit_sched(e); 736 blk_mq_sched_tags_teardown(q); 737 q->elevator = NULL; 738 } 739