1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 /* 22 * Mark a hardware queue as needing a restart. 23 */ 24 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 25 { 26 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 27 return; 28 29 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 30 } 31 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 32 33 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 34 { 35 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 36 37 /* 38 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 39 * in blk_mq_run_hw_queue(). Its pair is the barrier in 40 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 41 * meantime new request added to hctx->dispatch is missed to check in 42 * blk_mq_run_hw_queue(). 43 */ 44 smp_mb(); 45 46 blk_mq_run_hw_queue(hctx, true); 47 } 48 49 static int sched_rq_cmp(void *priv, const struct list_head *a, 50 const struct list_head *b) 51 { 52 struct request *rqa = container_of(a, struct request, queuelist); 53 struct request *rqb = container_of(b, struct request, queuelist); 54 55 return rqa->mq_hctx > rqb->mq_hctx; 56 } 57 58 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 59 { 60 struct blk_mq_hw_ctx *hctx = 61 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 62 struct request *rq; 63 LIST_HEAD(hctx_list); 64 unsigned int count = 0; 65 66 list_for_each_entry(rq, rq_list, queuelist) { 67 if (rq->mq_hctx != hctx) { 68 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 69 goto dispatch; 70 } 71 count++; 72 } 73 list_splice_tail_init(rq_list, &hctx_list); 74 75 dispatch: 76 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 77 } 78 79 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 80 81 /* 82 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 83 * its queue by itself in its completion handler, so we don't need to 84 * restart queue if .get_budget() fails to get the budget. 85 * 86 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 87 * be run again. This is necessary to avoid starving flushes. 88 */ 89 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 90 { 91 struct request_queue *q = hctx->queue; 92 struct elevator_queue *e = q->elevator; 93 bool multi_hctxs = false, run_queue = false; 94 bool dispatched = false, busy = false; 95 unsigned int max_dispatch; 96 LIST_HEAD(rq_list); 97 int count = 0; 98 99 if (hctx->dispatch_busy) 100 max_dispatch = 1; 101 else 102 max_dispatch = hctx->queue->nr_requests; 103 104 do { 105 struct request *rq; 106 int budget_token; 107 108 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 109 break; 110 111 if (!list_empty_careful(&hctx->dispatch)) { 112 busy = true; 113 break; 114 } 115 116 budget_token = blk_mq_get_dispatch_budget(q); 117 if (budget_token < 0) 118 break; 119 120 rq = e->type->ops.dispatch_request(hctx); 121 if (!rq) { 122 blk_mq_put_dispatch_budget(q, budget_token); 123 /* 124 * We're releasing without dispatching. Holding the 125 * budget could have blocked any "hctx"s with the 126 * same queue and if we didn't dispatch then there's 127 * no guarantee anyone will kick the queue. Kick it 128 * ourselves. 129 */ 130 run_queue = true; 131 break; 132 } 133 134 blk_mq_set_rq_budget_token(rq, budget_token); 135 136 /* 137 * Now this rq owns the budget which has to be released 138 * if this rq won't be queued to driver via .queue_rq() 139 * in blk_mq_dispatch_rq_list(). 140 */ 141 list_add_tail(&rq->queuelist, &rq_list); 142 count++; 143 if (rq->mq_hctx != hctx) 144 multi_hctxs = true; 145 146 /* 147 * If we cannot get tag for the request, stop dequeueing 148 * requests from the IO scheduler. We are unlikely to be able 149 * to submit them anyway and it creates false impression for 150 * scheduling heuristics that the device can take more IO. 151 */ 152 if (!blk_mq_get_driver_tag(rq)) 153 break; 154 } while (count < max_dispatch); 155 156 if (!count) { 157 if (run_queue) 158 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 159 } else if (multi_hctxs) { 160 /* 161 * Requests from different hctx may be dequeued from some 162 * schedulers, such as bfq and deadline. 163 * 164 * Sort the requests in the list according to their hctx, 165 * dispatch batching requests from same hctx at a time. 166 */ 167 list_sort(NULL, &rq_list, sched_rq_cmp); 168 do { 169 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 170 } while (!list_empty(&rq_list)); 171 } else { 172 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 173 } 174 175 if (busy) 176 return -EAGAIN; 177 return !!dispatched; 178 } 179 180 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 181 { 182 unsigned long end = jiffies + HZ; 183 int ret; 184 185 do { 186 ret = __blk_mq_do_dispatch_sched(hctx); 187 if (ret != 1) 188 break; 189 if (need_resched() || time_is_before_jiffies(end)) { 190 blk_mq_delay_run_hw_queue(hctx, 0); 191 break; 192 } 193 } while (1); 194 195 return ret; 196 } 197 198 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 199 struct blk_mq_ctx *ctx) 200 { 201 unsigned short idx = ctx->index_hw[hctx->type]; 202 203 if (++idx == hctx->nr_ctx) 204 idx = 0; 205 206 return hctx->ctxs[idx]; 207 } 208 209 /* 210 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 211 * its queue by itself in its completion handler, so we don't need to 212 * restart queue if .get_budget() fails to get the budget. 213 * 214 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 215 * be run again. This is necessary to avoid starving flushes. 216 */ 217 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 218 { 219 struct request_queue *q = hctx->queue; 220 LIST_HEAD(rq_list); 221 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 222 int ret = 0; 223 struct request *rq; 224 225 do { 226 int budget_token; 227 228 if (!list_empty_careful(&hctx->dispatch)) { 229 ret = -EAGAIN; 230 break; 231 } 232 233 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 234 break; 235 236 budget_token = blk_mq_get_dispatch_budget(q); 237 if (budget_token < 0) 238 break; 239 240 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 241 if (!rq) { 242 blk_mq_put_dispatch_budget(q, budget_token); 243 /* 244 * We're releasing without dispatching. Holding the 245 * budget could have blocked any "hctx"s with the 246 * same queue and if we didn't dispatch then there's 247 * no guarantee anyone will kick the queue. Kick it 248 * ourselves. 249 */ 250 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 251 break; 252 } 253 254 blk_mq_set_rq_budget_token(rq, budget_token); 255 256 /* 257 * Now this rq owns the budget which has to be released 258 * if this rq won't be queued to driver via .queue_rq() 259 * in blk_mq_dispatch_rq_list(). 260 */ 261 list_add(&rq->queuelist, &rq_list); 262 263 /* round robin for fair dispatch */ 264 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 265 266 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 267 268 WRITE_ONCE(hctx->dispatch_from, ctx); 269 return ret; 270 } 271 272 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 273 { 274 struct request_queue *q = hctx->queue; 275 const bool has_sched = q->elevator; 276 int ret = 0; 277 LIST_HEAD(rq_list); 278 279 /* 280 * If we have previous entries on our dispatch list, grab them first for 281 * more fair dispatch. 282 */ 283 if (!list_empty_careful(&hctx->dispatch)) { 284 spin_lock(&hctx->lock); 285 if (!list_empty(&hctx->dispatch)) 286 list_splice_init(&hctx->dispatch, &rq_list); 287 spin_unlock(&hctx->lock); 288 } 289 290 /* 291 * Only ask the scheduler for requests, if we didn't have residual 292 * requests from the dispatch list. This is to avoid the case where 293 * we only ever dispatch a fraction of the requests available because 294 * of low device queue depth. Once we pull requests out of the IO 295 * scheduler, we can no longer merge or sort them. So it's best to 296 * leave them there for as long as we can. Mark the hw queue as 297 * needing a restart in that case. 298 * 299 * We want to dispatch from the scheduler if there was nothing 300 * on the dispatch list or we were able to dispatch from the 301 * dispatch list. 302 */ 303 if (!list_empty(&rq_list)) { 304 blk_mq_sched_mark_restart_hctx(hctx); 305 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 306 if (has_sched) 307 ret = blk_mq_do_dispatch_sched(hctx); 308 else 309 ret = blk_mq_do_dispatch_ctx(hctx); 310 } 311 } else if (has_sched) { 312 ret = blk_mq_do_dispatch_sched(hctx); 313 } else if (hctx->dispatch_busy) { 314 /* dequeue request one by one from sw queue if queue is busy */ 315 ret = blk_mq_do_dispatch_ctx(hctx); 316 } else { 317 blk_mq_flush_busy_ctxs(hctx, &rq_list); 318 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 319 } 320 321 return ret; 322 } 323 324 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 325 { 326 struct request_queue *q = hctx->queue; 327 328 /* RCU or SRCU read lock is needed before checking quiesced flag */ 329 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 330 return; 331 332 hctx->run++; 333 334 /* 335 * A return of -EAGAIN is an indication that hctx->dispatch is not 336 * empty and we must run again in order to avoid starving flushes. 337 */ 338 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 339 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 340 blk_mq_run_hw_queue(hctx, true); 341 } 342 } 343 344 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 345 unsigned int nr_segs) 346 { 347 struct elevator_queue *e = q->elevator; 348 struct blk_mq_ctx *ctx; 349 struct blk_mq_hw_ctx *hctx; 350 bool ret = false; 351 enum hctx_type type; 352 353 if (e && e->type->ops.bio_merge) { 354 ret = e->type->ops.bio_merge(q, bio, nr_segs); 355 goto out_put; 356 } 357 358 ctx = blk_mq_get_ctx(q); 359 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 360 type = hctx->type; 361 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 362 list_empty_careful(&ctx->rq_lists[type])) 363 goto out_put; 364 365 /* default per sw-queue merge */ 366 spin_lock(&ctx->lock); 367 /* 368 * Reverse check our software queue for entries that we could 369 * potentially merge with. Currently includes a hand-wavy stop 370 * count of 8, to not spend too much time checking for merges. 371 */ 372 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 373 ret = true; 374 375 spin_unlock(&ctx->lock); 376 out_put: 377 return ret; 378 } 379 380 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 381 struct list_head *free) 382 { 383 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 384 } 385 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 386 387 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 388 struct request *rq) 389 { 390 /* 391 * dispatch flush and passthrough rq directly 392 * 393 * passthrough request has to be added to hctx->dispatch directly. 394 * For some reason, device may be in one situation which can't 395 * handle FS request, so STS_RESOURCE is always returned and the 396 * FS request will be added to hctx->dispatch. However passthrough 397 * request may be required at that time for fixing the problem. If 398 * passthrough request is added to scheduler queue, there isn't any 399 * chance to dispatch it given we prioritize requests in hctx->dispatch. 400 */ 401 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 402 return true; 403 404 return false; 405 } 406 407 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 408 bool run_queue, bool async) 409 { 410 struct request_queue *q = rq->q; 411 struct elevator_queue *e = q->elevator; 412 struct blk_mq_ctx *ctx = rq->mq_ctx; 413 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 414 415 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 416 417 if (blk_mq_sched_bypass_insert(hctx, rq)) { 418 /* 419 * Firstly normal IO request is inserted to scheduler queue or 420 * sw queue, meantime we add flush request to dispatch queue( 421 * hctx->dispatch) directly and there is at most one in-flight 422 * flush request for each hw queue, so it doesn't matter to add 423 * flush request to tail or front of the dispatch queue. 424 * 425 * Secondly in case of NCQ, flush request belongs to non-NCQ 426 * command, and queueing it will fail when there is any 427 * in-flight normal IO request(NCQ command). When adding flush 428 * rq to the front of hctx->dispatch, it is easier to introduce 429 * extra time to flush rq's latency because of S_SCHED_RESTART 430 * compared with adding to the tail of dispatch queue, then 431 * chance of flush merge is increased, and less flush requests 432 * will be issued to controller. It is observed that ~10% time 433 * is saved in blktests block/004 on disk attached to AHCI/NCQ 434 * drive when adding flush rq to the front of hctx->dispatch. 435 * 436 * Simply queue flush rq to the front of hctx->dispatch so that 437 * intensive flush workloads can benefit in case of NCQ HW. 438 */ 439 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 440 blk_mq_request_bypass_insert(rq, at_head, false); 441 goto run; 442 } 443 444 if (e) { 445 LIST_HEAD(list); 446 447 list_add(&rq->queuelist, &list); 448 e->type->ops.insert_requests(hctx, &list, at_head); 449 } else { 450 spin_lock(&ctx->lock); 451 __blk_mq_insert_request(hctx, rq, at_head); 452 spin_unlock(&ctx->lock); 453 } 454 455 run: 456 if (run_queue) 457 blk_mq_run_hw_queue(hctx, async); 458 } 459 460 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 461 struct blk_mq_ctx *ctx, 462 struct list_head *list, bool run_queue_async) 463 { 464 struct elevator_queue *e; 465 struct request_queue *q = hctx->queue; 466 467 /* 468 * blk_mq_sched_insert_requests() is called from flush plug 469 * context only, and hold one usage counter to prevent queue 470 * from being released. 471 */ 472 percpu_ref_get(&q->q_usage_counter); 473 474 e = hctx->queue->elevator; 475 if (e) { 476 e->type->ops.insert_requests(hctx, list, false); 477 } else { 478 /* 479 * try to issue requests directly if the hw queue isn't 480 * busy in case of 'none' scheduler, and this way may save 481 * us one extra enqueue & dequeue to sw queue. 482 */ 483 if (!hctx->dispatch_busy && !run_queue_async) { 484 blk_mq_run_dispatch_ops(hctx->queue, 485 blk_mq_try_issue_list_directly(hctx, list)); 486 if (list_empty(list)) 487 goto out; 488 } 489 blk_mq_insert_requests(hctx, ctx, list); 490 } 491 492 blk_mq_run_hw_queue(hctx, run_queue_async); 493 out: 494 percpu_ref_put(&q->q_usage_counter); 495 } 496 497 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 498 struct blk_mq_hw_ctx *hctx, 499 unsigned int hctx_idx) 500 { 501 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 502 hctx->sched_tags = q->sched_shared_tags; 503 return 0; 504 } 505 506 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 507 q->nr_requests); 508 509 if (!hctx->sched_tags) 510 return -ENOMEM; 511 return 0; 512 } 513 514 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 515 { 516 blk_mq_free_rq_map(queue->sched_shared_tags); 517 queue->sched_shared_tags = NULL; 518 } 519 520 /* called in queue's release handler, tagset has gone away */ 521 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 522 { 523 struct blk_mq_hw_ctx *hctx; 524 unsigned long i; 525 526 queue_for_each_hw_ctx(q, hctx, i) { 527 if (hctx->sched_tags) { 528 if (!blk_mq_is_shared_tags(flags)) 529 blk_mq_free_rq_map(hctx->sched_tags); 530 hctx->sched_tags = NULL; 531 } 532 } 533 534 if (blk_mq_is_shared_tags(flags)) 535 blk_mq_exit_sched_shared_tags(q); 536 } 537 538 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 539 { 540 struct blk_mq_tag_set *set = queue->tag_set; 541 542 /* 543 * Set initial depth at max so that we don't need to reallocate for 544 * updating nr_requests. 545 */ 546 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 547 BLK_MQ_NO_HCTX_IDX, 548 MAX_SCHED_RQ); 549 if (!queue->sched_shared_tags) 550 return -ENOMEM; 551 552 blk_mq_tag_update_sched_shared_tags(queue); 553 554 return 0; 555 } 556 557 /* caller must have a reference to @e, will grab another one if successful */ 558 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 559 { 560 unsigned int flags = q->tag_set->flags; 561 struct blk_mq_hw_ctx *hctx; 562 struct elevator_queue *eq; 563 unsigned long i; 564 int ret; 565 566 /* 567 * Default to double of smaller one between hw queue_depth and 128, 568 * since we don't split into sync/async like the old code did. 569 * Additionally, this is a per-hw queue depth. 570 */ 571 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 572 BLKDEV_DEFAULT_RQ); 573 574 if (blk_mq_is_shared_tags(flags)) { 575 ret = blk_mq_init_sched_shared_tags(q); 576 if (ret) 577 return ret; 578 } 579 580 queue_for_each_hw_ctx(q, hctx, i) { 581 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 582 if (ret) 583 goto err_free_map_and_rqs; 584 } 585 586 ret = e->ops.init_sched(q, e); 587 if (ret) 588 goto err_free_map_and_rqs; 589 590 mutex_lock(&q->debugfs_mutex); 591 blk_mq_debugfs_register_sched(q); 592 mutex_unlock(&q->debugfs_mutex); 593 594 queue_for_each_hw_ctx(q, hctx, i) { 595 if (e->ops.init_hctx) { 596 ret = e->ops.init_hctx(hctx, i); 597 if (ret) { 598 eq = q->elevator; 599 blk_mq_sched_free_rqs(q); 600 blk_mq_exit_sched(q, eq); 601 kobject_put(&eq->kobj); 602 return ret; 603 } 604 } 605 mutex_lock(&q->debugfs_mutex); 606 blk_mq_debugfs_register_sched_hctx(q, hctx); 607 mutex_unlock(&q->debugfs_mutex); 608 } 609 610 return 0; 611 612 err_free_map_and_rqs: 613 blk_mq_sched_free_rqs(q); 614 blk_mq_sched_tags_teardown(q, flags); 615 616 q->elevator = NULL; 617 return ret; 618 } 619 620 /* 621 * called in either blk_queue_cleanup or elevator_switch, tagset 622 * is required for freeing requests 623 */ 624 void blk_mq_sched_free_rqs(struct request_queue *q) 625 { 626 struct blk_mq_hw_ctx *hctx; 627 unsigned long i; 628 629 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 630 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 631 BLK_MQ_NO_HCTX_IDX); 632 } else { 633 queue_for_each_hw_ctx(q, hctx, i) { 634 if (hctx->sched_tags) 635 blk_mq_free_rqs(q->tag_set, 636 hctx->sched_tags, i); 637 } 638 } 639 } 640 641 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 642 { 643 struct blk_mq_hw_ctx *hctx; 644 unsigned long i; 645 unsigned int flags = 0; 646 647 queue_for_each_hw_ctx(q, hctx, i) { 648 mutex_lock(&q->debugfs_mutex); 649 blk_mq_debugfs_unregister_sched_hctx(hctx); 650 mutex_unlock(&q->debugfs_mutex); 651 652 if (e->type->ops.exit_hctx && hctx->sched_data) { 653 e->type->ops.exit_hctx(hctx, i); 654 hctx->sched_data = NULL; 655 } 656 flags = hctx->flags; 657 } 658 659 mutex_lock(&q->debugfs_mutex); 660 blk_mq_debugfs_unregister_sched(q); 661 mutex_unlock(&q->debugfs_mutex); 662 663 if (e->type->ops.exit_sched) 664 e->type->ops.exit_sched(e); 665 blk_mq_sched_tags_teardown(q, flags); 666 q->elevator = NULL; 667 } 668